WO2022022632A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022022632A1
WO2022022632A1 PCT/CN2021/109225 CN2021109225W WO2022022632A1 WO 2022022632 A1 WO2022022632 A1 WO 2022022632A1 CN 2021109225 W CN2021109225 W CN 2021109225W WO 2022022632 A1 WO2022022632 A1 WO 2022022632A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
information
antenna
precoding matrix
terminal device
Prior art date
Application number
PCT/CN2021/109225
Other languages
English (en)
French (fr)
Inventor
余健
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21851357.0A priority Critical patent/EP4181415A4/en
Publication of WO2022022632A1 publication Critical patent/WO2022022632A1/zh
Priority to US18/160,017 priority patent/US11894886B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • Uplink (Uplink) , UL) transmission can obtain diversity and multiplexing gain through uplink precoding.
  • uplink precoding includes a codebook-based transmission mode and a non-codebook-based transmission mode, where the codebook-based transmission mode can be applied to frequency division duplex (Frequency division duplex, FDD) and (Time division duplex) , TDD) system, and the transmission mode based on codebook is usually used in TDD system.
  • FDD frequency division duplex
  • TDD Time division duplex
  • the base station selects an appropriate codebook from a predefined uplink codebook set according to the channel state, and indicates the index of the selected codebook to the terminal through the control channel.
  • the base station selects an appropriate sounding reference signal resource index (Sounding reference signal, SRI) according to the channel state, and indicates the SRI to the terminal through the control channel.
  • SRI Sounding reference signal resource index
  • the uplink only supports the transmission mode based on the codebook.
  • the terminal needs to send back high-definition video to the base station.
  • MIMO multiple input multiple output
  • the uplink codebook is pre-existed in the network equipment and terminal equipment, and the number of codebooks available for selection is limited, which cannot be adjusted according to the antenna type of the terminal equipment, resulting in insufficient uplink codebook accuracy. , which affects the performance of uplink MIMO transmission and is not conducive to the improvement of uplink capacity.
  • the present application provides a communication method and device, which can improve the accuracy of an uplink codebook.
  • the present application provides a communication method, the method comprising: a terminal device receiving first information from a network device; the first information is used to indicate a precoding matrix; the terminal device determines according to the first information the precoding matrix; the precoding matrix is used for sending uplink signals; wherein, the precoding matrix is determined by a first matrix and a second matrix; the first matrix is obtained from the first matrix according to the first information determined from the set, the first matrix set is determined according to the horizontal dimension parameter of the antenna of the terminal device, and/or the second matrix is determined from the second matrix set according to the first information , the second matrix set is determined according to the vertical dimension parameter of the antenna.
  • the precision of the precoding matrix can be adjusted adaptively, and different precoding matrix precisions can be configured for the antennas of different terminal devices, which is beneficial to Reduce the interference between MIMO paired users and meet the capacity requirements of different terminal devices.
  • better beamforming gain can be obtained according to the antenna types of different terminal equipments, which is beneficial for the terminal equipment to better match the channel when sending uplink signals.
  • the method further includes: the terminal device receives second information from the network device, where the second information is used to indicate the difference between antennas of different polarization directions of the terminal device. Phase offset; the terminal device determining the precoding matrix according to the first information includes: the terminal device determining the precoding matrix according to the first information and the second information.
  • the precoding matrix takes into account the influence of the phase offset between antennas in different polarization directions, which is beneficial for the terminal device to better match the channel when using the precoding matrix to send uplink data, and obtain better performance. Large multi-antenna gain.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix; ⁇ is the phase offset.
  • the second information indicates the index value of the phase offset ⁇ in the set ⁇ 0, 2 ⁇ /M, ..., 2 ⁇ (M-1)/M ⁇ ; wherein the phase quantization factor M is configured by the network device or preset.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix.
  • v t,m satisfies the following form:
  • N 1 is the number of antenna ports in the horizontal dimension
  • O 1 is the oversampling factor in the horizontal dimension
  • N 2 is the number of antenna ports in the vertical dimension
  • j is an imaginary number
  • O 2 is the oversampling factor in the vertical dimension
  • m 0,1,2, ..., N 2 O 2 -1
  • t 0, 1, 2, ..., N 2 O 2 -1.
  • the precision of the precoding matrix can be improved, so that better beamforming gain can be obtained according to different types of antennas.
  • the first information is transmitted through the first signaling; the second information is transmitted through the second signaling; the first information takes effect within the first time unit, and the second information is It takes effect within the second time unit; the first time unit is greater than or equal to the second time unit.
  • the method further includes: the terminal device sends antenna configuration information to the network device; the antenna configuration information includes the polarization type of the antenna of the terminal device, the horizontal dimension parameter of the antenna and the The vertical dimension parameter of the antenna.
  • the polarization type of the antenna includes at least one of single polarization, dual polarization, triple polarization and elliptical polarization.
  • the horizontal dimension parameter of the antenna includes the number of antenna ports in the horizontal dimension;
  • the vertical dimension parameter of the antenna includes the number of antenna ports in the vertical dimension.
  • the horizontal dimension parameter of the antenna further includes at least one of the following: the spacing between adjacent antennas in the horizontal dimension; the oversampling factor in the horizontal dimension; the vertical dimension parameter of the antenna also includes at least one of the following: item:
  • the first information indicates an index value of the first matrix and an index value of the second matrix; or the first information indicates an index value of the precoding matrix.
  • the present application further provides an apparatus, where the apparatus may be a terminal device, and the apparatus has the functions of implementing the above-mentioned method example of the first aspect or each possible design example of the first aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus includes a communication unit and a processing unit, and these units can perform the corresponding functions in the first aspect or each possible design example of the first aspect.
  • these units can perform the corresponding functions in the first aspect or each possible design example of the first aspect.
  • please refer to the detailed description in the method example will not be repeated here.
  • the structure of the apparatus includes a communication interface and a processor, and optionally a memory, and the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system, so
  • the processor is configured to support the apparatus to perform the corresponding functions in the first aspect or each possible design method of the first aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the apparatus.
  • the present application also provides a method, including: a network device receiving antenna configuration information from a terminal device; the antenna configuration information includes antenna parameters used to determine a precoding matrix; The network device determines a precoding matrix according to the channel measurement result and the antenna configuration information, and sends first information to the terminal device, where the first information is used for Indicates the precoding matrix; wherein the precoding matrix is determined by a first matrix and a second matrix, the first matrix is determined from a first matrix set according to the channel measurement result, and the first matrix The set is determined according to the horizontal dimension parameter of the antenna of the terminal device, the second matrix is determined from the second matrix set according to the channel measurement result, and the second matrix set is determined according to the vertical dimension of the antenna. The dimension parameter is determined.
  • the precision of the precoding matrix can be adjusted adaptively, and different precoding matrix precisions can be configured for the antennas of different terminal devices, which is beneficial to Reduce the interference between MIMO paired users and meet the capacity requirements of different terminal devices.
  • better beamforming gain can be obtained according to the antenna types of different terminal equipments, which is beneficial for the terminal equipment to better match the channel when sending uplink signals.
  • the method further includes: the network device sends second information to the terminal device, where the second information is used to indicate phases between antennas of different polarization directions of the terminal device offset.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix; ⁇ is the phase offset.
  • the second information indicates the index value of the phase offset ⁇ in the set ⁇ 0, 2 ⁇ /M, ..., 2 ⁇ (M-1)/M ⁇ ; wherein the phase quantization factor M is configured by the network device or preset.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix.
  • v t,m satisfies the following form:
  • N 1 is the number of antenna ports in the horizontal dimension
  • O 1 is the oversampling factor in the horizontal dimension
  • N 2 is the number of antenna ports in the vertical dimension
  • j is an imaginary number
  • O 2 is the oversampling factor in the vertical dimension
  • m 0,1,2, ..., N 2 O 2 -1
  • t 0, 1, 2, ..., N 2 O 2 -1.
  • the first information is transmitted through the first signaling; the second information is transmitted through the second signaling; the first information takes effect within the first time unit, and the second information is It takes effect within the second time unit; the first time unit is greater than or equal to the second time unit.
  • the method further includes: the terminal device sends antenna configuration information to the network device; the antenna configuration information includes the polarization type of the antenna of the terminal device, the horizontal dimension parameter of the antenna and the The vertical dimension parameter of the antenna.
  • the polarization type of the antenna includes at least one of single polarization, dual polarization, triple polarization and elliptical polarization.
  • the horizontal dimension parameter of the antenna includes the number of antenna ports in the horizontal dimension;
  • the vertical dimension parameter of the antenna includes the number of antenna ports in the vertical dimension.
  • the horizontal dimension parameter of the antenna further includes at least one of the following: the spacing between adjacent antennas in the horizontal dimension; the oversampling factor in the horizontal dimension; the vertical dimension parameter of the antenna also includes at least one of the following: item:
  • the first information indicates an index value of the first matrix and an index value of the second matrix; or the first information indicates an index value of the precoding matrix.
  • the present application further provides an apparatus, where the apparatus may be a network device, and the apparatus has the functions of implementing the above method example of the third aspect or each possible design example of the third aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus includes a communication unit and a processing unit, and these units can perform the corresponding functions in the third aspect or each possible design example of the third aspect.
  • these units can perform the corresponding functions in the third aspect or each possible design example of the third aspect.
  • please refer to the detailed description in the method example will not be repeated here.
  • the structure of the apparatus includes a communication interface and a processor, and optionally a memory, and the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system, so
  • the processor is configured to support the apparatus to perform the corresponding functions in the third aspect or each possible design method of the third aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the apparatus.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for performing the method in the first aspect or any of the possible implementations of the first aspect.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for executing the third aspect or the method in any possible implementation manner of the third aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute the first aspect or any one of the first aspects methods in possible implementations.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute any one of the third aspect or the third aspect methods in possible implementations.
  • the present application provides a communication apparatus, the communication apparatus includes a processor, and when the processor executes a computer program or an instruction in a memory, the method according to the first aspect is performed.
  • the present application provides a communication apparatus, the communication apparatus includes a processor, and when the processor executes a computer program or an instruction in a memory, the method according to the third aspect is performed.
  • the present application provides a communication device, the communication device includes a processor and a memory, where the memory is used for storing computer programs or instructions; the processor is used for executing the computer programs or instructions stored in the memory , so that the communication device performs the corresponding method as shown in the first aspect.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer programs or instructions; the processor is used for executing the computer programs or instructions stored in the memory , so that the communication device performs the corresponding method as shown in the third aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a communication interface, the communication interface is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor for invoking the computer program or instructions from the memory to execute the method according to the first aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a communication interface, the communication interface is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor for invoking the computer program or instructions from the memory to execute the method according to the third aspect.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction , so that the method described in the first aspect is realized.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction When the method described in the third aspect is realized.
  • the present application provides a system, including the communication device provided in the second aspect and the communication device provided in the fourth aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an antenna arrangement according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the embodiments of the present application may be applied to various mobile communication systems, for example: a new radio (new radio, NR) system, a long term evolution (long term evolution, LTE) system, an advanced long term evolution (advanced long term evolution, LTE-A) Systems, evolved long term evolution (evolved long term evolution, eLTE) systems, future communication systems and other communication systems, specifically, are not limited here.
  • a new radio new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • eLTE-A advanced long term evolution
  • future communication systems and other communication systems specifically, are not limited here.
  • FIG. 1 shows a schematic diagram of a communication system suitable for this embodiment of the present application.
  • the terminal device 102 is connected to the network device 101 .
  • the network device 101 can determine the precoding matrix used when sending the downlink signal to the terminal device 102 by using the method provided in this embodiment of the present application; The precoding matrix used for uplink signals.
  • the terminal device may be a device with a wireless transceiver function or a chip that can be installed in any device, and may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, or a subscriber station. , mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • access terminal a subscriber unit
  • subscriber station mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • the terminal device in this embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • a mobile phone mobile phone
  • a tablet computer (Pad)
  • a computer with a wireless transceiver function a virtual reality (VR) terminal, an augmented reality (AR) terminal
  • an industrial Wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the network equipment can be a next generation base station (next Generation node B, gNB) in an NR system, an evolved base station (evolutional node B, eNB) in an LTE system, or a base station in a future mobile communication system.
  • next Generation node B gNB
  • eNB evolved base station
  • the word "exemplary” is used to mean serving as an example, illustration or illustration. Any embodiment or design described in this application as "exemplary” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present a concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the related technologies related to the precoding matrix in the embodiments of the present application are described first.
  • MIMO transmission spatial diversity and spatial multiplexing can be achieved by using a precoding matrix at the transmitting end to precode the signal to be transmitted.
  • Spatial diversity is conducive to improving the reliability of signal transmission
  • spatial multiplexing is conducive to simultaneous transmission of multiple parallel data streams.
  • the precoding matrix needs to be well matched to the channel.
  • uplink codebook-based transmission the determination of the precoding matrix is done at the network device side. If the network device directly indicates each element in the precoding matrix to the terminal device through signaling, the signaling overhead will be relatively large.
  • the network device can send a Transmit Precoding Matrix Indicator (TPMI) to the terminal device, and the TPMI can indicate the index of the precoding matrix, and each index corresponds to a precoding matrix in the codebook.
  • TPMI Transmit Precoding Matrix Indicator
  • the arrangement of the antennas will affect the design of the codebook, such as whether the antennas are arranged at equal intervals, whether the polarizations are the same, etc.
  • a schematic diagram of the arrangement of the antennas In Fig. 2(a), Fig. 2(b) and Fig. 2(c), the possible arrangement positions of the 4 antennas are given, and the polarization directions of the antennas are also indicated; ( d) and Fig. 2(e) give the arrangement position of 8 antennas, the spacing between the antennas in the horizontal or vertical dimension is the same; The spacing is not the same.
  • a high-precision codebook may be generated by considering the antenna type parameters of the terminal device, so as to obtain the optimal beamforming gain.
  • a codebook generation method based on Discrete Fourier transform (DFT) is used to generate the precoding matrix.
  • DFT matrix obtained by the codebook generation method based on the DFT matrix can be expressed as follows:
  • N represents the number of antenna ports.
  • the columns in the above matrix are orthogonal to each other.
  • one or more columns can be selected to determine the precoding matrix.
  • Each column can be regarded as corresponding to a beam direction, and selecting different columns is equivalent to selecting different beam directions for beamforming.
  • Using oversampling can increase the beam pointing, which can increase the size of the codebook set, which is beneficial to the improvement of the accuracy of the codebook.
  • the number of antenna ports in the horizontal dimension is defined as N 1
  • the number of antenna ports in the vertical dimension is defined as N 2 .
  • the oversampling factor of the horizontal dimension is defined as O 1
  • the oversampling factor of the vertical dimension is O 2 .
  • the beams in the horizontal and vertical dimensions are generated independently, and the corresponding parameters are different. Taking the horizontal dimension antenna port as an example below, the DFT matrix in the horizontal dimension after oversampling can be expressed as:
  • the number of columns of the DFT matrix increases, that is to say, the number of codebooks that can be selected increases, and the number of beam directions that can be selected increases, which is conducive to better channel matching and higher beamforming gain.
  • the antenna ports in the vertical dimension can be obtained as an example, the DFT matrix of the vertical dimension after oversampling. can be expressed as:
  • a column vector may be selected from formula (2) and formula (3) to construct a precoding matrix.
  • the following mainly takes single-stream transmission, that is, rank equal to 1, as an example to introduce the construction of the precoding matrix.
  • the precoding matrix v t,m formed in the same polarization direction (matrix dimension is N 1 ⁇ N 2 *1) defined as:
  • the terminal device adopts a dual-polarized antenna and the number of antenna ports is 2 ⁇ N 1 ⁇ N 2 , when single-layer transmission is used, the corresponding precoding matrix W satisfies the following formula:
  • the first N 1 ⁇ N 2 rows correspond to the weights of the corresponding antenna ports in the first polarization direction
  • the last N 1 ⁇ N 2 rows correspond to the weights of the corresponding antenna ports in the second polarization direction.
  • Phase offset is used to indicate the phase difference on different polarized antennas.
  • the network device only needs to indicate the index of v t,m (which can be understood as the beam direction) and the phase offset ⁇ between the antennas of different polarization directions to the terminal device, and the terminal device can generate the corresponding precoding matrix.
  • the matrix A 1 includes N 1 ⁇ O 1 column vectors
  • the matrix A 2 includes N 2 ⁇ O 2 column vectors
  • there are M possible values for the phase offset ⁇ then it is determined according to formula (5)
  • the obtained codebook set includes a total number of codebooks M ⁇ N 1 ⁇ O 1 ⁇ N 2 ⁇ O 2 .
  • the network device can measure the reference signal from the terminal device, obtain the channel measurement result, and determine the values of the indices t, m and the phase offset ⁇ according to the channel measurement result, thereby determining the precoding matrix.
  • the precoding matrix W satisfies the following formula:
  • the network device only needs to indicate the index of v t,m .
  • v t,m is 1, and there is no need to indicate v t,m , but only ⁇ .
  • matrix A 1 includes N 1 ⁇ O 1 column vectors
  • matrix A 2 includes N 2 ⁇ O 2 column vectors
  • the codebook set determined according to formula (6), the total number of codebooks included is N 1 ⁇ O 1 ⁇ N 2 ⁇ O 2 .
  • the foregoing precoding matrix generation manner may be applicable to uplink transmission of 2 antenna ports, 4 antenna ports, 6 antenna ports, 8 antenna ports or more antenna ports.
  • FIG. 3 it is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method includes:
  • Step 301 The network device receives the antenna configuration information from the terminal device.
  • the antenna configuration information includes antenna parameters used to determine a precoding matrix.
  • Step 302 The network device measures the reference signal from the terminal device to obtain a channel measurement result.
  • Step 303 The network device determines a precoding matrix according to the channel measurement result and the antenna configuration information, and sends the first information to the terminal device.
  • the first information is used to indicate the precoding matrix, and the precoding matrix is determined by the first matrix and the second matrix.
  • the first matrix is determined from the first matrix set according to the channel measurement result, and the first matrix set is determined according to the horizontal dimension parameter of the antenna of the terminal device.
  • the second matrix is determined from the second matrix set according to the channel measurement result, and the second matrix set is determined according to the vertical dimension parameter of the antenna.
  • Step 304 The terminal device receives the first information from the network device.
  • Step 305 The terminal device determines the precoding matrix according to the first information; the precoding matrix is used for sending an uplink signal.
  • the precoding matrix is determined by a first matrix and a second matrix; on the terminal device side, the first matrix is determined from a first matrix set according to the first information, and the first matrix set is It is determined according to the horizontal dimension parameter of the antenna of the terminal device, and/or the second matrix is determined from the second matrix set according to the first information, and the second matrix set is determined according to the antenna is determined by the vertical dimension parameter.
  • the network device indicates the precoding matrix
  • the terminal device determines the precoding matrix according to the indication information.
  • the antenna configuration information of the terminal device is considered, and the precision of the precoding matrix can be adaptively adjusted, Different precoding matrix precisions can be configured for the antennas of different terminal devices, which is beneficial to reduce interference between MIMO paired users and meet the capacity requirements of different terminal devices.
  • better beamforming gain can be obtained according to the antenna types of different terminal equipments, which is beneficial for the terminal equipment to better match the channel when sending uplink signals.
  • the antenna configuration information may include a polarization type of an antenna of the terminal device, a horizontal dimension parameter of the antenna, and a vertical dimension parameter of the antenna.
  • the polarization type of the antenna includes at least one of single polarization, dual polarization, triple polarization and elliptical polarization.
  • the horizontal dimension parameter of the antenna includes at least the number of antenna ports in the horizontal dimension, and may also include at least one of the spacing between adjacent antennas in the horizontal dimension and the oversampling factor in the horizontal dimension. If the horizontal dimension parameter of the antenna does not include the spacing between adjacent antennas in the horizontal dimension, the value of this parameter can be the default value; if the horizontal dimension parameter of the antenna does not include the oversampling factor of the horizontal dimension, it can also be determined by the network device autonomously Oversampling factor for the horizontal dimension.
  • the vertical dimension parameter of the antenna includes at least the number of antenna ports in the vertical dimension, and may also include at least one of the spacing between adjacent antennas in the vertical dimension and the oversampling factor in the vertical dimension. If the vertical dimension parameter of the antenna does not include the spacing between adjacent antennas in the vertical dimension, the value of this parameter can be the default value; if the vertical dimension parameter of the antenna does not include the oversampling factor of the vertical dimension, it can also be determined by the network device autonomously Oversampling factor for the vertical dimension.
  • the oversampling factor of the horizontal dimension and the oversampling factor of the vertical dimension reported by the terminal device may refer to the maximum capability that the terminal device can support, and the network device may not use the oversampling factor of the horizontal dimension reported by the terminal device. and the oversampling factor of the vertical dimension.
  • the network device may indicate the oversampling factor of the horizontal dimension and the oversampling factor of the vertical dimension to the terminal device through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control
  • the oversampling factor of the horizontal dimension reported by the terminal device is 10, and the oversampling factor of the vertical dimension is 10; when determining the precoding matrix, the network device can comprehensively consider the accuracy of the codebook and other conditions to determine the generation of the precoding matrix.
  • the oversampling factor of the horizontal dimension is 8 and the oversampling factor of the vertical dimension is 8, and it is indicated to the terminal device through RRC signaling.
  • the terminal device may use UE capability information elements (UE capability information elements) in radio resource control (radio resource control, RRC) signaling to carry the antenna configuration information.
  • UE capability information elements UE capability information elements
  • RRC radio resource control
  • the antenna configuration information may be reported to the network device.
  • an information indicator item may be added to the UE capability information elements to indicate the antenna configuration information, for example, named as a user equipment antenna configuration information element (UE antenna configuration information element).
  • UE antenna configuration information element can be as follows:
  • antennaPortForHorizontal indicates the number of antenna ports in the horizontal dimension.
  • the candidate value set can be ⁇ 2, 3, 4, 6, 8 ⁇ , etc.; "ENUMERATED” indicates that the parameter is an enumeration type, that is, select one from the candidate set value to report.
  • antennaPortForVertical represents the number of antenna ports in the vertical dimension, for example, the set of candidate values may be ⁇ 2, 3, 4, 6, 8 ⁇ and so on.
  • overSampleFactorForHorizontal represents the oversampling factor of the horizontal dimension, and the set of values is ⁇ 1, 2, 4, 6, 8 ⁇ , etc.
  • overSampleFactorForVertical represents the oversampling factor of the vertical dimension, and the set of values can be ⁇ 1, 2, 4, 6, 8 ⁇ , etc.
  • polarizationNumber represents the polarization number, and the value set is ⁇ 1, 2 ⁇ .
  • antennaSpacingForHorizontal indicates the spacing between adjacent antennas in the horizontal dimension. The value is an integer between 1 and 32, and the unit is 0.1 wavelength. This parameter does not have to be reported and is an optional parameter.
  • antennaSpacingForVertical is the spacing between adjacent antennas in the vertical dimension. The value is an integer between 1 and 32, and the unit is 0.1 wavelength. This parameter does not have to be reported and is an optional parameter.
  • the parameter configuration included in the UE antenna configuration information element may also be included in other information elements.
  • it may be located in the per-band MIMO parameter information element (MIMO-ParametersPerBand information element), which is not limited here.
  • the type of the precoding matrix in this embodiment of the present application may be a high-precision precoding matrix.
  • the network device can also instruct the terminal device to generate a high-precision precoding matrix when it is determined that the terminal device supports the use of a high-precision precoding matrix to send uplink signals; otherwise, instruct the terminal device to determine the precoding matrix according to the prior art. encoding matrix.
  • the value range of the phase offset ⁇ is related to the phase quantization factor M.
  • the value set of ⁇ is:
  • the value of M can be a default value or a value configured by a network device.
  • the network device is configured with the phase quantization factor M, and can also indicate the phase quantization factor M to the terminal device.
  • the network device may further configure the terminal device with an oversampling factor of an oversampling factor O 1 in the horizontal dimension and an oversampling factor O 2 in the vertical dimension. If the antenna configuration information reported by the terminal device includes O 1 and O 2 , the network device may determine the values of O 1 and O 2 by comprehensively considering the size of the performance improvement space and the signaling overhead from the accuracy of the codebook. The value of O 1 indicated by the network device is less than or equal to the value of the oversampling factor of the horizontal dimension reported by the terminal device, and the value of the indicated O 2 is less than or equal to the value of the oversampling factor of the vertical dimension reported by the terminal device. If the terminal device has not been configured with O 1 and O 2 , the values reported by the terminal are used.
  • the network device may indicate M, O 1 and O 2 through RRC signaling. For example, it may be indicated in a physical uplink shared channel (physical uplink shared channel, PUSCH) configuration (config) information element (Information element, IE) in RRC signaling.
  • PUSCH-Config IE can refer to the following:
  • a method of indicating the phase quantization factor through signaling may be to add a parameter phase quantization factor (phaseQuantizationFactorforCodebook) in the PUSCH-Config IE
  • phaseQuantizationFactorforCodebook is an enumeration type parameter, for example, the value set is ⁇ 2, 4 , 6, 8 ⁇ .
  • PUSCH-Config is a UE-specific configuration, that is, each terminal device may be configured with this parameter. For example, when the phase quantization factor is configured as 4, it means that the value of M is 4, that is, the phase between 0 and 2 ⁇ is divided into 4 equal parts.
  • the terminal device receives the indication value, the terminal device determines that a high-precision precoding matrix will be used to send the PUSCH.
  • a parameter oversampling factor (oversampleFactorForCodebook) can be added in the PUSCH-Config IE, which can include two parameters, that is, the oversampling factor in the horizontal dimension (overSampleFactorForHorizontal) and the oversampling factor in the vertical dimension.
  • Oversampling factor (overSampleFactorForVertical).
  • the network device may receive a reference signal from the terminal device, such as a sounding reference signal (Sounding Reference Signal, SRS).
  • the network device can measure the reference signal to obtain the channel measurement result.
  • the network device may determine the first matrix set according to the horizontal dimension parameter of the antenna of the terminal device, and determine the second matrix set according to the vertical dimension parameter of the antenna of the terminal device.
  • the first matrix set may satisfy the preceding formula (2), and the second matrix set may satisfy the preceding formula (3).
  • the network device may determine a column vector from the first matrix set as the first matrix according to the channel measurement result, and the first matrix may be the previously described u t ; according to the channel measurement result, determine a column vector from the second matrix set as the second matrix,
  • the second matrix may be um as previously described. It should be noted that, how the network device specifically determines the first matrix and the second matrix is not limited in this embodiment of the present application. For example, the network device may evaluate all possible precoding matrices composed of the first matrix set and the second matrix set in combination with the channel measurement results, respectively, so that the first matrix and the first matrix corresponding to the precoding matrix with the largest capacity can be evaluated. Two matrices, as the determined first matrix and second matrix.
  • the parameters for determining the precoding matrix also include the phase offset ⁇ between different antennas of the terminal device, and the network device can also measure according to the channel.
  • the phase offset ⁇ is determined.
  • the network device can determine the precoding matrices at different phase offsets ⁇ according to formula (5), and evaluate them in combination with the channel measurement results, and use the phase offset corresponding to the precoding matrix with the largest capacity as the determination. out of phase offset ⁇ .
  • the network device may indicate the precoding matrix in at least two implementation manners.
  • Implementation manner 1 The precoding matrix is only indicated by the first information, and in this case, the first information may be an index value of the precoding matrix.
  • Implementation mode 2 The precoding matrix is indicated by the first information and the second information. Specifically, according to formula (5), it can be known that three parameters are required to determine the precoding matrix, namely the first matrix, the second matrix and the phase offset. theta.
  • the first information may indicate the first matrix and the second matrix, and the second information may be used to indicate the phase offset ⁇ , thereby indicating the precoding matrix, which will be described in detail below.
  • the precoding matrix may be indicated only by the first information. Specifically, each precoding matrix in the codebook set determined according to the foregoing formula (5) or formula (6) may be numbered, and each precoding matrix corresponds to an index value.
  • each precoding matrix is determined by the first matrix and the second matrix, and the first information may also directly indicate the index value of the precoding matrix, or the first information may indicate the index value of the first matrix and the index value of the second matrix, thereby indicating the precoding matrix, which is not limited in this embodiment of the present application.
  • the antenna of the terminal device is a single-polarized antenna
  • the precoding matrix can be determined by formula (6).
  • the index value of the first matrix is t
  • the index value of the second matrix is m
  • the value range is 0 to 2
  • all possible precoding matrices formed can be as shown in Table 1.
  • Table 1 (1, 0) indicates that the precoding matrix is determined by a first matrix with an index value of 1 and a second matrix with an index value of 0, and so on for other cases.
  • the first information when the first information is 0111, it indicates that the index value of the precoding matrix is 8, and the precoding matrix is determined by the first matrix with the index value of 2 and the second matrix with the index value of 1.
  • the first information when the first information is 0111, it may indicate the index value of the precoding matrix, or may indicate the index value t of the first matrix and the index value m of the second matrix, which is not limited in this embodiment of the present application.
  • each precoding matrix can be determined by the first matrix, the second matrix and the phase offset, and the first information can also directly indicate the index value of the precoding matrix, or the first information can indicate the first
  • the index value of a matrix, the index value of the second matrix, and the index value of the phase offset indicate the precoding matrix, which is not limited in this embodiment of the present application.
  • the antenna of the terminal device is a dual-polarized antenna.
  • the precoding matrix can be determined by formula (5). It is assumed that the index value of the first matrix is t, and the index value of the second matrix is is m, the value range is 0 to 1, and the phase quantization factor is 2, then all possible precoding matrices formed can be shown in Table 2. In Table 2, (1, 0, ⁇ ) indicates that the precoding matrix is determined by a first matrix with an index value of 1, a second matrix with an index value of 0, and a phase offset ⁇ , and so on in other cases.
  • the first information when the first information is 0111, it indicates that the index value of the precoding matrix is 8, and the precoding matrix is determined by the first matrix with the index value of 2, the second matrix with the index value of 1, and the phase offset ⁇ .
  • the first information when the first information is 0111, it may indicate the index value of the precoding matrix, or may indicate the index value t of the first matrix, the index value m of the second matrix, and the index value of the phase offset.
  • the precoding matrix may be indicated by the first information and the second information.
  • the first matrix and the second matrix may be indicated by the first information
  • the phase offset ⁇ may be indicated by the second information.
  • the antenna of the terminal device is a single-polarized antenna, according to formula (6), it can be known that the precoding matrix can be determined by the first information, and the second information is not required.
  • the antenna of the terminal device is a dual-polarized antenna, and the second information further indicates the index value of the phase offset ⁇ in the set ⁇ 0, 2 ⁇ /M, ..., 2 ⁇ (M-1)/M ⁇ ; wherein , the phase quantization factor M is configured by the network device, or is preset.
  • the precoding matrix can be determined through the first information and the second information.
  • the first information includes a first part and a second part, the first part is used to indicate the first matrix, and the second part is used to indicate the second matrix.
  • the first part is the index value of the first matrix
  • the second part is the index value of the second matrix.
  • the first part of the first information can be as shown in Table 3, and the second part of the first information can be as shown in Table 3.
  • Parts can be as shown in Table 4.
  • the first three bits in the first information represent the first part, and the last three bits represent the second part.
  • the first information is used to indicate the index value after the joint encoding of the first matrix and the second matrix.
  • the first information may be the index value of the matrix v t,m determined according to the first matrix and the second matrix.
  • the matrix v t,m is determined according to the first matrix and the second matrix, indicating that the index value of the matrix v t,m is equivalent to indicating that the first matrix corresponds to t and the second matrix
  • the m corresponding to the matrix is equivalent to indicating the first matrix and the second matrix.
  • This method is equivalent to jointly numbering the first matrix and the second matrix, and the index value of the matrix v t,m indicated by the first information may be equivalent to the index value after the joint numbering of the first matrix and the second matrix.
  • matrix A 1 includes Q 1 *N 1 column vectors
  • matrix A 2 includes Q 2 *N 2 column vectors.
  • formula (4) it can be known that there are a total of N 1 ⁇ O 1 ⁇ N 2 ⁇ O
  • the value range of the index value of the matrix v t,m can be 0 to N 1 ⁇ O 1 ⁇ N 2 ⁇ O 2 -1.
  • an index value of a precoding matrix may uniquely correspond to an index value indicated by the first information.
  • the index value indicated by the first information The index value may be equal to the index value of the precoding matrix.
  • the index value of the first matrix is t
  • the index value of the second matrix is m
  • the value range is 0 to 2
  • all possible precoding matrices formed can be as shown in Table 5 shown.
  • (1, 0) indicates that the precoding matrix is determined by a first matrix with an index value of 1 and a second matrix with an index value of 0, and so on in other cases.
  • the precoding matrix is determined by a first matrix with an index value of 2 and a second matrix with an index value of 1.
  • the first information and the second information may be transmitted through the same signaling, or may be transmitted through different signaling.
  • the network device may send the first information and the second information through downlink control information (downlink control information, DCI).
  • downlink control information downlink control information, DCI
  • the beam direction change between the terminal device and the network device may also be relatively slow, so it may be considered to reduce the frequency indicating the phase offset ⁇ , which is beneficial to reduce signaling indication overhead.
  • the first information and the second information are transmitted through different signaling, the first information may be transmitted through the first signaling, and the second information may be transmitted through the second signaling; wherein, the transmission period of the first information may be greater than or equal to For the transmission period of the second information, the first signaling and the second signaling may be DCI.
  • the first information takes effect in a first time unit
  • the second information takes effect in a second time unit
  • the first time unit is greater than or equal to the second time unit. That is, the transmission period of the first information may be the first time unit, and the transmission period of the second information may be the second time unit.
  • the first information is used to indicate the index value of the matrix v t,m determined according to the first matrix and the second matrix, that is to indicate the index value i 1 after the joint encoding of the first matrix and the second matrix
  • the second information is used to indicate
  • the index value of the phase offset ⁇ may specifically indicate the index value i 2 of the phase offset ⁇ in the set ⁇ 0, 2 ⁇ /M, . . . , 2 ⁇ (M-1)/M ⁇ .
  • the network device may configure the sending period of the first information and the sending period of the second information through signaling.
  • a parameter item codebook period (tpmiPeriodForCodebook) can be added in the RRC signaling PUSCH-Config IE, and the parameter can include two items: the first part period (firstPartPeriod), which is used to indicate the transmission period of the first information; The second part period (SecondPartPeriod) is used to indicate the sending period of the second information.
  • firstPartPeriod the first part period
  • second part period (SecondPartPeriod) is used to indicate the sending period of the second information.
  • firstPartPeriod If the configuration of "firstPartPeriod" is 1, or if this parameter is not configured, the first information is sent in each DCI that schedules the PUSCH by default. If “SecondPartPeriod” is not configured or the value of this parameter is 1, the second information is sent in each DCI that schedules the PUSCH by default.
  • firstPartPeriod When the value of "firstPartPeriod" is greater than 1, it means that the transmission period of the first information is n5, n10, n20, n40, etc., that is, corresponding to 2ms, 5ms, 10ms, 20ms, 40ms, etc. Of course other values are also possible.
  • the value of "SecondPartPeriod” when the value of "SecondPartPeriod" is greater than 1, it means that the transmission period of the second information is n5, n10, n20, n40, and so on.
  • the transmission period of the first information is less than or equal to the transmission period of the second information.
  • the precoding matrix is associated with the index value indicated by the first information and the index value indicated by the second information.
  • the bit area of carries the first information and the second information. For example, the number of bits included in the first information indicating the index value i 1 is 4 bits, and the number of bits included in the second information indicating the index value i 2 is 2 bits, then the precoding information in the DCI may indicate the The first four bits indicate the index value i 1 , and the last two bits indicate the index value i 2 . If the index value i 1 is not indicated, only 2 bits are required to indicate the index value i 2 .
  • the precoding matrix is only indicated by the first information, and in this case, the first information may be an index value of the precoding matrix.
  • the precoding matrix is indicated by the first information and the second information.
  • the first information may indicate the first matrix and the second matrix
  • the second information may be used to indicate the phase offset ⁇ .
  • the first information and the second information may include different numbers of bits.
  • the following describes various possible situations of the number of bits included in the first information and the second information respectively.
  • the number of antenna ports in the horizontal dimension is defined as N 1
  • the number of antenna ports in the vertical dimension is defined as N 2 .
  • the oversampling factor of the horizontal dimension is defined as O 1
  • the oversampling factor of the vertical dimension is O 2
  • the phase quantization factor is M.
  • Case 1 The number of antenna ports of the terminal device is 2, and the maximum rank is 1.
  • the precoding matrix W can satisfy the following form:
  • phase offset ⁇ only one variable is included in the precoding matrix, that is, the phase offset ⁇ , and one phase offset ⁇ corresponds to one precoding matrix. It should be noted that, if N 1 is equal to 1, O 1 takes a default value of 1; if N 2 is equal to 1, O 2 takes a default value of 1.
  • the precoding matrix is only indicated by the first information, and the first information may be the index value of the precoding matrix or the phase offset ⁇ in the set ⁇ 0, 2 ⁇ /M, . . . , 2 ⁇ ( The index value in M-1)/M ⁇ .
  • the number of bits included in the first information may be greater than or equal to in is the round-up function.
  • the precoding matrix is indicated by the first information and the second information. At this time, it is not necessary to indicate the first matrix and the second matrix, and only the second information needs to be used to indicate that the phase offset ⁇ is in the set ⁇ 0, 2 ⁇ /M,..., 2 ⁇ (M-1)/M ⁇ index value.
  • the number of bits included in the second information may be greater than or equal to
  • the first information or the second information may include 3 bits, the quantization value of each bit may indicate a phase offset value in the above set, and the value of the first information or the second information is any one of 0-7.
  • the index value ranges from 0 to L-1. If N 1 is equal to 1, O 1 defaults to 1; if N 2 is equal to 1, O 2 defaults to 1.
  • the precoding matrix can be indicated by the first information, and the first information can be the index value of the precoding matrix, The number of bits included in the first information is greater than or equal to if The remaining bit values do not indicate a precoding matrix and are reserved.
  • the index value of each precoding matrix may correspond to the values of t and m in v t,m , that is, corresponding to the index value of the first matrix and the index value of the second matrix.
  • the corresponding relationship between the first information and the index value of the precoding matrix may be as shown in Table 6.
  • Case 2 The number of antenna ports of the terminal device is 2, and the maximum rank is 2.
  • the precoding matrix W can satisfy the following form:
  • phase offset ⁇ only one variable is included in the precoding matrix, that is, the phase offset ⁇ , and one phase offset ⁇ corresponds to one precoding matrix.
  • the maximum rank is 2
  • the maximum number of layers to be transmitted is 2.
  • the precoding matrix is only indicated by the first information, and when the first information is the index value of the precoding matrix, considering the situation of rank adaptation, the network device may instruct the terminal device to transmit according to the rank of 1 or 2, At this time, each layer corresponds to M precoding matrices, and the two layers correspond to 2M precoding matrices in total.
  • the index value of the precoding matrix can range from 0 to 2M-1, and the number of bits included in the first information is greater than or equal to
  • the precoding matrix is indicated by the first information and the second information. From the formula in the above scenario 1, it can be known that the first matrix and the second matrix do not need to be indicated at this time, that is, the first information does not need to be sent; only The index value i 2 of the phase offset ⁇ needs to be indicated by the second information. Considering the situation of rank self-adaptation, the maximum number of transmission layers is 2, then the value range of the index value i 2 indicated by the second information may be 0 to 2M-1. The number of bits included in the second information is greater than or equal to
  • the terminal device may have a Rank of 1 or a Rank of 2. Therefore, both the specific Rank value and the corresponding precoding matrix under the Rank need to be indicated. For example, when Rank is 1, it corresponds to layer 1 in the table, and the precoding matrix index may be 0 ⁇ M-1; when Rank is 2, it corresponds to layer 2 in the table, and the precoding matrix index may be 0 ⁇ M-1. M-1. Note that the sets of precoding matrices when the Rank is 1 and when the Rank is 2 are different, and the above indexes correspond to the precoding matrices in the respective codebook sets.
  • the second information does not need to be sent, and only the first information needs to be sent.
  • the precoding matrix is indicated by the first information.
  • the first information is the index value of the precoding matrix
  • the network device may indicate the index values of the precoding matrices under different ranks through the first information, and the value range of the index values of the precoding matrices under different ranks may be 0 ⁇ K1.
  • K1 may be greater than or equal to 1 and less than or equal to N 1 N 2 *max(N 1 -1,1)*max(N 2 -1,1)*O 1 O 2 .
  • the number of bits included in the first information may be greater than or equal to max() is the operation of taking the maximum value.
  • the precoding matrix of the first layer is the same as the precoding matrix of the transmission according to the rank of 1.
  • the second layer it needs to select a codebook set that is the same as the first one.
  • the precoding matrix of one layer is orthogonal to the precoding matrix.
  • the index set of t' is ⁇ 0, O 1 , 2O 1 ,...,(N 1 -1) ⁇ O 1 ⁇ .
  • the precoding matrix of the second layer is v t,m+m' , where the index set of m' is ⁇ 0, O 2 , 2O 2 ,...,(N 2-1 ) ⁇ O 2 ⁇ .
  • the index set of m' is ⁇ 0, O 2 , 2O 2 ,...,(N 2-1 ) ⁇ O 2 ⁇ .
  • the maximum value of the number of precoding matrices included in the codebook set is N 1 2 N 2 2 O 1 O 2
  • the first information is the index of the precoding matrix
  • the number of bits included in the first information greater than or equal to
  • Case 3 The number of antenna ports of the terminal device is 4, and the maximum rank is 1.
  • the value sets of N 1 and N 2 under the dual-polarized antenna and single-polarized antenna are listed. If it is a dual-polarized antenna, the possible values of N 1 and N 2 There are two groups; if it is a single-polarized antenna, there are three groups of possible values for N1 and N2 .
  • Table 8 Value set of N 1 and N 2 when the antenna port is 4
  • Scenario 1 The antenna is a single-polarized antenna, and the second information does not need to be sent, only the first information needs to be sent.
  • the first information is the index value of the precoding matrix
  • the number of bits included in the first information is greater than or equal to
  • the index range of the precoding matrix is 0 to L-1.
  • the antenna is a dual-polarized antenna, and the phase offset ⁇ is also considered.
  • the precoding matrix is only indicated by the first information, and the first information may be the index value of the precoding matrix.
  • the maximum value of the number of precoding matrices included in the codebook set is LM, and the index range of the precoding matrix is LM. 0 to LM-1. At this time, the number of bits included in the first information may be greater than or equal to
  • the precoding matrix is indicated by the first information and the second information
  • the number of v t,m formed by the first matrix and the second matrix is L
  • the number of bits included in the first information is greater than or equal to
  • the phase offset ⁇ is indicated by the second information
  • the number of bits included in the second information is greater than or equal to
  • Case 4 The number of antenna ports of the terminal device is 4, and the maximum rank is 2.
  • the precoding matrix W satisfies the following form:
  • the number of bits included in the first information is greater than or equal to
  • the precoding matrix is indicated by the first information and the second information, and the number of bits included in the first information is greater than or equal to
  • the second information is used to indicate the index value i 2 of the phase offset ⁇ , including the number of bits greater than or equal to
  • the precoding matrix W satisfies the following form:
  • the first information is the index of the precoding matrix
  • the number of bits included in the first information greater than or equal to The index of the precoding matrix when the rank is 1 and the index of the precoding matrix when the rank is 2 can be indicated at the same time. There is no need to send the second information at this time.
  • Case 5 The number of antenna ports of the terminal device is 4, and the maximum rank is 3.
  • the precoding matrix W satisfies the following form:
  • the first information may simultaneously indicate the index value of the precoding matrix when the rank is 1, the index value of the precoding matrix when the rank is 2, and the index value of the precoding matrix when the rank is 3.
  • the precoding matrix is indicated by the first information and the second information, and the number of bits included in the first information is greater than or equal to
  • the second information is used to indicate the index value i 2 of the phase offset ⁇ , including the number of bits greater than or equal to
  • the precoding matrix W satisfies the following form:
  • the value set of t", m" is the same as the value set of t', m' respectively, but the selected precoding matrix of the third layer needs to be the same as the precoding matrix of the first layer and the precoding matrix of the second layer. Orthogonal is maintained, enabling orthogonal 3-stream transmission. In this case, when the first information is the index of the precoding matrix, the number of bits included in the first information is greater than or equal to There is no need to send the second information at this time.
  • Case 6 The number of antenna ports of the terminal device is 4, and the maximum rank is 4.
  • the precoding matrix W satisfies the following form:
  • the number of bits included in the first information is greater than or equal to
  • the precoding matrix is indicated by the first information and the second information. If precoding matrices under different ranks are also indicated, the number of bits included in the first information is greater than or equal to The second information is used to indicate the index value i 2 of the phase offset ⁇ , including the number of bits greater than or equal to
  • the precoding matrix W satisfies the following form:
  • the value set of t"', m"' is the same as the value set of t', m' respectively, but the precoding of the selected fourth layer needs to be the same as the precoding of the first layer, the second layer and the third layer.
  • the encoding remains orthogonal, enabling orthogonal 4-stream transmission. In this case, the number of bits included in the first information is greater than or equal to There is no need to send the second information at this time.
  • Case 7 The number of antenna ports of the terminal device is 8, and the maximum rank is 1.
  • N 1 and N 2 for dual-polarized antennas and single-polarized antennas are listed. If it is a dual-polarized antenna, the possible values of N 1 and N 2 There are 3 groups; if it is a single-polarized antenna, there are 4 groups of possible values for N 1 and N 2 .
  • Table 9 Value set of N 1 and N 2 when the number of antenna ports is 8
  • Dual polarized antenna 8 (1, 4) Dual polarized antenna 8 (4,1) Dual polarized antenna 8 (2, 2) Single Polarized Antenna 8 (1,8) Single Polarized Antenna 8 (8,1) Single Polarized Antenna 8 (2, 4) Single Polarized Antenna 8 (4, 2)
  • Scenario 1 The antenna is a single-polarized antenna, and the second information does not need to be sent, only the first information needs to be sent.
  • the first information is the index value of the precoding matrix
  • the number of bits included in the first information is greater than or equal to
  • the index range of the precoding matrix is 0 to L-1.
  • the precoding matrix is only indicated by the first information.
  • the first information may be the index value of the precoding matrix, the number of precoding matrices included in the codebook set is LM, and the number of bits included in the first information is greater than or equal to LM. equal
  • the index of the precoding matrix ranges from 0 to LM-1.
  • the precoding matrix is indicated by the first information and the second information
  • the number of v t,m formed by the first matrix and the second matrix is L
  • the number of bits included in the first information is greater than or equal to
  • the phase offset ⁇ is indicated by the second information
  • the number of bits included in the second information is greater than or equal to
  • Case 8 The number of antenna ports of the terminal device is 8, and the maximum rank is 2.
  • the number of bits included in the first information may refer to Case 4, but the values of N 1 and N 2 may be different.
  • Case 9 The number of antenna ports of the terminal device is 8, and the maximum rank is 3.
  • the number of bits included in the first information may refer to Case 5, but the values of N 1 and N 2 may be different.
  • Case 10 The number of antenna ports of the terminal device is 8, and the maximum rank is 4.
  • the number of bits included in the first information may refer to Case 6, but the values of N 1 and N 2 may be different.
  • the precoding matrix For the case where the number of antenna ports is 8 and the rank is other values, for the determination method of the precoding matrix, reference may be made to the foregoing description. It should be noted that, no matter which layer the precoding matrix is, it only needs to be orthogonal to the precoding matrix of other layers.
  • the terminal device may determine the first matrix and the second matrix according to the first information, so as to determine the precoding matrix according to the first matrix and the second matrix.
  • the terminal device may determine the first matrix according to the first part, and determine the second matrix according to the second part.
  • the terminal device can The index value of the matrix v t, m determines the first matrix and the second matrix that constitute the matrix v t,m , thereby determining the precoding matrix.
  • the terminal device can also determine the phase offset ⁇ according to the second information, so as to combine the formula (5), determine the precoding matrix according to the phase offset ⁇ , the first matrix and the second matrix. .
  • the first information may directly determine the precoding matrix according to the index value of the precoding matrix.
  • the terminal device may use the precoding matrix to send the uplink signal to the network device, and how to send the uplink signal is not limited in this embodiment of the present application, and details are not described herein again.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between various devices.
  • the terminal device and the network device may include hardware structures and/or software modules, and the above functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 400 for implementing the functions of the terminal device or the network device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 400 may include: a processing unit 401 and a communication unit 402 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the sending and receiving steps of the terminal device or the network device in the above method embodiments.
  • the apparatus 400 may implement the steps or processes corresponding to the terminal equipment or the network equipment in the above method embodiments, which will be described separately below.
  • a communication unit 402 configured to receive first information from a network device; the first information is used to indicate a precoding matrix;
  • the processing unit 401 is configured to determine the precoding matrix according to the first information; the precoding matrix is used for sending an uplink signal; wherein, the precoding matrix is determined by a first matrix and a second matrix; the first A matrix is determined from the first matrix set according to the first information, the first matrix set is determined according to the horizontal dimension parameter of the antenna of the terminal device, and/or the second matrix is determined according to the The first information is determined from a second matrix set, and the second matrix set is determined according to a vertical dimension parameter of the antenna.
  • the communication unit is also used for:
  • the processing unit is also used to:
  • the precoding matrix is determined according to the first information and the second information.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix; ⁇ is the phase offset.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix.
  • v t,m satisfies the following form:
  • N 1 is the number of antenna ports in the horizontal dimension
  • O 1 is the oversampling factor in the horizontal dimension
  • N 2 is the number of antenna ports in the vertical dimension
  • j is an imaginary number
  • O 2 is the oversampling factor in the vertical dimension
  • m 0,1,2, ..., N 2 O 2 -1
  • t 0, 1, 2, ..., N 2 O 2 -1.
  • the horizontal dimension parameter of the antenna includes the number of horizontal dimension antenna ports
  • the vertical dimension parameter of the antenna includes the vertical dimension antenna port number.
  • the first information indicates an index value of the first matrix and an index value of the second matrix; or the first information indicates an index value of the precoding matrix.
  • a communication unit 402 configured to receive antenna configuration information from a terminal device; the antenna configuration information includes antenna parameters used to determine a precoding matrix; measure a reference signal from the terminal device to obtain a channel measurement result;
  • a processing unit 401 configured to determine a precoding matrix according to the channel measurement result and the antenna configuration information
  • the communication unit 402 is configured to send first information to the terminal device, where the first information is used to indicate the precoding matrix; wherein the precoding matrix is determined by the first matrix and the second matrix, and the The first matrix is determined from the first matrix set according to the channel measurement result, the first matrix set is determined according to the horizontal dimension parameter of the antenna of the terminal device, and the second matrix is determined according to the The channel measurement result is determined from a second matrix set, and the second matrix set is determined according to the vertical dimension parameter of the antenna.
  • the communication unit is also used for:
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix; ⁇ is the phase offset.
  • the precoding matrix W satisfies the following form:
  • v t,m is determined according to the first matrix and the second matrix.
  • v t,m satisfies the following form:
  • N 1 is the number of antenna ports in the horizontal dimension
  • O 1 is the oversampling factor in the horizontal dimension
  • N 2 is the number of antenna ports in the vertical dimension
  • j is an imaginary number
  • O 2 is the oversampling factor in the vertical dimension
  • m 0,1,2, ..., N 2 O 2 -1
  • t 0, 1, 2, ..., N 2 O 2 -1.
  • the horizontal dimension parameter of the antenna includes the number of horizontal dimension antenna ports
  • the vertical dimension parameter of the antenna includes the vertical dimension antenna port number.
  • the first information indicates an index value of the first matrix and an index value of the second matrix; or the first information indicates an index value of the precoding matrix.
  • FIG. 5 shows an apparatus 500 provided by an embodiment of the present application, and the apparatus shown in FIG. 5 may be an implementation manner of a hardware circuit of the apparatus shown in FIG. 4 .
  • the communication apparatus may be applied to the flowchart shown in FIG. 3 to perform the functions of the terminal device or the network device in the foregoing method embodiments.
  • FIG. 5 only shows the main components of the communication device.
  • the apparatus 500 shown in FIG. 5 includes at least one processor 520, which is configured to implement any of the methods in FIG. 3 provided in the embodiments of the present application.
  • the apparatus 500 may also include at least one memory 530 for storing program instructions and/or data.
  • Memory 530 is coupled to processor 520 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 520 may cooperate with memory 530 .
  • Processor 520 may execute program instructions stored in memory 530 . At least one of the at least one memory may be included in the processor.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable chips.
  • DSP digital signal processing circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the apparatus 500 may also include a communication interface 510 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 500 may communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or an interface circuit.
  • the apparatus 500 may also include a communication line 540 .
  • the communication interface 510, the processor 520 and the memory 530 may be connected to each other through a communication line 540; the communication line 540 may be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • the communication line 540 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 520 is used to execute the instructions or programs stored in the memory 530 .
  • the processor 520 is used to perform the operations performed by the processing unit 401 in the above-mentioned embodiments, and the communication interface 510 is used to perform the operations performed by the communication unit 402 in the above-mentioned embodiments.
  • the communication interface 510 is used to perform the operations performed by the communication unit 402 in the above-mentioned embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement the process related to the terminal device in the embodiment shown in FIG. 3 provided by the foregoing method embodiment .
  • An embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, can implement the process related to the network device in the embodiment shown in FIG. 3 provided by the above method embodiment. .
  • An embodiment of the present application further provides a computer program product including an instruction, when the instruction is executed, executes the method of the terminal device in the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a computer program product including an instruction, when the instruction is executed, executes the method of the network device in the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • a processor which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • the processor executes the computer program or instruction, Execute the method of the terminal device in the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • a processor which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • the processor executes the computer program or instruction, Execute the method of the network device in the method embodiment shown in FIG. 3 above.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,其中方法包括:终端设备接收来自网络设备的第一信息;所述第一信息用于指示预编码矩阵;所述终端设备根据所述第一信息确定所述预编码矩阵;所述预编码矩阵用于发送上行信号;其中,所述预编码矩阵由第一矩阵和第二矩阵确定;所述第一矩阵为根据所述第一信息从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,和/或,所述第二矩阵为根据所述第一信息从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年07月30日提交中国专利局、申请号为202010752364.0、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统中,例如第四代(Fourth generation,4G)和第五代(Fifth generation,5G)无线通信系统——新无线接入技术(New radio access technology,NR)系统中,上行(Uplink,UL)传输可通过上行预编码获取分集和复用增益。在5G系统中,上行预编码包括基于码本的传输模式和基于非码本的传输模式,其中基于码本的传输模式可以应用于频分双工(Frequency division duplex,FDD)和(Time division duplex,TDD)系统,而基于码本的传输模式通常用于TDD系统中。在基于码本的传输模式中,基站从预先定义的上行码本集合中根据信道状态选择合适的码本,并通过控制信道向终端指示所选择的码本的索引。在基于非码本的传输模式中,基站根据信道状态选择合适的探测参考信号资源索引(Sounding reference signal,SRI),并通过控制信道向终端指示SRI。而在4G系统中,上行仅支持基于码本的传输模式。
随着移动通信的发展以及新兴业务的出现,对上行容量的需求越来越高。例如,对于一些视频监控场景,需要终端回传高清视频到基站。为了提升上行容量,需要对上行传输技术进行增强,尤其是上行多输入多输出技术(Multiple input multiple output,MIMO)。在当前4G系统或5G系统中,上行码本是预存在网络设备和终端设备中的,可供选择的码本数量有限,不能根据终端设备的天线型态做调整,导致上行码本精度不够高,影响上行MIMO传输的性能,不利于上行容量的提升。
发明内容
本申请提供一种通信方法及装置,可以提高上行码本精度。
第一方面,本申请提供一种通信方法,该方法包括:终端设备接收来自网络设备的第一信息;所述第一信息用于指示预编码矩阵;所述终端设备根据所述第一信息确定所述预编码矩阵;所述预编码矩阵用于发送上行信号;其中,所述预编码矩阵由第一矩阵和第二矩阵确定;所述第一矩阵为根据所述第一信息从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,和/或,所述第二矩阵为根据所述第一信息从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
通过上面的方法,在确定预编码矩阵时,考虑了终端设备的天线配置信息,可自适应 地调整预编码矩阵的精度,可针对不同的终端设备的天线配置不同的预编码矩阵精度,有利于减少MIMO配对用户之间的干扰,满足不同终端设备的容量需求。同时还可以根据不同终端设备天线的型态,获得更好的波束赋形增益,有利于终端设备在发送上行信号时,能更好地匹配信道。
一种可能的设计中,所述方法还包括:所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移;所述终端设备根据所述第一信息确定所述预编码矩阵,包括:所述终端设备根据所述第一信息和所述第二信息确定所述预编码矩阵。
通过上面的方法,预编码矩阵考虑了不同极化方向的天线之间的相位偏移带来的影响,有利于终端设备在采用预编码矩阵发送上行数据时,能更好地匹配信道,获得更大的多天线增益。
一种可能的设计中,所述预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000001
其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
一种可能的设计中,所述第二信息指示出所述相位偏移θ在集合{0,2π/M,…,2π(M-1)/M}中的索引值;其中,相位量化因子M是所述网络设备配置的,或者是预设的。
一种可能的设计中,所述预编码矩阵W满足以下形式:
W=v t,m
其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
一种可能的设计中,v t,m满足以下形式:
Figure PCTCN2021109225-appb-000002
其中,
Figure PCTCN2021109225-appb-000003
N 1为水平维度天线端口数;O 1为水平维度的过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
通过采用水平维度的过采样因子以及垂直维度的过采样因子确定预编码矩阵,可以提高预编码矩阵的精度,从而可以根据天线的型态的不同获得更好的波束赋形增益。
一种可能的设计中,所述第一信息通过第一信令传输;所述第二信息通过第二信令传输;所述第一信息在第一时间单元内生效,所述第二信息在第二时间单元内生效;所述第一时间单元大于或等于所述第二时间单元。
一种可能的设计中,所述方法还包括:终端设备向网络设备发送天线配置信息;所述天线配置信息包括所述终端设备的天线的极化类型,所述天线的水平维度参数以及所述天线的垂直维度参数。
一种可能的设计中,所述天线的极化类型包括单极化、双极化,三极化和椭圆极化中的至少一项。
一种可能的设计中,所述天线的水平维度参数包括水平维度天线端口数;所述天线的垂直维度参数包括垂直维度天线端口数。
一种可能的设计中,所述天线的水平维度参数还包括以下至少一项:水平维度相邻天 线之间的间距;水平维度的过采样因子;所述天线的垂直维度参数还包括以下至少一项:
垂直维度相邻天线之间的间距;垂直维度的过采样因子。
一种可能的设计中,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
第二方面,本申请还提供了一种装置,所述装置可以是终端设备,该装置具有实现上述第一方面方法实例或第一方面的各个可能的设计示例中的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括通信单元和处理单元,这些单元可以执行上述第一方面或第一方面各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述装置执行上述第一方面或第一方面各个可能的设计方法中相应的功能。所述存储器与所述处理器耦合,其保存所述装置必要的程序指令和数据。
第三方面,本申请还提供了一种方法,包括:网络设备接收来自终端设备的天线配置信息;所述天线配置信息包括用于确定预编码矩阵的天线参数;网络设备对来自所述终端设备的参考信号进行测量,获得信道测量结果;所述网络设备根据所述信道测量结果以及所述天线配置信息确定预编码矩阵,并向所述终端设备发送第一信息,所述第一信息用于指示所述预编码矩阵;其中,所述预编码矩阵由第一矩阵和第二矩阵确定,所述第一矩阵为根据所述信道测量结果从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,所述第二矩阵为根据所述信道测量结果从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
通过上面的方法,在确定预编码矩阵时,考虑了终端设备的天线配置信息,可自适应地调整预编码矩阵的精度,可针对不同的终端设备的天线配置不同的预编码矩阵精度,有利于减少MIMO配对用户之间的干扰,满足不同终端设备的容量需求。同时还可以根据不同终端设备天线的型态,获得更好的波束赋形增益,有利于终端设备在发送上行信号时,能更好地匹配信道。
一种可能的设计中,所述方法还包括:所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移。
一种可能的设计中,所述预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000004
其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
一种可能的设计中,所述第二信息指示出所述相位偏移θ在集合{0,2π/M,…,2π(M-1)/M}中的索引值;其中,相位量化因子M是所述网络设备配置的,或者是预设的。
一种可能的设计中,所述预编码矩阵W满足以下形式:
W=v t,m
其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
一种可能的设计中,v t,m满足以下形式:
Figure PCTCN2021109225-appb-000005
其中,
Figure PCTCN2021109225-appb-000006
N 1为水平维度天线端口数;O 1为水平维度的过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
一种可能的设计中,所述第一信息通过第一信令传输;所述第二信息通过第二信令传输;所述第一信息在第一时间单元内生效,所述第二信息在第二时间单元内生效;所述第一时间单元大于或等于所述第二时间单元。
一种可能的设计中,所述方法还包括:终端设备向网络设备发送天线配置信息;所述天线配置信息包括所述终端设备的天线的极化类型,所述天线的水平维度参数以及所述天线的垂直维度参数。
一种可能的设计中,所述天线的极化类型包括单极化、双极化,三极化和椭圆极化中的至少一项。
一种可能的设计中,所述天线的水平维度参数包括水平维度天线端口数;所述天线的垂直维度参数包括垂直维度天线端口数。
一种可能的设计中,所述天线的水平维度参数还包括以下至少一项:水平维度相邻天线之间的间距;水平维度的过采样因子;所述天线的垂直维度参数还包括以下至少一项:
垂直维度相邻天线之间的间距;垂直维度的过采样因子。
一种可能的设计中,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
第四方面,本申请还提供了一种装置,所述装置可以是网络设备,该装置具有实现上述第三方面方法实例或第三方面的各个可能的设计示例中的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括通信单元和处理单元,这些单元可以执行上述第三方面或第三方面各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述装置执行上述第三方面或第三方面各个可能的设计方法中相应的功能。所述存储器与所述处理器耦合,其保存所述装置必要的程序指令和数据。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面中任一种可能实现方式中的方法的指令。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任 一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第三方面或第三方面中任一种可能实现方式中的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面所述的方法被执行。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第三方面所述的方法被执行。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面中所示的相应的方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第三方面中所示的相应的方法。
第十三方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面所述的方法。
第十四方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第三方面所述的方法。
第十五方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面所述的方法被实现。
第十六方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第三方面所述的方法被实现。
第十七方面,本申请提供一种系统,包括上述第二方面提供的通信装置以及上述第四方面提供的通信装置。
附图说明
图1为本申请实施例提供的一种系统架构示意图;
图2为本申请实施例提供的一种天线排列示意图;
图3为本申请实施例提供的一种通信方法流程示意图;
图4为本申请实施例提供的一种通信装置结构示意图;
图5为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信系统的示意图。图1中,终端设备102接入了网络设备101。网络设备101可以通过本申请实施例提供的方法,确定向终端设备102发送下行信号时使用的预编码矩阵;相应的,终端设备102可以通过本申请实施例提供的方法,确定向网络设备101发送上行信号时使用的预编码矩阵。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
网络设备,可以是NR系统中的下一代基站(next Generation node B,gNB),可以是LTE系统中的演进型基站(evolutional node B,eNB),还可以是未来移动通信系统中的基站等。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在描述本申请实施例提供的方法之前,先描述本申请实施例中关于预编码矩阵的相关技术。在MIMO传输中,通过在发送端采用预编码矩阵对待发送的信号进行预编码,可以实现空间分集和空间复用。空间分集有利于信号传输的可靠性的提高,而空间复用有利于同时传输多个并行的数据流。无论是对于空间分集还是空间复用,都需要预编码矩阵能很好地匹配信道。在上行基于码本的传输中,预编码矩阵的确定是在网络设备侧完成。如果网络设备通过信令向终端设备直接指示预编码矩阵里的每个元素,则信令的开销会比较大。因此,当前标准中,网络设备可以向终端设备发送传输预编码指示(Transmit Precoding Matrix Indicator,TPMI),TPMI可以指示预编码矩阵的索引,每个索引对应码本中的一个预编码矩阵。
当终端设备配置多天线时,天线的排列方式会影响码本的设计,比如天线之间是不是 等间距排列的,极化是否相同等,如下图2所示,为本申请实施例提供的一种天线的排列方式示意图。在图2中的(a)、图2中的(b)和图2中的(c)中给出了4天线可能的排列位置,其中还示意了天线的极化方向;图2中的(d)和图2中的(e)给出了8天线的排列位置,在水平或垂直维度上的天线之间的间距是相同的;图2中的(f)中水平维度的天线之间的间距不相同。假设无线信号是平面波发射或入射,当天线间距相同时,信号到达相邻天线间的相位差是相同的;当天线间距不同时,相邻天线间的相位差则可能不同。对于同一极化方向上的天线,一般可通过调整天线间的相位来形成较窄的波束,从而获得较高的波束赋形增益。而对于不同极化方向上的天线,相位差较大,一般不会联合起来做波束赋形。本申请实施例中,在确定预编码矩阵过程中,可以考虑终端设备的天线型态参数来生成高精度的码本,从而获得最优的波束赋形增益。
本申请实施例中,采用基于离散傅利叶(Discrete fourier transform,DFT)的码本生成方法生成预编码矩阵。基于DFT矩阵的码本生成方法获得的DFT矩阵可以表示如下:
Figure PCTCN2021109225-appb-000007
其中,N表示天线端口数。上述矩阵中的列与列之间是正交的。在构成码本集合时,可以选择其中的1列或多列来确定预编码矩阵。每一列可看成对应一个波束方向,选择不同的列,相当于选择不同的波束方向来进行波束赋形。利用过采样可增加波束指向,即可增加码本集合的大小,有利于码本精度的提高。此外,根据图2所示的天线排列,定义水平维度天线端口数为N 1,垂直维度天线端口数为N 2。定义水平维度的过采样子为O 1,垂直维度的过采样因子O 2。水平维度和垂直维度上的波束独立生成,对应的参数不一样。下面以水平维度天线端口为例,过采样后水平维度上的DFT矩阵可表示为:
Figure PCTCN2021109225-appb-000008
过采样后,DFT矩阵的列数增多了,也就是说可以选择的码本数量增多了,可以选择的波束方向增多了,有利于更好地匹配信道,获得更高的波束赋形增益。
将上式中的N 1和O 1分别替换成垂直维度天线端口数N 2以及垂直维度的过采样因子O 2时,可获得垂直维度上的天线端口为例,过采样后垂直维度的DFT矩阵可表示为:
Figure PCTCN2021109225-appb-000009
本申请实施例中,可以从公式(2)和公式(3)中分别选择一列向量构造预编码矩阵,下面主要以单流传输,即秩(rank)等于1为例,介绍预编码矩阵的构造过程。定义
Figure PCTCN2021109225-appb-000010
为矩阵A 2的第m列向量的共轭量,其中m=0,1,2,…,
Figure PCTCN2021109225-appb-000011
为矩阵A 1的第t列向量的共轭量,其中t=0,1,2,…,N 1O 1-1。当N 2=1时,u m=1,即垂直维度不需要做波束赋形。假定一个极化方向上天线的端口数为N 1·N 2时,对于单层传输,同一个极化方向上形成的预编码矩阵v t,m(矩阵维度为N 1·N 2*1)定义为:
Figure PCTCN2021109225-appb-000012
公式(4)根据矩阵A 1的第t列向量的共轭量,以及矩阵A 2的第m列向量的共轭量确定。其中,t=0,1,2,…,N 1O 1-1。
如果终端设备采用双极化天线,且天线端口数为2·N 1·N 2,则在采用单层传输时,对应的预编码矩阵W满足以下公式:
Figure PCTCN2021109225-appb-000013
上式中,前N 1·N 2行对应第一个极化方向上相应天线端口的权值,后N 1·N 2行对应第二个极化方向上相应天线端口的权值。不同极化方向的相位偏移
Figure PCTCN2021109225-appb-000014
例如M=4时,θ的取值为集合
Figure PCTCN2021109225-appb-000015
中的一个值;当M=8时,θ的取值为集合
Figure PCTCN2021109225-appb-000016
中的一个值。相位偏移用于指示不同极化天线上的相位差。
根据公式(5)可知,网络设备只需要向终端设备指示v t,m的索引(可以理解为波束方向)以及不同极化方向的天线之间的相位偏移θ,终端设备就能生成对应的预编码矩阵。
结合前面的描述,矩阵A 1包括N 1·O 1个列向量,矩阵A 2包括N 2·O 2个列向量,相位偏移θ存在M种可能的取值,那么根据公式(5)确定出的码本集合,总共包括的码本数量为M·N 1·O 1·N 2·O 2
需要说明的是,网络设备可以对来自终端设备的参考信号进行测量,获得信道测量结果,并根据所述信道测量结果确定索引t、m以及相位偏移θ的取值,从而确定预编码矩 阵。
需要说明的是,当终端设备的天线只存在一个极化方向,即天线为单极化天线时,不同天线之间的不存在相位偏移,也就是说预编码矩阵W满足以下公式:
W=v t,m       …(6)
此时网络设备只需要指示v t,m的索引。另外,当天线端口为2时,且天线为双极化方向时,N 1=N 2=1。此时v t,m为1,无需指示v t,m,只需指示θ。
结合前面的描述,矩阵A 1包括N 1·O 1个列向量,矩阵A 2包括N 2·O 2个列向量,那么根据公式(6)确定出的码本集合,总共包括的码本数量为N 1·O 1·N 2·O 2
上述预编码矩阵生成方式可以适用于2天线端口、4天线端口、6天线端口、8天线端口或更多天线端口的上行传输。
结合前面的描述,参见图3,为本申请实施例提供的一种通信方法流程示意图。该方法包括:
步骤301:网络设备接收来自终端设备的天线配置信息。
其中,所述天线配置信息包括用于确定预编码矩阵的天线参数。
步骤302:网络设备对来自所述终端设备的参考信号进行测量,获得信道测量结果。
步骤303:网络设备根据所述信道测量结果以及所述天线配置信息确定预编码矩阵,并向所述终端设备发送第一信息。
其中,所述第一信息用于指示所述预编码矩阵,所述预编码矩阵由第一矩阵和第二矩阵确定。在网络设备侧,所述第一矩阵为根据所述信道测量结果从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,所述第二矩阵为根据所述信道测量结果从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
步骤304:终端设备接收来自网络设备的第一信息。
步骤305:终端设备根据所述第一信息确定所述预编码矩阵;所述预编码矩阵用于发送上行信号。
其中,所述预编码矩阵由第一矩阵和第二矩阵确定;在终端设备侧,所述第一矩阵为根据所述第一信息从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,和/或,所述第二矩阵为根据所述第一信息从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
本申请提供的方案,网络设备指示预编码矩阵,终端设备根据指示信息确定预编码矩阵,在确定预编码矩阵时,考虑了终端设备的天线配置信息,可自适应地调整预编码矩阵的精度,可针对不同的终端设备的天线配置不同的预编码矩阵精度,有利于减少MIMO配对用户之间的干扰,满足不同终端设备的容量需求。同时还可以根据不同终端设备天线的型态,获得更好的波束赋形增益,有利于终端设备在发送上行信号时,能更好地匹配信道。
步骤301中,所述天线配置信息可以包括所述终端设备的天线的极化类型,所述天线的水平维度参数以及所述天线的垂直维度参数。
天线的极化类型包括单极化、双极化,三极化和椭圆极化中的至少一项。
天线的水平维度参数至少包括水平维度天线端口数,还可以包括水平维度相邻天线之间的间距和水平维度的过采样因子中的至少一项。天线的水平维度参数如果不包括水平维度相邻天线之间的间距,该参数的值可以为默认的值;天线的水平维度参数如果不包括水 平维度的过采样因子,还可以由网络设备自主确定水平维度的过采样因子。
天线的垂直维度参数至少包括垂直维度天线端口数,还可以包括垂直维度相邻天线之间的间距和垂直维度的过采样因子中的至少一项。天线的垂直维度参数如果不包括垂直维度相邻天线之间的间距,该参数的值可以为默认的值;天线的垂直维度参数如果不包括垂直维度的过采样因子,还可以由网络设备自主确定垂直维度的过采样因子。
需要说明的是,终端设备上报的水平维度的过采样因子以及垂直维度的过采样因子,可以是指终端设备所能支持的最大能力,网络设备可以不使用终端设备上报的水平维度的过采样因子以及垂直维度的过采样因子,这种情况下,网络设备可以通过无线资源控制(radio resource control,RRC)信令向终端设备指示水平维度的过采样因子以及垂直维度的过采样因子。
举例来说,终端设备上报的水平维度的过采样因子为10、垂直维度的过采样因子为10;网络设备在确定预编码矩阵时,可以综合考虑码本的精度等情况,确定生成预编码矩阵时采用的水平维度的过采样因子为8、垂直维度的过采样因子为8,并通过RRC信令指示给终端设备。
进一步的,终端设备具体如何发送天线配置信息,本申请实施例并不限定。例如,终端设备可以利用无线资源控制(radio resource control,RRC)信令中的用户设备能力信息元素(UE capability information elements)来承载天线配置信息。在终端设备进行随机接入的过程中,可以把天线配置信息上报给网络设备。具体的,可以在UE capability information elements中新增一个信息指示项来指示天线配置信息,例如命名为用户设备天线配置信息元素(UE antenna configuration information element)。UE antenna configuration information element的具体结构可以如下所示:
Figure PCTCN2021109225-appb-000017
其中,antennaPortForHorizontal表示水平维度的天线端口数,例如候选的取值集合可以为{2,3,4,6,8}等;“ENUMERATED”表示该参数为枚举类型,即从候选集合中选择一个值进行上报。antennaPortForVertical表示垂直维度的天线端口数,例如候选的取值集合可以为{2,3,4,6,8}等。overSampleFactorForHorizontal表示水平维度的过采样因子,取值集合为{1,2,4,6,8}等。overSampleFactorForVertical表示垂直维度的过采样因子,取值集合可以为{1,2,4,6,8}等。polarizationNumber表示极化数量,取值集合为{1,2}。antennaSpacingForHorizontal表示水平维度上相邻天线之间的间距,取值为1到32之间的整数,单位为0.1波长,该参数不一定要上报,是可选的参数。antennaSpacingForVertical为垂直维度相邻天线之间的间距,取值为1到32之间的整数,单位为0.1波长,该参数不一定要上报,是可选的参数。
需要说明的是,上述取值集合只是举例,也可以存在其它值。UE antenna configuration information element中包括的参数配置也可包含在其它information element中。例如,可以位于每频带MIMO参数信息元素(MIMO-ParametersPerBand information element)中,在 此不做限定。
进一步的,本申请实施例中的预编码矩阵的类型可以为高精度的预编码矩阵。网络设备还根据终端设备的能力,确定终端设备支持采用高精度的预编码矩阵发送上行信号时,可以向终端设备指示生成高精度的预编码矩阵,否则指示终端设备按照现有技术的方式确定预编码矩阵。
进一步的,如前所述,相位偏移θ的取值范围和相位量化因子M有关,例如M=4时,θ的取值集合为
Figure PCTCN2021109225-appb-000018
M的取值可以为默认值,也可以为网络设备配置的值。网络设备配置了相位量化因子M,还可以向终端设备指示相位量化因子M。
此外,网络设备还可以向终端设备配置过采样因子水平维度的过采样因子O 1,以及垂直维度的过采样因子O 2。如果终端设备上报的天线配置信息中包括O 1和O 2,网络设备可综合考虑码本的精度对性能提升的空间的大小和信令指示开销来确定O 1和O 2的取值。网络设备指示的O 1的取值小于或等于终端设备上报的水平维度的过采样因子的取值,指示的O 2的取值小于或等于终端设备上报的垂直维度的过采样因子的取值。如果终端设备不配置过O 1和O 2,则采用终端上报的值。
网络设备可以通过RRC信令指示M、O 1和O 2。例如可以通过RRC信令中的物理上行共享信道(physical uplink shared channel,PUSCH)配置(config)信息元素(Information element,IE)中指示。PUSCH-Config IE的结构可以参考如下:
Figure PCTCN2021109225-appb-000019
一种通过信令指示相位量化因子的方法,可以是在PUSCH-Config IE中新增一项参数相位量化因子(phaseQuantizationFactorforCodebook),phaseQuantizationFactorforCodebook是一个枚举类型的参数,例如取值集合为{2,4,6,8}。PUSCH-Config是UE-specific的配置,即每个终端设备均可能配置该参数。例如当相位量化因子配置为4时,表示M的取值为4,即将0到2π之间的相位进行4等分。当终端设备收到该指示值时,终端设备确定将采用高精度的预编码矩阵发送PUSCH。
可选的,当需要指示过采样因子时,可以在PUSCH-Config IE中新增加参数过采样因子(oversampleFactorForCodebook),其中可以包括两个参数,即水平维度的过采样因子(overSampleFactorForHorizontal)和垂直维度的过采样因子(overSampleFactorForVertical)。
步骤302中,网络设备可以接收来自终端设备的参考信号,例如探测参考信号(Sounding Reference Signal,SRS)等。网络设备可以对参考信号进行测量,获得信道测量结果。
网络设备具体如何测量参考信号,测量结果的具体内容,本申请实施例并不限定,具体可以参考现有技术中的描述,在此不再赘述。
步骤303中,网络设备可以终端设备的天线的水平维度参数确定第一矩阵集合,根据终端设备的天线的垂直维度参数确定第二矩阵集合。其中第一矩阵集合可以满足前面的公式(2),第二矩阵集合可以满足前面的公式(3)。
网络设备可以根据信道测量结果从第一矩阵集合中确定一列向量作为第一矩阵,第一矩阵可以为前面描述的u t;根据信道测量结果从第二矩阵集合中确定一列向量作为第二矩阵,第二矩阵可以为前面描述的u m。需要说明的是,网络设备具体如何确定第一矩阵和第二矩阵,本申请实施例并不限定。举例来说,网络设备可以将由第一矩阵集合和第二矩阵集合构成的所有可能的预编码矩阵,分别结合信道测量结果进行评估,将使得容量最大的预编码矩阵所对应的第一矩阵和第二矩阵,作为确定出的第一矩阵和第二矩阵。
进一步的,当终端设备的天线为双极化天线时,根据公式(5)可知,确定预编码矩阵的参数还包括终端设备的不同天线之间的相位偏移θ,网络设备还可以根据信道测量结果确定相位偏移θ。举例来说,网络设备可以根据公式(5)确定在不同相位偏移θ时的预编码矩阵,分别结合信道测量结果进行评估,将使得容量最大的预编码矩阵所对应的相位偏移,作为确定出的相位偏移θ。
结合上面的描述,网络设备可以通过至少两种实现方式指示预编码矩阵。实现方式一,只通过第一信息指示预编码矩阵,此时第一信息可以为预编码矩阵的索引值。实现方式二,通过第一信息和第二信息指示预编码矩阵,具体的,将根据公式(5)可知,确定预编码矩阵需要三个参数,分别为第一矩阵、第二矩阵以及相位偏移θ。在该实现方式中,第一信息可以指示第一矩阵和第二矩阵,第二信息可以用于指示相位偏移θ,从而指示预编码矩阵,下面将详细描述。
第一种可能的实现方式中,可以只通过第一信息指出预编码矩阵。具体的,可以将根据前面的公式(5)或公式(6)确定的码本集合中的每个预编码矩阵进行编号,每个预编码矩阵对应一个索引值。
根据公式(6)可知,每个预编码矩阵由第一矩阵和第二矩阵确定,第一信息也可以直接指示预编码矩阵的索引值,或者,第一信息可以指示出第一矩阵的索引值和第二矩阵的索引值,从而指示出预编码矩阵,本申请实施例并不限定。
举例来说,结合前面的描述,假设终端设备的天线为单极化天线,此时可以通过公式(6)确定预编码矩阵,假设第一矩阵的索引值为t,第二矩阵的索引值为m,取值范围均为0至2,那么构成的所有可能的预编码矩阵可以如表1所示。表1中,(1,0)表示该预编码矩阵由索引值为1的第一矩阵和索引值为0的第二矩阵确定,其它情况以此类推。
表1
Figure PCTCN2021109225-appb-000020
Figure PCTCN2021109225-appb-000021
结合表1,例如第一信息为0111时,表示预编码矩阵的索引值为8,该预编码矩阵由索引值为2的第一矩阵和索引值为1的第二矩阵确定。第一信息为0111时,可以指示的是预编码矩阵的索引值,也可以指示的是第一矩阵的索引值t以及第二矩阵的索引值m,本申请实施例并不限定。
根据公式(5)可知,每个预编码矩阵可以由第一矩阵、第二矩阵以及相位偏移确定,第一信息也可以直接指示预编码矩阵的索引值,或者,第一信息可以指示出第一矩阵的索引值、第二矩阵的索引值以及相位偏移的索引值,从而指示出预编码矩阵,本申请实施例并不限定。
再举例来说,结合前面的描述,假设终端设备的天线为双极化天线,此时可以通过公式(5)确定预编码矩阵,假设第一矩阵的索引值为t,第二矩阵的索引值为m,取值范围均为0至1,相位量化因子为2,那么构成的所有可能的预编码矩阵可以如表2所示。表2中,(1,0,π)表示该预编码矩阵由索引值为1的第一矩阵、索引值为0的第二矩阵以及相位偏移π确定,其它情况以此类推。
表2
Figure PCTCN2021109225-appb-000022
结合表1,例如第一信息为0111时,表示预编码矩阵的索引值为8,该预编码矩阵由索引值为2的第一矩阵、索引值为1的第二矩阵以及相位偏移π确定。第一信息为0111时,可以指示的是预编码矩阵的索引值,也可以指示的是第一矩阵的索引值t、第二矩阵的索引值m以及相位偏移的索引值,本申请实施例并不限定。
第二种可能的实现方式中,可以通过第一信息和第二信息指示预编码矩阵。具体的,可以通过第一信息指示第一矩阵和第二矩阵,通过第二信息指示相位偏移θ。
需要说明的是,如果终端设备的天线为单极化天线,此时根据公式(6)可知,通过第一信息可以确定预编码矩阵,不需要第二信息。终端设备的天线为双极化天线,还所述第二信息指示出所述相位偏移θ在集合{0,2π/M,…,2π(M-1)/M}中的索引值;其中,相位量化因子M是所述网络设备配置的,或者是预设的。
此时根据公式(5)可知,通过第一信息和第二信息可以确定预编码矩阵。
在该实现方式中,第一信息的实现方式有2种。方式一:第一信息包括第一部分和第二部分,第一部分用于指示第一矩阵,第二部分用于指示第二矩阵。例如第一部分为第一矩阵的索引值,第二部分为第二矩阵的索引值。这种方式相当于第一矩阵和第二矩阵分别独立编号,第一信息分别指示出第一矩阵和第二矩阵各自的索引值。
举例来说,结合前面的描述,假设第一矩阵的索引值为t,第二矩阵的索引值为m,那么第一信息中的第一部分可以如表3所示,第一信息中的第二部分可以如表4所示。
表3
Figure PCTCN2021109225-appb-000023
表4
Figure PCTCN2021109225-appb-000024
结合表3和表4,当t=2,m=3时,第一信息可以为010 011。第一信息中的前三个比特表示第一部分,后三个比特表示第二部分。
方式二:第一信息用于指示第一矩阵和第二矩阵联合编码后的索引值,例如第一信息可以为根据第一矩阵和第二矩阵确定的矩阵v t,m的索引值。
具体的,根据公式(4)可知,矩阵v t,m是根据第一矩阵和第二矩阵确定的,指示出矩阵v t,m的索引值相当于指示出第一矩阵对应的t以及第二矩阵对应的m,也就相当于指示出第一矩阵和第二矩阵。
这种方式相当于对第一矩阵和第二矩阵进行联合编号,第一信息指示的矩阵v t,m的索引值可以相当于第一矩阵和第二矩阵联合编号后的索引值。
结合前面的描述,矩阵A 1包括Q 1*N 1个列向量,矩阵A 2包括Q 2*N 2个列向量,根据公式(4)可知,总共存在N 1·O 1·N 2·O 2种可能的矩阵v t,m,矩阵v t,m的索引值的取值范围可以为0~N 1·O 1·N 2·O 2-1。
这种方式中,根据公式(6)可知,在终端设备的天线为单极化天线时,一个预编码矩阵的索引值可以唯一对应一个第一信息指示的索引值,此时第一信息指示的索引值可以等于预编码矩阵的索引值。
举例来说,结合前面的描述,假设第一矩阵的索引值为t,第二矩阵的索引值为m, 取值范围均为0至2,那么构成的所有可能的预编码矩阵可以如表5所示。表5中,(1,0)表示该预编码矩阵由索引值为1的第一矩阵和索引值为0的第二矩阵确定,其它情况以此类推。
表5
Figure PCTCN2021109225-appb-000025
结合表5,例如第一信息为0111时,表示该预编码矩阵由索引值为2的第一矩阵和索引值为1的第二矩阵确定。
本申请实施例中,当网络设备发送第一信息和第二信息时,第一信息和第二信息可以通过同一信令传输,也可以通过不同信令传输。举例来说,网络设备可以通过下行控制信息(downlink control information,DCI)发送第一信息以及第二信息。
进一步的,当信道变化比较慢时,终端设备和网络设备之间的波束方向变化也可能比较慢,因此可以考虑减少指示相位偏移θ的频率,这样有利于降低信令指示开销。具体的,第一信息和第二信息通过不同信令传输,第一信息可以通过第一信令传输,第二信息可以通过第二信令传输;其中,第一信息的发送周期可以大于或等于第二信息的发送周期,第一信令和第二信令可以为DCI。
举例来说,第一信息在第一时间单元内生效,第二信息在第二时间单元内生效;所述第一时间单元大于或等于所述第二时间单元。也就是说,第一信息的发送周期可以为第一时间单元,第二信息的发送周期可以为第二时间单元。
假定第一信息用于指示根据第一矩阵和第二矩阵确定的矩阵v t,m的索引值,即指示第一矩阵和第二矩阵联合编码后的索引值i 1,第二信息用于指示相位偏移θ的索引值,具体的可以指示相位偏移θ在集合{0,2π/M,…,2π(M-1)/M}中的索引值i 2。网络设备可以通过信令配置第一信息的发送周期和第二信息的发送周期。
举例来说,可以在RRC信令PUSCH-Config IE中新增一个参数项码本周期(tpmiPeriodForCodebook),该参数可以包括两项:第一部分周期(firstPartPeriod),用于指示第一信息的发送周期;第二部分周期(SecondPartPeriod),用于指示第二信息的发送周期,具体可以参考如下所示。
Figure PCTCN2021109225-appb-000026
Figure PCTCN2021109225-appb-000027
如果“firstPartPeriod”的配置为1,或不配置该参数时,则默认在调度PUSCH的每个DCI中都发送第一信息。如果不配置“SecondPartPeriod”或者该参数的值为1时,则默认在调度PUSCH的每个DCI中都发送第二信息。
当“firstPartPeriod”的值大于1时,则表示第一信息的发送周期为n5、n10、n20、n40等,即对应2ms、5ms、10ms、20ms、40ms等。当然也可取其它值。类似地,当“SecondPartPeriod”的值大于1时,则表示第二信息的发送周期为n5、n10、n20、n40等。第一信息的发送周期小于等于第二信息的发送周期。
由于在天线为双极化天线时,预编码矩阵与第一信息指示的索引值和第二信息指示的索引值关联,当通过DCI发送第一信息和第二信息时,可以在DCI中用不同的比特区域承载第一信息和第二信息。例如指示索引值i 1的第一信息所包括的比特数为4位,指示索引值i 2的第二信息所包括的比特数为2位,则可以在DCI中的预编码信息指示子段的前4位比特指示索引值i 1,后两位比特指示索引值i 2。如果不指示索引值i 1,则只需2比特来指示索引值i 2
综上可知,本申请实施例中存在至少两种实现方式指示预编码矩阵。实现方式一,只通过第一信息指示预编码矩阵,此时第一信息可以为预编码矩阵的索引值。
实现方式二,通过第一信息和第二信息指示预编码矩阵,具体的,第一信息可以指示第一矩阵和第二矩阵,第二信息可以用于指示相位偏移θ。
进一步的,第一信息和第二信息在不同实现方式下,包括的比特数可能不同,下面针对第一信息以及第二信息包括的比特数的各种可能的情况分别进行描述。下面的描述中,定义水平维度天线端口数为N 1,垂直维度天线端口数为N 2。定义水平维度的过采样子为O 1,垂直维度的过采样因子O 2,相位量化因子为M。采用前面的实现方式二时,第一信息指示的索引值为i 1,第二信息指示的索引值为i 2
情况一:终端设备的天线端口数为2,最大rank为1。
场景1,如果终端设备的天线为双极化天线,N 1=N 2=1,预编码矩阵W可以满足以下形式:
Figure PCTCN2021109225-appb-000028
此时预编码矩阵中只包括一个变量,即相位偏移θ,一个相位偏移θ对应一个预编码矩阵。需要说明的是,如果N 1等于1,则O 1默认取值为1;如果N 2等于1,则O 2默认取值为1。
在该情况下,如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息可以为预编码矩阵的索引值或者相位偏移θ在集合{0,2π/M,…,2π(M-1)/M}中的索引值。第一信息包括的比特数可以大于或等于
Figure PCTCN2021109225-appb-000029
其中
Figure PCTCN2021109225-appb-000030
为上取整函数。
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,此时可以不需要指示第一矩阵和第二矩阵,只需要通过第二信息指示相位偏移θ在集合{0,2π/M,…,2π(M-1)/M}中的索引值。第二信息包括的比特数可以大于或等于
Figure PCTCN2021109225-appb-000031
在该情况下,例如当相位量化因子M=8时,相位偏移θ可能的取值对应的集合为
Figure PCTCN2021109225-appb-000032
第一信息或第二信息可以包括3比特,每一个比特量化值,可以指示上述集合中的一个相位偏移值,第一信息或第二信息的取值为0~7中的任一种。
场景2,如果终端设备的天线为单极化天线,此时可能是水平方向的天线端口数为2或者垂直方向的天线端口数为2,即N 1=2,N 2=1,或者N 2=1,N 1=2。根据前面的码本生成公式(6),码本集合中包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2,对每一个预编码矩阵进行编号,预编码矩阵的索引值的范围为0~L-1。如果N 1等于1,则O 1默认取值为1;如果N 2等于1,则O 2默认取值为1。
在该情况下,不需要指示相位偏移θ,也就是说不管是采用实现方式一还是采用实现方式二,通过第一信息可以指示预编码矩阵,第一信息可以为预编码矩阵的索引值,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000033
如果
Figure PCTCN2021109225-appb-000034
剩余的比特值不指示预编码矩阵,作为预留。根据公式(6)可知,每一个预编码矩阵的索引值,可以对应v t,m中t和m的值,即对应第一矩阵的索引值和第二矩阵的索引值。
结合上面的描述,举例来说,第一信息和预编码矩阵的索引值的对应关系可以如表6所示。
表6
Figure PCTCN2021109225-appb-000035
情况二:终端设备的天线端口数为2,最大rank为2。
场景1,如果终端设备的天线为双极化天线,预编码矩阵W可以满足以下形式:
Figure PCTCN2021109225-appb-000036
此时预编码矩阵中只包括一个变量,即相位偏移θ,一个相位偏移θ对应一个预编码矩阵。
在该情况下,由于最大rank为2,则传输的层(layer)数最大为2。
如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息为预编码矩阵的索引值时,考虑rank自适应的情况,网络设备可以指示终端设备按照rank为1或2进行传输,此时每一层对应M个预编码矩阵,2层共对应2M个预编码矩阵,预编码矩阵的索引值的取值范围可以为0~2M-1,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000037
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,通过上面场景1中的公式可知,此时不需要指示第一矩阵和第二矩阵,即不需要发送第一信息;只需要通过 第二信息指示相位偏移θ的索引值i 2。考虑rank自适应的情况,传输的层数最大为2,那么第二信息指示的索引值i 2的取值范围可以为0~2M-1。第二信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000038
举例来说,可以如表7所示。在第一信息指示预编码矩阵的索引值时,指示了不同rank下的预编码矩阵。当最大的Rank配置为2时,终端设备可能是Rank为1也可能是Rank为2,因此即需要指示具体的Rank值,又需要指示所在Rank下对应的预编码矩阵。比如,当Rank为1时,对应表中的1层,可能地预编码矩阵索引为0~M-1;当Rank为2时,对应表中的2层,可能地预编码矩阵索引为0~M-1。注意Rank为1和Rank为2时的预编码矩阵集合是不一样的,上述索引对应各自码本集合中的预编码矩阵。
表7
Figure PCTCN2021109225-appb-000039
场景2,如果是单极化天线,则N 1=2,N 2=1,或者N 2=1,N 1=2。
单极化天线时,不需要发送第二信息,只需要发送第一信息即可。
如果只指示1层的预编码矩阵,通过第一信息指示预编码矩阵,第一信息为预编码矩阵的索引值时,第一信息包括的比特数可以大于或等于
Figure PCTCN2021109225-appb-000040
其中,L=N 1·O 1·N 2·O 2
考虑rank自适应的情况,网络设备可以通过第一信息指示在不同rank下的预编码矩阵的索引值,不同rank下的预编码矩阵的索引值的取值范围可以为0~K1。K1可以大于或等于1且小于或等于N 1N 2*max(N 1-1,1)*max(N 2-1,1)*O 1O 2。相应的,此时第一信息包括的比特数可以大于或等于
Figure PCTCN2021109225-appb-000041
max()为取最大值运算。
其中,当终端设备按照rank为2进行传输,此时第一层的预编码矩阵与按照rank为1进行传输时的预编码矩阵相同,第二层传输时,需要在码本集合中选一个与第一层的预编码矩阵正交的预编码矩阵。
假定第一层的预编码矩阵为v t,m,且N 1=2,N 2=1时,第二层的预编码矩阵为v t+t',m,其中t’的索引集合为{0,O 1,2O 1,...,(N 1-1)·O 1}。例如当t=0时,t’可以选择除0外的其它值;当t=O 1时,t'可以选择除0外的其它值。
当N 2=1,N 1=2时,第二层的预编码矩阵为v t,m+m',其中m'的索引集合为 {0,O 2,2O 2,...,(N 2-1)·O 2}。例如当m=0时,m'可以选择除0外的其它值;当m=O 2时,m’可以选择除0外的其它值。
综上可知,码本集合中包括的预编码矩阵的数量的最大值为N 1 2N 2 2O 1O 2,此时第一信息为预编码矩阵的索引时,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000042
情况三:终端设备的天线端口数为4,最大rank为1。
具体的,如表8所示,列出了双极化天线和单极化天线下的N 1和N 2的取值集合,如果是双极化天线,则N 1和N 2可能的取值有两组;如果是单极化天线,则N 1和N 2可能的取值有3组。
表8:天线端口为4时N 1和N 2的取值集合
极化类型 天线端口数 (N 1,N 2)
双极化天线 4 (1,2)
双极化天线 4 (2,1)
单极化天线 4 (1,4)
单极化天线 4 (4,1)
单极化天线 4 (2,2)
根据前面码本生成公式,同一个极化方向上的码本集合包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2
场景1:天线为单极化天线,不需要发送第二信息,只需要发送第一信息。第一信息为预编码矩阵的索引值时,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000043
预编码矩阵的索引范围为0~L-1。
场景2:天线为双极化天线,还要考虑相位偏移θ。
如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息可以为预编码矩阵的索引值,码本集合包括的预编码矩阵个数的最大值为LM,预编码矩阵的索引范围为0~LM-1。此时第一信息包括的比特数可以大于或等于
Figure PCTCN2021109225-appb-000044
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,第一矩阵和第二矩阵构成的v t,m的数量为L,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000045
通过第二信息指示相位偏移θ时,第二信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000046
情况四:终端设备的天线端口数为4,最大rank为2。
当rank为2,天线为双极化天线时的预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000047
其中,m=0,1,2,…,N 2O 2-1,t=0,1,2,…,N 1O 1-1。
当(N 1,N 2)=(1,2)时,t'=0,m'∈{0,O 2,...,(N 2-1)O 2}。当(N 1,N 2)=(2,1)时,m'=0,t'∈{0,O 1,...,(N 1-1)O 1}。
如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息可以为预编码矩阵的索引值,同一个极化方向上的码本集合包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2,再考虑相位偏移θ以及rank自适应的情况,码本集合包括的预编码矩阵个数为LMN 1N 2,预编码矩阵的索引范围为0~LMN 1N 2-1。第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000048
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,则第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000049
第二信息用于指示相位偏移θ的索引值i 2,包括的比特数大于或等于
Figure PCTCN2021109225-appb-000050
当rank为2,天线为单极化天线时的预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000051
其中,m=0,1,2,…,N 2O 2-1,t=0,1,2,…,N 1O 1-1。
当(N 1,N 2)=(1,4)时,t'=0,m'∈{0,O 2,...,(N 2-1)O 2}。当(N 1,N 2)=(4,1)时,m'=0,t'∈{0,O 2,...,(N 1-1)O 1}。当(N 1,N 2)=(2,2)时,t'∈{0,O 2,...,(N 1-1)O 1},m'∈{0,O 2,...,(N 2-1)O 2}。
同一个极化方向上的码本集合包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2,第一信息为预编码矩阵的索引时,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000052
可以同时指示rank为1时的预编码矩阵的索引和rank为2时的预编码矩阵的索引。此时不需要发送第二信息。
情况五:终端设备的天线端口数为4,最大rank为3。
当rank为3,天线为双极化天线时的预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000053
t,m,t',m'的取值同前面情况四中rank为2的场景。由于需要指示第三层的预编码矩阵,码本集合包括的预编码矩阵个数会增加。
如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息可以为预编码矩阵的索引值,同一个极化方向上的码本集合包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2,再考虑相位偏移θ以及rank自适应的情况,码本集合包括的预编码矩阵个数为2LMN 1N 2,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000054
预编码矩阵的索引范围为0~2LMN 1N 2-1。此时第一信息可以同时指示rank为1时的预编码矩阵的索引值、rank为2时的预编码矩阵的索引值和rank为3时的预编码矩阵的索引值。
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000055
第二信息用于指示相位偏移θ的索引值i 2,包括的比特数大于或等于
Figure PCTCN2021109225-appb-000056
当rank为3,天线为单极化天线时的预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000057
其中t”,m”的取值集合分别与t',m'的取值集合相同,但所选的第三层的预编码矩阵需要与第一层的预编码矩阵和第二层的预编码保持正交,从而实现正交的3流传输。此时第一信息为预编码矩阵的索引时,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000058
此时不需要发送第二信息。
情况六:终端设备的天线端口数为4,最大rank为4。
当rank为4,天线为双极化天线时的预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000059
t,m,t',m'的取值同情况四中rank为2的场景。由于需要指示第四层的预编码矩阵,码本集合包括的预编码矩阵个数会增加。
如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息可以为预编码矩阵的索引值,同一个极化方向上的码本集合包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2,再考虑相位偏移θ以及rank自适应的情况,码本集合包括的预编码矩阵个数为3LMN 1N 2,预编码矩阵的索引范围为0~3LMN 1N 2-1。第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000060
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,如果还要指示在不同rank下的预编码矩阵,则第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000061
第二信息用于指示相位偏移θ的索引值i 2,包括的比特数大于或等于
Figure PCTCN2021109225-appb-000062
当rank为4,天线为单极化天线时的预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000063
其中t”’,m”’的取值集合分别与t',m'的取值集合相同,但所选的第四层的预编码需要与第一层,第二层和第三层的预编码保持正交,从而实现正交的4流传输。在该情况下,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000064
此时不需要发送第二信息。
情况七:终端设备的天线端口数为8,最大rank为1。
具体的,如表9所示,列出了双极化天线和单极化天线下的N 1和N 2的取值集合,如果是双极化天线,则N 1和N 2可能的取值有3组;如果是单极化天线,则N 1和N 2可能的取值有4组。
表9:天线端口数为8时N 1和N 2的取值集合
极化类型 天线端口数 (N 1,N 2)
双极化天线 8 (1,4)
双极化天线 8 (4,1)
双极化天线 8 (2,2)
单极化天线 8 (1,8)
单极化天线 8 (8,1)
单极化天线 8 (2,4)
单极化天线 8 (4,2)
根据码本生成公式,同一个极化方向上的码本集合包括的预编码矩阵个数为L=N 1·O 1·N 2·O 2
场景1:天线为单极化天线,不需要发送第二信息,只需要发送第一信息。第一信息为预编码矩阵的索引值时,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000065
预编码矩阵的索引范围为0~L-1。
如果采用实现方式一,只通过第一信息指示预编码矩阵,第一信息可以为预编码矩阵的索引值,码本集合包括的预编码矩阵个数为LM,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000066
预编码矩阵的索引范围为0~LM-1。
如果采用实现方式二,通过第一信息和第二信息指示预编码矩阵,第一矩阵和第二矩阵构成的v t,m的数量为L,第一信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000067
通过第二信息指示相位偏移θ时,第二信息包括的比特数大于或等于
Figure PCTCN2021109225-appb-000068
情况八:终端设备的天线端口数为8,最大rank为2。
此时第一信息包括的比特数可以参考情况四,只是N 1和N 2的取值可能不同。
情况九:终端设备的天线端口数为8,最大rank为3。
此时第一信息包括的比特数可以参考情况五,只是N 1和N 2的取值可能不同。
情况十:终端设备的天线端口数为8,最大rank为4。
此时第一信息包括的比特数可以参考情况六,只是N 1和N 2的取值可能不同。
对于天线端口数为8,rank为其它值的情况,预编码矩阵的确定方法,可以参考前面的描述。需要说明的是,不论哪一层的预编码矩阵,都要和其它层的预编码矩阵保持正交即可。
结合前面的描述,步骤305中,终端设备可以根据第一信息确定第一矩阵和第二矩阵,从而根据第一矩阵和第二矩阵确定预编码矩阵。
具体的,当第一信息包括第一部分和第二部分时,终端设备可以根据第一部分确定第一矩阵,根据第二部分确定第二矩阵。
当第一信息用于指示第一矩阵和第二矩阵联合编码后的索引值,例如第一信息为根据第一矩阵和第二矩阵确定的矩阵v t,m的索引值时,终端设备可以根据矩阵v t,m的索引值,确定构成矩阵v t,m的第一矩阵和第二矩阵,从而确定预编码矩阵。
进一步的,当天线为双极化天线时,终端设备还可以根据第二信息确定相位偏移θ,从而结合公式(5),根据相位偏移θ、第一矩阵和第二矩阵确定预编码矩阵。
当第一信息用于指示预编码矩阵的索引值时,第一信息可以直接根据预编码矩阵的索引值确定预编码矩阵。
终端设备可以采用预编码矩阵向网络设备发送上行信号,具体如何发送,本申请实施例并不限定,在此不再赘述。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备与网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图4所示,本申请实施例还提供一种装置400用于实现上述方法中终端设备或网络设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置400可以包括: 处理单元401和通信单元402。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中终端设备或网络设备发送和接收的步骤。
以下,结合图4至图5详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
在一种可能的设计中,该装置400可实现对应于上文方法实施例中的终端设备或者网络设备执行的步骤或者流程,下面分别进行描述。
示例性地,当该装置400实现图3所示的流程中终端设备的功能时:
通信单元402,用于接收来自网络设备的第一信息;第一信息用于指示预编码矩阵;
处理单元401,用于根据所述第一信息确定所述预编码矩阵;所述预编码矩阵用于发送上行信号;其中,所述预编码矩阵由第一矩阵和第二矩阵确定;所述第一矩阵为根据所述第一信息从第一矩阵集合中确定的,所述第一矩阵集合为根据终端设备的天线的水平维度参数确定的,和/或,所述第二矩阵为根据所述第一信息从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
一种可能的设计中,所述通信单元还用于:
接收来自所述网络设备的第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移;
所述处理单元还用于:
根据所述第一信息和所述第二信息确定所述预编码矩阵。
一种可能的设计中,所述预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000069
其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
一种可能的设计中,所述预编码矩阵W满足以下形式:
W=v t,m
其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
一种可能的设计中,v t,m满足以下形式:
Figure PCTCN2021109225-appb-000070
其中,
Figure PCTCN2021109225-appb-000071
N 1为水平维度天线端口数;O 1为水平维度的过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
一种可能的设计中,所述天线的水平维度参数包括水平维度天线端口数;
所述天线的垂直维度参数包括垂直维度天线端口数。
一种可能的设计中,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
示例性地,当该装置400实现图3所示的流程中网络设备的功能时:
通信单元402,用于接收来自终端设备的天线配置信息;天线配置信息包括用于确定预编码矩阵的天线参数;对来自所述终端设备的参考信号进行测量,获得信道测量结果;
处理单元401,用于根据所述信道测量结果以及所述天线配置信息确定预编码矩阵;
所述通信单元402,用于向所述终端设备发送第一信息,所述第一信息用于指示所述预编码矩阵;其中,所述预编码矩阵由第一矩阵和第二矩阵确定,所述第一矩阵为根据所述信道测量结果从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,所述第二矩阵为根据所述信道测量结果从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
一种可能的设计中,所述通信单元还用于:
向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移。
一种可能的设计中,所述预编码矩阵W满足以下形式:
Figure PCTCN2021109225-appb-000072
其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
一种可能的设计中,所述预编码矩阵W满足以下形式:
W=v t,m
其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
一种可能的设计中,v t,m满足以下形式:
Figure PCTCN2021109225-appb-000073
其中,
Figure PCTCN2021109225-appb-000074
N 1为水平维度天线端口数;O 1为水平维度的过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
一种可能的设计中,所述天线的水平维度参数包括水平维度天线端口数;
所述天线的垂直维度参数包括垂直维度天线端口数。
一种可能的设计中,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
如图5所示为本申请实施例提供的装置500,图5所示的装置可以为图4所示的装置的一种硬件电路的实现方式。该通信装置可适用于图3所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图5仅示出了该通信装置的主要部件。
图5所示的装置500包括至少一个处理器520,用于实现本申请实施例提供的图3中任一方法。
装置500还可以包括至少一个存储器530,用于存储程序指令和/或数据。存储器530和处理器520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器520可能和存储器530协同操作。处理器520可能执行存储器530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件 形式的指令完成。结合本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置500还可以包括通信接口510,用于通过传输介质和其它设备进行通信,从而用于装置500中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
装置500还可以包括通信线路540。其中,通信接口510、处理器520以及存储器530可以通过通信线路540相互连接;通信线路540可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路540可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,处理器520用于执行存储器530中存储的指令或程序。存储器530中存储的 指令或程序被执行时,该处理器520用于执行上述实施例中处理单元401执行的操作,通信接口510用于执行上述实施例中通信单元402执行的操作,具体可以参考前面的描述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中终端设备的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中网络设备的方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,执行上述图3所示的方法实施例中终端设备的方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,执行上述图3所示的方法实施例中网络设备的方法。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第一信息;所述第一信息用于指示预编码矩阵;
    所述终端设备根据所述第一信息确定所述预编码矩阵;所述预编码矩阵用于发送上行信号;
    其中,所述预编码矩阵由第一矩阵和第二矩阵确定;所述第一矩阵为根据所述第一信息从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,和/或,所述第二矩阵为根据所述第一信息从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移;
    所述终端设备根据所述第一信息确定所述预编码矩阵,包括:
    所述终端设备根据所述第一信息和所述第二信息确定所述预编码矩阵。
  3. 根据权利要求2所述的方法,其特征在于,所述预编码矩阵W满足以下形式:
    Figure PCTCN2021109225-appb-100001
    其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
  4. 根据权利要求3所述的方法,其特征在于,所述第二信息指示出所述相位偏移θ在集合{0,2π/M,···,2π(M-1)/M}中的索引值;
    其中,相位量化因子M是所述网络设备配置的,或者是预设的。
  5. 根据权利要求1所述的方法,其特征在于,所述预编码矩阵W满足以下形式:
    W=v t,m
    其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
  6. 根据权利要求3至5任一所述的方法,其特征在于,v t,m满足以下形式:
    Figure PCTCN2021109225-appb-100002
    其中,
    Figure PCTCN2021109225-appb-100003
    N 1为水平维度天线端口数;O 1为水平维度的过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
  7. 根据权利要求2所述的方法,其特征在于,所述第一信息通过第一信令传输;所述第二信息通过第二信令传输;
    所述第一信息在第一时间单元内生效,所述第二信息在第二时间单元内生效;所述第一时间单元大于或等于所述第二时间单元。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送天线配置信息;所述天线配置信息包括所述终端设备的天线的极化类型,所述天线的水平维度参数以及所述天线的垂直维度参数。
  9. 根据权利要求8所述的方法,其特征在于,所述天线的极化类型包括单极化、双极 化,三极化和椭圆极化中的至少一项。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述天线的水平维度参数包括水平维度天线端口数;
    所述天线的垂直维度参数包括垂直维度天线端口数。
  11. 根据权利要求1至9任一所述的方法,其特征在于,所述天线的水平维度参数还包括以下至少一项:
    水平维度相邻天线之间的间距;水平维度的过采样因子;
    所述天线的垂直维度参数还包括以下至少一项:
    垂直维度相邻天线之间的间距;垂直维度的过采样因子。
  12. 根据权利要求1至10任一所述的方法,其特征在于,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
  13. 一种通信方法,其特征在于,包括:
    网络设备接收来自终端设备的天线配置信息;所述天线配置信息包括用于确定预编码矩阵的天线参数;
    网络设备对来自所述终端设备的参考信号进行测量,获得信道测量结果;
    所述网络设备根据所述信道测量结果以及所述天线配置信息确定预编码矩阵,并向所述终端设备发送第一信息,所述第一信息用于指示所述预编码矩阵;
    其中,所述预编码矩阵由第一矩阵和第二矩阵确定,所述第一矩阵为根据所述信道测量结果从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,所述第二矩阵为根据所述信道测量结果从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移。
  15. 根据权利要求14所述的方法,其特征在于,所述预编码矩阵W满足以下形式:
    Figure PCTCN2021109225-appb-100004
    其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
  16. 根据权利要求14所述的方法,其特征在于,所述第二信息指示出所述相位偏移θ在集合{0,2π/M,···,2π(M-1)/M}中的索引值;
    其中,相位量化因子M是所述网络设备配置的,或者是预设的。
  17. 根据权利要求13所述的方法,其特征在于,所述预编码矩阵W满足以下形式:
    W=v t,m
    其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
  18. 根据权利要求15至17任一所述的方法,其特征在于,v t,m满足以下形式:
    Figure PCTCN2021109225-appb-100005
    其中,
    Figure PCTCN2021109225-appb-100006
    N 1为水平维度天线端口数;O 1为水平维度的 过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
  19. 根据权利要求13至18任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的天线配置信息;所述天线配置信息包括所述终端设备的天线的极化类型,所述天线的水平维度参数以及所述天线的垂直维度参数。
  20. 根据权利要求13至19任一所述的方法,其特征在于,所述天线的水平维度参数包括水平维度天线端口数;
    所述天线的垂直维度参数包括垂直维度天线端口数。
  21. 根据权利要求13至20任一所述的方法,其特征在于,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
  22. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的第一信息;所述第一信息用于指示预编码矩阵;
    处理单元,用于根据所述第一信息确定所述预编码矩阵;所述预编码矩阵用于发送上行信号;
    其中,所述预编码矩阵由第一矩阵和第二矩阵确定;所述第一矩阵为根据所述第一信息从第一矩阵集合中确定的,所述第一矩阵集合为根据终端设备的天线的水平维度参数确定的,和/或,所述第二矩阵为根据所述第一信息从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
  23. 根据权利要求22所述的装置,其特征在于,所述通信单元还用于:
    接收来自所述网络设备的第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移;
    所述处理单元还用于:
    根据所述第一信息和所述第二信息确定所述预编码矩阵。
  24. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自终端设备的天线配置信息;所述天线配置信息包括用于确定预编码矩阵的天线参数;对来自所述终端设备的参考信号进行测量,获得信道测量结果;
    处理单元,用于根据所述信道测量结果以及所述天线配置信息确定预编码矩阵;
    所述通信单元,用于向所述终端设备发送第一信息,所述第一信息用于指示所述预编码矩阵;
    其中,所述预编码矩阵由第一矩阵和第二矩阵确定,所述第一矩阵为根据所述信道测量结果从第一矩阵集合中确定的,所述第一矩阵集合为根据所述终端设备的天线的水平维度参数确定的,所述第二矩阵为根据所述信道测量结果从第二矩阵集合中确定的,所述第二矩阵集合为根据所述天线的垂直维度参数确定的。
  25. 根据权利要求24所述的装置,其特征在于,所述通信单元还用于:
    向所述终端设备发送第二信息,所述第二信息用于指示所述终端设备的不同极化方向的天线之间的相位偏移。
  26. 根据权利要求23或25所述的装置,其特征在于,所述预编码矩阵W满足以下形式:
    Figure PCTCN2021109225-appb-100007
    其中,v t,m根据所述第一矩阵与所述第二矩阵确定;θ为所述相位偏移。
  27. 根据权利要求22或24所述的装置,其特征在于,所述预编码矩阵W满足以下形式:
    W=v t,m
    其中,v t,m根据所述第一矩阵与所述第二矩阵确定。
  28. 根据权利要求26或27所述的装置,其特征在于,v t,m满足以下形式:
    Figure PCTCN2021109225-appb-100008
    其中,
    Figure PCTCN2021109225-appb-100009
    N 1为水平维度天线端口数;O 1为水平维度的过采样因子;N 2为垂直维度天线端口数;j为虚数;O 2为垂直维度的过采样因子;m=0,1,2,…,N 2O 2-1;t=0,1,2,…,N 2O 2-1。
  29. 根据权利要求22至28任一所述的装置,其特征在于,所述天线的水平维度参数包括水平维度天线端口数;
    所述天线的垂直维度参数包括垂直维度天线端口数。
  30. 根据权利要求22至29任一所述的装置,其特征在于,所述第一信息指示出所述第一矩阵的索引值和所述第二矩阵的索引值;或者所述第一信息指示出所述预编码矩阵的索引值。
  31. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当通信装置执行所述计算机程序或指令时,如权利要求1至12中任意一项所述的方法被执行。
  32. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当通信装置执行所述计算机程序或指令时,如权利要求13至21中任意一项所述的方法被执行。
  33. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至12中任意一项所述的方法被执行。
  34. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求13至21中任意一项所述的方法被执行。
  35. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行权利要求1至12任一所述的方法。
  36. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行权利要求13至21任一所述的方法。
PCT/CN2021/109225 2020-07-30 2021-07-29 一种通信方法及装置 WO2022022632A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21851357.0A EP4181415A4 (en) 2020-07-30 2021-07-29 COMMUNICATION METHOD AND DEVICE
US18/160,017 US11894886B2 (en) 2020-07-30 2023-01-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010752364.0A CN114070366A (zh) 2020-07-30 2020-07-30 一种通信方法及装置
CN202010752364.0 2020-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/160,017 Continuation US11894886B2 (en) 2020-07-30 2023-01-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022022632A1 true WO2022022632A1 (zh) 2022-02-03

Family

ID=80038150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109225 WO2022022632A1 (zh) 2020-07-30 2021-07-29 一种通信方法及装置

Country Status (4)

Country Link
US (1) US11894886B2 (zh)
EP (1) EP4181415A4 (zh)
CN (1) CN114070366A (zh)
WO (1) WO2022022632A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220174531A1 (en) * 2020-11-30 2022-06-02 Qualcomm Incorporated Techniques for per-polarization beam scheduling for multiple-input multiple-output (mimo) communication
CN116707592A (zh) * 2022-02-24 2023-09-05 展讯半导体(南京)有限公司 上行传输方法与装置、终端设备和网络设备
CN117097375A (zh) * 2022-05-12 2023-11-21 华为技术有限公司 一种信号传输方法及装置
WO2024036606A1 (en) * 2022-08-19 2024-02-22 Qualcomm Incorporated Codebook designs with different oversampling factors
WO2024065443A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 基于码本的上行信道发送方法及装置
CN117938582A (zh) * 2022-10-25 2024-04-26 华为技术有限公司 信息传输方法及通信装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209012A (zh) * 2012-01-12 2013-07-17 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
US20140016549A1 (en) * 2012-07-12 2014-01-16 Samsung Electronics Co., Ltd Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN103840870A (zh) * 2013-12-31 2014-06-04 重庆邮电大学 3d mimo信道下一种有限反馈开销降低方法
WO2016080737A1 (en) * 2014-11-17 2016-05-26 Samsung Electronics Co., Ltd. Apparatus and method for precoding channel state information reference signal
CN108811062A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种通信方法、终端设备及网络设备
CN109309518A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 用于数据传输的方法、装置和系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009075B2 (en) * 2013-11-27 2018-06-26 Lg Electronics Inc. Operation for 3D beam forming in a wireless communication system
US9755719B2 (en) * 2014-06-12 2017-09-05 Lg Electronics Inc. Method for configuring codebook in multi-antenna wireless communication system and device therefor
CN105207740B (zh) * 2014-06-30 2019-09-03 中国移动通信集团公司 一种信道状态信息的传输方法和相关设备
US9806781B2 (en) * 2015-04-29 2017-10-31 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
WO2017014609A1 (ko) * 2015-07-23 2017-01-26 엘지전자(주) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
CN106487434B (zh) * 2015-08-24 2020-01-24 电信科学技术研究院 一种预编码矩阵确定方法及装置
US10419086B2 (en) * 2016-04-26 2019-09-17 Samsung Electronics Co., Ltd. Method and apparatus for enabling uplink MIMO
CN107733493B (zh) * 2016-08-10 2021-02-12 华为技术有限公司 用于确定预编码矩阵的方法和装置
CN107888246B (zh) * 2016-09-29 2023-04-28 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
CN108282207B (zh) * 2017-01-06 2021-06-15 华为技术有限公司 一种预编码矩阵指示方法、装置和系统
EP3637713B1 (en) * 2017-06-16 2023-06-14 Huawei Technologies Co., Ltd. Nr uplink codebook configuration method and related device
US10461823B2 (en) * 2017-06-16 2019-10-29 Nokia Technologies Oy Aperture constraint for new radio uplink multiple-input multiple-output

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209012A (zh) * 2012-01-12 2013-07-17 上海贝尔股份有限公司 用于辅助多维天线阵列的信道测量的方法
US20140016549A1 (en) * 2012-07-12 2014-01-16 Samsung Electronics Co., Ltd Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN103840870A (zh) * 2013-12-31 2014-06-04 重庆邮电大学 3d mimo信道下一种有限反馈开销降低方法
WO2016080737A1 (en) * 2014-11-17 2016-05-26 Samsung Electronics Co., Ltd. Apparatus and method for precoding channel state information reference signal
CN108811062A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种通信方法、终端设备及网络设备
CN109309518A (zh) * 2017-07-26 2019-02-05 华为技术有限公司 用于数据传输的方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181415A4 *

Also Published As

Publication number Publication date
EP4181415A1 (en) 2023-05-17
US20230170941A1 (en) 2023-06-01
CN114070366A (zh) 2022-02-18
US11894886B2 (en) 2024-02-06
EP4181415A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2022022632A1 (zh) 一种通信方法及装置
US11082097B2 (en) Method and apparatus for enabling uplink MIMO
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
US10868600B2 (en) Method for reporting and receiving channel state information, and device
US20170244533A1 (en) Method and apparatus for channel state information (csi) reporting
CN111342873B (zh) 一种信道测量方法和通信装置
US20200212974A1 (en) Communication method, network device, terminal device, and system
WO2020125510A1 (zh) 一种信道测量方法和通信装置
WO2019062681A1 (zh) 一种上行传输、配置方法、终端及基站
WO2018171604A1 (zh) 信息的传输方法和设备
CN108352869B (zh) 用于对从天线阵列的传输进行预编码的方法
CN111342913B (zh) 一种信道测量方法和通信装置
KR102100308B1 (ko) 코드북 확정 방법 및 장치
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
CN108282204B (zh) 通信方法、装置及系统
AU2019421319B2 (en) Precoding vector indicating and determining method and communications apparatus
WO2019109570A1 (zh) 信道测量方法和用户设备
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
US11588525B2 (en) Adaptive co-phasing for beamforming using co-phasing matrices for wireless communications
WO2023029948A1 (zh) 一种通信方法及装置
WO2022267972A1 (en) High spatial resolution mimo precoding for uplink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021851357

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE