WO2023029693A1 - 电芯制造装置及其方法 - Google Patents

电芯制造装置及其方法 Download PDF

Info

Publication number
WO2023029693A1
WO2023029693A1 PCT/CN2022/101338 CN2022101338W WO2023029693A1 WO 2023029693 A1 WO2023029693 A1 WO 2023029693A1 CN 2022101338 W CN2022101338 W CN 2022101338W WO 2023029693 A1 WO2023029693 A1 WO 2023029693A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
pole piece
free end
roller
manufacturing device
Prior art date
Application number
PCT/CN2022/101338
Other languages
English (en)
French (fr)
Inventor
张小畏
温裕乾
唐鸣浩
张盛武
张威
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22862834.3A priority Critical patent/EP4273979A1/en
Publication of WO2023029693A1 publication Critical patent/WO2023029693A1/zh
Priority to US18/503,122 priority patent/US20240072295A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, in particular to a battery manufacturing device and method thereof.
  • the battery production process it is necessary to use a cell manufacturing device to wind the pole pieces and separators into a cell, and the cell has a flat structure after winding and pre-pressing.
  • the free end of the pole piece is prone to shift relative to the separator, which affects the safety of the cell.
  • the embodiments of the present application provide a cell manufacturing device and method thereof, which can solve the problem that the free end of the pole piece is offset relative to the diaphragm during the cell production process, and ensure the safety of the cell produced.
  • the present application provides a cell manufacturing device.
  • the cell includes a pole piece and a diaphragm.
  • the pole piece has a free end in its own extension direction.
  • the cell manufacturing device includes a rolling pin and a composite assembly, and the rolling pin is configured to The pole pieces and separator are wound to form a cell.
  • a composite assembly is disposed upstream of the coiling needle, the composite assembly being configured to connect the free end of the pole piece to the diaphragm.
  • a composite assembly is arranged upstream of the winding needle, and the free end of the pole piece can be connected to the diaphragm through the composite assembly, so as to avoid the free end of the pole piece of the cell and the diaphragm during the winding process.
  • the end is offset relative to the diaphragm to ensure the safety of the produced battery cells.
  • the composite component includes a glue-applied component
  • the glue-coated component is configured to apply glue to the free end of the pole piece and the diaphragm, so that the free end of the pole piece is adhesively connected to the diaphragm.
  • the gluing assembly includes a supporting mechanism and a gluing mechanism arranged oppositely, the supporting mechanism is configured to be arranged on the side of the diaphragm away from the pole piece, and supports the free end and the diaphragm during gluing, and the gluing mechanism is set On the side of the diaphragm facing the pole piece, the gluing mechanism is configured to provide adhesive tape to the free end and the diaphragm, so as to connect the free end and the diaphragm through adhesive tape.
  • the gluing assembly include a supporting mechanism and a gluing mechanism
  • the side of the diaphragm away from the pole piece can be supported by the supporting mechanism, and the free end and the gluing mechanism can be connected by the adhesive tape provided by the gluing mechanism.
  • the diaphragm is bonded and connected to ensure that the relative position of the free end and the diaphragm is fixed, and to avoid deviation of the free end relative to the diaphragm.
  • the distance between the supporting mechanism and the gluing mechanism is adjustable. Through the above settings, the distance between the support mechanism and the glue application mechanism can be adjusted according to the winding state of the diaphragm and the pole piece. When it is necessary to connect the free end of the pole piece with the diaphragm, the support mechanism and the glue application mechanism can be adjusted and reduced. The distance between them enables the support mechanism to be in contact with the diaphragm, and the gluing mechanism to be in contact with the diaphragm and the free end of the pole piece to ensure the connection between the free end and the diaphragm.
  • the distance between the support mechanism and the gluing mechanism can be adjusted and increased to avoid the contact between the support mechanism and the diaphragm, and at the same time avoid the contact between the gluing mechanism and the pole piece, so as to ensure that the needle is winding the diaphragm and During the process of the pole piece, avoid the resistance of the support mechanism and the adhesive structure to the operation of the pole piece and the diaphragm.
  • the gluing mechanism includes a first driving part and a rubber preparation roller, and the rubber preparation roller is rotatably connected to the first driving part, and the first driving part is configured to drive the rubber preparation roller to be disposed close to or away from the diaphragm and the free end,
  • the rubber preparation roller is configured to provide a mounting position for the adhesive tape, and is driven by the first driving part to adhesively connect the adhesive tape to the free end and the diaphragm.
  • the rubber preparation roller has an installation position for installing the adhesive tape, and the adhesive tape can be installed at the installation position, and the rubber preparation roller is connected with the first driving part in rotation, so that after one end of the adhesive tape is bonded to the pole piece, it will be opposite to the rubber preparation roller.
  • the adhesive tape With the rotation of the first driving part, the adhesive tape is continuously attached to the free end of the pole piece and the diaphragm, which can meet the requirement of adhering a predetermined length of adhesive tape to the free end and the diaphragm to ensure the connection strength between the free end and the diaphragm.
  • the rubber preparation roller includes a roller body and a partition arranged in the roller body.
  • the partition divides the inner cavity of the roller body to form more than two independent chambers, and the roller body corresponds to each independent chamber. Holes for vacuum suction tape.
  • the supporting mechanism includes a second driving part and a supporting roller, the supporting roller is rotatably connected to the second driving part, the second driving part is configured to drive the supporting roller close to or away from the diaphragm, and the supporting roller is configured to move toward the diaphragm
  • the surface on the side facing away from the pole piece provides support.
  • the first driving part includes a first telescopic cylinder, and a cylinder rod of the first telescopic cylinder is rotatably connected to the rubber preparation roller.
  • the second driving part includes a second telescopic cylinder, and a cylinder rod of the second telescopic cylinder is rotatably connected to the supporting roller.
  • the first drive part includes a first drive motor, a first lead screw, a first nut and a first guide part, the first lead screw is connected to the output end of the first drive motor, and the first lead screw and the first lead screw are connected to the output end of the first drive motor.
  • a nut is driven and matched, the first nut guides and cooperates with the first guide part, and the first nut is rotatably connected with the rubber roller.
  • the first lead screw can be driven to rotate by the first drive motor, and since the first lead screw is in transmission cooperation with the first nut, and the first nut is guided in cooperation with the first guide part, the rotation of the first lead screw can be converted It is the reciprocating movement of the first nut along the length direction of the first lead screw, so that the first nut can drive the rubber preparation roller to reciprocate.
  • the second drive part includes a second drive motor, a second lead screw, a second nut and a second guide part, the second lead screw is connected to the output end of the second drive motor, and the second lead screw is connected to the second drive motor.
  • the two nuts drive and cooperate, the second nut guides and cooperates with the second guide part, and the second nut is rotatably connected with the supporting roller.
  • the rotation of the second lead screw can be converted
  • the second nut can drive the supporting roller to reciprocate.
  • the recombination assembly includes an infrared heating recombination member configured to heat at least one of the free end and the membrane such that the free end is thermally recombined with the membrane.
  • the composite assembly can provide thermal energy to the free end of the pole piece and the diaphragm through infrared heating of the composite part, so as to change the physical properties of the free end of the pole piece and the diaphragm, so that the two are thermally combined to ensure the connection requirements.
  • the composite assembly includes a pressing member configured to compress the free end and the membrane such that the free end is in press fit connection with the membrane.
  • the cell manufacturing device further includes a smoothing component, the smoothing component is located downstream of the compound assembly and upstream of the rolling needle, and the smoothing component is configured to smooth the connection area between the free end and the diaphragm.
  • the smoothing member can be used to press and smooth the connection area between the free end of the pole piece and the diaphragm, so as to ensure the connection strength between the two.
  • the smoothing component includes a third driving part connected to each other and a smoothing roller, the smoothing roller is configured to roll the connection area between the free end and the diaphragm, and the third driving part is configured to drive the smoothing roller to Move towards or away from the diaphragm and free end.
  • the third driving part can be used to drive the smoothing roller to move towards or away from the diaphragm and the free end according to the needs, so as to ensure the smoothing requirements of the smoothing roller on the connection area.
  • the third driving part drives the smoothing roller to move away from the diaphragm and the free end, so as to prevent the smoothing roller from interfering with the operation of the pole piece and the diaphragm.
  • the cell manufacturing device further includes a deflection correction component disposed upstream of the composite assembly, and the deflection correction component is configured to adjust the relative position of the free end and the diaphragm.
  • the deflection correction component is configured to adjust the relative position of the free end and the diaphragm.
  • the free end includes the head end and/or the tail end of the pole piece.
  • the present application provides a method for manufacturing an electric core.
  • the electric core includes a diaphragm and a pole piece, and the pole piece has a free end.
  • the method includes:
  • the free end of the pole piece in the process of manufacturing the battery, is connected to the diaphragm, so that the pole piece and the diaphragm used to wind the battery core can be avoided during the winding process.
  • the free end of the sheet is offset relative to the diaphragm to ensure the safety of the produced cell.
  • the free end includes a head end of the pole piece; connecting the free end of the pole piece to the diaphragm includes: connecting the head end of the pole piece to the diaphragm.
  • the method further includes:
  • the pole piece Under the condition that the winding length of the pole piece reaches the predetermined length, the pole piece is cut to form the tail end of the first pole piece and the head end of the second pole piece; the first pole piece is wound with the diaphragm The pole piece; the second pole piece is the pole piece that is not wound together with the diaphragm;
  • the tail end of the first section of the pole piece formed after each pole piece is cut can be connected to the diaphragm, so as to avoid the tail end from being shifted during the winding process of the battery core.
  • the free end includes a tail end of the pole piece; connecting the free end of the pole piece to the diaphragm includes: connecting the tail end of the pole piece to the diaphragm.
  • connecting the free end of the pole piece to the diaphragm includes: bonding the free end of the pole piece to the diaphragm through an adhesive tape.
  • connecting the free end of the pole piece to the diaphragm includes: thermally compounding the free end of the pole piece to the diaphragm.
  • connecting the free end of the pole piece to the diaphragm includes: connecting the free end of the pole piece to the diaphragm by press fit.
  • the method before connecting the free end of the pole piece with the diaphragm, the method further includes: adjusting the relative position of the free end and the diaphragm.
  • the method further includes: smoothing the connection area between the free end and the diaphragm.
  • FIG. 1 is a schematic structural view of a cell manufacturing device according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of lamination of a pole piece and a diaphragm according to an embodiment of the present application
  • FIG. 3 is a schematic structural view of a cell manufacturing device according to another embodiment of the present application.
  • Fig. 4 is the structural representation of the glue application mechanism of an embodiment of the present application.
  • Fig. 5 is the structural representation of the rubber roller of an embodiment of the present application.
  • Fig. 6 is a schematic structural view of a gluing mechanism according to another embodiment of the present application.
  • Fig. 7 is a schematic structural view of a support mechanism according to an embodiment of the present application.
  • Fig. 8 is a schematic structural view of a support mechanism of another embodiment of the present application.
  • FIG. 9 is a schematic structural view of a cell manufacturing device according to another embodiment of the present application.
  • Fig. 10 is a schematic structural view of a smoothing component according to an embodiment of the present application.
  • Fig. 11 is a schematic structural view of a cell manufacturing device according to another embodiment of the present application.
  • Figures 12 to 17 are structural schematic diagrams corresponding to each step of the cell manufacturing device according to an embodiment of the present application when manufacturing cells;
  • Fig. 18 is a flow chart of a battery cell manufacturing method according to an embodiment of the present application.
  • 21-gluing mechanism 211-the first driving part; 211a-the first driving motor; 211b-the first screw; 211c-the first nut; 211d-the first guide part; ; 212b-partition; 212c-independent chamber; 212d-communicating hole;
  • 22-support mechanism 221-second driving part; 221a-second driving motor; 221b-second screw; 221c-second nut; 221d-second guide part; 222-support roller;
  • 40-correcting parts 50-pole piece unwinding mechanism; 60-pole piece feeding mechanism; 70-pole piece cutting mechanism; 80-pole piece pressing roller mechanism; 90-diaphragm unwinding mechanism;
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the winding method is used to manufacture batteries, which has the characteristics of high efficiency and low cost, so it is widely used in the production process of batteries.
  • the inventors of the present invention have noticed that there is a problem of low safety when using a battery core formed by winding pole pieces and separators.
  • the inventor researched and analyzed the structure and processing process of the battery cell itself, and found that during the winding production process of the battery core, the free end of the pole piece, such as the head end and/or tail end of the pole piece, is offset relative to the diaphragm. After further research and analysis, the inventor found that during the winding process of the battery core, it is necessary to stack the pole piece and the diaphragm and wind it through the winding needle.
  • the inventors have found that the free end of the pole piece can be connected to the diaphragm during the manufacturing process of the battery core, which can effectively avoid the formation of electric current caused by the deflection of the free end of the pole piece.
  • the problem of low core security is because
  • the inventors improved the structure of the cell manufacturing device, and the embodiments of the present application are further described below.
  • Fig. 1 is a schematic structural view of a cell manufacturing device according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of stacking pole pieces and diaphragms according to an embodiment of the present application .
  • the present application provides a cell manufacturing device for manufacturing cells.
  • the cell includes a pole piece 100 and a diaphragm 200.
  • the pole piece 100 has a free end 110 in its own extension direction.
  • the cell manufacturing device includes a winding needle 10 and a composite
  • the assembly 20 and the winding needle 10 are configured to wind the pole piece 100 and the separator 200 to form a battery core.
  • Arranged upstream of the needle 10 is a composite assembly 20 configured to connect the free end 110 of the pole piece 100 with the diaphragm 200 .
  • both the pole piece 100 and the diaphragm 200 are strip-shaped, the pole piece 100 has a longitudinal direction X, a thickness direction Y and a width direction perpendicular to each other, the pole piece 100 is laminated with the diaphragm 200 in the thickness direction Y, and the pole piece The end of 100 in the longitudinal direction X is in contact with the winding needle 10 as the winding starting end.
  • the free end 110 of the pole piece 100 includes a head end 110 a and/or a tail end 110 b of the pole piece 100 in the length direction X thereof.
  • the pole piece 100 may be at least one of the anode piece 100a and the cathode piece 100a.
  • the manufactured electric core can have two layers of pole pieces, one layer is the anode piece 100a and the other layer is the cathode piece 100a, corresponding to the two-layer pole piece 100, two layers of separators 200 are set accordingly, in the thickness direction Y of the pole piece 100, wherein One layer of pole pieces 100 can be clamped between two layers of separators 200 , and the other layer of pole pieces 100 is disposed on a side of one layer of separators 200 away from the other layer of separators 200 .
  • the free end 110 of one of the pole pieces 100 can be connected to the corresponding diaphragm 200, of course, the free ends 110 of the two layers of pole pieces 100 can also be connected to the corresponding diaphragm 200 respectively. connect.
  • the winding needle 10 is a device that provides a winding surface for the pole piece 100 and the separator 200 . It has a certain width, which corresponds to the width of the wound pole piece 100 and the separator 200 . Depending on the requirements of the process and product structure, the width of the winding needle 10 is greater than or equal to the width of the separator 200 .
  • the cross-section of the winding needle 10 in the direction of the winding axis may be circular, diamond-shaped, elliptical or other shapes, etc., and the present application does not make any special limitation on this.
  • the arrangement of the composite assembly 20 upstream of the winding pin 10 refers to the production sequence of the battery cells, and does not limit the spatial position between the components.
  • the composite component 20 can connect the free end 110 of the pole piece 100 to the diaphragm 200 by providing a connecting piece, and of course, the two can also be connected to each other by changing the physical properties of the free end 110 and/or the diaphragm 200 .
  • the composite assembly 20 is arranged upstream of the winding needle 10, and the free end 110 of the pole piece 100 can be connected to the diaphragm 200 through the composite assembly 20, so as to prevent the pole piece 100 of the battery cell and the diaphragm 200 from being rolled.
  • the free end 110 of the pole piece 100 is offset relative to the diaphragm 200, so as to ensure the safety of the produced battery core.
  • the composite assembly 20 includes a glue-applied assembly, and the glue-applied assembly is configured to apply glue to the free end 110 of the pole piece 100 and the diaphragm 200, so that The free end 110 of the pole piece 100 is bonded to the diaphragm 200 .
  • the adhesive assembly is used to bond the free end 110 of the pole piece 100 to the diaphragm 200.
  • the adhesive assembly can provide an adhesive to the connection area between the free end 110 of the pole piece 100 and the diaphragm 200.
  • the provided adhesive It can be in a solid state, and of course it can also be in a liquid state with a certain fluidity, as long as it can meet the requirements of the adhesive connection between the free end 110 of the pole piece 100 and the diaphragm 200 .
  • the free end 110 of the pole piece 100 can be connected by pasting using the glue-coated component, which can ensure the fixed requirement of the relative position of the free end 110 and the diaphragm 200, and avoid the free end 110 relative to the diaphragm. 200 deviations occurred.
  • the glue-applying assembly includes a supporting mechanism 22 and a glue-applying mechanism 21 arranged oppositely, the supporting mechanism 22 is configured to be arranged on the side of the diaphragm 200 away from the pole piece 100
  • the gluing mechanism 21 is arranged on the side of the diaphragm 200 facing the pole piece 100
  • the gluing mechanism 21 is configured to provide the adhesive tape 300 to the free end 110 and the diaphragm 200, so that the free end 110 It is connected with the diaphragm 200 by adhesive tape 300 .
  • the supporting mechanism 22 and the glue-applying mechanism 21 are arranged opposite to each other, which means that the two are at least partially facing each other.
  • the adhesive tape 300 provided by the glue-applying mechanism 21 to the free end 110 and the diaphragm 200 can be solid, and in the width direction of the pole piece 100 , the width of the tape 300 is less than or equal to the width of the diaphragm 200.
  • the size of the tape 300 is not specifically limited, as long as it can meet the requirements for the connection strength between the free end 110 and the diaphragm 200.
  • the adhesive tape 300 may be partially attached to the free end 110 of the pole piece 100 and partially attached to the diaphragm 200 .
  • the supporting mechanism 22 is arranged on the side of the diaphragm 200 facing away from the pole piece 100 in the thickness direction Y.
  • the glue application mechanism 21 provides the adhesive tape 300 to the free end 110 and the diaphragm 200
  • the supporting mechanism 22 and the side of the diaphragm 200 facing away from the pole piece 100 Contact provides support for the diaphragm 200 and the free end 110 , so that the diaphragm 200 and the free end 110 can receive the adhesive tape 300 and be connected by the adhesive tape 300 .
  • the gluing assembly include a supporting mechanism 22 and a gluing mechanism 21, when the free end 110 is connected to the diaphragm 200, the side of the diaphragm 200 away from the pole piece 100 can be supported by the supporting mechanism 22, and the gluing mechanism can
  • the adhesive tape 300 provided by 21 bonds and connects the free end 110 and the diaphragm 200 to ensure that the relative position of the free end 110 and the diaphragm 200 is fixed, and to avoid deviation of the free end 110 relative to the diaphragm 200 .
  • FIG. 3 is a schematic structural diagram of a cell manufacturing device according to another embodiment of the present application.
  • the distance between the supporting mechanism 22 and the gluing mechanism 21 is adjustable.
  • the minimum distance between the supporting mechanism 22 and the gluing mechanism 21 in the direction opposite to each other can be adjusted to change the distance between the supporting mechanism 22 and the diaphragm 200, and/or to change the gluing mechanism 21 and the free end 110 and the distance between the diaphragms 200 .
  • the distance between the support mechanism 22 and the glue-applying mechanism 21 can be adjusted according to the winding state of the diaphragm 200 and the pole piece 100.
  • the distance between the support mechanism 22 and the glue application mechanism 21 is small so that the support mechanism can contact the diaphragm 200 .
  • the gluing mechanism 21 can be in contact with the diaphragm 200 and the free end 110 of the pole piece 100 to ensure the connection requirement between the free end 110 and the diaphragm 200 .
  • the distance between the support mechanism 22 and the glue-applying mechanism 21 can be adjusted to increase, so as to avoid the contact between the support mechanism 22 and the diaphragm 200, and simultaneously avoid the contact between the glue-applying mechanism 21 and the pole piece 100, It is ensured that the support mechanism 22 and the gluing mechanism 21 are prevented from producing resistance to the operation of the pole piece 100 and the pole piece 100 during the winding process of the separator 200 and the pole piece 100 by the winding needle 10 .
  • FIG. 4 is a schematic structural diagram of a glue application mechanism 21 according to an embodiment of the present application.
  • the gluing mechanism 21 includes a first driving part 211 and a rubber preparation roller 212, the rubber preparation roller 212 is rotationally connected with the first driving part 211, and the first driving part 211 is configured to drive the rubber preparation roller 212 close to or away from the diaphragm 200 and the free end 110 , the glue preparation roller 212 is configured to provide a mounting position for the adhesive tape 300 , and is driven by the first driving part 211 to adhesively connect the adhesive tape 300 to the free end 110 and the diaphragm 200 .
  • the rubber preparation roller 212 can rotate relative to the first driving part 211, and the rubber preparation roller 212 can be a roller structure with an axis, can be a round roller, and of course, can also be a polygonal roller.
  • One of the rubber preparation roller 212 and the first driving part 211 can be provided with a rotating shaft, and the other can be provided with a shaft hole that fits in clearance with the rotating shaft to ensure a rotational connection between the two.
  • the first driving part 211 can drive the glue preparation roller 212 to move, so that the glue preparation roller 212 is arranged close to or away from the diaphragm 200 and the free end 110 .
  • the installation position on the rubber preparation roller 212 is an area matched with the shape of the adhesive tape 300, so that the adhesive tape 300 can be placed on the rubber preparation roller 212 and connected with the rubber preparation roller 212, and at the free end 110 of the opposite pole piece 100 and the diaphragm 200 When connecting, it can also be in contact with the free end 110 of the pole piece 100 and the diaphragm 200 .
  • the first driving part 211 can drive the glue preparation roller 212 to move closer to or away from the diaphragm 200 and the pole piece 100 , so that the distance between the support mechanism 22 and the glue application mechanism 21 can be adjusted.
  • the rubber preparation roller 212 has an installation position for installing the adhesive tape 300, and the adhesive tape 300 can be installed at the installation position, and the rubber preparation roller 212 is rotationally connected with the first driving part 211, so that one end of the adhesive tape 300 is bonded to the pole piece 100.
  • the adhesive tape 300 is continuously attached to the free end 110 of the pole piece 100 and the diaphragm 200, which can meet the requirements of pasting the adhesive tape 300 of a predetermined length to the free end 110 and the diaphragm 200 , to ensure the connection strength between the free end 110 and the diaphragm 200 .
  • FIG. 5 is a schematic structural view of a rubber preparation roller 212 according to an embodiment of the present application.
  • the rubber preparation roller 212 includes a roller body 212a and is arranged in the roller body 212a.
  • the partition 212b of the roller body 212b separates the inner cavity of the roller body 212a to form more than two independent chambers 212c, and the roller body 212a has communication holes 212d corresponding to each independent chamber 212c, which are used for negative pressure adsorption tape 300 .
  • the roller body 212a is an internal hollow structure, the shape of the partition 212b is located inside the roller body 212a and the outer wall is connected with the inner wall of the roller body 212a, and the hollow cavity inside the roller body 212a is divided into more than two independent chambers 212c, each two The independent chambers 212c are not connected to each other.
  • the number of independent chambers 212c is not specifically limited, it can be two, and of course it can be more than two, such as three, four or even more. Diameter size is limited.
  • the communication hole 212d on the roller body 212a runs through the side wall of the roller body 212a and communicates with the corresponding independent chamber 212c, and the number of the communication hole 212d communicating with each independent chamber 212c is not specifically limited, as long as the adhesive tape 300 can be ensured.
  • the size of the adsorption force can be required.
  • Negative pressure adsorption can make the air pressure inside each independent chamber 212c smaller than the air pressure outside the roller body 212a.
  • the existence of the pressure difference makes the external air want to enter the independent chamber 212c through the communication hole 212d, because the communication hole 212d is sealed by the adhesive tape 300 Therefore, the force of the external air will act on the adhesive tape 300 to adsorb the adhesive tape 300 on the roller body 212a.
  • the negative pressure control can be used to control the adsorption and release of the adhesive tape 300 by adjusting the pressure in the independent chamber 212c, so as to ensure that the adhesive tape 300 is opposite to the free end 110 of the pole piece 100 and the diaphragm 200. connection requirements.
  • the first driving part 211 may include a first driving motor 211a, a first lead screw 211b, a first nut 211c and a first guide part 211d, and the first lead screw 211b is connected to the first An output end of the drive motor 211a, the first lead screw 211b and the first nut 211c are driven and matched, the first nut 211c is guided and matched with the first guide part 211d, and the first nut 211c is rotatably connected with the rubber preparation roller 212 .
  • the output end of the first drive motor 211a is connected to the first lead screw 211b to drive the first lead screw 211b to rotate, the first nut 211c is in transmission cooperation with the first lead screw 211b, and the number of the first guide part 211d can be one, of course There may also be more than one, for example, there may be two, and the two first guide parts 211d are oppositely disposed on both sides of the first lead screw 211b.
  • the first guide portion 211d can prevent the first nut 211c from rotating and provide guidance to the first nut 211c, so that the first nut 211c moves along the extension direction of the first guide portion 211d.
  • Only the first nut 211 can be rotatably connected to the rubber preparation roller 212 directly or indirectly.
  • a connecting rod can be provided between the two to ensure the connection requirement.
  • the first screw 211b can be driven to rotate by the first driving motor 211a. Since the first screw 211b is in transmission cooperation with the first nut 211c, and the first nut 211c is guided and matched with the first guide part 211d, the first screw 211b can be driven to rotate. The rotation of the lead screw 211b is converted into the reciprocating movement of the first nut 211c along the length direction of the first lead screw 211b, and then the first nut 211c can drive the rubber preparation roller 212 to reciprocate.
  • FIG. 6 is a schematic structural diagram of a gluing mechanism 21 according to another embodiment of the present application.
  • the first driving part 211 includes a first telescopic cylinder, and the cylinder rod of the first telescopic cylinder is rotatably connected with the rubber preparation roller 212 .
  • the first telescopic cylinder can be a pneumatic cylinder, a hydraulic cylinder or an electric cylinder.
  • the first telescopic cylinder includes a cylinder body and a cylinder rod, and the cylinder rod is plugged into the cylinder body and slidably fits with the cylinder body.
  • the first driving part 211 can not only meet the driving requirements of the rubber roller 212, but also make the first driving part 211 simple in structure and low in cost.
  • FIG. 7 is a schematic structural diagram of a support mechanism 22 according to an embodiment of the present application.
  • the supporting mechanism 22 includes a second driving part 221 and a supporting roller 222.
  • the supporting roller 222 is rotatably connected to the second driving part 221.
  • the second driving part 221 is configured to drive the supporting roller 222 to be set close to or away from the diaphragm 200.
  • the supporting roller 222 is configured To provide support to the surface of the diaphragm 200 away from the pole piece 100 .
  • the support roller 222 can rotate relative to the second driving part 221, and the support roller 222 can be a roller structure with an axis, can be a round roller, and of course, can also be a polygonal roller.
  • One of the supporting roller 222 and the second driving part 221 may be provided with a rotating shaft, and the other may be provided with a shaft hole that fits in clearance with the rotating shaft, so as to ensure the rotational connection between the two.
  • the second driving part 221 can drive the support roller 222 to move, and the support roller 222 is disposed close to or away from the diaphragm 200 and the free end 110 .
  • the support roller 222 has a support surface capable of contacting the surface of the diaphragm 200 facing away from the pole piece 100 , so as to meet the support requirements for the diaphragm 200 .
  • the second driving part 221 can drive the supporting roller 222 to move toward or away from the diaphragm 200 , so that the distance between the supporting mechanism 22 and the gluing mechanism 21 can be adjusted.
  • the support roller 222 supports the diaphragm 200
  • the diaphragm 200 is constantly running under the winding effect of the winding needle 10.
  • the second driving part 221 includes a second driving motor 221a, a second lead screw 221b, a second nut 221c and a second guide part 221d, and the second lead screw 221b is connected to the second The output end of the drive motor 221a, the second lead screw 221b drives and cooperates with the second nut 221c, the second nut 221c guides and cooperates with the second guide part 221d, and the second nut 221c is rotatably connected with the support roller 222 .
  • the output end of the second drive motor 221a is connected to the second lead screw 221b to drive the second lead screw 221b to rotate, the second nut 221c is in transmission cooperation with the second lead screw 221b, and the number of the second guide part 221d can be one, of course There may also be more than one, for example, there may be two, and the two second guide parts 221d are disposed opposite to the two sides of the second lead screw 221b.
  • the second guide portion 221d can prevent the second nut 221c from rotating and can provide a guide for the second nut 221c, so that the second nut 221c moves along the extending direction of the second guide portion 221d.
  • the second lead screw 221b can be driven to rotate by the second drive motor 221a. Since the second lead screw 221b is in transmission cooperation with the second nut 221c, and the second nut 221c is guided and cooperated with the second guide part 221d, the second lead screw 221b can be driven to rotate. The rotation of the second lead screw 221b is converted into the reciprocating movement of the second nut 221c along the length direction X of the second lead screw 221b, so that the second nut 221c can drive the supporting roller 222 to reciprocate.
  • FIG. 8 is a schematic structural diagram of a support mechanism 22 according to another embodiment of the present application.
  • the second driving part 221 includes a second telescopic cylinder, and the cylinder rod of the second telescopic cylinder is rotatably connected with the supporting roller 222 .
  • the second telescopic cylinder can be a pneumatic cylinder, a hydraulic cylinder or an electric cylinder.
  • the second telescopic cylinder includes a cylinder body and a cylinder rod.
  • the cylinder rod is plugged into the cylinder body and slidably fits with the cylinder body.
  • the second driving part 221 can meet the driving requirements of the supporting roller 222, and at the same time, the second driving part 221 has a simple structure and low cost.
  • the composite assembly 20 is not limited to the structural forms of the above-mentioned embodiments.
  • the composite assembly 20 may include an infrared heating composite component configured to heat at least one of the free end 110 and the diaphragm 200, so that The free end 110 is thermally compounded with the diaphragm 200 .
  • the composite assembly 20 can provide thermal energy to the free end 110 of the pole piece 100 and the diaphragm 200 through infrared heating of the composite part, so as to change the physical properties of the free end 110 of the pole piece 100 and the diaphragm 200, so that the two are thermally recombined, Guaranteed connection requirements.
  • the composite assembly 20 is not limited to the structural forms of the above-mentioned embodiments.
  • the composite assembly 20 may also include a pressing part, and the pressing part is configured to squeeze freely. end 110 and the diaphragm 200 so that the free end 110 is press-fit connected to the diaphragm 200 .
  • the composite assembly 20 can provide external force to the free end 110 of the pole piece 100 and the diaphragm 200 through the pressing member to change the physical properties of the free end 110 of the pole piece 100 and the diaphragm 200 to meet the connection requirements of the two.
  • FIG. 9 is a schematic structural diagram of a cell manufacturing device according to another embodiment of the present application.
  • the cell manufacturing device further includes a smoothing component 30 , which is located downstream of the compound assembly 20 and upstream of the rolling needle 10 , and is configured to smooth the connection area between the free end 110 and the diaphragm 200 .
  • the location of the smoothing component 30 downstream of the compound assembly 20 and upstream of the rolling needle 10 refers to the production sequence of the battery cells, and does not limit the spatial position between the components.
  • Smoothing refers to pressing against and sweeping the connection area between the free end 110 and the diaphragm 200 to avoid wrinkles in the connection area.
  • the smoothing member 30 can be used to press and smooth the connection area between the free end 110 of the pole piece 100 and the diaphragm 200 to ensure the connection strength between the two.
  • FIG. 10 is a schematic structural diagram of a smoothing component 30 according to an embodiment of the present application.
  • the smoothing member 30 includes a third driving part 31 connected to each other and a smoothing roller 32, the smoothing roller 32 is configured to roll the connection area between the free end 110 and the diaphragm 200, and the third driving part 31 is configured to drive the smoothing roller 32 moves toward or away from the diaphragm 200 and the free end 110.
  • the smoothing roller 32 may be a roller structure with an axis, and may be a round roller.
  • One of the smoothing roller 32 and the third driving part 31 may be provided with a rotating shaft, and the other may be provided with a shaft hole that fits in clearance with the rotating shaft, so as to ensure the rotational connection between the two. This allows the smoothing roller 32 to be in rolling contact with the connection area when acting on the connection area.
  • the third driving part 31 can be used to drive the smoothing roller 32 to move toward or away from the diaphragm 200 and the free end 110 as required, so as to ensure the smoothing requirements of the smoothing roller 32 on the connection area.
  • the smoothing roller 32 can be driven to move away from the diaphragm 200 and the free end 110 by the third driving part 31 , so as to avoid the smoothing roller 32 from interfering with the operation of the pole piece 100 and the diaphragm 200 .
  • the third driving part 31 may include a pneumatic cylinder, a hydraulic cylinder or an electric cylinder.
  • the third driving part 31 includes a cylinder body and a cylinder rod.
  • the cylinder block is a slip fit.
  • the third driving part 31 can meet the driving requirements of the supporting roller 222, and at the same time, the third driving part 31 has a simple structure and low cost.
  • FIG. 11 is a schematic structural diagram of a cell manufacturing device according to another embodiment of the present application.
  • the cell manufacturing device further includes a deflection correcting component 40 disposed upstream of the compound assembly 20 , and the deflection correcting component 40 is configured to adjust the relative position of the free end 110 and the diaphragm 200 .
  • the arrangement of the deviation correcting component 40 upstream of the composite assembly 20 refers to the production sequence of the battery cells.
  • the deviation correcting component 40 is used to adjust the diaphragm 200 and/or the pole piece 100, change the relative position between them, and prevent the pole piece 100 from shifting.
  • the position of the free end 110 can be adjusted before the composite assembly 20 connects the free end 110 to the diaphragm 200, so as to avoid the free end 110 from contacting the diaphragm when there is a deviation. 200 connections fixed.
  • the free end 110 includes the head end 110a and/or the tail end 110b of the pole piece 100 .
  • the free end 110 may only include the head end 110 a of the pole piece 100 , that is to say, only the head end 110 a of the pole piece 100 may be connected to the diaphragm 200 through the composite assembly 20 .
  • the free end 110 may also only include the tail end 110b of the pole piece 100 , that is to say, only the tail end 110b of the pole piece 100 may be connected to the diaphragm 200 through the composite assembly 20 .
  • the head end 110 a and the tail end 110 b of the pole piece 100 may also be connected to corresponding regions of the diaphragm 200 through the composite assembly 20 .
  • the head end 110a and/or the tail end 110b of the pole piece 100 can be connected to the pole piece 100, avoiding poor alignment of the head end 110a and the tail end 110b of the pole piece 100, and improving the safety performance of the formed battery cell.
  • the present application provides a cell manufacturing device.
  • the cell used for forming includes a stacked anode sheet 100a, a cathode sheet 100b, and two layers of separators 200. Both the anode sheet 100a and the cathode sheet 100b are It has a free end 110.
  • the free end 110 of the anode piece 100a includes a head end 110a and a tail end 110b, and the free end 110 of the cathode piece 100b includes a head end 110a and a tail end 110b.
  • the cell manufacturing device includes a winding needle 10, a composite assembly 20, a smoothing component 30, a deviation correcting component 40, a pole piece unwinding mechanism 50, a pole piece feeding mechanism 60, a pole piece cutting mechanism 70, a pole piece Sheet pressing roller mechanism 80 and diaphragm unwinding mechanism 90.
  • Each diaphragm 200 corresponds to a diaphragm unwinding mechanism 90, and each pole piece 100 is respectively provided with a composite assembly 20, a smoothing component 30, a deviation correcting component 40, a pole piece unwinding mechanism 50, a pole piece feeding mechanism 60, a pole piece Sheet cutting mechanism 80, pole sheet pressing roller mechanism 80.
  • the pole piece 100 is wound on the pole piece unwinding mechanism 50
  • the diaphragm 200 is wound on the diaphragm unwinding mechanism 90 .
  • the composite assembly 20 corresponding to each pole piece 100 can include a glue-applied assembly, and an adhesive tape 300 can be arranged on the glue-applied mechanism 21 of the glue-applied assembly, and the adhesive tape 300 on each glue-applied mechanism 21 can be two sections, respectively pole piece
  • the tape 300 is used for the head end 110 a of the pole piece 100 and the tape 300 is used for the tail end 110 b of the pole piece 100 .
  • Figure 12 to Figure 17 is a structural schematic diagram corresponding to each step of the battery manufacturing device in one embodiment of the present application when manufacturing batteries
  • each diaphragm 200 is connected with the winding needle 10, after the diaphragm 200 of predetermined length is wound by the winding needle 10, each pole piece unwinding mechanism 50 starts to release the pole piece 100, and each pole piece 100
  • the head end 110 a is corrected by the corresponding deviation correcting component 40 and sent to the corresponding pole piece 100 by the pole piece feeding mechanism 60 respectively to the feeding position.
  • each pole piece 100 corresponding to the glue-applying assembly press the head end 110a of the corresponding pole piece 100 together, and the head end 110a of each pole piece 100 is passed through the adhesive tape 300 Connected to the diaphragm 200 to form the form shown in FIG. 14 .
  • the winding needle 10 continues to wind the diaphragm 200 and the pole piece 100 until a predetermined length of the pole piece 100 and the diaphragm 200 is wound, and the pole piece 100 is cut by the pole piece cutting mechanism 70 to form a pole piece.
  • the tail end 110b of 100 before the pole piece 100 is cut, when it is close to the position to be cut, adjust the distance between the support mechanism 22 of the gluing assembly and the gluing mechanism 21, so that the distance between the two becomes smaller, And make the gluing mechanism 21 carry out the gluing action, the support mechanism 22 and the gluing mechanism 21 combine the pole piece 100 and the corresponding diaphragm 200 together, the pole piece cutting mechanism 70 cuts off the pole piece 100, and continues winding for finishing , so that the support mechanism 22 and the glue-applying mechanism 21 of each pole piece 100 corresponding to the glue-applying assembly jointly press the tail end 110b of the corresponding pole piece 100, and connect the tail end 110b of each pole piece 100 to the diaphragm 200 through the adhesive tape 300.
  • connection area can be smoothed by the smoothing member 30, so that the connection between the tail end 110b of the pole piece 100 and the diaphragm 200 is as shown in FIG. 17 .
  • FIG. 18 is a flowchart of a cell manufacturing method according to an embodiment of the present application.
  • the present application provides a method for manufacturing an electric core.
  • the electric core includes a diaphragm 200 and a pole piece 100.
  • the pole piece 100 has a free end 110.
  • the method includes:
  • step S100 the membrane 200 with a predetermined length can be wound first, specifically, the membrane 200 can be wound on structures such as the winding needle 10 in advance.
  • the pole piece 100 is laminated with the separator 200 on its surface in the thickness direction Y, the number of the pole piece 100 can be two layers, one of which can be the positive electrode piece 100, the other layer can be the negative electrode piece 100, and the separator 200 The number of is determined according to the number of pole pieces 100. When the number of pole pieces 100 is two layers, the corresponding number of diaphragms 200 may also be two layers.
  • the free end 110 and the diaphragm 200 can be connected in various ways, such as bonding, infrared heating or external force to change the physical properties of the free end 110 and/or the diaphragm 200 so that the two are connected to each other .
  • step S400 the winding length of the separator 200 and the pole piece 100 can be specifically determined according to the performance requirements of the electric core to be formed, and the application does not make a specific length limitation.
  • the pole piece 100 and the separator 200 used to wind the battery core are wound together During the process, the free end 110 of the pole piece 100 is prevented from shifting relative to the diaphragm 200, so as to ensure the safety of the produced electric core.
  • the free end 110 includes the head end 110 a of the pole piece 100 ; step S300 includes connecting the head end 110 a of the pole piece 100 with the diaphragm 200 .
  • the head end 110a of the pole piece 100 is the starting end of the pole piece 100 in the longitudinal direction X, which is the end of the pole piece 100 not under tension in the length direction X. Since the head end 110a of the pole piece 100 hits the rolling needle 10 when the pole piece 100 is fed, the head is folded, which makes the head end 110a of the pole piece 100 deviate, which affects the safety performance of the formed battery cell.
  • the head end 110a of the pole piece 100 can be connected and fixed with the diaphragm 200, so as to prevent the head end 110a of the pole piece 100 from shifting with the diaphragm 200 during the cell forming process .
  • the chip manufacturing method of the present application can be implemented by the cell manufacturing equipment provided in the above embodiments.
  • the manufacturing method further includes obtaining the winding length of the pole piece 100; and cutting off the pole piece 100 under the condition that the winding length of the pole piece 100 reaches a predetermined length.
  • sheet 100 to form the tail end of the first pole piece and the head end of the second pole piece; the first pole piece is a pole piece wound with the diaphragm; the second pole piece is not wound with the diaphragm The pole pieces together; connect the end of the first pole piece to the diaphragm.
  • the obtained winding length of the pole piece 100 is calculated from the head end 110a of the pole piece 100, and the length of the first pole piece can be equal to the length of the anode piece 100a or the cathode piece 100b of the electric core to be formed, and can certainly be less than
  • the first pole piece included in the formed battery can be multi-segment , the head end 110 a and the tail end 110 b of each first pole piece are connected to the corresponding diaphragm 200 .
  • the tail end of the first pole piece can be connected to each other by means of bonding, infrared heating, or external force to change the physical properties of the free end 110 and/or the diaphragm 200 .
  • the tail end of the first segment of the pole piece 100 formed by cutting each place can be connected to the separator 200 to prevent the tail end from being shifted during the winding process of the battery core.
  • the free end 110 includes the tail end 110b of the pole piece 100; connecting the free end 110 of the pole piece 100 to the diaphragm 200 includes: End 110b is connected to diaphragm 200 .
  • the free end 110 of the pole piece 100 is bonded to the diaphragm 200 through an adhesive tape 300 .
  • the adhesive tape 300 can be in a solid state. In the width direction of the pole piece 100, the width of the adhesive tape 300 is less than or equal to the width of the diaphragm 200. In the length direction X of the pole piece 100, the size of the adhesive tape 300 is not specifically limited. The connection strength requirements with the diaphragm 200 are all acceptable. The adhesive tape 300 may be partially attached to the free end 110 of the pole piece 100 and partially attached to the diaphragm 200 .
  • the free end 110 can be connected to the diaphragm 200 through the adhesive tape 300 to ensure the connection requirements of the two.
  • step S300 may further include thermally composite connecting the free end 110 of the pole piece 100 to the diaphragm 200 .
  • the free end 110 of the pole piece 100 and the separator 200 are thermally compound connected.
  • the physical properties of the free end 110 of the pole piece 100 and the diaphragm 200 can be changed by heating to meet the connection requirements of the two.
  • the method further includes adjusting the relative position of the free end 110 and the diaphragm 200 .
  • the relative position between the two is adjusted.
  • the position of the free end 110 can be adjusted before the free end 110 is connected to the diaphragm 200 , so as to prevent the free end 110 from being connected and fixed to the diaphragm 200 in case of deviation.
  • the method further includes: smoothing the connection area between the free end 110 and the diaphragm 200 . Smoothing is to avoid wrinkles in the connection area by pressing and sweeping the connection area between the free end 110 and the diaphragm 200 with a smoothing member or the like.
  • the manufacturing method of the electric core provided by the present application:
  • pole pieces 100 Feed two layers of pole pieces 100, wherein one layer of pole pieces 100 is an anode piece 100a, the other layer of pole piece 100 is a cathode piece 100b, and one of the anode piece 100a and the cathode piece 100b is stacked between two layers of separators 200, The other one is stacked with the surface of one layer of membrane 200 facing away from the other layer of membrane 200 .
  • each pole piece 100 is bonded, thermally composited or press-fitted to the corresponding separator 200 .
  • the sheet 100 forms the tail end of the first pole piece and the head end of the second pole piece, and connects the tail end 110b of the first pole piece with the diaphragm 200 to form a winding cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

一种电芯制造装置及电芯制造方法,电芯包括极片(100)和隔膜(200),极片(100)在自身延伸方向具有自由端(110),电芯制造装置包括卷针(10)及复合组件(20),卷针(10)被配置为将极片(100)和隔膜(200)卷绕形成电芯。复合组件(20)设置于卷针(10)的上游,复合组件(20)被配置为将极片(100)的自由端(110)与隔膜(200)连接。电芯制造装置及电芯制造方法能够解决电芯生产过程中极片的自由端(110)相对于隔膜(200)出现偏移的问题,保证所生产电芯的安全。

Description

电芯制造装置及其方法
相关申请的交叉引用
本申请要求享有于2021年09月02日提交的名称为“电芯制造装置及其方法”的中国专利申请202111027515.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电芯制造装置及其方法。
背景技术
在电池生产过程中,需要使用电芯制造装置将极片和隔膜卷绕成电芯,经过卷绕和预压定型后的电芯呈扁平状结构。然而,经过卷绕的电芯,在卷绕过程中,极片的自由端相对于隔膜易出现偏移,影响电芯的安全。
发明内容
本申请实施例提供一种电芯制造装置及其方法,能够解决电芯生产过程中极片的自由端相对于隔膜出现偏移的问题,保证所生产电芯的安全。
第一方面,本申请提供了一种电芯制造装置,电芯包括极片和隔膜,极片在自身延伸方向具有自由端,电芯制造装置包括卷针及复合组件,卷针被配置为将极片和隔膜卷绕形成电芯。复合组件设置于卷针的上游,复合组件被配置为将极片的自由端与隔膜连接。
本申请实施例的技术方案中,在卷针的上游设置复合组件,通过复合组件能够将极片的自由端与隔膜连接,避免电芯的极片以及隔膜在卷绕的过程中极片的自由端相对于隔膜产生偏移,保证所生产的电芯的安全。
在一些实施例中,复合组件包括贴胶组件,贴胶组件被配置为对极片的自由端以及隔膜进行贴胶处理,以使得极片的自由端与隔膜粘接连接。通过使得复合组件包括贴胶组件,能够利用贴胶组件将极片的自由端采用粘贴方式连接,能够保证自由端与隔膜的相对位置的固定需求,避免自由端相对于隔膜发生偏离。
在一些实施例中,贴胶组件包括相对设置的支撑机构以及贴胶机构,支撑机构 被配置为设置在隔膜背离极片的一侧,并在贴胶时支撑自由端和隔膜,贴胶机构设置在隔膜的面对极片的一侧,贴胶机构被配置为向自由端和隔膜提供胶带,以将自由端与隔膜通过胶带粘接连接。通过使得贴胶组件包括支撑机构以及贴胶机构,在对自由端与隔膜进行连接时,可以通过支撑机构对隔膜背离极片的一侧提供支撑,并通过贴胶机构提供的胶带将自由端与隔膜进行粘接连接,保证自由端与隔膜的相对位置的固定需求,避免自由端相对于隔膜发生偏离。
在一些实施例中,支撑机构与贴胶机构之间距离可调。通过上述设置,可以根据隔膜与极片的卷绕状态调节支撑机构与贴胶机构之间的距离,当需要将极片的自由端与隔膜进行连接时,可以调节减小支撑机构与贴胶机构之间的距离,使得支撑机构能够与隔膜接触,贴胶机构能够与隔膜以及极片的自由端接触,保证自由端与隔膜之间的连接需求。而当自由端与隔膜连接后,可以调节增大支撑机构与贴胶机构之间的距离,避免支撑机构与隔膜接触,同时能够避免贴胶机构与极片接触,保证卷针在卷绕隔膜以及极片的过程中,避免支撑机构以及贴胶结构对极片以及隔膜的运行产生阻力。
在一些实施例中,贴胶机构包括第一驱动部以及备胶辊,备胶辊与第一驱动部转动连接,第一驱动部被配置为驱动备胶辊靠近或者远离隔膜和自由端设置,备胶辊被配置为为胶带提供安装位置,并在第一驱动部驱动下将胶带粘接连接至自由端和隔膜。通过上述设置,可以通过第一驱动部驱动备胶辊向靠近或者远离隔膜和极片的移动,进而使得支撑机构与贴胶机构之间的距离可调。备胶辊具有用于安装胶带的安装位置,可以在安装位置处安装胶带,并且,备胶辊与第一驱动部转动连接,使得胶带的一端在粘接至极片后,随着备胶辊相对于第一驱动部的转动,胶带不断的粘贴至极片的自由端与隔膜上,能够满足将预定长度的胶带粘贴至自由端与隔膜,保证自由端与隔膜之间的连接强度。
在一些实施例中,备胶辊包括辊体以及设置于辊体内的分隔部,分隔部将辊体的内腔分隔形成两个以上独立腔室,辊体上对应每个独立腔室分别有连通孔,以用于负压吸附胶带。通过上述设置,利于胶带的安装,同时利用负压控制,可以通过调节独立腔室内的压力来控制胶体的吸附与释放,保证胶带对极片的自由端以及隔膜之间的连接需求。
在一些实施例中,支撑机构包括第二驱动部以及支撑辊,支撑辊与第二驱动部转动连接,第二驱动部被配置为驱动支撑辊靠近或者远离隔膜设置,支撑辊被配置为向隔膜背离极片一侧的表面提供支撑。通过上述设置,可以通过第二驱动部驱动支撑 辊向靠近或者远离隔膜的方向移动,进而使得支撑机构与贴胶机构之间的距离可调。并且,当支撑辊支撑隔膜时,在卷针的卷绕作用下,隔膜是在不断运行的,通过将支撑辊与第二驱动部之间转动连接,当支撑辊对隔膜进行支撑时,与隔膜之间的摩擦为滚动摩擦,能够降低支撑辊与隔膜之间的摩擦。
在一些实施例中,第一驱动部包括第一伸缩缸,第一伸缩缸的缸杆与备胶辊转动连接。通过上述设置,使得第一驱动部既能够对备胶辊的驱动要求,同时,使得第一驱动部结构简单,成本低廉。
在一些实施例中,第二驱动部包括第二伸缩缸,第二伸缩缸的缸杆与支撑辊转动连接。通过上述设置,使得第二驱动部既能够对支撑辊的驱动要求,同时,使得第二驱动部结构简单,成本低廉。
在一些实施例中,第一驱动部包括第一驱动电机、第一丝杠、第一螺母以及第一导向部,第一丝杠连接于第一驱动电机的输出端,第一丝杠与第一螺母传动配合,第一螺母与第一导向部导向配合,第一螺母与备胶辊可转动连接。通过上述设置,可以通过第一驱动电机驱动第一丝杠转动,由于第一丝杠与第一螺母传动配合,并且第一螺母与第一导向部导向配合,可以将第一丝杠的转动转换为第一螺母沿着第一丝杠的长度方向上的往复移动,进而可以使得第一螺母带动备胶辊往复移动。
在一些实施例中,第二驱动部包括第二驱动电机、第二丝杠、第二螺母以及第二导向部,第二丝杠连接于第二驱动电机的输出端,第二丝杠与第二螺母驱动配合,第二螺母与第二导向部导向配合,第二螺母与支撑辊可转动连接。通过上述设置,可以通过第二驱动电机驱动第二丝杠转动,由于第二丝杠与第二螺母传动配合,并且第二螺母与第二导向部导向配合,可以将第二丝杠的转动转换为第二螺母沿着第二丝杠的长度方向上的往复移动,进而可以使得第二螺母带动支撑辊往复移动。
在一些实施例中,复合组件包括红外加热复合部件,红外加热复合部件被配置为加热自由端及隔膜的至少一者,以使得自由端与隔膜热复合连接。通过上述设置,使得复合组件可以通过红外加热复合部件向极片的自由端以及隔膜提供热能,以改变极片的自由端和隔膜的物理性能,使得二者热复合,保证连接需求。
在一些实施例中,复合组件包括顶压部件,顶压部件被配置为挤压自由端以及隔膜,以使得自由端与隔膜压合连接。通过上述设置,使得复合组件可以通过顶压部件向极片的自由端以及隔膜提供外力,以改变极片的自由端和隔膜的物理性能,满足二者的连接需求。
在一些实施例中,电芯制造装置还包括抚平部件,抚平部件位于复合组件的下 游并位于卷针的上游,抚平部件被配置为抚平自由端与隔膜的连接区域。通过上述设置,能够利用抚平部件来抵压并抚平极片的自由端与隔膜的连接区域,保证二者之间的连接强度。
在一些实施例中,抚平部件包括相互连接的第三驱动部以及抚平辊,抚平辊被配置为辊压自由端与隔膜的连接区域,第三驱动部被配置为驱动抚平辊向靠近或者远离隔膜和自由端的方向移动。通过上述设置,可以根据需要利用第三驱动部驱动抚平辊向靠近或者远离隔膜和自由端的方向移动,保证抚平辊对连接区域的抚平要求,同时,当抚平连接区域后,可以利用第三驱动部驱动抚平辊向远离隔膜和自由端的方向移动,避免抚平辊对极片以及隔膜的运行产生干涉。
在一些实施例中,电芯制造装置还包括纠偏部件,纠偏部件设置于复合组件的上游,纠偏部件被配置为调节自由端与隔膜的相对位置。通过设置纠偏部件并使其位于复合组件的上游,可以在复合组件将自由端与隔膜进行连接之前调节自由端的位置,避免自由端在出现偏移的情况下与隔膜连接固定。
在一些实施例中,自由端包括极片的头端和/或尾端。通过上述设置,能够将极片的头端和/或尾端与极片进行连接,避免极片的头端以及尾端对齐不良,提高所形成电芯的安全性能。
第二方面,本申请提供了一种电芯的制造方法,电芯包括隔膜和极片,极片具有自由端,方法包括:
卷绕隔膜;
将极片与隔膜层叠;
将极片的自由端与隔膜连接;
继续卷绕隔膜以及极片。
本申请实施例的技术方案中,在电芯制造的过程中,通过将极片的自由端与隔膜连接,使得用于卷绕形成电芯的极片与隔膜在卷绕的过程中,避免极片的自由端相对于隔膜产生偏移,保证所生产的电芯的安全。
在一些实施例中,自由端包括极片的头端;将极片的自由端与隔膜连接包括:将极片的头端与隔膜连接。通过使得极片的自由端包括头端,能够将极片的头端与隔膜连接固定,避免极片的头端在电芯成型的过程中与隔膜发生偏移。
在一些实施例中,在继续卷绕隔膜以及极片的同时,方法还包括:
获取极片的卷绕长度;
在极片的卷绕长度到达预定的长度的条件下,切断极片以形成第一段极片的尾 端和第二段极片的头端;第一段极片为与隔膜卷绕在一起的极片;第二段极片为未与隔膜卷绕在一起的极片;
将第一段极片的尾端与隔膜连接。
通过上述设置,能够将极片每处被裁断后形成的第一段极片的尾端与隔膜连接,避免尾端在电芯卷绕的过程中发生偏移。
在一些实施例中,自由端包括极片的尾端;将极片的自由端与隔膜连接包括:将极片的尾端与隔膜连接。通过上述设置,可以将用于形成电芯的极片整体的尾端与隔膜连接,避免极片整体的尾端与隔膜分片。
在一些实施例中,将极片的自由端与隔膜连接包括:将极片的自由端通过胶带与隔膜粘接。通过上述设置,可以通过胶带将自由端与隔膜连接,保证二者的连接需求。
在一些实施例中,将极片的自由端与隔膜连接包括:将极片的自由端与隔膜热复合连接。通过上述设置,可以通过加热改变极片的自由端和隔膜的物理性能,满足二者的连接需求。
在一些实施例中,将极片的自由端与隔膜连接包括:将极片的自由端与隔膜压合连接。通过上述设置,可以通过外力作用改变极片的自由端和隔膜的物理性能,满足二者的连接需求。
在一些实施例中,在将极片的自由端与隔膜连接之前,方法还包括:调节自由端与隔膜的相对位置。通过上述设置,可以在自由端与隔膜进行连接之前调节自由端的位置,避免自由端在出现偏移的情况下与隔膜连接固定。
在一些实施例中,在将极片的自由端与隔膜连接之后,方法还包括:抚平自由端与隔膜的连接区域。通过上述设置,能够保证自由端与隔膜之间的连接强度,同时能够保证二者连接位置的平整性。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的电芯制造装置的结构示意图;
图2是本申请一个实施例的极片与隔膜的层叠示意图;
图3是本申请另一个实施例的电芯制造装置的结构示意图;
图4是本申请一个实施例的贴胶机构的结构示意图;
图5是本申请一个实施例的备胶辊的结构示意图;
图6是本申请另一个实施例的贴胶机构的结构示意图;
图7是本申请一个实施例的支撑机构的结构示意图;
图8是本申请另一个实施例的支撑机构的结构示意图;
图9是本申请又一个实施例的电芯制造装置的结构示意图;
图10是本申请一个实施例的抚平部件的结构示意图;
图11是本申请再一个实施例的电芯制造装置的结构示意图;
图12~图17是本申请一个实施例的电芯制造装置在制造电芯时各步骤对应的结构示意图;
图18是本申请一个实施例的电芯制造方法的流程图。
其中:
10-卷针;
20-复合组件;
21-贴胶机构;211-第一驱动部;211a-第一驱动电机;211b-第一丝杠;211c-第一螺母;211d-第一导向部;212-备胶辊;212a-辊体;212b-分隔部;212c-独立腔室;212d-连通孔;
22-支撑机构;221-第二驱动部;221a-第二驱动电机;221b-第二丝杠;221c-第二螺母;221d-第二导向部;222-支撑辊;
30-抚平部件;31-第三驱动部;32-抚平辊;
40-纠偏部件;50-极片放卷机构;60-极片入料机构;70-极片裁切机构;80-极片压辊机构;90-隔膜放卷机构;
X-长度方向;Y-厚度方向;
100-极片;100a-阳极片;100b-阴极片;110-自由端;110a-头端;110b-尾端;200-隔膜;300-胶带。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的 目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
随着电池行业的飞速发展,其电芯的生产效率要求越来越高,并且生产成本需要大幅降低。而采用卷绕方式制造电芯,具有效率高、成本低等特点,因此被广泛应 用于电芯的生产过程。
本发明人注意到,采用将极片和隔膜进行卷绕形成的电芯,存在安全性低的问题。发明人对电芯的自身结构以及加工过程进行研究分析,发明人发现电芯卷绕生产过程中,其极片的自由端如极片的头端和/或尾端相对于隔膜存在偏移。进一步研究分析后,发明人发现,电芯在卷绕形成的过程中,需要将极片与隔膜层叠并通过卷针卷绕,极片在入料时的头端以及极片在与隔膜卷绕预定长度后被裁断形成的尾端处均无张力,无法贴紧隔膜,使得极片在入料时的头端和/或收尾被裁断时的尾端存在角度不稳定,例如,入料时存在极片的头端撞卷针导致头部打折等现象,使得极片的头端出现偏移,影响所形成电芯的安全性能。
为了提高电芯的安全性,发明人研究发现,可以在电芯制造的过程中,将极片的自由端与隔膜进行连接,能够有效的避免因为极片的自由端发生偏斜导致所形成电芯安全性低的问题。
基于发明人发现的上述问题,发明人对电芯制造装置的结构进行改进,下面对本申请实施例进行进一步描述。
根据本申请的一些实施例,参阅图1以及图2所示,图1是本申请一个实施例的电芯制造装置的结构示意图,图2是本申请一个实施例的极片与隔膜的层叠示意图。
本申请提供了一种电芯制造装置,用于制造电芯,电芯包括极片100和隔膜200,极片100在自身的延伸方向具有自由端110,电芯制造装置包括卷针10以及复合组件20,卷针10被配置为将极片100和隔膜200卷绕形成电芯。复合组件20设置于卷针10的上游,复合组件20被配置为将极片100的自由端110与隔膜200连接。
如图2所示,极片100以及隔膜200均呈带状,极片100具有相互垂直的长度方向X、厚度方向Y以宽度方向,极片100在厚度方向Y上与隔膜200层叠,极片100在自身长度方向X的端部与卷针10接触作为卷绕起始端。极片100的自由端110包括极片100在自身长度方向X上的头端110a和/或尾端110b。
极片100可以为阳极片100a以及阴极片100a中的至少一者。所制造的电芯可以两层极片,一层为阳极片100a且另一层为阴极片100a,对应两层极片100,相应设置两层隔膜200,在极片100的厚度方向Y,其中一层极片100可以夹持在两层隔膜200之间,另一层极片100设置于其中一层隔膜200背离另一层隔膜200的一侧。
电芯制造装置在制造形成电芯时,可以将其中一层极片100的自由端110与对应的隔膜200连接,当然,也可以将两层极片100的自由端110分别与对应的隔膜200 连接。
卷针10是为极片100和隔膜200提供卷绕表面的装置。其具有一定的宽度,对应于卷绕的极片100和隔膜200的宽度,可以视工艺和产品结构需求,卷针10的宽度大于或等于隔膜200的宽度。卷针10在卷绕轴线方向的横截面可以是圆形、菱形、椭圆形或其他形状等,本申请也不对此作出特别的限定。
复合组件20设置于卷针10的上游指的是电芯生产顺序的先后,并非限定各部件之间的空间位置。
复合组件20可以通过提供连接件将极片100的自由端110与隔膜200连接,当然,也可以通过改变自由端110和/或隔膜200的物理性能使得二者相互连接。
本申请实施例的技术方案中,在卷针10的上游设置复合组件20,通过复合组件20能够将极片100的自由端110与隔膜200连接,避免电芯的极片100以及隔膜200在卷绕的过程中极片100的自由端110相对于隔膜200产生偏移,保证所生产的电芯的安全。
根据本申请的一些实施例,可选地,如图1所示,复合组件20包括贴胶组件,贴胶组件被配置为对极片100的自由端110以及隔膜200进行贴胶处理,以使得极片100的自由端110与隔膜200粘接连接。
贴胶组件用于将极片100的自由端110与隔膜200进行粘接连接,贴胶组件可以向极片100的自由端110与隔膜200的连接区提供粘接体,所提供的粘接体可以是固态状,当然也可以为具有一定流动性能的液态状,只要能够满足极片100的自由端110与隔膜200之间的粘接连接需求。
通过使得复合组件20包括贴胶组件,能够利用贴胶组件将极片100的自由端110采用粘贴方式连接,能够保证自由端110与隔膜200的相对位置的固定需求,避免自由端110相对于隔膜200发生偏离。
根据本申请的一些实施例,可选地,贴胶组件包括相对设置的支撑机构22以及贴胶机构21,支撑机构22被配置为设置在隔膜200背离极片100的一侧,并在贴胶时支撑自由端110和隔膜200,贴胶机构21设置在隔膜200的面对极片100的一侧,贴胶机构21被配置为向自由端110和隔膜200提供胶带300,以将自由端110与隔膜200通过胶带300粘接连接。
支撑机构22与贴胶机构21相对设置是指二者至少部分面向彼此设置,贴胶机构21用于向自由端110和隔膜200提供的胶带300可以为固态状,在极片100的宽度方向上,胶带300的宽度小于等于隔膜200的宽度,在极片100的长度方向X,胶带 300的尺寸不做具体限制,只要能够满足自由端110与隔膜200连接强度要求均可。胶带300可以部分连接在极片100的自由端110且部分连接在隔膜200上。
支撑机构22设置于隔膜200在厚度方向Y上背离极片100的一侧,当贴胶机构21向自由端110以及隔膜200提供胶带300时,支撑机构22与隔膜200背离极片100的一侧接触,为隔膜200以及自由端110提供支撑,使得隔膜200以及自由端110能够承接胶带300并通过胶带300连接。
通过使得贴胶组件包括支撑机构22以及贴胶机构21,在对自由端110与隔膜200进行连接时,可以通过支撑机构22对隔膜200背离极片100的一侧提供支撑,并通过贴胶机构21提供的胶带300将自由端110与隔膜200进行粘接连接,保证自由端110与隔膜200的相对位置的固定需求,避免自由端110相对于隔膜200发生偏离。
根据本申请的一些实施例,可选地,如图3所示,图3是本申请另一个实施例的电芯制造装置的结构示意图。支撑机构22与贴胶机构21之间距离可调。
支撑机构22与贴胶机构21在彼此相对设置的方向上的最小距离可调,用于改变支撑机构22与隔膜200之间的距离,和/或,用于改变贴胶机构21与自由端110以及隔膜200之间的距离。
通过上述设置,可以根据隔膜200与极片100的卷绕状态调节支撑机构22与贴胶机构21之间的距离,当需要将极片100的自由端110与隔膜200进行连接时,可以调节减小支撑机构22与贴胶机构21之间的距离,使得支撑机构能够与隔膜200接触。,贴胶机构21能够与隔膜200以及极片100的自由端110接触,保证自由端110与隔膜200之间的连接需求。而当自由端110与隔膜200连接后,可以调节增大支撑机构22与贴胶机构21之间的距离,避免支撑机构22与隔膜200接触,同时能够避免贴胶机构21与极片100接触,保证卷针10在卷绕隔膜200以及极片100的过程中,避免支撑机构22以及贴胶机构21对极片100以及隔膜200的运行产生阻力。
根据本申请的一些实施例,可选地,如图4所示,图4是本申请一个实施例的贴胶机构21的结构示意图。贴胶机构21包括第一驱动部211以及备胶辊212,备胶辊212与第一驱动部211转动连接,第一驱动部211被配置为驱动备胶辊212靠近或者远离隔膜200和自由端110设置,备胶辊212被配置为为胶带300提供安装位置,并在第一驱动部211驱动下将胶带300粘接连接至自由端110和隔膜200。
备胶辊212能够相对第一驱动部211转动,备胶辊212可以为具有轴线的辊子结构,可以为圆辊,当然,也可以为多边形辊。备胶辊212与第一驱动部211的一者上可以设置有转轴,另一者上可以设置有与转轴间隙配合的轴孔,保证二者之间转动 连接。
第一驱动部211能够驱动备胶辊212移动,使得备胶辊212向靠近或者远离隔膜200和自由端110设置。备胶辊212上的安装位置为与胶带300的形状相匹配的区域,使得胶带300能够放置在备胶辊212上与备胶辊212连接,并且在对极片100的自由端110以及隔膜200进行连接时,还能够与极片100的自由端110以及隔膜200相接触。
通过上述设置,可以通过第一驱动部211驱动备胶辊212向靠近或者远离隔膜200和极片100的移动,进而使得支撑机构22与贴胶机构21之间的距离可调。备胶辊212具有用于安装胶带300的安装位置,可以在安装位置处安装胶带300,并且,备胶辊212与第一驱动部211转动连接,使得胶带300的一端在粘接至极片100后,随着备胶辊212相对于第一驱动部211的转动,胶带300不断的粘贴至极片100的自由端110与隔膜200上,能够满足将预定长度的胶带300粘贴至自由端110与隔膜200,保证自由端110与隔膜200之间的连接强度。
根据本申请的一些实施例,可选地,如图5所示,图5是本申请一个实施例的备胶辊212的结构示意图,备胶辊212包括辊体212a以及设置于辊体212a内的分隔部212b,分隔部212b将辊体212a的内腔分隔形成两个以上独立腔室212c,辊体212a上对应每个独立腔室212c分别有连通孔212d,以用于负压吸附胶带300。
辊体212a为内部中空结构,分隔部212b的形状位于辊体212a的内部且外壁与辊体212a的内壁连接,将辊体212a内部的中空腔分割成两个以上独立腔室212c,每两个独立腔室212c之间互相不连通。独立腔室212c的数量不做具体限制,可以为两个,当然也可以多于两个,如三个、四个甚至更多个,具体可以根据每段胶带300的长度以及辊体212a的外径尺寸进行限制。
辊体212a上的连通孔212d贯穿辊体212a的侧壁并与对应的独立腔室212c连通,与每个独立腔室212c连通的连通孔212d的数量不做具体限制,只要能够保证对胶带300的吸附力大小要求即可。
负压吸附可以使得每个独立腔室212c内部的气压小于辊体212a外部的气压,压差的存在使得外部气体想要通过连通孔212d进入独立腔室212c内,由于连通孔212d被胶带300封堵,因此,外部空气的作用力将作用于胶带300,以将胶带300吸附在辊体212a的上。
通过上述设置,利于胶带300的安装,同时利用负压控制,可以通过调节独立腔室212c内的压力来控制胶带300的吸附与释放,保证胶带300对极片100的自由 端110以及隔膜200之间的连接需求。
根据本申请的一些实施例,可选地,第一驱动部211可以包括第一驱动电机211a、第一丝杠211b、第一螺母211c以及第一导向部211d,第一丝杠211b连接于第一驱动电机211a的输出端,第一丝杠211b与第一螺母211c传动配合,第一螺母211c与第一导向部211d导向配合,第一螺母211c与备胶辊212可转动连接。
第一驱动电机211a的输出端与第一丝杠211b连接,以驱动第一丝杠211b转动,第一螺母211c与第一丝杠211b传动配合,第一导向部211d的数量可以为一个,当然也可以多于一个,例如,可以为两个,两个第一导向部211d相对设置于第一丝杠211b的两侧。第一导向部211d能够防止第一螺母211c转动并能够向第一螺母211c提供导向的作用,使得第一螺母211c沿着第一导向部211d的延伸方向移动。
第一螺母211才可以直接或者间接与备胶辊212可转动连接,当采用间接连接方式时,可以在二者之间设置连接杆,以保证连接需求。
通过上述设置,可以通过第一驱动电机211a驱动第一丝杠211b转动,由于第一丝杠211b与第一螺母211c传动配合,并且第一螺母211c与第一导向部211d导向配合,可以将第一丝杠211b的转动转换为第一螺母211c沿着第一丝杠211b的长度方向上的往复移动,进而可以使得第一螺母211c带动备胶辊212往复移动。
根据本申请的一些实施例,可选地,如图6所示,图6是本申请另一个实施例的贴胶机构21的结构示意图。第一驱动部211包括第一伸缩缸,第一伸缩缸的缸杆与备胶辊212转动连接。
第一伸缩缸可以为气压缸、液压缸或者电动缸,第一伸缩缸包括缸体以及缸杆,缸杆插接在缸体内并与缸体滑动配合。
通过上述设置,使得第一驱动部211既能够对备胶辊212的驱动要求,同时,使得第一驱动部211结构简单,成本低廉。
根据本申请的一些实施例,可选地,如图7所示,图7是本申请一个实施例的支撑机构22的结构示意图。支撑机构22包括第二驱动部221以及支撑辊222,支撑辊222与第二驱动部221转动连接,第二驱动部221被配置为驱动支撑辊222靠近或者远离隔膜200设置,支撑辊222被配置为向隔膜200背离极片100一侧的表面提供支撑。
支撑辊222能够相对第二驱动部221转动,支撑辊222可以为具有轴线的辊子结构,可以为圆辊,当然,也可以为多边形辊。支撑辊222与第二驱动部221的一者上可以设置有转轴,另一者上可以设置有与转轴间隙配合的轴孔,保证二者之间转 动连接。
第二驱动部221能够驱动支撑辊222移动,支撑辊222靠近或者远离隔膜200和自由端110设置。支撑辊222具有能够于隔膜200背离极片100一侧的表面接触的支撑面,以满足对隔膜200的支撑要求。
通过上述设置,可以通过第二驱动部221驱动支撑辊222向靠近或者远离隔膜200的方向移动,进而使得支撑机构22与贴胶机构21之间的距离可调。并且,当支撑辊222支撑隔膜200时,在卷针10的卷绕作用下,隔膜200是在不断运行的,通过将支撑辊222与第二驱动部221之间转动连接,当支撑辊222对隔膜200进行支撑时,与隔膜200之间的摩擦为滚动摩擦,能够降低支撑辊222与隔膜200之间的摩擦阻力。
根据本申请的一些实施例,可选地,第二驱动部221包括第二驱动电机221a、第二丝杠221b、第二螺母221c以及第二导向部221d,第二丝杠221b连接于第二驱动电机221a的输出端,第二丝杠221b与第二螺母221c驱动配合,第二螺母221c与第二导向部221d导向配合,第二螺母221c与支撑辊222可转动连接。
第二驱动电机221a的输出端与第二丝杠221b连接,以驱动第二丝杠221b转动,第二螺母221c与第二丝杠221b传动配合,第二导向部221d的数量可以为一个,当然也可以多于一个,例如,可以为两个,两个第二导向部221d相对设置于第二丝杠221b的两侧。第二导向部221d能够防止第二螺母221c转动并能够向第二螺母221c提供导向的作用,使得第二螺母221c沿着第二导向部221d的延伸方向移动。
通过上述设置,可以通过第二驱动电机221a驱动第二丝杠221b转动,由于第二丝杠221b与第二螺母221c传动配合,并且第二螺母221c与第二导向部221d导向配合,可以将第二丝杠221b的转动转换为第二螺母221c沿着第二丝杠221b的长度方向X上的往复移动,进而可以使得第二螺母221c带动支撑辊222往复移动。
根据本申请的一些实施例,可选地,如图8所示,图8是本申请另一个实施例的支撑机构22的结构示意图。第二驱动部221包括第二伸缩缸,第二伸缩缸的缸杆与支撑辊222转动连接。
第二伸缩缸可以为气压缸、液压缸或者电动缸,第二伸缩缸包括缸体以及缸杆,缸杆插接在缸体内并与缸体滑动配合。
通过上述设置,使得第二驱动部221既能够对支撑辊222的驱动要求,同时,使得第二驱动部221结构简单,成本低廉。
复合组件20不限于上述各实施例的结构形式,在有些实施例中,复合组件 20可以包括红外加热复合部件,红外加热复合部件被配置为加热自由端110及隔膜200的至少一者,以使得自由端110与隔膜200热复合连接。
通过上述设置,使得复合组件20可以通过红外加热复合部件向极片100的自由端110以及隔膜200提供热能,以改变极片100的自由端110和隔膜200的物理性能,使得二者热复合,保证连接需求。
根据本申请的一些实施例,可选地,复合组件20不限于上述各实施例的结构形式,在有些实施例中,复合组件20还可以包括顶压部件,顶压部件被配置为挤压自由端110以及隔膜200,以使得自由端110与隔膜200压合连接。
通过上述设置,使得复合组件20可以通过顶压部件向极片100的自由端110以及隔膜200提供外力,以改变极片100的自由端110和隔膜200的物理性能,满足二者的连接需求。
根据本申请的一些实施例,可选地,如图9所示,图9是本申请又一个实施例的电芯制造装置的结构示意图。电芯制造装置还包括抚平部件30,抚平部件30位于复合组件20的下游并位于卷针10的上游,抚平部件30被配置为抚平自由端110与隔膜200的连接区域。
抚平部件30位于复合组件20的下游并位于卷针10的上游指的是电芯生产顺序的先后,并非限定各部件之间的空间位置。
抚平是指与自由端110与隔膜200的连接区域抵压接触并扫过,避免连接区产生褶皱。
通过上述设置,能够利用抚平部件30来抵压并抚平极片100的自由端110与隔膜200的连接区域,保证二者之间的连接强度。
根据本申请的一些实施例,可选地,如图10所示,图10是本申请一个实施例的抚平部件30的结构示意图。抚平部件30包括相互连接的第三驱动部31以及抚平辊32,抚平辊32被配置为辊压自由端110与隔膜200的连接区域,第三驱动部31被配置为驱动抚平辊32向靠近或者远离隔膜200和自由端110的方向移动。
抚平辊32可以为具有轴线的辊子结构,可以为圆辊。抚平辊32与第三驱动部31的一者上可以设置有转轴,另一者上可以设置有与转轴间隙配合的轴孔,保证二者之间转动连接。使得抚平辊32在作用于连接区域时,能够与连接区域滚动接触。
通过上述设置,可以根据需要利用第三驱动部31驱动抚平辊32向靠近或者远离隔膜200和自由端110的方向移动,保证抚平辊32对连接区域的抚平要求,同时,当抚平连接区域后,可以利用第三驱动部31驱动抚平辊32向远离隔膜200和自 由端110的方向移动,避免抚平辊32对极片100以及隔膜200的运行产生干涉。
根据本申请的一些实施例,可选地,第三驱动部31可以包括为气压缸、液压缸或者电动缸第三驱动部31包括缸体以及缸杆,缸杆插接在缸体内并与缸体滑动配合。
通过上述设置,使得第三驱动部31既能够对支撑辊222的驱动要求,同时,使得第三驱动部31结构简单,成本低廉。
根据本申请的一些实施例,可选地,如图11所示,图11是本申请再一个实施例的电芯制造装置的结构示意图。电芯制造装置还包括纠偏部件40,纠偏部件40设置于复合组件20的上游,纠偏部件40被配置为调节自由端110与隔膜200的相对位置。
纠偏部件40设置于复合组件20的上游指的是电芯生产顺序的先后。纠偏部件40用于调节隔膜200和/或极片100,改变二者之间的相对位置,避免极片100发生偏移。
通过设置纠偏部件40并使其位于复合组件20的上游,可以在复合组件20将自由端110与隔膜200进行连接之前调节自由端110的位置,避免自由端110在出现偏移的情况下与隔膜200连接固定。
根据本申请的一些实施例,可选地,自由端110包括极片100的头端110a和/或尾端110b。
自由端110可以仅包括极片100的头端110a,也就是说可以仅将极片100的头端110a与隔膜200通过复合组件20连接。自由端110也可以仅包括极片100的尾端110b,也就是说可以仅将极片100的尾端110b与隔膜200通过复合组件20连接。当然,也可以将极片100的头端110a以及尾端110b分别与隔膜200对应区域通过复合组件20连接。
通过上述设置,能够将极片100的头端110a和/或尾端110b与极片100进行连接,避免极片100的头端110a以及尾端110b对齐不良,提高所形成电芯的安全性能。
根据本申请的一些实施例,本申请提供了一种电芯制造装置,用于成形的电芯包括层叠设置的阳极片100a、阴极片100b以及两层隔膜200,阳极片100a以及阴极片100b均具有自由端110,阳极片100a的自由端110包括头端110a及尾端110b,阴极片100b的自由端110包括头端110a及尾端110b。
如图11所示,电芯制造装置包括卷针10、复合组件20、抚平部件30、纠 偏部件40、极片放卷机构50、极片入料机构60、极片裁切机构70、极片压辊机构80以及隔膜放卷机构90。每个隔膜200对应有隔膜放卷机构90,每个极片100均分别对应设置有复合组件20、抚平部件30、纠偏部件40、极片放卷机构50、极片入料机构60、极片裁切机构80、极片压辊机构80。极片放卷机构50上缠绕有极片100,隔膜放卷机构90上缠绕有隔膜200。
每个极片100对应的复合组件20可以包括贴胶组件,贴胶组件的贴胶机构21上可以设置有胶带300,每个贴胶机构21上的胶带300可以为两段,分别为极片100的头端110a用胶带300以及极片100的尾端110b用胶带300。
电芯制造设备在制造电芯时,具体流程参见图12至图17所示,图12至图17是本申请一个实施例的电芯制造装置在制造电芯时各步骤对应的结构示意图
如图12所示,将各隔膜200的头端与卷针10连接,待卷针10卷绕预定长度的隔膜200后,各极片放卷机构50开始释放极片100,各极片100的头端110a经过对应的纠偏部件40纠偏后经过极片入料机构60分别将对应的极片100送至入料位置。
如图13所示,使得每个极片100对应的贴胶组件的支撑机构22以及贴胶机构21共同压着相应极片100的头端110a,将各极片100的头端110a通过胶带300连接至隔膜200,形成图14所示形式。
如图15所示,待各极片100的头端110a分别与对应的隔膜200粘连在一起后,调节贴胶组件的支撑机构22以及贴胶机构21之间的距离,使得二者之间的距离变大。并且通过抚平部件30对头端110a与隔膜200的连接区域进行抚平,使得极片100的头端110a与隔膜200的连接。
如图16所示,卷针10继续卷绕隔膜200与极片100,直至卷绕预定长度的极片100以及隔膜200,利用极片裁切机构70对极片100进行裁切,形成极片100的尾端110b,极片100在裁切前,待接近待裁切位置时,调节贴胶组件的支撑机构22以及贴胶机构21之间的距离,使得二者之间的距离变小,并使得贴胶机构21进行贴胶动作,支撑机构22以及贴胶机构21将极片100与对应的隔膜200并在一起,极片裁切机构70将极片100裁切断,继续卷绕进行收尾,使得每个极片100对应的贴胶组件的支撑机构22以及贴胶机构21共同压着相应极片100的尾端110b,将各极片100的尾端110b通过胶带300连接至隔膜200。极片100的尾端110b与隔膜200连接后,可以通过抚平部件30对连接区域进行抚平操作,使得极片100的尾端110b与隔膜200的连接呈图17所示形式。
根据本申请的一些实施例,如1、图2以及图18所示,图18是本申请一个实施例的电芯制造方法的流程图。本申请提供了一种电芯的制造方法,电芯包括隔膜200和极片100,极片100具有自由端110,方法包括:
S100、卷绕隔膜200;
S200、将极片100与隔膜200层叠;
S300、将极片100的自由端110与隔膜200连接;
S400、继续卷绕隔膜200以及极片100。
在步骤S100中,可以先卷绕预定长度的隔膜200,具体可以预先在卷针10等结构上卷绕隔膜200。
在步骤S200中,极片100在自身厚度方向Y的表面与隔膜200层叠,极片100的数量可以为两层,其中一层可以为正极片100,另一层可以为负极片100,隔膜200的数量根据极片100的数量进行确定,当极片100的数量为两层时,对应的隔膜200的数量也可以为两层。
在步骤S300中,自由端110与隔膜200之间可以采用多种方式连接,例如可以采用粘接的方式,红外加热或者外力作用改变自由端110和/或隔膜200的物理性能使得二者相互连接。
在步骤S400中,隔膜200与极片100的卷绕长度具体可以根据待成型的电芯的性能要求确定,本申请不做具体长度限定。
本申请实施例的技术方案中,在电芯制造的过程中,通过将极片100的自由端110与隔膜200连接,使得用于卷绕形成电芯的极片100与隔膜200在卷绕的过程中,避免极片100的自由端110相对于隔膜200产生偏移,保证所生产的电芯的安全。
根据本申请的一些实施例,可选地,自由端110包括极片100的头端110a;步骤S300包括将极片100的头端110a与隔膜200连接。
极片100的头端110a为极片100在自身长度方向X的起始端,其为极片100在长度方向X上不受张力的一端。由于极片100在入料时存在极片100的头端110a撞卷针10导致头部打折,使得极片100的头端110a出现偏移,影响所形成电芯的安全性能。
通过使得极片100的自由端110包括头端110a,能够将极片100的头端110a与隔膜200连接固定,避免极片100的头端110a在电芯成型的过程中与隔膜200发生偏移。
根据本申请的一些实施例,可选地,本申请的芯片制造方法可以通过上述各实施例提供的电芯制造设备实施完成。
根据本申请的一些实施例,可选地,在执行步骤S400的同时,制造方法还包括获取极片100的卷绕长度;在极片100的卷绕长度到达预定的长度的条件下,切断极片100以形成第一段极片的尾端和第二段极片的头端;第一段极片为与隔膜卷绕在一起的极片;第二段极片为未与隔膜卷绕在一起的极片;将第一段极片的尾端与隔膜连接。
所获取的极片100的卷绕长度从极片100的头端110a开始计算,第一段极片的长度可以为所要形成电芯的阳极片100a或者阴极片100b的长度相等,当然也可以小于所要形成电芯的阳极片100a或者阴极片100b的长度,当小于所形成电芯所需的阳极片100a或者阴极片100b的长度时,所形成电芯所包括的第一段极片可以为多段,每段第一段极片的头端110a以及尾头端110b均与对应的隔膜200连接。
第一段极片的尾端可以采用粘接的方式、红外加热或者外力作用改变自由端110和/或隔膜200的物理性能等方式使得二者相互连接。
通过上述设置,能够将极片100每处被裁断后形成的第一段极片的尾端与隔膜200连接,避免尾端在电芯卷绕的过程中发生偏移。
根据本申请的一些实施例,可选地,在一些实施例中,自由端110包括极片100的尾端110b;将极片100的自由端110与隔膜200连接包括:将极片100的尾端110b与隔膜200连接。通过上述设置,可以将用于形成电芯的极片100整体的尾端110b与隔膜200连接,避免极片100整体的尾端110b与隔膜200分片。
根据本申请的一些实施例,可选地,将极片100的自由端110通过胶带300与隔膜200粘接。
胶带300可以为固态状,在极片100的宽度方向上,胶带300的宽度小于等于隔膜200的宽度,在极片100的长度方向X,胶带300的尺寸不做具体限制,在满足自由端110与隔膜200连接强度要求均可。胶带300可以部分连接在极片100的自由端110且部分连接在隔膜200上。
通过上述设置,可以通过胶带300将自由端110与隔膜200连接,保证二者的连接需求。
根据本申请的一些实施例,可选地,步骤S300还可以包括,将极片100的自由端110与隔膜200热复合连接。通过上述设置,将极片100的自由端110与隔膜200热复合连接。可以通过加热改变极片100的自由端110和隔膜200的物理性能,满 足二者的连接需求。
根据本申请的一些实施例,可选地,在步骤S300之前,方法还包括调节自由端110与隔膜200的相对位置。
通过移动自由端110或者隔膜200至少一者的位置进而调节二者之间的相对位置。通过上述设置,可以在自由端110与隔膜200进行连接之前调节自由端110的位置,避免自由端110在出现偏移的情况下与隔膜200连接固定。
在一些实施例中,在将极片100的自由端110与隔膜200连接之后,方法还包括:抚平自由端110与隔膜200的连接区域。抚平是通过抚平部件等与自由端110与隔膜200的连接区域抵压接触并扫过,避免连接区产生褶皱。通过上述设置,能够保证自由端110与隔膜200之间的连接强度,同时能够保证二者连接位置的平整性。
根据本申请的一些实施例,本申请提供的电芯的制造方法:
将两层隔膜200层叠并缠绕预定长度;
入料两层极片100,其中一层极片100为阳极片100a,另一层极片100为阴极片100b,阳极片100a与阴极片100b中的一者层叠在两层隔膜200之间,另一者设置层叠与其中一层隔膜200背离另一层隔膜200的表面。
将每层极片100的头端110a分别与对应的隔膜200粘接、热复合连接或者压合连接。
继续缠绕两层极片100以及两层隔膜200,并且在卷绕的过程中,获取每层极片100的卷绕长度,在极片100的卷绕长度到达预定的长度的条件下,切断极片100以形成第一段极片的尾端和第二段极片的头端,将第一段极片的尾端110b与隔膜200连接,形成卷绕电芯。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 一种电芯制造装置,所述电芯包括极片和隔膜,所述极片在自身延伸方向具有自由端,其特征在于,所述电芯制造装置包括:
    卷针,被配置为将所述极片和所述隔膜卷绕形成所述电芯;
    复合组件,设置于所述卷针的上游,所述复合组件被配置为将所述极片的所述自由端与所述隔膜连接。
  2. 根据权利要求1所述的电芯制造装置,其特征在于,所述复合组件包括贴胶组件,贴胶组件被配置为对所述极片的所述自由端以及所述隔膜进行贴胶处理,以使得所述极片的所述自由端与所述隔膜粘接连接。
  3. 根据权利要求2所述的电芯制造装置,其特征在于,所述贴胶组件包括相对设置的支撑机构以及贴胶机构,所述支撑机构被配置为设置在所述隔膜背离所述极片的一侧,并在贴胶时支撑所述自由端和所述隔膜;所述贴胶机构设置在所述隔膜的面对所述极片的一侧,所述贴胶机构被配置为向所述自由端和所述隔膜提供胶带,以将所述自由端与所述隔膜通过所述胶带粘接连接。
  4. 根据权利要求3所述的电芯制造装置,其特征在于,所述支撑机构与所述贴胶机构之间距离可调。
  5. 根据权利要求3所述的电芯制造装置,其特征在于,所述贴胶机构包括第一驱动部以及备胶辊,所述备胶辊与所述第一驱动部转动连接,所述第一驱动部被配置为驱动所述备胶辊靠近或者远离所述隔膜和所述自由端设置,所述备胶辊被配置为为所述胶带提供安装位置,并在所述第一驱动部驱动下将所述胶带粘接连接至所述自由端和所述隔膜。
  6. 根据权利要求5所述的电芯制造装置,其特征在于,所述备胶辊包括辊体以及设置于所述辊体内的分隔部,所述分隔部将所述辊体的内腔分隔形成两个以上独立腔室,所述辊体上对应每个所述独立腔室分别有连通孔,以用于负压吸附所述胶带。
  7. 根据权利要求5所述的电芯制造装置,其特征在于,所述支撑机构包括第二驱动部以及支撑辊,所述支撑辊与所述第二驱动部转动连接,所述第二驱动部被配置为驱动所述支撑辊靠近或者远离所述隔膜设置,所述支撑辊被配置为向所述隔膜背离所述极片一侧的表面提供支撑。
  8. 根据权利要求7所述的电芯制造装置,其特征在于,所述第一驱动部包括第一伸缩缸,所述第一伸缩缸的缸杆与所述备胶辊转动连接;
    和/或,所述第二驱动部包括第二伸缩缸,所述第二伸缩缸的缸杆与所述支撑辊转动连接。
  9. 根据权利要求7所述的电芯制造装置,其特征在于,所述第一驱动部包括第一驱动电机、第一丝杠、第一螺母以及第一导向部,所述第一丝杠连接于所述第一驱动电机的输出端,所述第一丝杠与所述第一螺母传动配合,所述第一螺母与所述第一导向部导向配合,所述第一螺母与所述备胶辊可转动连接;
    和/或,所述第二驱动部包括第二驱动电机、第二丝杠、第二螺母以及第二导向部,所述第二丝杠连接于所述第二驱动电机的输出端,所述第二丝杠与所述第二螺母驱动配合,所述第二螺母与所述第二导向部导向配合,所述第二螺母与所述支撑辊可转动连接。
  10. 根据权利要求1所述的电芯制造装置,其特征在于,所述复合组件包括红外加热复合部件,所述红外加热复合部件被配置为加热所述自由端及所述隔膜的至少一者,以使得所述自由端与所述隔膜热复合连接;
    和/或,所述复合组件包括顶压部件,所述顶压部件被配置为挤压所述自由端以及所述隔膜,以使得所述自由端与所述隔膜压合连接。
  11. 根据权利要求1至10任意一项所述的电芯制造装置,其特征在于,所述电芯制造装置还包括抚平部件,所述抚平部件位于所述复合组件的下游并位于所述卷针的上游,所述抚平部件被配置为抚平所述自由端与所述隔膜的连接区域。
  12. 根据权利要求11所述的电芯制造装置,其特征在于,所述抚平部件包括相互连接的第三驱动部以及抚平辊,所述抚平辊被配置为辊压所述自由端与所述隔膜的连接区域,所述第三驱动部被配置为驱动所述抚平辊向靠近或者远离所述隔膜和所述自由端的方向移动。
  13. 根据权利要求1至10任意一项所述的电芯制造装置,其特征在于,所述电芯制造装置还包括纠偏部件,所述纠偏部件设置于所述复合组件的上游,所述纠偏部件被配置为调节所述自由端与所述隔膜的相对位置。
  14. 根据权利要求1至10任意一项所述的电芯制造装置,其特征在于,所述自由端包括所述极片的头端和/或尾端。
  15. 一种电芯的制造方法,所述电芯包括隔膜和极片,所述极片具有自由端,其特征在于,所述方法包括:
    卷绕隔膜;
    将极片与所述隔膜层叠;
    将所述极片的所述自由端与所述隔膜连接;
    继续卷绕所述隔膜以及所述极片。
  16. 根据权利要求15所述的电芯的制造方法,其特征在于,
    所述自由端包括所述极片的头端;
    所述将所述极片的所述自由端与所述隔膜连接包括:
    将所述极片的所述头端与所述隔膜连接。
  17. 根据权利要求16所述的电芯的制造方法,其特征在于,在继续卷绕所述隔膜以及所述极片的同时,所述方法还包括:
    获取所述极片的卷绕长度;
    在所述极片的卷绕长度到达预定的长度的条件下,切断所述极片以形成第一段极片的尾端和第二段极片的头端;所述第一段极片为与所述隔膜卷绕在一起的极片;所述第二段极片为未与所述隔膜卷绕在一起的极片;
    将所述第一段极片的所述尾端与所述隔膜连接。
  18. 根据权利要求15或16所述的电芯的制造方法,其特征在于,
    所述自由端包括所述极片的尾端;
    所述将所述极片的所述自由端与所述隔膜连接包括:
    将所述极片的所述尾端与所述隔膜连接。
  19. 根据权利要求15所述的电芯的制造方法,其特征在于,
    将所述极片的所述自由端与所述隔膜连接包括:
    将所述极片的所述自由端通过胶带与所述隔膜粘接,或者
    将所述极片的所述自由端与所述隔膜热复合连接,或者
    将所述极片的所述自由端与所述隔膜压合连接。
  20. 根据权利要求15所述的电芯的制造方法,其特征在于,
    在所述将所述极片的所述自由端与所述隔膜连接之前,所述方法还包括:调节所述自由端与所述隔膜的相对位置。
  21. 根据权利要求14所述的电芯的制造方法,其特征在于,
    在所述将所述极片的所述自由端与所述隔膜连接之后,所述方法还包括:抚平所述自由端与所述隔膜的连接区域。
PCT/CN2022/101338 2021-09-02 2022-06-24 电芯制造装置及其方法 WO2023029693A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22862834.3A EP4273979A1 (en) 2021-09-02 2022-06-24 Battery cell manufacturing apparatus and method therefor
US18/503,122 US20240072295A1 (en) 2021-09-02 2023-11-06 Battery cell manufacturing device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111027515.7 2021-09-02
CN202111027515.7A CN115763932A (zh) 2021-09-02 2021-09-02 电芯制造装置及其方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/503,122 Continuation US20240072295A1 (en) 2021-09-02 2023-11-06 Battery cell manufacturing device and method

Publications (1)

Publication Number Publication Date
WO2023029693A1 true WO2023029693A1 (zh) 2023-03-09

Family

ID=85332256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101338 WO2023029693A1 (zh) 2021-09-02 2022-06-24 电芯制造装置及其方法

Country Status (4)

Country Link
US (1) US20240072295A1 (zh)
EP (1) EP4273979A1 (zh)
CN (1) CN115763932A (zh)
WO (1) WO2023029693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116729762A (zh) * 2023-08-01 2023-09-12 深圳市阿尔斯自动化科技有限公司 一种电芯叠片贴胶制备系统与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988657B2 (ja) * 1995-10-26 1999-12-13 富士電気化学株式会社 スパイラル形電極群の製造方法並びに装置
WO2018226027A1 (ko) * 2017-06-05 2018-12-13 (주)엔에스 전극 조립체 제조 시스템 및 방법
CN210468000U (zh) * 2019-10-10 2020-05-05 宁德时代新能源科技股份有限公司 制造二次电池的电极组件的设备
CN210489752U (zh) * 2019-09-26 2020-05-08 无锡先导智能装备股份有限公司 电芯卷绕设备
CN113036088A (zh) * 2021-03-26 2021-06-25 深圳市天晧设备有限公司 一种圆柱吸盘极片贴胶装置
CN214957023U (zh) * 2021-04-21 2021-11-30 深圳吉阳智能科技有限公司 复合卷绕装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988657B2 (ja) * 1995-10-26 1999-12-13 富士電気化学株式会社 スパイラル形電極群の製造方法並びに装置
WO2018226027A1 (ko) * 2017-06-05 2018-12-13 (주)엔에스 전극 조립체 제조 시스템 및 방법
CN210489752U (zh) * 2019-09-26 2020-05-08 无锡先导智能装备股份有限公司 电芯卷绕设备
CN210468000U (zh) * 2019-10-10 2020-05-05 宁德时代新能源科技股份有限公司 制造二次电池的电极组件的设备
CN113036088A (zh) * 2021-03-26 2021-06-25 深圳市天晧设备有限公司 一种圆柱吸盘极片贴胶装置
CN214957023U (zh) * 2021-04-21 2021-11-30 深圳吉阳智能科技有限公司 复合卷绕装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116729762A (zh) * 2023-08-01 2023-09-12 深圳市阿尔斯自动化科技有限公司 一种电芯叠片贴胶制备系统与方法

Also Published As

Publication number Publication date
US20240072295A1 (en) 2024-02-29
CN115763932A (zh) 2023-03-07
EP4273979A1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2023029693A1 (zh) 电芯制造装置及其方法
CN115004428B (zh) 制备电极组件的设备及电极组件的制备方法
CN210468000U (zh) 制造二次电池的电极组件的设备
WO2021068705A1 (zh) 制造二次电池的电极组件的方法以及设备
WO2022083499A1 (zh) 极耳换卷装置及卷绕设备
CN208111607U (zh) 一种用于电芯卷绕的自动换带装置以及电芯卷绕设备
WO2023165278A1 (zh) 电芯成型设备、电芯成型工艺及电芯
CN113113559B (zh) 电芯极片辊压方法及电芯极片
CN110212232B (zh) 锂电池复合机、热压复合系统及其复合方法
EP4084175A1 (en) Stacking machine
CN110993856B (zh) 一种制备锂离子电池双层复合隔膜的装置及其使用方法
CN110649328A (zh) 一种卷针、卷绕式电芯及卷绕式电芯的生产工艺
CN115810781A (zh) 叠片设备及叠片式电极组件的制造方法
CN113363546B (zh) 极芯制备系统和采用其制备极芯的制备方法
WO2008138180A1 (fr) Dispositif de formation et de collage pour des âmes en papier ondulé double de carton à quatre couches
CN205985230U (zh) 一种卷绕式叠片电池单体电极组件的制造装置
CN209912978U (zh) 锂电池复合机
CN116387600A (zh) 固态电池的高速卷绕系统和方法
CN216182783U (zh) 一种合压消泡装置
CN115149116A (zh) 一种电芯卷绕设备
CN209912972U (zh) 锂电池复合机、热压复合系统和加热装置
CN209947983U (zh) 一种锂电池电芯卷绕的扭力辅助送料机构
WO2022252774A1 (zh) 电芯制作设备及其方法、电池和用电装置
CN219716891U (zh) 一种复合料带、电芯及电芯制备设备
CN218241911U (zh) 电芯卷叠系统、卷叠式电芯及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022862834

Country of ref document: EP

Effective date: 20230801

NENP Non-entry into the national phase

Ref country code: DE