WO2023029948A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023029948A1
WO2023029948A1 PCT/CN2022/112169 CN2022112169W WO2023029948A1 WO 2023029948 A1 WO2023029948 A1 WO 2023029948A1 CN 2022112169 W CN2022112169 W CN 2022112169W WO 2023029948 A1 WO2023029948 A1 WO 2023029948A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
inter
resource
network device
precoding matrix
Prior art date
Application number
PCT/CN2022/112169
Other languages
English (en)
French (fr)
Inventor
王博磊
王祎锋
刁英斐
胡宏杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22863088.5A priority Critical patent/EP4383801A1/en
Publication of WO2023029948A1 publication Critical patent/WO2023029948A1/zh
Priority to US18/589,563 priority patent/US20240204829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • MIMO Multiple-input and multiple-output
  • the key for MIMO technology to improve spectrum efficiency is that network equipment can perform accurate precoding.
  • some precoding matrices are predefined, and the set of these precoding matrices is known to both the network device and the terminal device, so that the terminal device can pass the channel state information in the form of precoding matrix indicator (PMI) (channel state information, CSI) is fed back to the network device.
  • PMI precoding matrix indicator
  • the specific process is as follows: the network device sends a channel state information reference signal (CSI-RS) to the terminal device; the terminal device selects the optimal precoding matrix set from the predefined precoding matrix set according to the received CSI-RS signal. Precoding matrix, and feed back the CSI to the network device through the PMI; the network device searches for the corresponding precoding matrix according to the PMI fed back by the terminal device and performs precoding.
  • CSI-RS channel state information reference signal
  • the quantization of CSI by PMI is discrete and limited, and quantization errors exist, resulting in a larger error in the precoding matrix determined by the network device based on the PMI than the precoding matrix corresponding to the actual channel. That is to say, the CSI feedback accuracy of the current terminal device based on the PMI is low.
  • the present application provides a communication method and device for improving the feedback accuracy of channel state information.
  • the present application provides a communication method, which may include: a terminal device receives N pilot signals sent by a network device through N CSI resources, and based on the N CSI resources, the corresponding pilot signals Perform channel measurement; then the terminal device sends channel state information to the network device, the channel state information includes an identifier of a first CSI resource and a precoding matrix indication PMI; wherein, the N CSI resources and the N There is a one-to-one correspondence between the pilot signals, and the N is an integer greater than or equal to 2; the N pilot signals may correspond to the mapping relationship between the antenna ports of the N types of network equipment and the transmitting and receiving antennas of the network equipment, wherein the At least two of the mapping relationships between the antenna ports of the N types of network equipment and the transmitting and receiving antennas of the network equipment are different; or, the N pilot signals may correspond to N inter-polarization phases, wherein the N At least two of the inter-polarization phases are different; the first CSI resource is one of the N CSI resources,
  • different pilot signals can be sent on different CSI resources, so that there are different equivalent channels from the network device to the terminal device on different CSI resources, and the terminal device can use multiple CSI resources based on
  • the corresponding pilot signal is used for channel measurement, so that an equivalent channel can better match the codebook, so that the feedback accuracy of channel state information can be improved, and the precoding matrix determined by the network equipment can better match the channel.
  • the corresponding multiple pilot signals can be changed equivalently, so as to realize changing the communication between the network device and the terminal device on different CSI resources. equivalent channel.
  • multiple corresponding pilot signals may be changed by equivalently changing phases between multiple polarizations, so as to change equivalent channels from the network device to the terminal device on different CSI resources.
  • the terminal device may receive configuration information from the network device, the configuration information is used to configure a first resource set, the first resource set includes M CSI resources, and the M CSI resources
  • the resources include the N CSI resources, and the M is an integer greater than or equal to N.
  • the network device can send multiple pilot signals through multiple CSI resources, and the terminal device can perform channel measurement on the multiple CSI resources based on corresponding pilot signals.
  • the present application provides a communication method, which may include: after the network device sends N pilot signals to the terminal device through N CSI resources, receiving channel state information sent by the terminal device, the channel The state information includes the identifier of the first CSI resource and the precoding matrix indication PMI; then, the precoding matrix is determined according to the identifier of the first CSI resource and the PMI included in the channel state information; wherein, the N CSI resources One-to-one correspondence with the N pilot signals, the N is an integer greater than or equal to 2; the N pilot signals may correspond to the mapping relationship between the antenna ports of N types of network equipment and the transmitting and receiving antennas of the network equipment , wherein at least two of the mapping relationships between the antenna ports of the N types of network equipment and the transmitting and receiving antennas of the network equipment are different; or, the N pilot signals may correspond to N inter-polarization phases, where , at least two of the N inter-polarization phases are different; the first CSI resource is one of the N CSI resources, and the channel
  • different pilot signals can be sent on different CSI resources, so that there are different equivalent channels from the network device to the terminal device on different CSI resources, and the terminal device can use multiple CSI resources based on
  • the corresponding pilot signal is used for channel measurement, so that an equivalent channel can better match the codebook, so that the feedback accuracy of channel state information can be improved, and the precoding matrix determined by the network equipment can better match the channel.
  • the corresponding multiple pilot signals can be changed equivalently, so as to realize changing the communication between the network device and the terminal device on different CSI resources. equivalent channel.
  • multiple corresponding pilot signals may be changed by equivalently changing phases between multiple polarizations, so as to change equivalent channels from the network device to the terminal device on different CSI resources.
  • the network device determines the precoding matrix according to the identifier of the first CSI resource included in the channel state information and the PMI.
  • the specific method may be: the network device determines the precoding matrix according to the first The identifier of the CSI resource determines the first mapping relationship, and determines the precoding matrix according to the first mapping relationship and the PMI; the first mapping relationship is the transmission and reception between the antenna ports of the N types of network equipment and the network equipment A mapping relationship among the mapping relationships between antennas. In this way, the network device can determine a precoding matrix that better matches the channel by combining the first mapping relationship and the PMI.
  • the network device determines the first mapping relationship according to the identifier of the first CSI resource
  • the specific method may be: the network device determines the first CSI resource according to the identifier of the first CSI resource resource, and then determine the first mapping relationship corresponding to the first CSI resource. In this way, the network device can accurately determine the first mapping relationship.
  • the network device determines the precoding matrix according to the first mapping relationship and the PMI
  • the specific method may be: the network device determines the first matrix according to the first mapping relationship, and determining the precoding matrix to be selected in the first codebook according to the PMI, the first matrix is used to represent the first mapping relationship, and the first codebook is a preset set of precoding matrices; the final The network device determines the precoding matrix according to the first matrix and the precoding matrix to be selected.
  • various beams can be constructed by combining different matrices corresponding to different mapping relationships with the first codebook, which breaks the protocol limitation of the existing codebook, thereby improving the feedback accuracy of channel state information and making network devices determine The precoding matrix matches the channel better.
  • the network device determines the precoding matrix according to the identifier of the first CSI resource included in the channel state information and the PMI.
  • the specific method may be: the network device determines the precoding matrix according to the first The identifier of the CSI resource determines the first inter-polarization phase, and determines the precoding matrix according to the first inter-polarization phase and the PMI, where the first inter-polarization phase is the N inter-polarization phases One of the inter-polarization phases of . In this way, the network device can determine a precoding matrix that better matches the channel by combining the first inter-polarization phase and the PMI.
  • the network device determines the first inter-polarization phase according to the identifier of the first CSI resource.
  • the specific method may be: the network device determines the first inter-polarization phase according to the identifier of the first CSI resource. A CSI resource, and then determine the first inter-polarization phase corresponding to the first CSI resource. In this way, the network device can accurately determine the first inter-polarization phase.
  • the network device determines the precoding matrix according to the first inter-polarization phase and the PMI
  • the specific method may be: the network device determines the precoding matrix according to the first inter-polarization phase The second matrix, and determining the precoding matrix to be selected in the first codebook according to the PMI, the second matrix is used to characterize the first inter-polarization phase, and the first codebook is a preset precoding matrix A set of coding matrices; finally, the network device determines the precoding matrix according to the second matrix and the precoding matrix to be selected.
  • the value of the inter-polarization phase can be expanded, and the codebook limitation of the existing protocol can be broken, so that the feedback accuracy of the channel state information can be improved, and the precoding matrix determined by the network equipment can better match the channel.
  • the network device sends configuration information to the terminal device, the configuration information is used to configure a first resource set, the first resource set includes M CSI resources, and the M CSI resources The N CSI resources are included, and the M is an integer greater than or equal to N.
  • the network device can send multiple pilot signals through multiple CSI resources, so that the terminal device can perform channel measurement on the multiple CSI resources based on corresponding pilot signals.
  • the present application further provides a communication device, the communication device may be a terminal device, and the communication device has a function of implementing the method in the first aspect or each possible design example of the first aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above-mentioned first aspect or in each possible design example of the first aspect, for details, refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving data, and for communicating and interacting with other devices in the communication system,
  • the processor is configured to support the communication device to execute corresponding functions in the first aspect or each possible design example of the first aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the present application further provides a communication device, which may be a network device, and has a function of implementing the method in the second aspect or each possible design example of the second aspect.
  • a communication device which may be a network device, and has a function of implementing the method in the second aspect or each possible design example of the second aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the communication device includes a transceiver unit and a processing unit, and these units can perform the corresponding functions in the above-mentioned second aspect or in each possible design example of the second aspect.
  • these units can perform the corresponding functions in the above-mentioned second aspect or in each possible design example of the second aspect.
  • refer to Detailed description will not be repeated here.
  • the structure of the communication device includes a transceiver and a processor, and optionally also includes a memory, and the transceiver is used for sending and receiving data, and for communicating and interacting with other devices in the communication system,
  • the processor is configured to support the communication device to execute corresponding functions in the second aspect or each possible design example of the second aspect.
  • the memory coupled to the processor, holds program instructions and data necessary for the communication device.
  • the embodiment of the present application provides a communication system, which may include the terminal device and the network device mentioned above.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores program instructions, and when the program instructions are run on the computer, the computer executes the first aspect and its In any possible design, or the method described in the second aspect and any possible design thereof.
  • Exemplary, computer readable storage media may be any available media that can be accessed by a computer.
  • computer readable media may include non-transitory computer readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable In addition to programmable read-only memory (electrically EPROM, EEPROM), CD-ROM or other optical disk storage, magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • random-access memory random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • CD-ROM or other optical disk storage magnetic disk storage medium or other magnetic storage device, or can be used to carry or store the desired program code in the form of instructions or data structures and can Any other media accessed by a computer.
  • the embodiments of the present application provide a computer program product including computer program codes or instructions, which, when run on a computer, enable the computer to implement the above-mentioned first aspect or any possible design of the first aspect, or The method described in the above second aspect or any possible design of the second aspect.
  • the present application also provides a chip, including a processor, the processor is coupled to a memory, and is used to read and execute program instructions stored in the memory, so that the chip realizes the above first aspect Or any possible design of the first aspect, or the method described in the above second aspect or any possible design of the second aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 2 is a flowchart of a communication method provided by the present application.
  • FIG. 3 is a schematic diagram of a mapping relationship between an antenna port of a network device and a transceiver antenna of the network device provided in the present application;
  • FIG. 4 is a schematic diagram of an inter-polarization phase matrix provided by the present application.
  • FIG. 5 is a schematic diagram of beneficial effects obtained by combining a matrix corresponding to a mapping relationship provided by the present application and a codebook to construct a beam;
  • Fig. 6 is a schematic diagram of a simulation result provided by the present application.
  • FIG. 7 is a schematic diagram of another simulation result provided by the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 9 is a structural diagram of a communication device provided by the present application.
  • Embodiments of the present application provide a communication method and device for improving the feedback accuracy of channel state information.
  • the method and the device described in this application are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • channel state information reference signal channel state information reference signal, CSI-RS
  • the network device can obtain the channel state information (channel state information, CSI) fed back by the terminal device by sending the CSI-RS, Further, a precoding matrix suitable for the downlink channel is determined.
  • CSI-RS resource indicator (CSI-RS resource indicator, CRI): used to indicate the CSI-RS resource index number corresponding to the channel state information fed back by the terminal device.
  • Antenna port refers to the logical antenna port, that is, the antenna port, which refers to the logical port used for transmission.
  • the mapping of antenna ports to physical antennas is controlled by beamforming, since certain beams require signals to be transmitted on certain antenna ports to form the desired beam, therefore, it is possible to map two antenna ports to one physical antenna, or to combine one antenna Ports are mapped to multiple physical antennas.
  • At least one (species) refers to one (species) or multiple (species), and multiple (species) refers to two (species) or more than two (species).
  • Figure 1 shows the architecture of a communication system to which the communication method provided by the embodiment of the present application can be applied.
  • the architecture of the communication system includes network equipment and terminal equipment, where:
  • the network device may be a device with a wireless transceiver function or a chip that may be arranged on the network device, and the network device may include but not limited to: a base station (generation node B, gNB), an evolved base station (evolved NodeB, eNB), Radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, Wi-Fi) system access point (access point, AP), wireless relay node, wireless back Transmission node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distribu
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Functions of the radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • a CU may be divided into network devices in the access network RAN, or a CU may be divided into network devices in the core network CN, which is not limited.
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User Agent, or User Device.
  • the terminal device has a measurement capability for multiple CSI resources.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, smart wearable devices (smart glasses, smart watches, smart headphones, etc.), wireless terminals in smart homes, etc., can also be Chips or chip modules (or chip systems) that can be installed in the above devices.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal device with a wireless transceiver function and a chip that can be installed in the aforementioned terminal device are collectively referred to as a terminal device.
  • the communication system shown in FIG. 1 may be, but not limited to, a fourth generation (4th Generation, 4G) system or a fifth generation (5th Generation, 5G) system.
  • the method in the embodiment of the present application may also be It is suitable for various communication systems in the future, such as the sixth generation (6th Generation, 6G) system or other communication networks.
  • the numbers of network devices and terminal devices in the communication system shown in FIG. 1 are only examples, and are not intended to limit the communication system.
  • the communication system shown in FIG. 1 may also include other types of devices, such as core network devices, which are not shown in FIG. 1 .
  • the feedback of channel state information may be a terminal device, or a processor in a terminal device, or a chip or a chip system, or a functional module, etc.; based on the channel state
  • the information precoded may be a network device, or a processor in the network device, or a chip or a chip system, or a functional module.
  • the communication method provided by the present application is described in detail by taking the terminal device and the network device as examples, but this application is not limited thereto.
  • a communication method provided in the embodiment of the present application may be applicable to the communication system shown in FIG. 1 .
  • the process of the method may include:
  • Step 201 The network device sends N pilot signals to the terminal device through the N CSI resources, and correspondingly, the terminal device receives the N pilot signals sent by the network device through the N CSI resources.
  • the N CSI resources correspond to the N pilot signals one by one, and the N is an integer greater than or equal to 2.
  • the network device sends a pilot signal on each of the N CSI resources.
  • the network device may be implemented through the physical layer (ie, layer 1 (layer 1, L1)) of the network device.
  • the N pilot signals are N channel state information reference signals (CSI-RS).
  • CSI-RS channel state information reference signals
  • the N pilot signals correspond to mapping relationships between antenna ports of N types of network devices and transmitting and receiving antennas of network devices, where the antenna ports of the N types of network devices and At least two mapping relationships among the mapping relationships between the transmitting and receiving antennas of the network device are different.
  • the N CSI resources correspond to the mapping relationship between the antenna ports of the N types of network devices and the transmitting and receiving antennas of the network devices.
  • each mapping relationship may correspond to a matrix, and the corresponding mapping relationship is represented by the corresponding matrix.
  • the 4 CSI resources (such as CSI resource 1, CSI resource 2, CSI resource 3 and CSI resource 4) corresponding to the antenna port of the network device and the transmitting and receiving antenna of the network device (mapping relationship 1, mapping relationship 2, mapping relationship 3 and mapping relationship 4) can be shown in FIG. 3 .
  • the matrices 1 to 4 respectively corresponding to the mapping relationship 1 to the mapping relationship 4 may be shown in the matrix shown in FIG. 3 .
  • mapping relationship and matrix shown in FIG. 3 are only examples, and there may be other possibilities, which are not limited in this application. It should be noted that the remaining unmarked elements in the matrices involved in the drawings of this application are zero.
  • mapping relationship 1 in FIG. 3 can be configured as a baseline, so that a possible negative gain problem can be avoided.
  • the N pilot signals correspond to N inter-polarization phases, where at least two of the N inter-polarization phases are different. This situation can also be understood as the N CSI resources corresponding to the N inter-polarization phases.
  • each inter-polarization phase can be represented by a matrix, that is, one inter-polarization phase corresponds to one matrix.
  • the matrix of inter-polarization phases corresponding to N CSI resources may be as shown in the first example in FIG. 4 .
  • the matrix of the inter-polarization phases corresponding to the N CSI resources may be as shown in the second example in FIG. 4 . It can be seen from Fig. 4 that the inter-polarization phase corresponding to the nth CSI resource is ⁇ n , where n is an integer ranging from 1 to N, where ⁇ 1 is 0.
  • a matrix of one of the N inter-polarization phases corresponding to N CSI resources can be configured as a baseline, for example, the matrix of the inter-polarization phase corresponding to the first CSI resource in FIG.
  • the matrix is configured as the baseline, which avoids possible negative gain problems and reduces complexity.
  • the network device may first send configuration information to the terminal device, the configuration information is used to configure a first resource set (CSI resourceset), and the first resource
  • the set includes M CSI resources, the M CSI resources include the N CSI resources, and the M is an integer greater than or equal to N. Therefore, the terminal device can learn the N CSI resources in advance.
  • the configuration information may be used to configure multiple resource sets including the first resource set, and multiple CSI resources are configured in each resource set. That is to say, the configuration information may configure other resource sets except the first resource set. It should be noted that when the configuration information is used to configure multiple resource sets, the number of CSI resources included in the multiple resource sets may be different or the same, or may be partly the same and partly different. This is not limited.
  • the first resource set may be at the cell level or at the terminal equipment level.
  • the first resource set is valid for all terminal devices in the cell, and different terminals in the cell can be configured to use the same or different full sets of CSI resources in the first resource set or a subset.
  • the first resource set is valid for the one or more terminal devices. It should be understood that other resource sets have the same principle as the first resource set, which will not be described in detail here.
  • the network device When the network device implements the configuration of the above resource set, it may be implemented, but not limited to, through the link layer (layer 2 (layer 2, L2)) and network layer (layer 3 (layer 3, L3)) of the network device.
  • link layer layer 2 (layer 2, L2)
  • network layer layer 3 (layer 3, L3)
  • Step 202 The terminal device performs channel measurement on the N CSI resources based on corresponding pilot signals.
  • the terminal device performs channel measurement on each CSI resource based on the pilot signal corresponding to the CSI resource, and can obtain channel measurement results corresponding to N CSI resources.
  • Step 203 The terminal device sends channel state information to the network device, and correspondingly, the network device receives the channel state information sent by the terminal device.
  • the channel state information includes an identifier and PMI of a first CSI resource, the first CSI resource is one of the N CSI resources, and the channel measurement result corresponding to the first CSI resource is better than the N Channel measurement results corresponding to N-1 CSI resources other than the first CSI resource among the CSI resources. That is, the channel measurement result corresponding to the first CSI resource is the best among the channel measurement results corresponding to the N CSI resources.
  • the identifier of the first CSI resource is the CRI of the first CSI resource in the first resource set.
  • Step 204 The network device determines a precoding matrix according to the identifier of the first CSI resource included in the channel state information and the PMI.
  • the network device determines the precoding matrix according to the identifier of the first CSI resource included in the channel state information and the PMI, and the specific method can be is: the network device determines a first mapping relationship according to the identifier of the first CSI resource, and then the network device determines the precoding matrix according to the first mapping relationship and the PMI, wherein the first The mapping relationship is one of the mapping relationships between the antenna ports of the N types of network devices and the transmitting and receiving antennas of the network devices.
  • the network device determines the first mapping relationship according to the identifier of the first CSI resource
  • the specific method may be: the network device determines the first CSI resource according to the identifier of the first CSI resource, so The network device determines the first mapping relationship corresponding to the first CSI resource.
  • the first mapping relationship may be one of the 4 mapping relationships shown in FIG. 3 .
  • the network device determines the precoding matrix according to the first mapping relationship and the PMI
  • the specific method may be: the network device determines the first matrix according to the first mapping relationship, and according to the PMI determines the precoding matrix to be selected in the first codebook, the first matrix is used to represent the first mapping relationship, and the first codebook is a preset set of precoding matrices; finally, the network device according to The first matrix and the candidate precoding matrix determine the precoding matrix.
  • the network device is a network device with 4 transceiver antennas and 4 antenna ports
  • the first matrix may be one of the 4 matrices shown in FIG. 3 .
  • the network device may multiply the first matrix and the precoding matrix to be selected to obtain The precoding matrix.
  • the beneficial effects of the beams constructed after combining the matrices corresponding to the mapping relationship 2 to the mapping relationship 4 and the codebook respectively can be shown in FIG. 5 .
  • the mapping relationship 2 when used, the corresponding beams of different left and right polarizations are conjugated to each other, and the phase between polarizations can be encrypted, for example, the phase between polarizations can be ⁇ 0°, 45°, 90°, 135°, 180°, 215°, 270°, 315° ⁇ .
  • mapping relationship 3 When the mapping relationship 3 is used, the corresponding left and right polarization beams are the same, and the beams can be virtually mapped to the inter-polarization phase, so that the inter-polarization phase is increased.
  • mapping relationship 4 When the mapping relationship 4 is used, the corresponding left and right polarization beams are different and are conjugate to each other, and the beams can be virtually mapped to the inter-polarization phase to increase the inter-polarization phase.
  • the network device determines the precoding matrix according to the identifier of the first CSI resource included in the channel state information and the PMI, and the specific method can be is: the network device determines the first inter-polarization phase according to the identifier of the first CSI resource, and determines the precoding matrix according to the first inter-polarization phase and the PMI, where the first The inter-polarization phase is one of the N inter-polarization phases.
  • the network device determines the first inter-polarization phase according to the identifier of the first CSI resource
  • the specific method may be: the network device determines the first CSI resource according to the identifier of the first CSI resource , and then determine the first inter-polarization phase corresponding to the first CSI resource.
  • the first inter-polarization phase may be a plurality of inter-polarization phases involved in the first example as shown in FIG. 4 One of the phases.
  • the first inter-polarization phase may be one of the multiple inter-polarization phases involved in the second example shown in FIG. 4 kind of.
  • the network device determines the precoding matrix according to the first inter-polarization phase and the PMI, and the specific method may be: the network device determines a second matrix according to the first inter-polarization phase, and determine the precoding matrix to be selected in the first codebook according to the PMI, and the second matrix is used to characterize the first inter-polarization phase; finally, the network device determines the precoding matrix according to the second matrix and the to-be Select a precoding matrix to determine the precoding matrix.
  • the second matrix may be one of the matrices shown in the first example in FIG. 4 .
  • the network device is a network device with 8 transceiver antennas and 8 antenna ports
  • the second matrix may be one of the matrixes shown in the second example in FIG. 4 .
  • the value of the inter-polarization phase can be expanded through the inter-polarization phase rotation, for example, the value of the inter-polarization phase can be ⁇ 0°, 45°, 90°, 135°, 180°, 215°, 270°, 315° ⁇ , breaking the codebook limitation of the existing protocol, so as to improve the feedback accuracy of channel state information and make the precoding matrix determined by the network equipment more match the channel.
  • the equivalent channel from the network device to the terminal device on different CSI resources can be changed through multiple CSI resources and multiple pilot signals, and the terminal device can use multiple CSI resources based on the corresponding
  • the pilot signal is used for channel measurement, so that an equivalent channel can better match the codebook, so that the feedback accuracy of channel state information can be improved, and the precoding matrix determined by the network equipment can better match the channel.
  • a small resource overhead of CSI resources can be used to achieve the effect of enhancing the feedback accuracy of channel state information, and a throughput gain greater than resource overhead can be obtained.
  • the simulation results under the mapping relationship between different pilot signals corresponding to different antenna ports of different network devices and the transmitting and receiving antennas of the network devices are briefly described as an example.
  • the channel simulation results shown in Figures 6 and 7 show an illustration of the throughput gain.
  • Figure 6 and Figure 7 take the network equipment as an example with 4 antenna ports and 4 transceiver antennas, and take the mapping relationship between the antenna ports of the network equipment and the transceiver antennas of the network equipment as the mapping relationship shown in Figure 3 as an example.
  • mapping relationship 1 in Figure 3 is taken as the baseline for illustration.
  • the simulation results under the mapping relationship 1 to the mapping relationship 3 shown in FIG. 3 are taken as an example for illustration
  • the simulation results under the mapping relationship 1 to the mapping relationship 4 shown in FIG. 3 are used as an example for illustration.
  • a transmission layer (Transmission layer) or a fixed signal-to-noise ratio (SNR) with a rank of 3 is taken as an example for illustration.
  • SNR signal-to-noise ratio
  • FIG. 7 a certain fixed SNR under the transmission layer of 2 is taken as an example for illustration. It can be seen from Fig. 6 and Fig. 7 that a downlink throughput gain of 2% to 15% is obtained under different channel conditions, and the average gain is 3% to 6%. It can be seen from the above that the communication method provided by the embodiment of the present application can obtain a relatively large gain in downlink throughput.
  • the communication device 800 may include a transceiver unit 801 and a processing unit 802 .
  • the transceiver unit 801 is used for the communication device 800 to receive information (signal, message or data) or send information (signal, message or data), and the processing unit 802 is used to perform actions on the communication device 800 control management.
  • the processing unit 802 may also control the steps performed by the transceiver unit 801 .
  • the communication apparatus 800 may specifically be the terminal device in the foregoing embodiments, a processor in the terminal device, or a chip, or a chip system, or a functional module, etc.; or, the communication apparatus 800 may specifically be It is the network device in the above embodiments, the processor of the network device, or a chip, or a chip system, or a functional module.
  • the transceiver unit 801 can be used to receive the information sent by the network device through N channel state information CSI resources.
  • N pilot signals the N CSI resources are in one-to-one correspondence with the N pilot signals, and the N is an integer greater than or equal to 2;
  • the processing unit 802 can be used to process the N CSI resources Channel measurement is performed based on the corresponding pilot signals;
  • the N pilot signals may correspond to the mapping relationship between the antenna ports of the N types of network devices and the transmitting and receiving antennas of the network devices, wherein the antenna ports of the N types of network devices At least two of the mapping relationships between the transmitting and receiving antennas of the network device are different; or, the N pilot signals may correspond to N inter-polarization phases, where at least two of the N inter-polarization phases The phases between the two polarizations are different;
  • the transceiver unit 801 can also be used to send channel state information to the network device, and the channel
  • the transceiving unit 801 may also be configured to receive configuration information from the network device, the configuration information is used to configure a first resource set, the first resource set includes M CSI resources, and the M
  • the CSI resources include the N CSI resources, and the M is an integer greater than or equal to N.
  • the N CSI resources correspond to the N pilot signals one by one, and the N is an integer greater than or equal to 2;
  • the N pilot signals may correspond to N types of network device antennas A mapping relationship between ports and transceiver antennas of network devices, wherein at least two of the mapping relationships between antenna ports of the N types of network devices and transceiver antennas of network devices are different; or, the N guides
  • the frequency signal may correspond to N inter-polarization phases, where at least two of the N inter-polarization phases are different; and receiving channel state information sent by the terminal device, the channel state information includes
  • the identifier of the first CSI resource and the precoding matrix indicate PMI;
  • the first CSI resource is one of the N CSI resources, and the channel measurement result corresponding to the first CSI resource is better than that of the N CSI resources Channel measurement results corresponding to N-1 CSI resources other than the first CSI resource;
  • the processing unit 802 may be configured to determine
  • the processing unit 802 performs the processing according to the channel state information included in the When the identifier of the first CSI resource and the PMI determine the precoding matrix, it may be used to: determine a first mapping relationship according to the identifier of the first CSI resource, and the first mapping relationship is the antennas of the N types of network devices One of the mapping relationships between ports and transceiver antennas of the network device; the precoding matrix is determined according to the first mapping relationship and the PMI.
  • the processing unit 802 determines the first mapping relationship according to the identifier of the first CSI resource, it may be configured to: determine the first CSI resource according to the identifier of the first CSI resource; determine the The first mapping relationship corresponding to the first CSI resource.
  • the processing unit 802 determines the precoding matrix according to the first mapping relationship and the PMI, it may be configured to: determine a first matrix according to the first mapping relationship, and use the first matrix to To characterize the first mapping relationship; determine the precoding matrix to be selected in the first codebook according to the PMI, and the first codebook is a preset precoding matrix set; according to the first matrix and the The precoding matrix to be selected determines the precoding matrix.
  • the processing unit 802 when the N pilot signals correspond to N inter-polarization phases, performs an operation according to the identifier of the first CSI resource included in the channel state information and the PMI When determining the precoding matrix, it may be used to: determine the first inter-polarization phase according to the identifier of the first CSI resource, and the first inter-polarization phase is one of the N inter-polarization phases Inter-polarization phase: determine the precoding matrix according to the first inter-polarization phase and the PMI.
  • the processing unit 802 when the processing unit 802 determines the first inter-polarization phase according to the identifier of the first CSI resource, it may be configured to: determine the first CSI resource according to the identifier of the first CSI resource; determine The first inter-polarization phase corresponding to the first CSI resource.
  • the processing unit 802 determines the precoding matrix according to the first inter-polarization phase and the PMI, it may be configured to: determine a second matrix according to the first inter-polarization phase, the The second matrix is used to characterize the first inter-polarization phase; determine the precoding matrix to be selected in the first codebook according to the PMI, and the first codebook is a preset precoding matrix set; according to the PMI The second matrix and the candidate precoding matrix determine the precoding matrix.
  • the transceiving unit 801 may also be configured to: send configuration information to the terminal device, where the configuration information is used to configure a first resource set, the first resource set includes M CSI resources, and the M
  • the CSI resources include the N CSI resources, and the M is an integer greater than or equal to N.
  • each functional unit in the embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the communication device 900 may include a transceiver 901 and a processor 902 .
  • the communication device 900 may further include a memory 903 .
  • the memory 903 may be set inside the communication device 900 , and may also be set outside the communication device 900 .
  • the processor 902 may control the transceiver 901 to receive and send information, signals or data, and the like.
  • the processor 902 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor 902 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the transceiver 901, the processor 902 and the memory 903 are connected to each other.
  • the transceiver 901, the processor 902 and the memory 903 are connected to each other through a bus 904;
  • the bus 904 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard Structure (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 9 , but it does not mean that there is only one bus or one type of bus.
  • the memory 903 is used to store programs and the like.
  • the program may include program code including computer operation instructions.
  • the memory 903 may include RAM, and may also include non-volatile memory (non-volatile memory), such as one or more disk memories.
  • the processor 902 executes the application program stored in the memory 903 to realize the above functions, thereby realizing the functions of the communication device 900 .
  • the communication apparatus 900 may be the terminal device in the foregoing embodiments; it may also be the network device in the foregoing embodiments.
  • the transceiver 901 when the communication device 900 realizes the functions of the terminal device in the embodiment shown in FIG. 2, the transceiver 901 can realize the transceiving operation performed by the terminal device in the embodiment shown in FIG. 2;
  • the controller 902 can implement other operations performed by the terminal device in the embodiment shown in FIG. 2 except the transceiving operation.
  • related descriptions reference may be made to related descriptions in the above embodiment shown in FIG. 2 , which will not be described in detail here.
  • the transceiver 901 can implement the transceiving operations performed by the network equipment in the embodiment shown in FIG. 2 ;
  • the processor 902 may implement other operations performed by the network device in the embodiment shown in FIG. 2 except the transceiving operation.
  • the embodiments of the present application provide a communication system, and the communication system may include the terminal device and the network device involved in the above embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a computer program product, the computer program product is used to store a computer program, and when the computer program is executed by a computer, the computer can implement the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, including a processor, the processor is coupled to a memory, and is configured to call a program in the memory so that the chip implements the communication method provided by the above method embodiment.
  • the embodiment of the present application further provides a chip, the chip is coupled with a memory, and the chip is used to implement the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,用以提升信道状态信息的反馈精度。其中,终端设备接收网络设备通过N个CSI资源发送的N个导频信号,在N个CSI资源上基于对应的导频信号进行信道测量;然后终端设备向网络设备发送信道状态信息,信道状态信息包括第一CSI资源的标识和PMI;其中,N个CSI资源与N个导频信号一一对应;N个导频信号对应N种网络设备的天线端口与网络设备的收发天线的映射关系,N种网络设备的天线端口与网络设备的收发天线的映射关系中至少两种映射关系不同;或者,N个导频信号对应N个极化间相位,N个极化间相位中至少两个极化间相位不同。这样可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月31日提交中国国家知识产权局、申请号为202111011702.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
多输入多输出(multiple-input and multiple-output,MIMO)技术因能够有效提升无线频谱效率,已经被广泛运用于无线通信中。
对于下行链路,MIMO技术能够提升频谱效率的关键在于网络设备能够进行准确的预编码。目前,预定义了一些预编码矩阵,这些预编码矩阵构成的集合对于网络设备和终端设备双方均已知,从而终端设备可以通过预编码矩阵指示(precoding matrix iIndicator,PMI)的形式将信道状态信息(channel state information,CSI)反馈给网络设备。具体过程如下:网络设备向终端设备发送信道状态信息参考信号(channel state information reference signal,CSI-RS);终端设备根据收到的CSI-RS信号从预定义的预编码矩阵集合中选择最优的预编码矩阵,并通过PMI将CSI反馈给网络设备;网络设备根据终端设备反馈的PMI查找对应的预编码矩阵并进行预编码。
然而,PMI对CSI的量化是离散的和有限的,存在量化误差,导致网络设备基于PMI确定的预编码矩阵较实际信道对应的预编码矩阵误差较大。也就是说目前终端设备基于PMI的CSI反馈精度较低。
发明内容
本申请提供一种通信方法及装置,用以提升信道状态信息的反馈精度。
第一方面,本申请提供了一种通信方法,该方法可以包括:终端设备接收网络设备通过N个CSI资源发送的N个导频信号,在所述N个CSI资源上基于对应的导频信号进行信道测量;然后所述终端设备向所述网络设备发送信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;其中,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号可以对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号可以对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;所述第一CSI资源为所述N个CSI资源中的一个CSI资源,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果。
通过上述方法,可以通过在不同的CSI资源上发送不同的导频信号,使得在不同的CSI资源上具有不同的从网络设备到终端设备的等效信道,终端设备通过在多个CSI资源上基于对应的导频信号进行信道测量,使得某个等效信道与码本更加匹配,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。其中,可以通过多种网络设备的天线端口与网络设备的收发天线之间的映射关系,等效改变对应的多个导频信号,从而实现改变不同的CSI资源上的从网络设备到终端设备的等效信道。或者,可以通过多种极化间相位等效改变对应的多个导频信号,从而实现改变不同的CSI资源上的从网络设备到终端设备的等效信道。
在一个可能的设计中,所述终端设备可以从所述网络设备接收配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。这样可以实现网络设备通过多个CSI资源发送多个导频信号,以及实现终端设备在多个CSI资源上基于对应的导频信号进行信道测量。
第二方面,本申请提供了一种通信方法,该方法可以包括:网络设备通过N个CSI资源向终端设备发送N个导频信号后,接收所述终端设备发送的信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;然后根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵;其中,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号可以对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号可以对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;所述第一CSI资源为所述N个CSI资源中的一个,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果。
通过上述方法,可以通过在不同的CSI资源上发送不同的导频信号,使得在不同的CSI资源上具有不同的从网络设备到终端设备的等效信道,终端设备通过在多个CSI资源上基于对应的导频信号进行信道测量,使得某个等效信道与码本更加匹配,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。其中,可以通过多种网络设备的天线端口与网络设备的收发天线之间的映射关系,等效改变对应的多个导频信号,从而实现改变不同的CSI资源上的从网络设备到终端设备的等效信道。或者,可以通过多种极化间相位等效改变对应的多个导频信号,从而实现改变不同的CSI资源上的从网络设备到终端设备的等效信道。
在一个可能的设计中,所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定第一映射关系,并根据所述第一映射关系和所述PMI确定所述预编码矩阵;所述第一映射关系为所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中的一种映射关系。这样,网络设备结合第一映射关系和PMI可以确定出更加匹配信道的预编码矩阵。
在一个可能的设计中,所述网络设备根据所述第一CSI资源的标识确定第一映射关系,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定所述第一CSI资源,进 而确定所述第一CSI资源对应的所述第一映射关系。这样所述网络设备可以准确地确定所述第一映射关系。
在一个可能的设计中,所述网络设备根据所述第一映射关系和所述PMI确定所述预编码矩阵,具体方法可以为:所述网络设备根据所述第一映射关系确定第一矩阵,以及根据所述PMI在第一码本中确定待选预编码矩阵,所述第一矩阵用于表征所述第一映射关系,所述第一码本为预设的预编码矩阵集合;最后所述网络设备根据所述第一矩阵和所述待选预编码矩阵确定所述预编码矩阵。这样,可以通过不同的映射关系对应的不同矩阵与第一码本结合后构造出多样化的波束,打破了现有码本的协议限制,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。
在一个可能的设计中,所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定第一极化间相位,并根据所述第一极化间相位和所述PMI确定所述预编码矩阵,所述第一极化间相位为所述N个极化间相位的中的一种极化间相位。这样,网络设备结合第一极化间相位和PMI可以确定出更加匹配信道的预编码矩阵。
在一个可能的设计中,所述网络设备根据所述第一CSI资源的标识确定第一极化间相位,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定所述第一CSI资源,进而确定所述第一CSI资源对应的所述第一极化间相位。这样所述网络设备可以准确地确定所述第一极化间相位。
在一个可能的设计中,所述网络设备根据所述第一极化间相位和所述PMI确定所述预编码矩阵,具体方法可以为:所述网络设备根据所述第一极化间相位确定第二矩阵,以及根据所述PMI在第一码本中确定待选预编码矩阵,所述第二矩阵用于表征所述第一极化间相位,所述第一码本为预设的预编码矩阵集合;最后,所述网络设备根据所述第二矩阵和所述待选预编码矩阵确定所述预编码矩阵。这样,可以扩展极化间相位的取值,打破现有协议的码本限制,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。
在一个可能的设计中,所述网络设备向所述终端设备发送配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。这样可以实现网络设备通过多个CSI资源发送多个导频信号,使终端设备在多个CSI资源上基于对应的导频信号进行信道测量。
第三方面,本申请还提供了一种通信装置,所述通信装置可以是终端设备,该通信装置具有实现上述第一方面或第一方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第一方面或第一方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第一方面或第一方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和 数据。
第四方面,本申请还提供了一种通信装置,所述通信装置可以是网络设备,该通信装置具有实现上述第二方面或第二方面的各个可能的设计示例中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述通信装置的结构中包括收发单元和处理单元,这些单元可以执行上述第二方面或第二方面的各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述通信装置的结构中包括收发器和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述通信装置执行上述第二方面或第二方面的各个可能的设计示例中的相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。
第五方面,本申请实施例提供了一种通信系统,可以包括上述提及的终端设备和网络设备。
第六方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面及其任一可能的设计中,或第二方面及其任一可能的设计中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第七方面,本申请实施例提供一种包括计算机程序代码或指令的计算机程序产品,当其在计算机上运行时,使得计算机实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法。
第八方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面或第一方面任一种可能的设计中,或者上述第二方面或第二方面任一种可能的设计中所述的方法。
上述第三方面至第八方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面或第一方面中的各种可能方案,或者第二方面或第二方面中的各种可能方案可以达到的技术效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种通信系统的架构示意图;
图2为本申请提供的一种通信方法的流程图;
图3为本申请提供的一种网络设备的天线端口与网络设备的收发天线之间的映射关系的示意图;
图4为本申请提供的一种极化间相位的矩阵的示意图;
图5为本申请提供的一种映射关系对应的矩阵与码本结合后构造的波束取得的有益效果的示意图;
图6为本申请提供的一种仿真结果示意图;
图7为本申请提供的另一种仿真结果示意图;
图8为本申请提供的一种通信装置的结构示意图;
图9为本申请提供的一种通信装置的结构图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种通信方法及装置,用以提升信道状态信息的反馈精度。其中,本申请所述方法和装置基于同一技术构思,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、信道状态信息参考信号(channel state information reference signal,CSI-RS):在协议标准中,网络设备可以通过发送CSI-RS来获取终端设备反馈的信道状态信息(channel state information,CSI),进而确定与下行信道相适配的预编码矩阵。
2)、CSI-RS资源标识(CSI-RS resource indicator,CRI):用于指示终端设备反馈的信道状态信息对应的CSI-RS资源索引编号。
3)、天线端口:指逻辑天线端口,也即天线端口,指用于传输的逻辑端口,与物理天线不存在定义上的一一对应关系,为物理天线的虚拟化表示。天线端口到物理天线的映射由波束形成控制,因为某些波束需要在某些天线端口上传输信号以形成所需波束,因此,有可能将两个天线端口映射到一个物理天线,或者将一个天线端口映射到多个物理天线。
另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本申请中的描述中,“至少一个(种)”是指一个(种)或者多个(种),多个(种)是指两个(种)或者两个(种)以上。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的通信方法及装置进行详细说明。
图1示出了本申请实施例提供的通信方法可以适用的一种通信系统的架构,所述通信系统的架构中包括网络设备和终端设备,其中:
所述网络设备可以为具有无线收发功能的设备或可设置于该网络设备的芯片,该网络设备可以包括但不限于:基站(generation node B,gNB)、演进型基站(evolved NodeB,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可 以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
所述终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。所述终端设备具有针对多个CSI资源的测量能力。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智能穿戴设备(智能眼镜、智能手表、智能耳机等)、智慧家庭(smart home)中的无线终端等等,也可以是能够设置于以上设备的芯片或芯片模组(或芯片系统)等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
需要说明的是,图1所示的通信系统可以但不限于为第四代(4th Generation,4G)系统、第五代(5th Generation,5G)系统,可选的,本申请实施例的方法还适用于未来的各种通信系统,例如第六代(6th Generation,6G)系统或者其他通信网络等。
需要说明的是,图1所示的通信系统中网络设备和终端设备的数量仅仅为举例,并不作为对通信系统的限定。图1所示的通信系统中还可以包括其他类型的设备,例如核心网设备等,在图1中不再示出。
需要说明的是,在本申请实施例中可实现信道状态信息的反馈的可以是终端设备,或者是终端设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等;基于信道状态信息进行预编码的可以是网络设备,或者是网络设备中的处理器,或者是芯片或芯片系统,或者是一个功能模块等。在以下的实施例中,仅以终端设备和网络设备为例对本申请提供的通信方法进行详细说明,但对本申请并不作为限定。
基于以上描述,本申请实施例提供的一种通信方法,可以适用于图1所示的通信系统。参阅图2所示,该方法的流程可以包括:
步骤201:网络设备通过N个CSI资源向终端设备发送N个导频信号,相应地,所述终端设备接收所述网络设备通过所述N个CSI资源发送的N个导频信号。所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数。
该步骤201即为所述网络设备在N个CSI资源中的每个CSI资源上分别发送一个导频信号。可选的,网络设备在实现上述N个导频信号的发送时,可以通过所述网络设备的物理层(即层1(layer 1,L1))实现。
示例性的,所述N个导频信号即为N个信道状态信息参考信号(CSI-RS)。
在第一种可选的实施方式中,所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同。该情况也可以理解为所述N个CSI资源对应所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系。
其中,每一种映射关系可以对应一个矩阵,通过对应的矩阵来表征相应的映射关系。
例如,以4个收发天线、4个天线端口的网络设备为例,假设N为4时,也就是说有4个CSI资源时,4个CSI资源(如CSI资源1、CSI资源2、CSI资源3和CSI资源4)分别对应的网络设备的天线端口与网络设备的收发天线之间的映射关系(映射关系1、映射关系2、映射关系3和映射关系4)可以如图3所示。进一步地,映射关系1~映射关系4分别对应的矩阵1~矩阵4可以如图3所示的矩阵所示。
需要说明的是,图3示出的映射关系和矩阵仅仅为示例,还可以有其它可能,本申请对此不作限定。需要说明的是,本申请附图中涉及的矩阵中未标注的其余元素为零。
示例性的,可以将N个CSI资源对应的N种映射关系中的一种映射关系配置为基线,例如可以将图3中映射关系1配置为基线,这样可以避免可能出现的负增益问题。
在第二种可选的实施方式中,所述N个导频信号对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同。该情况也可以理解为所述N个CSI资源对应所述N个极化间相位。
其中,每一种极化间相位可以通过一个矩阵表示,也即一种极化间相位对应一个矩阵。
例如,当所述网络设备为4个收发天线和4个天线端口的网络设备时,N个CSI资源对应的极化间相位的矩阵可以如图4中第一种举例所示。当所述网络设备为8个收发天线和8个天线端口的网络设备时,N个CSI资源对应的极化间相位的矩阵可以如图4中第二种举例所示。由图4可以看出第n个CSI资源对应的极化间相位为φ n,n为取遍1到N的整数,其中φ 1为0。
示例性的,可以将N个CSI资源对应的N个极化间相位中的一种极化间相位的矩阵配置为基线,例如可以将图4中第1个CSI资源对应的极化间相位的矩阵配置为基线,这样可以避免可能出现的负增益问题,降低复杂度。
可选的,上述第一种可选的实施方式和上述第二种可选的实施方式中的方案可以结合,具体的此处不再详细描述。
在一种示例性的方式中,在步骤201之前,所述网络设备可以先向所述终端设备发送配置信息,所述配置信息用于配置第一资源集(CSI resourceset),所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。从而使得终端设备可以提前获知N个CSI资源。
所述配置信息可以用于配置包括所述第一资源集的多个资源集,每个资源集中配置多个CSI资源。也就是说,所述配置信息可以配置除了所述第一资源集以外的其他资源集。需要说明的是,当所述配置信息用于配置多个资源集时,多个资源集包括的CSI资源的个数可以不相同,也可以相同,或者也可以部分相同部分不相同,本申请对此不作限定。
示例性的,所述第一资源集可以是小区级的,也可以是终端设备级的。当所述第一资源集为小区级的时,所述第一资源集对于小区内的终端设备均有效,且可配置小区内的不同终端使用相同或不同的第一资源集内CSI资源的全集或子集。当所述第一资源集为终端 设备级的时,所述第一资源集对于所述一台或多台终端设备有效。应理解,其他资源集与所述第一资源集同理,此处不再详细说明。
所述网络设备实现上述资源集的配置时,可以但不限于通过所述网络设备的链路层(层2(layer 2,L2))和网络层(层3(layer 3,L3))实现。
步骤202:所述终端设备在所述N个CSI资源上基于对应的导频信号进行信道测量。
具体的,所述终端设备在每个CSI资源上基于该CSI资源对应的导频信号进行信道测量,可以得到N个CSI资源对应的信道测量结果。
步骤203:所述终端设备向所述网络设备发送信道状态信息,相应地,所述网络设备接收所述终端设备发送的所述信道状态信息。所述信道状态信息包括第一CSI资源的标识和PMI,所述第一CSI资源为所述N个CSI资源中的一个CSI资源,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果。也即,所述第一CSI资源对应的信道测量结果在N个CSI资源对应的信道测量结果中最优。
其中,所述第一CSI资源的标识为所述第一CSI资源在所述第一资源集中的CRI。
步骤204:所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵。
在步骤201中涉及的第一种可选的实施方式的情况下,所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定第一映射关系,然后所述网络设备根据所述第一映射关系和所述PMI确定所述预编码矩阵,其中,所述第一映射关系为所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中的一种映射关系。
示例性的,所述网络设备根据所述第一CSI资源的标识确定第一映射关系,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定所述第一CSI资源,所述网络设备确定所述第一CSI资源对应的所述第一映射关系。例如,当所述网络设备为4个收发天线和4个天线端口的网络设备时,所述第一映射关系可以为如图3所示的4种映射关系中的一种。
进一步地,所述网络设备根据所述第一映射关系和所述PMI确定所述预编码矩阵,具体方法可以为:所述网络设备根据所述第一映射关系确定第一矩阵,以及根据所述PMI在第一码本中确定待选预编码矩阵,所述第一矩阵用于表征所述第一映射关系,所述第一码本为预设的预编码矩阵集合;最后所述网络设备根据所述第一矩阵和所述待选预编码矩阵确定所述预编码矩阵。例如,当所述网络设备为4个收发天线和4个天线端口的网络设备时,所述第一矩阵可以为如图3所示的4个矩阵中的一个。
例如,所述网络设备根据所述第一矩阵和所述待选预编码矩阵确定所述预编码矩阵时,所述网络设备可以将所述第一矩阵和所述待选预编码矩阵相乘得到所述预编码矩阵。
通过上述方法,可以通过不同的映射关系对应的不同矩阵与第一码本结合后构造出多样化的波束,打破了现有码本的协议限制,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。
例如,当所述网络设备为4个收发天线和4个天线端口的网络设备时,图3示出的4种映射关系中以映射关系1为基线(即网络设备的天线端口和网络设备的收发天线没有重排),映射关系2~映射关系4对应的矩阵与码本结合后构造的波束分别取得的有益效果可 以如图5所示。具体的,采用映射关系2时,对应的左右极化不同波束互为共轭,可以使极化间相位加密,例如可以使极化间相位为{0°,45°,90°,135°,180°,215°,270°,315°}。采用映射关系3时,对应的左右极化波束相同,可以将波束虚拟映射为极化间相位,使极化间相位增加。采用映射关系4时,对应的左右极化波束不同,互为共轭,可以将波束虚拟映射为极化间相位,使极化间相位增加。通过上述效果可以打破现有码本的协议限制,从而提高了信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。并且,网络设备确定的最终的预编码矩阵相比于基线无负增益。
在步骤201中涉及的第二种可选的实施方式的情况下,所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定第一极化间相位,并根据所述第一极化间相位和所述PMI确定所述预编码矩阵,其中所述第一极化间相位为所述N个极化间相位的中的一种极化间相位。
示例性的,所述网络设备根据所述第一CSI资源的标识确定第一极化间相位,具体方法可以为:所述网络设备根据所述第一CSI资源的标识确定所述第一CSI资源,进而确定所述第一CSI资源对应的所述第一极化间相位。例如,当所述网络设备为4个收发天线和4个天线端口的网络设备时,所述第一极化间相位可以是如图4所示的第一种举例中多个涉及的极化间相位中的一种。当所述网络设备为8个收发天线和8个天线端口的网络设备时,所述第一极化间相位可以是如图4所示的第二种举例中多个涉及的极化间相位中的一种。
进一步地,所述网络设备根据所述第一极化间相位和所述PMI确定所述预编码矩阵,具体方法可以为:所述网络设备根据所述第一极化间相位确定第二矩阵,以及根据所述PMI在第一码本中确定待选预编码矩阵,所述第二矩阵用于表征所述第一极化间相位;最后所述网络设备根据所述第二矩阵和所述待选预编码矩阵确定所述预编码矩阵。例如,当所述网络设备为4个收发天线和4个天线端口的网络设备时,所述第二矩阵可以为图4中第一种举例所示的矩阵中的一种。当所述网络设备为8个收发天线和8个天线端口的网络设备时,所述第二矩阵可以为图4中第二种举例所示的矩阵中的一种。
通过上述方法,通过极化间相位旋转,可以扩展极化间相位的取值,例如可以使极化间相位取值为{0°,45°,90°,135°,180°,215°,270°,315°},打破现有协议的码本限制,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。
采用本申请实施例的通信方法,可以通过多个CSI资源与多个导频信号改变不同的CSI资源上的从网络设备到终端设备的等效信道,终端设备通过在多个CSI资源上基于对应的导频信号进行信道测量,使得某个等效信道与码本更加匹配,从而可以提高信道状态信息的反馈精度,使得网络设备确定的预编码矩阵更加匹配信道。
基于本申请实施例提供的通信方法,可以利用CSI资源的少量资源开销,来达到增强信道状态信息的反馈精度的效果,并可以获得大于资源开销的吞吐率增益。下面以不同导频信号对应不同网络设备的天线端口和网络设备的收发天线的之间的映射关系下的仿真结果为例进行简单说明。例如,图6和图7示出的信道仿真结果示出了吞吐率增益的示意。图6和图7是以网络设备为4个天线端口和4个收发天线为例,以网络设备的天线端口和网络设备的收发天线之间的映射关系为图3所示的映射关系为例说明,其中以图3中的映射关系1为基线说明。在图6中以图3所示的映射关系1~映射关系3下的仿真结果为例说 明,在图7中以图3所示的映射关系1~映射关系4下的仿真结果为例说明。在图6中以传输层(Transmission layer)或秩(Rank)为3下某固定信噪比(signal to noise ratio,SNR)为例说明。在图7中以传输层为2下某固定SNR为例说明。通过图6和图7可以看出在不同信道条件下获得了2%~15%的下行吞吐率增益,平均增益3%~6%。由此可以看出采用本申请实施例提供的通信方法可以获得较大的下行吞吐率增益。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图8所示,通信装置800可以包括收发单元801和处理单元802。其中,所述收发单元801用于所述通信装置800接收信息(信号、消息或数据)或发送信息(信号、消息或数据),所述处理单元802用于对所述通信装置800的动作进行控制管理。所述处理单元802还可以控制所述收发单元801执行的步骤。
示例性地,该通信装置800具体可以是上述实施例中的终端设备、所述终端设备中的处理器,或者芯片,或者芯片系统,或者是一个功能模块等;或者,该通信装置800具体可以是上述实施例中的网络设备、所述网络设备的处理器,或者芯片,或者芯片系统,或者是一个功能模块等。
在一个实施例中,所述通信装置800用于实现上述图2所述的实施例中终端设备的功能时,所述收发单元801可以用于接收网络设备通过N个信道状态信息CSI资源发送的N个导频信号,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述处理单元802可以用于在所述N个CSI资源上基于对应的导频信号进行信道测量;所述N个导频信号可以对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号可以对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;所述收发单元801还可以用于向所述网络设备发送信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;所述第一CSI资源为所述N个CSI资源中的一个CSI资源,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果。
示例性的,所述收发单元801还可以用于从所述网络设备接收配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。
在另一个实施例中,所述通信装置800用于实现上述图2所述的实施例中网络设备的功能时,所述收发单元801可以用于通过N个信道状态信息CSI资源向终端设备发送N个导频信号,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号可以对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号可以对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;以及,接收所述终端设备发送的信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;所述第一CSI资源为所述N个CSI资源中的一个,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果;所述处理单元802可以用于根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定 预编码矩阵。
一种示例中,当所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系时,所述处理单元802在根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵时,可以用于:根据所述第一CSI资源的标识确定第一映射关系,所述第一映射关系为所述N种网络设备的天线端口与网络设备的收发天线的映射关系中的一种映射关系;根据所述第一映射关系和所述PMI确定所述预编码矩阵。
示例性的,所述处理单元802在根据所述第一CSI资源的标识确定第一映射关系时,可以用于:根据所述第一CSI资源的标识确定所述第一CSI资源;确定所述第一CSI资源对应的所述第一映射关系。
进一步地,所述处理单元802在根据所述第一映射关系和所述PMI确定所述预编码矩阵时,可以用于:根据所述第一映射关系确定第一矩阵,所述第一矩阵用于表征所述第一映射关系;根据所述PMI在第一码本中确定待选预编码矩阵,所述第一码本为预设的预编码矩阵集合;根据所述第一矩阵和所述待选预编码矩阵确定所述预编码矩阵。
在另一种示例中,当所述N个导频信号对应N个极化间相位时,所述处理单元802在根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵时,可以用于:根据所述第一CSI资源的标识确定第一极化间相位,所述第一极化间相位为所述N个极化间相位的中的一种极化间相位;根据所述第一极化间相位和所述PMI确定所述预编码矩阵。
示例性的,所述处理单元802在根据所述第一CSI资源的标识确定第一极化间相位时,可以用于:根据所述第一CSI资源的标识确定所述第一CSI资源;确定所述第一CSI资源对应的所述第一极化间相位。
进一步地,所述处理单元802在根据所述第一极化间相位和所述PMI确定所述预编码矩阵时,可以用于:根据所述第一极化间相位确定第二矩阵,所述第二矩阵用于表征所述第一极化间相位;根据所述PMI在第一码本中确定待选预编码矩阵,所述第一码本为预设的预编码矩阵集合;根据所述第二矩阵和所述待选预编码矩阵确定所述预编码矩阵。
可选的,所述收发单元801还可以用于:向所述终端设备发送配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种通信装置,参阅图9所示,通信装置900可以包括收发器901和处理器902。可选的,所述通信装置900中还可以包括存储器903。其中,所述存储器903可以设置于所述通信装置900内部,还可以设置于所述通信装置900外部。其中,所述处理器902可以控制所述收发器901接收和发送信息、信号或数据等。
具体地,所述处理器902可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。所述处理器902还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
其中,所述收发器901、所述处理器902和所述存储器903之间相互连接。可选的,所述收发器901、所述处理器902和所述存储器903通过总线904相互连接;所述总线904可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可选的实施方式中,所述存储器903,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括计算机操作指令。所述存储器903可能包括RAM,也可能还包括非易失性存储器(non-volatile memory),例如一个或多个磁盘存储器。所述处理器902执行所述存储器903所存放的应用程序,实现上述功能,从而实现通信装置900的功能。
示例性地,该通信装置900可以是上述实施例中的终端设备;还可以是上述实施例中的网络设备。
在一个实施例中,所述通信装置900在实现图2所示的实施例中终端设备的功能时,收发器901可以实现图2所示的实施例中的由终端设备执行的收发操作;处理器902可以实现图2所示的实施例中由终端设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
在另一个实施例中,所述通信装置900在实现图2所示的实施例中网络设备的功能时,收发器901可以实现图2所示的实施例中的由网络设备执行的收发操作;处理器902可以实现图2所示的实施例中由网络设备执行的除收发操作以外的其他操作。具体的相关具体描述可以参见上述图2所示的实施例中的相关描述,此处不再详细介绍。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
基于以上实施例,本申请实施例提供了一种通信系统,该通信系统可以包括上述实施例涉及的终端设备和网络设备等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于调用所述存储器中的程序使得所述芯片实现上述方法实施例提供的通信方法。
本申请实施例还提供一种芯片,所述芯片与存储器耦合,所述芯片用于实现上述方法实施例提供的通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收网络设备通过N个信道状态信息CSI资源发送的N个导频信号,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;
    所述终端设备在所述N个CSI资源上基于对应的导频信号进行信道测量;
    所述终端设备向所述网络设备发送信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;所述第一CSI资源为所述N个CSI资源中的一个CSI资源,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。
  3. 一种通信方法,其特征在于,包括:
    网络设备通过N个信道状态信息CSI资源向终端设备发送N个导频信号,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;所述N个导频信号对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;
    所述网络设备接收所述终端设备发送的信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;所述第一CSI资源为所述N个CSI资源中的一个,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果;
    所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵。
  4. 如权利要求3所述的方法,其特征在于,当所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系时,所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵,包括:
    所述网络设备根据所述第一CSI资源的标识确定第一映射关系,所述第一映射关系为所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中的一种映射关系;
    所述网络设备根据所述第一映射关系和所述PMI确定所述预编码矩阵。
  5. 如权利要求4所述的方法,其特征在于,所述网络设备根据所述第一CSI资源的标识确定第一映射关系,包括:
    所述网络设备根据所述第一CSI资源的标识确定所述第一CSI资源;
    所述网络设备确定所述第一CSI资源对应的所述第一映射关系。
  6. 如权利要求4或5所述的方法,其特征在于,所述网络设备根据所述第一映射关系和所述PMI确定所述预编码矩阵,包括:
    所述网络设备根据所述第一映射关系确定第一矩阵,所述第一矩阵用于表征所述第一映射关系;
    所述网络设备根据所述PMI在第一码本中确定待选预编码矩阵,所述第一码本为预设的预编码矩阵集合;
    所述网络设备根据所述第一矩阵和所述待选预编码矩阵确定所述预编码矩阵。
  7. 如权利要求3所述的方法,其特征在于,当所述N个导频信号对应N个极化间相位时,所述网络设备根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵,包括:
    所述网络设备根据所述第一CSI资源的标识确定第一极化间相位,所述第一极化间相位为所述N个极化间相位的中的一种极化间相位;
    所述网络设备根据所述第一极化间相位和所述PMI确定所述预编码矩阵。
  8. 如权利要求7所述的方法,其特征在于,所述网络设备根据所述第一CSI资源的标识确定第一极化间相位,包括:
    所述网络设备根据所述第一CSI资源的标识确定所述第一CSI资源;
    所述网络设备确定所述第一CSI资源对应的所述第一极化间相位。
  9. 如权利要求7或8所述的方法,其特征在于,所述网络设备根据所述第一极化间相位和所述PMI确定所述预编码矩阵,包括:
    所述网络设备根据所述第一极化间相位确定第二矩阵,所述第二矩阵用于表征所述第一极化间相位;
    所述网络设备根据所述PMI在第一码本中确定待选预编码矩阵,所述第一码本为预设的预编码矩阵集合;
    所述网络设备根据所述第二矩阵和所述待选预编码矩阵确定所述预编码矩阵。
  10. 如权利要求3-9任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。
  11. 一种通信装置,其特征在于,包括:
    收发单元,用于接收网络设备通过N个信道状态信息CSI资源发送的N个导频信号,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;
    处理单元,用于在所述N个CSI资源上基于对应的导频信号进行信道测量;
    所述收发单元,还用于向所述网络设备发送信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;所述第一CSI资源为所述N个CSI资源中的一个CSI资源,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一 CSI资源以外的N-1个CSI资源对应的信道测量结果。
  12. 如权利要求11所述的装置,其特征在于,所述收发单元,还用于:
    从所述网络设备接收配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。
  13. 一种通信装置,其特征在于,包括:
    收发单元,用于通过N个信道状态信息CSI资源向终端设备发送N个导频信号,所述N个CSI资源与所述N个导频信号一一对应,所述N为大于或等于2的整数;所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系,其中,所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中至少两种映射关系不同;或者,所述N个导频信号对应N个极化间相位,其中,所述N个极化间相位中至少两个极化间相位不同;
    以及接收所述终端设备发送的信道状态信息,所述信道状态信息包括第一CSI资源的标识和预编码矩阵指示PMI;所述第一CSI资源为所述N个CSI资源中的一个,所述第一CSI资源对应的信道测量结果优于所述N个CSI资源中除所述第一CSI资源以外的N-1个CSI资源对应的信道测量结果;
    处理单元,用于根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵。
  14. 如权利要求13所述的装置,其特征在于,当所述N个导频信号对应N种网络设备的天线端口与网络设备的收发天线之间的映射关系时,所述处理单元,在根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵时,用于:
    根据所述第一CSI资源的标识确定第一映射关系,所述第一映射关系为所述N种网络设备的天线端口与网络设备的收发天线之间的映射关系中的一种映射关系;
    根据所述第一映射关系和所述PMI确定所述预编码矩阵。
  15. 如权利要求14所述的装置,其特征在于,所述处理单元,在根据所述第一CSI资源的标识确定第一映射关系时,用于:
    根据所述第一CSI资源的标识确定所述第一CSI资源;
    确定所述第一CSI资源对应的所述第一映射关系。
  16. 如权利要求14或15所述的装置,其特征在于,所述处理单元,在根据所述第一映射关系和所述PMI确定所述预编码矩阵时,用于:
    根据所述第一映射关系确定第一矩阵,所述第一矩阵用于表征所述第一映射关系;
    根据所述PMI在第一码本中确定待选预编码矩阵,所述第一码本为预设的预编码矩阵集合;
    根据所述第一矩阵和所述待选预编码矩阵确定所述预编码矩阵。
  17. 如权利要求13所述的装置,其特征在于,当所述N个导频信号对应N个极化间相位时,所述处理单元,在根据所述信道状态信息包括的所述第一CSI资源的标识和所述PMI确定预编码矩阵时,用于:
    根据所述第一CSI资源的标识确定第一极化间相位,所述第一极化间相位为所述N个极化间相位的中的一种极化间相位;
    根据所述第一极化间相位和所述PMI确定所述预编码矩阵。
  18. 如权利要求17所述的装置,其特征在于,所述处理单元,在根据所述第一CSI资源的标识确定第一极化间相位时,用于:
    根据所述第一CSI资源的标识确定所述第一CSI资源;
    确定所述第一CSI资源对应的所述第一极化间相位。
  19. 如权利要求17或18所述的装置,其特征在于,所述处理单元,在根据所述第一极化间相位和所述PMI确定所述预编码矩阵时,用于:
    根据所述第一极化间相位确定第二矩阵,所述第二矩阵用于表征所述第一极化间相位;
    根据所述PMI在第一码本中确定待选预编码矩阵,所述第一码本为预设的预编码矩阵集合;
    根据所述第二矩阵和所述待选预编码矩阵确定所述预编码矩阵。
  20. 如权利要求13-19任一项所述的装置,其特征在于,所述收发单元,还用于:
    向所述终端设备发送配置信息,所述配置信息用于配置第一资源集,所述第一资源集包括M个CSI资源,所述M个CSI资源包括所述N个CSI资源,所述M为大于或者等于N的整数。
  21. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器用于接收和发送信息;
    所述处理器与存储器耦合,用于调用所述存储器中的计算机指令使得所述通信装置执行如权利要求1-2任一项所述的方法。
  22. 一种通信装置,其特征在于,包括存储器,处理器和收发器,其中:
    所述存储器用于存储计算机指令;
    所述收发器,用于接收和发送信息;
    所述处理器,与存储器耦合,用于调用所述存储器中的计算机指令使得所述通信装置执行如权利要求3-10任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时用于使所述计算机执行上述权利要求1-2中任一项所述的方法,或者执行上述权利要求3-10中任一项所述的方法。
  24. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机如执行权利要求1-2中任一项所述的方法,或者执行如权利要求3-10中任一项所述的方法。
  25. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-2中任一项所述的方法,或者实现如述权利要求3-10中任一项所述的方法。
  26. 一种通信系统,其特征在于,包括权利要求11-12和21中任一项所述的通信装置,以及权利要求13-20和22中任一项所述的通信装置。
PCT/CN2022/112169 2021-08-31 2022-08-12 一种通信方法及装置 WO2023029948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22863088.5A EP4383801A1 (en) 2021-08-31 2022-08-12 Communication method and apparatus
US18/589,563 US20240204829A1 (en) 2021-08-31 2024-02-28 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011702.6 2021-08-31
CN202111011702.6A CN115733532A (zh) 2021-08-31 2021-08-31 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/589,563 Continuation US20240204829A1 (en) 2021-08-31 2024-02-28 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023029948A1 true WO2023029948A1 (zh) 2023-03-09

Family

ID=85291288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112169 WO2023029948A1 (zh) 2021-08-31 2022-08-12 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20240204829A1 (zh)
EP (1) EP4383801A1 (zh)
CN (1) CN115733532A (zh)
WO (1) WO2023029948A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812545A (zh) * 2012-11-06 2014-05-21 上海贝尔股份有限公司 信道状态信息的反馈方法与装置
WO2017012346A1 (zh) * 2015-07-23 2017-01-26 中兴通讯股份有限公司 信道状态信息测量反馈方法、基站、终端、计算机存储介质
CN106899522A (zh) * 2015-12-17 2017-06-27 中国移动通信集团公司 一种信道状态信息参考信号csi-rs的发送方法、装置及基站
CN108199754A (zh) * 2017-12-21 2018-06-22 上海华为技术有限公司 一种预编码矩阵确定方法及基站
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812545A (zh) * 2012-11-06 2014-05-21 上海贝尔股份有限公司 信道状态信息的反馈方法与装置
WO2017012346A1 (zh) * 2015-07-23 2017-01-26 中兴通讯股份有限公司 信道状态信息测量反馈方法、基站、终端、计算机存储介质
CN106899522A (zh) * 2015-12-17 2017-06-27 中国移动通信集团公司 一种信道状态信息参考信号csi-rs的发送方法、装置及基站
CN108199754A (zh) * 2017-12-21 2018-06-22 上海华为技术有限公司 一种预编码矩阵确定方法及基站
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质

Also Published As

Publication number Publication date
US20240204829A1 (en) 2024-06-20
EP4383801A1 (en) 2024-06-12
CN115733532A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2020156103A1 (zh) 信息反馈方法及装置
US11284246B2 (en) Uplink transmission method, uplink transmission configuration method, user equipment and base station
EP3641452B1 (en) Method and apparatus for transmitting downlink control information (dci)
US20160020846A1 (en) Method for reporting and receiving channel state information, and device
WO2014194525A1 (zh) 传输导频信号的方法、基站和用户设备
WO2022022632A1 (zh) 一种通信方法及装置
US10601543B2 (en) Channel state information reporting method and communications apparatus
WO2014179990A1 (zh) 确定预编码矩阵指示的方法、用户设备和基站
WO2020199964A1 (zh) 通信方法及装置
WO2020143577A1 (zh) 参数配置方法和通信装置
JP2022530973A (ja) プリコーディング行列表示及び決定方法、及び通信装置
EP4181446A1 (en) Method and apparatus for acquiring channel parameter
EP4178294A1 (en) Method and apparatus for beam training
US20210336665A1 (en) Precoding vector indicating and determining method and communications apparatus
WO2022040890A1 (zh) 一种信息指示方法及装置
CN108282204B (zh) 通信方法、装置及系统
WO2023168604A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023029948A1 (zh) 一种通信方法及装置
WO2022199346A1 (zh) 指示方法及相关产品
CN112054831B (zh) 信道状态信息的反馈方法及装置
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
WO2016106696A1 (zh) 一种预编码矩阵指示pmi的反馈方法
WO2024016979A1 (zh) 一种通信方法及装置
WO2022198471A1 (zh) 一种信息反馈方法以及相关装置
EP4373004A1 (en) Information feedback method and related apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022863088

Country of ref document: EP

Effective date: 20240306

NENP Non-entry into the national phase

Ref country code: DE