WO2023029315A1 - 用于相控阵天线收发组件的印制线路板、收发组件及雷达 - Google Patents

用于相控阵天线收发组件的印制线路板、收发组件及雷达 Download PDF

Info

Publication number
WO2023029315A1
WO2023029315A1 PCT/CN2021/142194 CN2021142194W WO2023029315A1 WO 2023029315 A1 WO2023029315 A1 WO 2023029315A1 CN 2021142194 W CN2021142194 W CN 2021142194W WO 2023029315 A1 WO2023029315 A1 WO 2023029315A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
microwave
core layer
chip
heat conduction
Prior art date
Application number
PCT/CN2021/142194
Other languages
English (en)
French (fr)
Inventor
陈利
单术平
郭国栋
Original Assignee
深南电路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深南电路股份有限公司 filed Critical 深南电路股份有限公司
Publication of WO2023029315A1 publication Critical patent/WO2023029315A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the invention relates to the technical field of antenna arrays, in particular to a printed circuit board for a phased array antenna transceiver assembly, a transceiver assembly and a radar.
  • phased array radar technology has become the mainstream technology of today's radar.
  • radar generally includes a number of transceiver components and a number of antenna units connected to the transceiver components; and each antenna unit corresponds to a transceiver (Transmitter and Receiver, TR) component; wherein, the transceiver component generally includes a digital part and a microwave part, and the digital part Assembled directly with the microwave part in a physical way, the volume is large and the heat dissipation is poor; at the same time, the volume occupied by several transceiver components is also large, which makes the entire radar large.
  • TR Transmitter and Receiver
  • the printed circuit board, transceiver component and radar used in the phased array antenna transceiver component provided by this application can solve the problems of large volume occupied by the digital part and microwave part of the existing transceiver component and poor heat dissipation.
  • the printed circuit board includes: a microwave core layer, a digital core layer, and a heat dissipation element; wherein, the microwave core layer works in the first frequency band, and has a chip carrying area on one side thereof, and the chip carrying area is used for carrying chips;
  • the digital core board layer works in the second frequency band, and is stacked on the other side of the microwave core board layer away from the chip carrying area; wherein, the microwave core board layer and the digital core board layer are provided with an interlayer A connection path; wherein, the interlayer connection path is connected to the chip carrying area; the heat dissipation element is embedded in the digital core board layer and connected to the chip carrying area.
  • one side of the microwave core layer is provided with a first groove, and the first groove is used as a chip carrying area.
  • a second groove is provided on the side of the digital core layer facing away from the microwave core layer and corresponding to the first groove; the heat dissipation element is arranged in the second groove.
  • the surface of the cooling element facing away from the microwave core layer is flush with the surface of the digital core layer facing away from the microwave core layer.
  • the side of the microwave core board layer facing the digital core board layer has several first heat conduction pillars; the side of the digital core board layer facing the microwave core board layer has several second heat conduction pillars;
  • the pillars are arranged in one-to-one correspondence, and the heat of the chip is transferred to the heat dissipation element through the first heat conduction pillar and the second heat conduction pillar.
  • the side of the microwave core layer facing the digital core layer is provided with a plurality of first heat conduction holes, and a metal medium is arranged in the first heat conduction holes to form a first heat conduction column;
  • a number of second heat conduction holes are opened on the side of the digital core plate facing the microwave core plate layer, and a metal medium is arranged in the second heat conduction holes to form a second heat conduction column.
  • the first heat conduction column is formed by electrolytic hole filling; and/or, the second heat conduction column is formed by filling holes.
  • the first groove includes: a first groove body and a second groove body; wherein, the first groove body is used for accommodating the chip; the second groove body communicates with the first groove body and is located away from the digital core in the first groove body
  • One side of the board layer is used for accommodating cables electrically connecting the chip and the microwave core board layer.
  • the radial dimension of the second groove body is larger than the radial dimension of the first groove body.
  • the microwave core layer includes a multi-layered first sub-core layer; the microwave core layer is provided with a first via hole along its stacking direction to communicate with at least two first sub-core layers; and/or , the digital core board layer includes multiple second sub-core board layers stacked; the digital core board layer is provided with a second via hole along the stacking direction to communicate with at least two second sub-core board layers.
  • a third via hole is also included, and the third via hole runs through the microwave core board layer and the digital core board layer; the first via hole, the second via hole and the third via hole are used as interlayer connection paths.
  • the transceiver assembly is used to connect with multiple antenna units;
  • the transceiver assembly includes a printed circuit board and at least one chip;
  • the printed circuit board is the above-mentioned printed circuit board;
  • at least one chip is arranged on the
  • the chip carrying area corresponds to the chip carrying area one by one;
  • the interlayer connection path is used to connect the chips in the chip carrying area.
  • the radar includes: several antenna units and transceiver components. Wherein, several antenna units are used for transmitting and receiving signals; the transmitting and receiving components are connected with several antenna units for receiving or outputting signals; wherein, the transmitting and receiving components are the above mentioned transmitting and receiving components.
  • the printed circuit board is provided with a microwave core layer, so that the microwave core layer works in the first frequency band, and makes the microwave core layer work in the first frequency band. It has a chip carrying area on one side to carry the chip through the chip carrying area; at the same time, by setting the digital core layer, the digital core layer works in the second frequency band, and is stacked on the other side of the microwave core layer away from the chip carrying area.
  • the microwave core board layer and the digital core board layer are provided with an interlayer connection path, and the interlayer connection path connects the chip carrying area; wherein, by integrating the microwave core board layer and the digital core board layer into the same circuit board, and passing Compared with the scheme of directly assembling and connecting the microwave core board layer and the digital core board layer through physical means, the inter-layer connection channel connection has a higher product integration level and effectively reduces the product volume; in addition, by setting heat dissipation elements and Embedding the heat dissipation element in the digital core board layer and connecting it with the chip carrying area can not only further reduce the volume of the product, but also have better heat dissipation of the product.
  • Figure 1a is a schematic structural diagram of a printed circuit board provided by an embodiment of the present application.
  • Fig. 1b is a structural schematic diagram of a chip carried on a printed circuit board shown in Fig. 1a;
  • Figure 2a is a schematic structural view of a printed circuit board provided by another embodiment of the present application.
  • Fig. 2b is a schematic structural diagram of a chip carried on a printed circuit board shown in Fig. 2a;
  • Fig. 3 is a schematic structural view of a printed circuit board provided by an embodiment of the present application without embedding heat dissipation elements;
  • FIG. 4 is a schematic diagram of a connection relationship between an antenna unit and a transceiver component provided by an embodiment of the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • Fig. 1 a is a schematic structural view of a printed circuit board provided by an embodiment of the present application
  • Fig. 1 b is a schematic structural view of a chip on a printed circuit board shown in Fig. 1 a; in this embodiment Among them, a printed circuit board 10 for phased array antenna transceiver components is provided.
  • the printed circuit board 10 integrates microwave circuits, digital circuits, and heat dissipation media on the same circuit board. Small and good heat dissipation.
  • the printed circuit board 10 includes: a microwave core layer 11 , a digital core layer 12 and a heat dissipation element 13 .
  • the microwave core layer 11 includes multiple layers of first sub-core layers 11 a stacked and a first dielectric layer 11 b bonding two adjacent first sub-core layers 11 a.
  • the microwave core layer 11 works in the first frequency band.
  • the first frequency band may be a high frequency band, for example, the microwave core layer 11 works in a frequency band between 0.3-30 GHz.
  • the material of the microwave core layer 11 can be a low-loss material such as polytetrafluoroethylene or hydrocarbon resin.
  • the microwave core layer 11 has a first side and a second side oppositely arranged, and the first side of the microwave core layer 11 has a chip carrying area, and the chip carrying area is used to carry the chip 14 to form a transceiver assembly 20; wherein, the chip The structure of 14 carried on the printed circuit board 10 can be specifically referred to in FIG. 1 b.
  • the microwave core layer 11 may include a plurality of chip-carrying areas, and each chip-carrying area may correspondingly carry a chip 14 to form a transceiver assembly 20 of at least one channel, and then communicate with one or more antenna units connect.
  • a first groove 111 is formed on the side of the microwave core layer 11 facing away from the digital core layer 12 , and the first groove 111 serves as a chip-carrying area.
  • Fig. 2a is a schematic structural diagram of a printed circuit board provided by another embodiment of the present application
  • Fig. 2b is a schematic structural diagram of a chip carried on a printed circuit board shown in Fig. 2a.
  • the first groove 111 may include a first groove body 1111 and a second groove body 1112 .
  • the first groove body 1111 is used for accommodating the chip 14, and the specific structure of the chip 14 accommodated in the first groove body 1111 can be referred to in FIG. inside the printed circuit board 10 , so that the finished transceiver assembly 20 can not only realize the function of receiving or sending signals, but also can make the volume of the product miniaturized.
  • the size and/or shape of the first groove body 1111 is matched with the chip 14 so as to facilitate attaching the chip 14 .
  • the second slot 1112 communicates with the first slot 1111 and is located on the side of the first slot 1111 away from the digital core layer 12, for accommodating the wires that electrically connect the chip 14 and the microwave core layer 11.
  • Cable 16 is connected to the chip 14 through the pad on the chip 14 .
  • the second groove body 1112 by setting the second groove body 1112 and installing the cable 16 in the second groove body 1112, it can not only reduce the volume of the transceiver assembly 20 formed, but also prevent the cable 16 from getting out of the printed circuit board 10.
  • the contact of other components of the cable 16 leads to poor contact with the chip 14 and/or the microwave core layer 11.
  • the radial dimension of the second groove body 1112 is larger than the radial dimension of the first groove body 1111 to facilitate wiring and reduce the degree of difficulty in processing.
  • the digital core layer 12 includes multiple layers of second sub-core layers stacked and a second dielectric layer bonding two adjacent second sub-core layers.
  • the digital core layer 12 specifically works in the second frequency band.
  • the second frequency band may be a low frequency band.
  • the digital core layer 12 works in a frequency band with a frequency lower than 17 Hz.
  • the material of the digital core layer 12 may be epoxy resin.
  • the digital core layer 12 is stacked on the other side of the microwave core layer 11 away from the chip carrying area, that is, on the second side of the microwave core layer 11 .
  • the microwave core board layer 11 and the digital core board layer 12 are provided with interlayer connection paths, and the interlayer connection paths are used to connect the chips 14 in the chip carrying area.
  • the microwave core layer 11 is provided with a first via hole 112 along its stacking direction to communicate with at least two first sub-core layers 11a; and/or, the digital core layer 12 is A second via hole 121 is opened in the stacking direction to communicate with at least two second sub-core board layers.
  • the printed circuit board 10 also includes a third via hole 15, the third via hole 15 runs through the upper and lower surfaces of the microwave core layer 11 and the digital core layer 12, so as to communicate with the sub-cores of each layer. ply.
  • the first via hole 112 , the second via hole 121 and the third via hole 15 serve as interlayer connection paths of the printed circuit board 10 .
  • first via hole 112 , the second via hole 121 and/or the third via hole 15 are metal holes; for example, they may be copper-plated holes.
  • the heat dissipation element 13 is embedded in the digital core board layer 12 and connected to the chip carrying area to dissipate the heat of the chip 14 carried in the chip carrying area.
  • the heat dissipation element 13 can be a metal block.
  • Figure 3 is a schematic structural diagram of a printed circuit board provided by an embodiment of the present application without embedded heat dissipation elements; the side of the digital core layer 12 facing away from the microwave core layer 11, And the position corresponding to the first groove 111 is provided with a second groove 123; the heat dissipation element 13 is specifically embedded in the second groove 123; wherein, by disposing the heat dissipation element 13 on the side of the chip 14 away from its pad , can directly conduct the heat of the chip 14 out, shorten the heat dissipation path, and accelerate the heat dissipation; at the same time, by embedding the heat dissipation element 13 in the digital core board layer 12, it is possible to reduce the heat dissipation of the printed circuit board 10 while realizing heat dissipation.
  • Product volume Specifically, the surface of the cooling element 13 facing away from the microwave core layer 11 is flush with the surface of the digital core layer 12 facing away from the microwave core layer 11, so as
  • the side of the microwave core layer 11 facing the digital core layer 12 has a plurality of first heat conduction pillars 113, and the first heat conduction pillars 113 are along the direction from the second side of the microwave core layer 11 toward the first side. Extending, corresponding to the bottom wall of the first groove 111 , and extending to the bottom wall of the first groove 111 or to the metal layer 17 where the bottom wall of the first groove 111 is located. Specifically, the radial dimension of the first heat conducting column 113 may gradually decrease along the direction from the second side of the microwave core layer 11 toward the first side, so as to facilitate electrolytic hole filling.
  • the side of the microwave core layer 11 facing the digital core layer 12 is provided with a plurality of first heat conduction holes, and a metal medium is disposed in the first heat conduction holes to form the above-mentioned first heat conduction columns 113 .
  • the first heat conduction hole extends along a direction from the second side of the microwave core layer 11 toward the first side, and the first heat conduction hole may specifically be a blind hole.
  • the metal medium can be formed in the first heat conduction hole by means of electrolytic hole filling.
  • the side of the digital core board layer 12 facing the microwave core board layer has several second heat conduction columns 122;
  • the first heat conduction column 113 and the second heat conduction column 122 are transferred to the heat dissipation element 13 for heat dissipation.
  • a number of second heat conduction holes are opened on the side of the digital core board layer 12 facing the microwave core board layer 11 , and a metal medium is disposed in the second heat conduction holes to form second heat conduction columns 122 .
  • the second heat conduction hole extends along the side of the digital core layer 12 facing the microwave core layer 11 toward the direction of the digital core layer 12 away from the microwave core layer 11 , and the second heat conduction hole may also be a blind hole.
  • the metal medium Fill in the second heat conduction hole to form the second heat conduction column 122 this can not only ensure the fullness of the metal medium in the second heat conduction hole by pressing, so as to ensure that the metal medium fills the entire second heat conduction hole, but also reduce the processing cost. degree of difficulty.
  • the printed circuit board 10 used in the phased array antenna transceiver assembly 20 provided in this embodiment, by setting the microwave core layer 11, makes the microwave core layer 11 work in the first frequency band, and has a chip carrying area on one side , to carry the chip 14 through the chip carrying area; at the same time, by setting the digital core layer 12, the digital core layer 12 works in the second frequency band, and is stacked on the other side of the microwave core layer 11 away from the chip carrying area; wherein , the microwave core layer 11 and the digital core layer 12 are provided with an interlayer connection path, and the interlayer connection path connects the chip carrying area; wherein, by integrating the microwave core layer 11 and the digital core layer 12 on the same circuit board, and Compared with the solution of directly assembling and connecting the microwave core layer 11 and the digital core layer 12 through physical means, the product integration degree is higher and the product volume is effectively reduced; in addition, by setting the heat dissipation Components 13, and the heat dissipation component 13 is embedded in the digital core board layer 12 and connected to the chip carrying area
  • a transceiver assembly 20 is provided, and the transceiver assembly 20 includes a printed circuit board 10 and at least one chip 14 .
  • the printed circuit board 10 can be the printed circuit board 10 provided by any of the above-mentioned embodiments; Correspondingly, that is, one chip carrying area correspondingly bears one chip 14 to form a transceiver assembly 20 having at least one signal channel. Among them, one signal channel can be connected with one or more antenna units.
  • the transceiver assembly 20 provided in this embodiment is provided with the printed circuit board 10 provided in the above embodiment, and the chip 14 is arranged on the chip carrying area of the printed circuit board 10 to form a transceiver assembly 20 with at least one signal channel , so that the transceiver assembly 20 can not only be connected with one or more antenna units, so as to receive or output signals transmitted and received by the antenna units, and compared with multiple transceiver assemblies 20 connected with multiple antenna units in the prior art,
  • the transceiver assembly 20 integrates the microwave core layer 11, the digital core layer 12 and the chip 14 on the same circuit board, realizing the integration of multiple existing transceiver assemblies 20 on the same circuit board, and effectively improving the integration of the transceiver assembly 20. To a certain extent, the volume occupied by the transceiver assembly 20 is reduced, thereby reducing the volume of the radar including several transceiver assemblies 20 .
  • FIG. 4 is a schematic diagram of a connection relationship between an antenna unit and a transceiver component provided in an embodiment of the present application.
  • a radar is provided.
  • the radar comprises a transceiving assembly 20 and several antenna elements 30 .
  • the antenna unit 30 is connected with the transceiver component 20 for sending and receiving signals.
  • the transceiver component 20 can be the transceiver component 20 involved in the above embodiments, and is used for receiving or outputting signals transmitted and received by the antenna unit 30.
  • the radar also includes a microwave feed circuit 40, a power module 50 and other controls.
  • the working principle of the radar is as follows: (1) Receive signal: the antenna unit 30 receives the electromagnetic wave signal and transmits it to the transceiver component 20, and the transceiver component 20 outputs the microwave feed signal after signal processing, and other controls are responsible for further processing and converting the microwave feed signal to to the user interface, while the power supply module 50 is responsible for supplying power to the above processing process; (2) transmitting signal: contrary to the above process, the control information of the user interface is output to the microwave feed circuit 40 through other controls, and the feed circuit transmits the signal to the transceiver assembly 20 is processed and transferred to the antenna unit 30 for radiation.
  • the transceiver assembly 20 is provided with the printed circuit board 10 provided by the above-mentioned embodiment, and the chip 14 is arranged on the chip carrying area of the printed circuit board 10 to form a transceiver assembly 20 with at least one signal channel.
  • the transceiver component 20 can not only be connected with a plurality of antenna units 30 to realize receiving or outputting signals transmitted and received by the antenna units 30, but compared with multiple transceiver components 20 connected with multiple antenna units 30 in the prior art, the transceiver component 20 will
  • the microwave core layer 11, the digital core layer 12 and the chip 14 are integrated on the same circuit board, which realizes the integration of one or more existing transceiver components 20 on the same circuit board, effectively improves the integration degree of the transceiver component 20, reduces The volume occupied by the transceiver assembly 20 is reduced, thereby reducing the volume of the radar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)

Abstract

本申请提供一种用于相控阵天线收发组件的印制线路板、收发组件及雷达。该印制线路板包括:微波芯板层、数字芯板层以及散热元件;其中,微波芯板层工作于第一频段,其一侧具有芯片承载区域,芯片承载区域用于承载芯片;数字芯板层工作于第二频段,且层叠设置于微波芯板层背离芯片承载区域的另一侧;其中,微波芯板层和数字芯板层设有层间连接通路;其中,层间连接通路连接芯片承载区域;散热元件嵌设于数字芯板层内并与芯片承载区域连接。该印制线路板的集成度较高,体积较小,散热较好。

Description

用于相控阵天线收发组件的印制线路板、收发组件及雷达 【技术领域】
本发明涉及天线阵列技术领域,尤其涉及一种用于相控阵天线收发组件的印制线路板、收发组件及雷达。
【背景技术】
近年来,随着科学技术的不断发展,相控阵雷达技术已成为当今雷达的主流技术。
目前,雷达一般包括若干收发组件和与收发组件连接的若干天线单元;且每一天线单元均对应一个收发(Transmitter and Receiver,TR)组件;其中,收发组件一般包括数字部分和微波部分,数字部分和微波部分直接通过物理方式进行装配,体积较大,且散热较差;同时,若干收发组件所占用的体积也较大,从而使得整个雷达的体积较大。
【发明内容】
本申请提供的用于相控阵天线收发组件的印制线路板、收发组件及雷达,能够解决现有收发组件的数字部分和微波部分所占用的体积较大,散热较差的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种用于相控阵天线收发组件的印制线路板。该印制线路板包括:微波芯板层、数字芯板层以及散热元件;其中,微波芯板层工作于第一频段,其一侧具有芯片承载区域,所述芯片承载区域用于承载芯片;数字芯板层工作于第二频段,且层叠设置于所述微波芯板层背离所述芯片承载区域的另一侧;其中,所述微波芯板层和所述数字芯板层设有层间连接通路;其中,所述层间连接通路连接所述芯片承载区域;散热元件嵌设于所述数字芯板层内并与所述芯片承载区域连接。
其中,微波芯板层的一侧设有第一凹槽,第一凹槽作为芯片承载区 域。
其中,数字芯板层背对微波芯板层的一侧且对应第一凹槽的位置开设有第二凹槽;散热元件设置于第二凹槽内。
其中,散热元件背对微波芯板层的一侧表面与数字芯板层背离微波芯板层的一侧表面平齐。
其中,微波芯板层朝向数字芯板层的一侧具有若干第一导热柱;数字芯板层朝向微波芯板层的一侧具有若干第二导热柱;其中,第一导热柱与第二导热柱一一对应设置,芯片的热量通过第一导热柱和第二导热柱传递至散热元件。
其中,微波芯板层朝向数字芯板层的一侧开设有若干第一导热孔,第一导热孔内设置有金属介质,以形成第一导热柱;
数字芯板层朝向微波芯板层的一侧开设有若干第二导热孔,第二导热孔内设置有金属介质,以形成第二导热柱。
其中,第一导热柱采用电解填孔的方式形成;和/或,第二导热柱采用灌孔的方式形成。
其中,第一凹槽包括:第一槽体和第二槽体;其中,第一槽体用于收容所述芯片;第二槽体与第一槽体连通且位于第一槽体背离数字芯板层的一侧,用于收容电连接芯片与微波芯板层的线缆。
其中,第二槽体的径向尺寸大于第一槽体的径向尺寸。
其中,微波芯板层包括层叠设置的多层第一子芯板层;微波芯板层沿其层叠方向开设有第一导通孔,以连通至少两层第一子芯板层;和/或,数字芯板层包括层叠设置的多层第二子芯板层;数字芯板层沿其层叠方向开设有第二导通孔,以连通至少两层第二子芯板层。
其中,还包括第三导通孔,第三导通孔贯穿微波芯板层和数字芯板层;第一导通孔、第二导通孔和第三导通孔作为层间连接通路。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种收发组件。其中,该收发组件用于与多个天线单元连接;该收发组件包括印制线路板和至少一个芯片;所述印制线路板为上述所涉及的印制线路板;至少一个芯片设置于所述芯片承载区域,并与所述芯片承载区域 一一对应;所述层间连接通路用于连接所述芯片承载区域的所述芯片。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种雷达。该雷达包括:若干天线单元和收发组件。其中,若干天线单元用于收发信号;收发组件与若干天线单元连接,用于接收或输出信号;其中,收发组件为上述所涉及的收发组件。
本申请实施例提供的用于相控阵天线收发组件的印制线路板、收发组件及雷达,该印制线路板通过设置微波芯板层,使微波芯板层工作于第一频段,并使其一侧具有芯片承载区域,以通过芯片承载区域承载芯片;同时通过设置数字芯板层,使数字芯板层工作于第二频段,且层叠设置于微波芯板层背离芯片承载区域的另一侧;其中,微波芯板层和数字芯板层设有层间连接通路,层间连接通路连接芯片承载区域;其中,通过将微波芯板层和数字芯板层集成于同一线路板,并通过层间连接通路连接,相比于将微波芯板层和数字芯板层通过物理方式直接进行装配连接的方案,产品集成度较高,有效减小了产品体积;另外,通过设置散热元件,并将散热元件嵌设于数字芯板层并与芯片承载区域连接,这样不仅能够进一步减小产品体积,且产品散热较好。
【附图说明】
图1a为本申请一实施例提供的印制线路板的结构示意图;
图1b为图1a所示印制线路板上承载芯片的结构示意图;
图2a为本申请另一实施例提供的印制线路板的结构示意图;
图2b为图2a所示印制线路板上承载芯片的结构示意图;
图3为本申请一实施例提供的印制线路板未嵌入散热元件的结构示意图;
图4为本申请一实施例提供的天线单元与收发组件的连接关系示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1和图1b,其中,图1a为本申请一实施例提供的印制线路板的结构示意图;图1b为图1a所示印制线路板上承载芯片的结构示意图;在本实施例中,提供一种用于相控阵天线收发组件的印制线路板10,该印制线路板10将微波电路、数字电路、散热媒介集成于同一线路板上,不仅集成度较高,体积较小,且散热效果良好。
如图1a所示,该印制线路板10包括:微波芯板层11、数字芯板层12以及散热元件13。
其中,微波芯板层11包括层叠设置的多层第一子芯板层11a以及粘结相邻两层第一子芯板层11a的第一介质层11b。微波芯板层11工作于第一频段。该第一频段可为高频段,比如微波芯板层11工作于频率介于0.3~30吉赫兹的频段。其中,微波芯板层11的材质可为聚四氟乙烯或碳氢树脂等低损耗材质。
微波芯板层11具有相对设置的第一侧和第二侧,微波芯板层11的第一侧具有芯片承载区域,该芯片承载区域用于承载芯片14,以形成收发组件20;其中,芯片14承载于印制线路板10上的结构具体可参见图1b。在具体实施例中,微波芯板层11上可包括多个芯片承载区域,每个芯片承载区域可对应承载一个芯片14,以形成至少一个通道的收发组件20,进而与一个或多个天线单元连接。
在一实施例中,如图1a所示,微波芯板层11的背对数字芯板层12的一侧开设有第一凹槽111,该第一凹槽111作为芯片承载区域。
参见图2a和图2b,其中,图2a为本申请另一实施例提供的印制线路板的结构示意图;图2b为图2a所示印制线路板上承载芯片的结构示意图。如图2a所示,该第一凹槽111可包括第一槽体1111和第二槽体1112。
其中,第一槽体1111用于收容芯片14,芯片14收容于第一槽体1111内的具体结构可参见图2b;其中,通过设置第一槽体1111作为芯片承载区域,能够使芯片14设置于印制线路板10的内部,从而使制得的收发组件20不仅能够实现接收或发送信号的功能,且能够使得产品体积小型化。具体的,第一槽体1111与芯片14的大小和/或形状匹配,以方便贴设芯片14。
如图2b所示,第二槽体1112与第一槽体1111连通且位于第一槽体1111背离数字芯板层12的一侧,用于收容电连接芯片14与微波芯板层11的线缆16。其中,线缆16具有通过芯片14上的焊盘与芯片14连接。该实施例通过设置第二槽体1112,将线缆16设置于第二槽体1112内,不仅能够减小所形成的收发组件20的体积,且能够防止线缆16与印制线路板10外的其它组件触碰导致线缆16与芯片14和/或微波芯板 层11接触不良的问题发生。具体的,第二槽体1112的径向尺寸大于第一槽体1111的径向尺寸,以方便布线,降低加工难度系数。
数字芯板层12包括层叠设置的多层第二子芯板层以及粘结相邻两层第二子芯板层的第二介质层。数字芯板层12具体工作于第二频段。该第二频段可为低频段。比如,数字芯板层12工作于频率低于17赫兹的频段。其中,数字芯板层12的材质可为环氧树脂。
具体的,数字芯板层12层叠设置于微波芯板层11背离芯片承载区域的另一侧,即,设置于微波芯板层11的第二侧。其中,微波芯板层11和数字芯板层12设有层间连接通路,层间连接通路用于连接芯片承载区域的芯片14。
具体的,如图2b所示,微波芯板层11沿其层叠方向开设有第一导通孔112,以连通至少两层第一子芯板层11a;和/或,数字芯板层12沿其层叠方向开设有第二导通孔121,以连通至少两层第二子芯板层。在具体实施例中,该印制线路板10还包括第三导通孔15,该第三导通孔15贯穿微波芯板层11和数字芯板层12的上下表面,以连通各层子芯板层。其中,该第一导通孔112、第二导通孔121和第三导通孔15作为印制线路板10的层间连接通路。
其中,第一导通孔112、第二导通孔121和/或第三导通孔15为金属孔;比如,可为镀铜孔。
如图1a至图2b所示,散热元件13嵌设于数字芯板层12内,并与芯片承载区域连接,以对承载在芯片承载区域的芯片14的热量进行散热。其中,散热元件13可为金属块。
具体的,如图2b和图3所示,图3为本申请一实施例提供的印制线路板未嵌入散热元件的结构示意图;数字芯板层12背对微波芯板层11的一侧,且对应第一凹槽111的位置开设有第二凹槽123;散热元件13具体嵌设于该第二凹槽123内;其中,通过将散热元件13设置于芯片14背离其焊盘的一侧,能够直接将芯片14的热量传导出去,缩短了散热路径,加快了散热;同时,通过将散热元件13嵌入数字芯板层12内,能够在实现散热的同时,减小印制线路板10的产品体积。具体的, 散热元件13背对微波芯板层11的一侧表面与数字芯板层12背离微波芯板层11的一侧表面平齐,以避免印制线路板10出现翘曲、弯折等问题。
在一具体实施例中,微波芯板层11朝向数字芯板层12的一侧具有若干第一导热柱113,第一导热柱113沿微波芯板层11的第二侧朝向第一侧的方向延伸,且与第一凹槽111的底壁对应,并延伸至第一凹槽111的底壁或延伸至第一凹槽111的底壁所在的金属层17。具体的,第一导热柱113的径向尺寸沿微波芯板层11的第二侧朝向第一侧的方向可逐渐减小,以方便电解填孔。
具体的,微波芯板层11朝向数字芯板层12的一侧开设有若干第一导热孔,第一导热孔内设置有金属介质,以形成上述第一导热柱113。具体的,第一导热孔沿微波芯板层11的第二侧朝向第一侧的方向延伸,且第一导热孔具体可为盲孔。其中,金属介质可采用电解填孔的方式形成于第一导热孔内。
数字芯板层12朝向微波芯板层的一侧具有若干第二导热柱122;第一导热柱113与第二导热柱122一一对应设置,承载于芯片承载区域的芯片14的热量具体通过第一导热柱113和第二导热柱122传递至散热元件13,以进行散热。
具体的,数字芯板层12朝向微波芯板层11的一侧开设有若干第二导热孔,第二导热孔内设置有金属介质,以形成第二导热柱122。具体的,第二导热孔沿数字芯板层12朝向微波芯板层11的一侧向数字芯板层12背离微波芯板层11的方向延伸,且第二导热孔也可为盲孔。其中,由于该数字芯板层12在第二导热孔内填充金属介质之后,会进一步与微波芯板层11进行压合,因此,在该实施例中,具体可采用灌孔的方式将金属介质填充于第二导热孔,以形成第二导热柱122;这样不仅能够通过压合保证第二导热孔内金属介质的饱满度,以保证金属介质填满整个第二导热孔,且能够降低加工的难度系数。
本实施例提供的用于相控阵天线收发组件20的印制线路板10,通过设置微波芯板层11,使微波芯板层11工作于第一频段,并使其一侧 具有芯片承载区域,以通过芯片承载区域承载芯片14;同时通过设置数字芯板层12,使数字芯板层12工作于第二频段,且层叠设置于微波芯板层11背离芯片承载区域的另一侧;其中,微波芯板层11和数字芯板层12设有层间连接通路,层间连接通路连接芯片承载区域;其中,通过将微波芯板层11和数字芯板层12集成于同一线路板,并通过层间连接通路连接,相比于将微波芯板层11和数字芯板层12通过物理方式直接进行装配连接的方案,产品集成度较高,有效减小了产品体积;另外,通过设置散热元件13,并将散热元件13嵌设于数字芯板层12并与芯片承载区域连接,这样不仅能够进一步减小产品体积,且产品散热较好。
请继续参见图1b或图2b,在本实施例中,提供一种收发组件20,该收发组件20包括印制线路板10和至少一个芯片14。
其中,印制线路板10可为上述任一实施例所提供的印制线路板10;至少一个芯片14设置于印制线路板10上,并与印制线路板10上的芯片承载区域一一对应,即,一个芯片承载区域对应承载一个芯片14,以形成具有至少一个信号通道的收发组件20。其中,一个信号通道可与一个或多个天线单元连接。
本实施例提供的收发组件20,通过设置上述实施例所提供的印制线路板10,并将芯片14设置于印制线路板10的芯片承载区域,以形成具有至少一个信号通道的收发组件20,从而使得该收发组件20不仅能够与一个或多个天线单元连接,以实现接收或输出天线单元收发的信号,且相比于现有技术中与多个天线单元连接的多个收发组件20,该收发组件20将微波芯板层11、数字芯板层12以及芯片14集成于同一线路板,实现了将现有的多个收发组件20集成于同一线路板,有效提高了收发组件20的集成度,减小了收发组件20所占用的体积,进而降低了包括若干收发组件20的雷达的体积。
在一实施例中,请参阅图4,图4为本申请一实施例提供的天线单元与收发组件的连接关系示意图。在本实施例中,提供一种雷达。该雷达包括收发组件20和若干天线单元30。
其中,天线单元30与收发组件20连接,用于收发信号。收发组件 20可为上述实施例所涉及的收发组件20,用于接收或输出天线单元30收发的信号。
具体的,雷达还包括微波馈电电路40、电源模块50以及其他控制。雷达的工作原理具体为:(1)接收信号:天线单元30接到电磁波信号传递给收发组件20,收发组件20经过信号处理输出微波馈电信号,其他控制负责对微波馈电信号进一步处理转化给到用户界面,同时电源模块50负责给上述处理过程供电;(2)发射信号:与上述流程相反,用户界面的控制信息通过其他控制输出给微波馈电电路40,馈电电路将信号传递收发组件20处理后转移给天线单元30辐射出去。
在具体实施例中,芯片14的数量至少为一个,至少一个芯片14与对应的一个或多个天线单元30连接。
本实施例提供的雷达,通过设置若干天线单元30和收发组件20,以通过天线单元30发送信号。其中,收发组件20通过设置上述实施例所提供的印制线路板10,并将芯片14设置于印制线路板10的芯片承载区域,以形成具有至少一个信号通道的收发组件20,该收发组件20不仅能够与多个天线单元30连接,以实现接收或输出天线单元30收发的信号,且相比于现有技术中与多个天线单元30连接的多个收发组件20,该收发组件20将微波芯板层11、数字芯板层12以及芯片14集成于同一线路板,实现了将现有的一个或多个收发组件20集成于同一线路板,有效提高了收发组件20的集成度,减小了收发组件20所占用的体积,进而降低了雷达的体积。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种用于相控阵天线收发组件的印制线路板,其中,包括:
    微波芯板层,工作于第一频段,其一侧具有芯片承载区域,所述芯片承载区域用于承载芯片;
    数字芯板层,工作于第二频段,且层叠设置于所述微波芯板层背离所述芯片承载区域的另一侧;其中,所述微波芯板层和所述数字芯板层设有层间连接通路;其中,所述层间连接通路连接所述芯片承载区域;
    散热元件,嵌设于所述数字芯板层内并与所述芯片承载区域连接。
  2. 根据权利要求1所述的印制线路板,其中,
    所述微波芯板层的所述一侧设有第一凹槽,所述第一凹槽作为所述芯片承载区域。
  3. 根据权利要求2所述的印制线路板,其中,
    所述数字芯板层背对所述微波芯板层的一侧且对应所述第一凹槽的位置开设有第二凹槽;所述散热元件设置于所述第二凹槽内。
  4. 根据权利要求3所述的印制线路板,其中,所述散热元件背对所述微波芯板层的一侧表面与所述数字芯板层背离所述微波芯板层的一侧表面平齐。
  5. 根据权利要求3所述的印制线路板,其中,
    所述微波芯板层朝向所述数字芯板层的一侧具有若干第一导热柱;所述数字芯板层朝向所述微波芯板层的一侧具有若干第二导热柱;其中,所述第一导热柱与所述第二导热柱一一对应设置,所述芯片的热量通过所述第一导热柱和所述第二导热柱传递至所述散热元件。
  6. 根据权利要求5所述的印制线路板,其中,所述微波芯板层朝向所述数字芯板层的一侧开设有若干第一导热孔,所述第一导热孔内设置有金属介质,以形成所述第一导热柱;
    所述数字芯板层朝向所述微波芯板层的一侧开设有若干第二导热孔,所述第二导热孔内设置有金属介质,以形成所述第二导热柱。
  7. 根据权利要求5所述的印制线路板,其中,所述第一导热柱采 用电解填孔的方式形成;
    和/或,所述第二导热柱采用灌孔的方式形成。
  8. 根据权利要求2所述的印制线路板,其中,所述第一凹槽包括:
    第一槽体,用于收容所述芯片;
    第二槽体,与所述第一槽体连通且位于所述第一槽体背离所述数字芯板层的一侧,用于收容电连接所述芯片与所述微波芯板层的线缆。
  9. 根据权利要求8所述的印制线路板,其中,所述第二槽体的径向尺寸大于所述第一槽体的径向尺寸。
  10. 根据权利要求1所述的印制线路板,其中,所述微波芯板层包括层叠设置的多层第一子芯板层;所述微波芯板层沿其层叠方向开设有第一导通孔,以连通至少两层所述第一子芯板层;
    和/或,所述数字芯板层包括层叠设置的多层第二子芯板层;所述数字芯板层沿其层叠方向开设有第二导通孔,以连通至少两层所述第二子芯板层。
  11. 根据权利要求10所述的印制线路板,其中,还包括第三导通孔,所述第三导通孔贯穿所述微波芯板层和所述数字芯板层;所述第一导通孔、所述第二导通孔和所述第三导通孔作为所述层间连接通路。
  12. 一种收发组件,其中,所述收发组件用于与一个或多个天线单元连接;所述收发组件包括:
    印制线路板;所述印制线路板为如权利要求1所述的印制线路板;
    至少一个芯片,设置于所述芯片承载区域,并与所述芯片承载区域一一对应;所述层间连接通路用于连接所述芯片承载区域的所述芯片。
  13. 一种雷达,其中,包括:
    若干天线单元,用于收发信号;
    收发组件,与所述若干天线单元连接,用于接收或输出所述信号;其中,所述收发组件为如权利要求12所述的印制线路板。
PCT/CN2021/142194 2021-09-01 2021-12-28 用于相控阵天线收发组件的印制线路板、收发组件及雷达 WO2023029315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111022007.XA CN115732943A (zh) 2021-09-01 2021-09-01 用于相控阵天线收发组件的印制线路板、收发组件及雷达
CN202111022007.X 2021-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/433,761 Continuation US20240179852A1 (en) 2021-09-01 2024-02-06 Printed circuit board for phased array antenna transceiver assembly, transceiver assembly and radar

Publications (1)

Publication Number Publication Date
WO2023029315A1 true WO2023029315A1 (zh) 2023-03-09

Family

ID=85292191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142194 WO2023029315A1 (zh) 2021-09-01 2021-12-28 用于相控阵天线收发组件的印制线路板、收发组件及雷达

Country Status (2)

Country Link
CN (1) CN115732943A (zh)
WO (1) WO2023029315A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730232A (en) * 1986-06-25 1988-03-08 Westinghouse Electric Corp. High density microelectronic packaging module for high speed chips
CN106102350A (zh) * 2016-06-22 2016-11-09 安徽天兵电子科技有限公司 一种tr组件的封装方法
CN106229678A (zh) * 2016-09-29 2016-12-14 上海航天测控通信研究所 一种高集成度相控阵天线馈电系统
WO2021004459A1 (zh) * 2019-07-07 2021-01-14 深南电路股份有限公司 一种埋入式电路板及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730232A (en) * 1986-06-25 1988-03-08 Westinghouse Electric Corp. High density microelectronic packaging module for high speed chips
CN106102350A (zh) * 2016-06-22 2016-11-09 安徽天兵电子科技有限公司 一种tr组件的封装方法
CN106229678A (zh) * 2016-09-29 2016-12-14 上海航天测控通信研究所 一种高集成度相控阵天线馈电系统
WO2021004459A1 (zh) * 2019-07-07 2021-01-14 深南电路股份有限公司 一种埋入式电路板及其制备方法

Also Published As

Publication number Publication date
CN115732943A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
CN111541001B (zh) 一体化瓦片有源相控阵天线
US8119922B2 (en) Dual cavity, high-heat dissipating printed wiring board assembly
US6274391B1 (en) HDI land grid array packaged device having electrical and optical interconnects
JP4571638B2 (ja) フレキシブルなコンフォーマルアンテナのための埋込み式rf垂直相互接続
KR100723635B1 (ko) 고주파 신호를 전달하기 위한 변환 회로 및 이를 구비한송수신 모듈
CN106100677B (zh) 一种tr组件的多维功分网络的封装方法
CN109004375A (zh) 天线集成印刷线路板(aipwb)
US6911733B2 (en) Semiconductor device and electronic device
US20080137317A1 (en) Method and system for angled rf connection using a flexible substrate
CN106376172B (zh) 一种混压金属基微波印制板及设计方法
WO2020124436A1 (zh) 封装天线基板及其制造方法、封装天线及终端
JP2017215197A (ja) 高周波基板
CN106102350B (zh) 一种tr组件的封装方法
CN111199926B (zh) 一种带有微隔腔的半导体封装结构
WO2021000261A1 (zh) 天线基板以及天线基板的制造方法
EP3547363B1 (en) Electronic assembly and electronic system with impedance matched interconnect structures
CN114256575B (zh) 一种多通道小型化微波组件及其金属基复合基板结构
EP1976350B1 (en) Method and structure for RF antenna module
CN111971852B (zh) 一种天线封装结构
WO2023029315A1 (zh) 用于相控阵天线收发组件的印制线路板、收发组件及雷达
US20060162957A1 (en) Printed circuit board, printed circuit module and method for producing a printed circuit board
WO2023134474A1 (zh) 封装天线基板及其制备方法、电子设备
US20240179852A1 (en) Printed circuit board for phased array antenna transceiver assembly, transceiver assembly and radar
CN216288988U (zh) 用于相控阵天线收发组件的印制线路板、收发组件及雷达
CN110323561B (zh) 一种集成多种射频模块的印制电路板及制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021955843

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021955843

Country of ref document: EP

Effective date: 20240402