WO2023028922A1 - 混合动力系统及车辆 - Google Patents

混合动力系统及车辆 Download PDF

Info

Publication number
WO2023028922A1
WO2023028922A1 PCT/CN2021/115998 CN2021115998W WO2023028922A1 WO 2023028922 A1 WO2023028922 A1 WO 2023028922A1 CN 2021115998 W CN2021115998 W CN 2021115998W WO 2023028922 A1 WO2023028922 A1 WO 2023028922A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
power system
hybrid power
engine
input shaft
Prior art date
Application number
PCT/CN2021/115998
Other languages
English (en)
French (fr)
Inventor
史时文
陈振辉
刘海坡
Original Assignee
舍弗勒技术股份两合公司
史时文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 史时文 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/115998 priority Critical patent/WO2023028922A1/zh
Priority to CN202180097156.4A priority patent/CN117203074A/zh
Publication of WO2023028922A1 publication Critical patent/WO2023028922A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of vehicles, and more particularly to a hybrid system and a vehicle including the hybrid system.
  • an existing hybrid power system includes an engine ICE, a first electric machine EM1, a second electric machine EM2 and a transmission, wherein the first electric machine EM1 is mainly used as a generator, and the second electric machine EM2 is mainly used for as a motor.
  • the hybrid power system can work in multiple working modes including series working mode and parallel working mode.
  • the transmission includes a clutch C0, and the engagement/disengagement of different clutch units using the clutch C0 can change the working state of the engine ICE, so that the engine ICE can drive the first electric machine EM1 and transmit drive torque to the differential DM.
  • the transmission when the engine ICE is used to transmit the drive torque to the differential DM, the transmission has two gears available (using the synchronizer A of the transmission for shifting), when the second electric motor EM2 is used to transmit the torque to the differential DM Only one gear is available with the derailleur.
  • the engine ICE is arranged in parallel and staggered with the first electric machine EM1 and the second electric machine EM2, and the engine ICE, the first electric machine EM1 and the second electric machine EM2 need two intermediate shafts
  • the transmission connection with the differential DM makes the packaging size of the entire hybrid system too large and the cost is high; on the other hand, the engine ICE and the first electric machine EM1 need to realize the transmission connection through an additional gear pair and a longer shaft , so this also leads to a higher cost of the entire hybrid system.
  • the present application is made based on the defects of the above-mentioned prior art.
  • An object of the present application is to provide a novel hybrid power system, which can realize the same or more working modes as the hybrid power system described in the background art, and has a smaller package size and lower cost.
  • Another object of the present application is to provide a vehicle including the above hybrid system.
  • the hybrid power system includes a first motor, a second motor, a dual clutch and a transmission
  • the first motor is configured coaxially with the engine and is used for transmission coupling
  • the second motor is arranged in parallel with the first motor and staggered with the first motor in the radial direction of the first motor
  • the transmission includes a first input shaft, a second input shaft, a third input shaft and an intermediate shaft
  • the dual clutch includes a first clutch unit and a second clutch unit, the first input shaft and the first motor are connected via The first clutch unit is in a controlled transmission connection
  • the second input shaft is in a controlled transmission connection with the first motor via the second clutch unit
  • the third input shaft is always in contact with the second motor Transmission connection
  • the first input shaft, the second input shaft and the third input shaft are always in transmission connection with the intermediate shaft through different gear pairs.
  • the transmission further includes a first gear, a second gear, a third gear, a fourth gear, a fifth gear and a sixth gear,
  • the first gear is connected torsionally fixed to the first input shaft
  • the second gear is connected torsionally fixed to the second input shaft
  • the third gear is connected torsionally fixed to the third input shaft
  • the first The fourth gear, the fifth gear and the sixth gear are all connected to the intermediate shaft in a torsion-resistant manner
  • the first gear is always in mesh with the fourth gear
  • the second gear is always in mesh with the fifth gear
  • the third gear is always in mesh with the sixth gear.
  • the hybrid system further includes a differential, the input gear of the differential is connected to one of the fourth gear, the fifth gear and the sixth gear Always engaged.
  • the dual clutch is located radially inside the rotor of the first electric machine.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a pure motor drive mode
  • the second motor when the hybrid power system is in the pure motor drive mode, the second motor is in a driving state, the first clutch unit and the second clutch unit are both separated, and the second motor drives to the The transmission transmits torque for drive.
  • the hybrid power system further includes a control module and the engine, and the control module can control the hybrid power system so that the hybrid power system realizes a pure engine driving mode
  • the engine When the hybrid power system is in the pure engine driving mode, the engine is in a driving state, the second motor is in a non-working state, the first clutch unit or the second clutch unit is engaged, and the engine Torque is transmitted to the transmission for drive.
  • the hybrid power system further includes a control module and the engine, and the control module can control the hybrid power system so that the hybrid power system realizes a hybrid drive mode
  • the engine When the hybrid system is in the hybrid driving mode, the engine is in a driving state, the second electric motor is in a driving state, the first clutch unit or the second clutch unit is engaged, and the engine and The second electric machine transfers torque to the transmission for drive.
  • the hybrid power system further includes a control module and the engine, and the control module can control the hybrid power system so that the hybrid power system realizes an engine start mode while driving,
  • the hybrid power system When the hybrid power system is in the engine start mode while driving, the engine is to be started, the first electric motor is in a driving state, the second electric motor is in a driving state, and the first clutch unit and the second Both trains and units are decoupled, the second electric motor transfers torque to the transmission for drive and the first electric motor transfers torque to the engine for starting the engine.
  • the hybrid power system further includes a control module, the control module can control the hybrid power system so that the hybrid power system realizes a braking energy recovery mode,
  • the second motor When the hybrid power system is in the braking energy recovery mode, the second motor is in the power generation state, the first clutch unit and the second clutch unit are both separated, and the second motor receives power from the The torque of the transmission is used to generate electricity.
  • the present application also provides the following vehicle, which includes the hybrid power system described in any one of the above technical solutions.
  • the hybrid system includes a first electric machine, a second electric machine, a dual clutch and a transmission.
  • the first motor is configured coaxially with the engine and is used for constant transmission connection with the engine, and the second motor is configured in parallel with the first motor and staggered with the first motor in the radial direction of the first motor.
  • the transmission includes a first input shaft, a second input shaft, a third input shaft and an intermediate shaft, and the double clutch includes a first clutch unit and a second clutch unit.
  • the first input shaft is connected to the first motor via a first clutch unit
  • the second input shaft is connected to the first motor via a second clutch unit.
  • the third input shaft is always in transmission connection with the second motor.
  • the first input shaft, the second input shaft and the third input shaft are always in transmission connection with the intermediate shaft through different gear pairs respectively.
  • the first gear is directly connected to the first input shaft
  • the second gear is directly connected to the second input shaft
  • the third gear is directly connected to the third input shaft
  • the fourth gear, the fifth gear and the sixth gear are directly connected to the The intermediate shaft is directly connected.
  • the first motor and the second motor are arranged in parallel and staggered, the package size of the whole system is reduced compared with the hybrid system described in the background art.
  • the coaxial configuration of the first motor and the engine, and the parallel and staggered configuration of the first motor and the second motor also improve the packaging space of the entire system, making the hybrid system of the present application suitable for various vehicles.
  • the engine, the first motor and the second motor are connected to the differential through the common fifth gear and intermediate shaft, which also simplifies the structure of the hybrid power system and reduces the cost.
  • FIG. 1 is a schematic diagram showing a topology of a conventional hybrid power system.
  • FIG. 2 is a schematic diagram illustrating a topology of a hybrid power system according to an embodiment of the present application.
  • FIG. 3A is a schematic diagram showing a torque transmission path of the hybrid system in FIG. 2 in a pure motor driving mode, wherein the dotted line indicates a transmission path of the driving torque of the second electric motor.
  • FIG. 3B is a schematic diagram showing the torque transmission path of the hybrid system in FIG. 2 in the first pure engine driving mode, where the dotted line indicates the transmission path of the driving torque of the engine.
  • FIG. 3C is a schematic diagram showing the torque transmission path of the hybrid system in FIG. 2 in the second pure engine driving mode, wherein the dotted line indicates the transmission path of the driving torque of the engine.
  • FIG. 3D is a schematic diagram showing a torque transmission path of the hybrid system in FIG. 2 in a first hybrid driving mode, wherein a dotted line indicates a transmission path of driving torque of the engine and the second electric machine.
  • FIG. 3E is a schematic diagram illustrating a torque transmission path of the hybrid system in FIG. 2 in a second hybrid driving mode, where the dotted line indicates a transmission path of driving torque of the engine and the second electric machine.
  • FIG. 3F is a schematic diagram showing the torque transmission path of the hybrid system in FIG. 2 in the engine start mode while running, wherein the dotted line indicates the transmission path of the driving torque of the first electric machine and the second electric machine.
  • FIG. 3G is a schematic diagram showing the torque transmission path of the hybrid system in FIG. 2 in the braking energy recovery mode, wherein the dotted line indicates the torque transmission path to the second electric machine.
  • transmission coupling refers to a connection between two components capable of transmitting torque, including direct connection or indirect connection between these two components unless otherwise specified.
  • torque-resistant connection refers to a connection in which two parts can rotate together to transmit torque
  • the above-mentioned torque-resistant connection can be realized through a spline structure between a gear and a shaft.
  • a hybrid power system includes an engine ICE, a dual-mass flywheel DMF, a first motor EM1, a second motor EM2, a dual clutch C, a transmission, a differential DM, two and a half Shaft and battery (not shown).
  • the crankshaft of the engine ICE is always drivingly coupled with the rotor support of the first electric machine EM1 via the dual mass flywheel DMF.
  • the dual-mass flywheel DMF is used to attenuate the torsional vibration from the engine ICE, and the hybrid power system of the present application can also use dampers of other structures to achieve the function of attenuating torsional vibration.
  • the torque of the engine ICE can be transmitted to the first electric machine EM1 to drive the first electric machine EM1 to generate electricity; in addition, the torque of the first electric machine EM1 can be transmitted to the engine ICE to start the engine ICE.
  • the first electric machine EM1 includes a stator, a rotor capable of rotating relative to the stator, and a rotor bracket fixed to the rotor.
  • the rotor bracket of the first electric machine EM1 is coupled with the crankshaft of the engine ICE, and the central axis of the rotor of the first electric machine EM1 is coaxial with the central axis of the crankshaft of the engine ICE, so that the first electric machine EM1 and the engine ICE are coaxial configuration.
  • the rotor support is also connected to the outer hubs of the first clutch unit C1 and the second clutch unit C2 of the dual clutch C in a rotationally fixed manner.
  • the first motor EM1 is also electrically connected to the battery. In this way, when the first electric machine EM1 is supplied with electric energy by the battery, the first electric machine EM1 can start the engine ICE as a motor; Charge.
  • the first electric machine EM1 is mainly used to generate electricity to charge the battery and start the engine ICE.
  • the second electric machine EM2 includes a stator and a rotor capable of rotating relative to the stator.
  • the rotor of the second electric machine EM2 is rotationally connected to the third input shaft S3 of the transmission.
  • the central axis of the rotor of the second motor EM2 and the central axis of the rotor of the first motor EM1 are parallel to each other and staggered by a certain distance, so that the second motor EM2 and the first motor EM1 are arranged in parallel and staggered.
  • the second motor EM2 is also electrically connected to the battery.
  • the second electric machine EM2 when the second electric machine EM2 is supplied with electric energy by the battery, the second electric machine EM2 can transmit driving torque to the speed changer as a motor; Charging batteries.
  • the second electric motor EM2 is mainly used for driving and recovering braking energy.
  • the dual clutch C is, for example, a wet friction dual clutch, that is to say, the dual clutch C can use hydraulic oil to control the engagement and disengagement of its clutch units (including friction discs and pressure plates).
  • the dual clutch C is integrated into the radial inner side of the rotor of the first electric machine EM1, so that the double clutch C and the first electric machine EM1 are axially overlapped, which can shorten the axial size of the entire hybrid power system.
  • the dual clutch C includes a first clutch unit C1 and a second clutch unit C2 that can work independently.
  • the outer hub corresponding to the first clutch unit C1 and the outer hub corresponding to the second clutch unit C2 are connected to the rotor bracket of the first electric motor EM1 in a torque-proof connection, and the inner hub corresponding to the first clutch unit C1 is in a torque-resistant connection to the first input shaft S1 of the transmission.
  • the inner hub corresponding to the second clutch unit C2 is connected torsionally with the second input shaft S2 of the transmission.
  • the transmission includes a first input shaft S1 , a second input shaft S2 , a third input shaft S3 and an intermediate shaft S4 .
  • the first input shaft S1 is a hollow shaft
  • the second input shaft S2 is a solid shaft.
  • the second input shaft S2 passes through the first input shaft S1 in a coaxial manner with the first input shaft S1, and the first input shaft S1 and the second input shaft S2 are rotatable independently of each other.
  • the third input shaft S3 and the intermediate shaft S4 are arranged in parallel with the first input shaft S1 and the second input shaft S2, and the third input shaft S3 and the intermediate shaft S4 are in the radial direction of the transmission with the first input shaft S1 and the second input shaft S2. Stagger upwards.
  • the transmission also includes a first gear G1, a second gear G2, a third gear G3, a fourth gear G4, a fifth gear G5, and a sixth gear G6.
  • the first gear G1 is connected in a rotationally fixed manner to the first input shaft S1.
  • the second gear G2 is rotationally fixedly connected to the second input shaft S2.
  • the third gear G3 is rotationally connected to the third input shaft S3.
  • the fourth gear G4 , the fifth gear G5 and the sixth gear G6 are connected in a rotationally fixed manner to the intermediate shaft S4 .
  • the first gear G1 and the fourth gear G4 are always in a meshing state, so that the first input shaft S1 is always drivingly coupled with the intermediate shaft S4 through the gear pair formed by the first gear G1 and the fourth gear G4.
  • the second gear G2 and the fifth gear G5 are always in a meshing state, so that the second input shaft S2 is always in driving connection with the intermediate shaft S4 through the gear pair formed by the second gear G2 and the fifth gear G5.
  • the third gear G3 and the sixth gear G6 are always in a meshing state, so that the third input shaft S3 is always in driving connection with the intermediate shaft S4 through the gear pair formed by the third gear G3 and the sixth gear G6.
  • the fifth gear G5 is always in external mesh with the input gear of the differential DM, so that the intermediate shaft S4 is always in transmission connection with the differential DM.
  • the differential DM may be a bevel gear differential.
  • the differential DM is not included in the transmission in this embodiment, it is also possible to integrate the differential DM into the transmission as needed. Further, one end of the two axle shafts is respectively installed on the bevel gear of the differential DM, and the other end is respectively installed on two wheels (not shown in the figure).
  • the hybrid power system includes a control module (not shown in the figure), which can control the hybrid power system so that the hybrid power system has multiple operating modes, including but It is not limited to the motor-only drive mode, the first engine-only drive mode, the second engine-only drive mode, the first hybrid drive mode, the second hybrid drive mode, the engine-on-the-run mode, and the brake energy recovery mode.
  • Table 1 below shows the working states of the engine ICE, the first electric machine EM1 , the second electric machine EM2 , the first clutch unit C1 and the second clutch unit C2 of the dual clutch C in the above exemplary working modes.
  • EV means pure motor drive mode.
  • ENG1 denotes a first engine-only drive mode.
  • ENG2 denotes a second engine-only drive mode.
  • HV1 represents the first hybrid drive mode.
  • HV2 represents the second hybrid drive mode.
  • RES means start the engine mode while driving.
  • REC means braking energy recovery mode.
  • ICE, EM1, EM2, C1, and C2 in the first row in Table 1 correspond to the reference numerals in Fig. 2 respectively, that is, respectively represent the engine, the first motor, the second motor in the hybrid system of Fig. 2 Motor, first clutch unit, second clutch unit.
  • control module of the hybrid power system in Fig. 2 can control the hybrid power system so that the hybrid power system realizes the pure motor drive mode EV.
  • Engine ICE can be in non-working state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is disengaged, and the second clutch unit C2 is disengaged.
  • the second motor EM2 transmits torque to the differential DM for driving via the third input shaft S3 ⁇ third gear G3 ⁇ sixth gear G6 ⁇ intermediate shaft S4 ⁇ fifth gear G5.
  • the engine ICE and the first electric motor EM1 can also be in the working state, so that while the second electric motor EM2 drives the vehicle, the engine ICE can drive the first electric motor EM1 to generate electricity.
  • control module of the hybrid power system in FIG. 2 can control the hybrid power system so that the hybrid power system realizes the first pure engine driving mode ENG1.
  • Engine ICE is in driving state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a non-working state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is disengaged.
  • the engine ICE transfers to the differential via the dual mass flywheel DMF ⁇ first clutch unit C1 ⁇ first input shaft S1 ⁇ first gear G1 ⁇ fourth gear G4 ⁇ intermediate shaft S4 ⁇ fifth gear G5 DM transmits torque for drive.
  • the first engine driving mode ENG1 is suitable for a medium speed state of the vehicle.
  • the first electric machine EM1 may be in a working (power generating) state.
  • control module of the hybrid power system in FIG. 2 can control the hybrid power system so that the hybrid power system realizes the second pure engine driving mode ENG2.
  • Engine ICE is in driving state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a non-working state
  • the first clutch unit C1 is disengaged, and the second clutch unit C2 is engaged.
  • the engine ICE transmits torque to the differential DM for driving via the dual mass flywheel DMF ⁇ second clutch unit C2 ⁇ second input shaft S2 ⁇ second gear G2 ⁇ fifth gear G5.
  • the second engine driving mode ENG2 is suitable for a high-speed state of the vehicle.
  • the first electric machine EM1 may be in a working (power generating) state.
  • control module of the hybrid power system in FIG. 2 can control the hybrid power system so that the hybrid power system realizes the first hybrid driving mode HV1.
  • Engine ICE is in driving state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is disengaged.
  • the second electric motor EM2 transmits torque to the differential DM via the third input shaft S3 ⁇ third gear G3 ⁇ sixth gear G6 ⁇ intermediate shaft S4 ⁇ fifth gear G5 for Drive; on the other hand, the engine ICE is transmitted to the differential DM via the dual mass flywheel DMF ⁇ first clutch unit C1 ⁇ first input shaft S1 ⁇ first gear G1 ⁇ fourth gear G4 ⁇ intermediate shaft S4 ⁇ fifth gear G5 torque for driving.
  • the first hybrid driving mode HV1 is suitable for a medium speed state of the vehicle.
  • control module of the hybrid power system in FIG. 2 can control the hybrid power system so that the hybrid power system realizes the second hybrid driving mode HV2.
  • Engine ICE is in driving state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is disengaged, and the second clutch unit C2 is engaged.
  • the second electric motor EM2 transmits torque to the differential DM via the third input shaft S3 ⁇ third gear G3 ⁇ sixth gear G6 ⁇ intermediate shaft S4 ⁇ fifth gear G5 for Driving; on the other hand, the engine ICE transmits torque to the differential DM for driving via the dual mass flywheel DMF ⁇ second clutch unit C2 ⁇ second input shaft S2 ⁇ second gear G2 ⁇ fifth gear G5.
  • the second hybrid driving mode HV2 is suitable for a high-speed state of the vehicle.
  • control module of the hybrid power system in FIG. 2 can also control the hybrid power system so that the hybrid power system realizes the engine start mode RES while driving.
  • the engine ICE is in a non-working state and is waiting to be started;
  • the first motor EM1 is in a driving state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is disengaged, and the second clutch unit C2 is disengaged.
  • the second electric motor EM2 transmits torque to the differential DM via the third input shaft S3 ⁇ third gear G3 ⁇ sixth gear G6 ⁇ intermediate shaft S4 ⁇ fifth gear G5 for
  • the first electric machine EM1 transmits torque to the engine ICE via the dual mass flywheel DMF to start the engine ICE.
  • control module of the hybrid power system in FIG. 2 can also control the hybrid power system so that the hybrid power system realizes the braking energy recovery mode REC.
  • Engine ICE can be in non-working state
  • the first motor EM1 can be in a non-working state
  • the second electric machine EM2 is in the state of generating electricity
  • the first clutch unit C1 is disengaged, and the second clutch unit C2 is disengaged.
  • the torque from the wheels passes through two half shafts ⁇ differential DM ⁇ fifth gear G5 ⁇ intermediate shaft S4 ⁇ sixth gear G6 ⁇ third gear G3 ⁇ third input shaft S3 to the second
  • the electric machine EM2 transmits torque for generating electricity.
  • the first electric machine EM1 may be in a working (generating) state.
  • the hybrid system of the present application can realize various working modes as required, and has the same or more working modes as the hybrid system described in the background art, so as to be applicable to various driving states of the vehicle.
  • each shaft including but not limited to the first input shaft S1, the second input shaft S2, the third input shaft S3 and the intermediate shaft S4
  • the first motor The rotors of EM1 and the second motor EM2 and the two half shafts are all supported by bearings.
  • the bearings may be ball bearings or tapered roller bearings or the like.
  • the engine ICE and the second electric machine EM2 implement power split at the intermediate shaft S4.
  • the gear ratio of the gear pair can be adjusted to match the speeds of the engine ICE and the second electric machine EM2.
  • the gear pair formed by the fifth gear G5 and the input gear of the differential DM realizes the transmission connection between the intermediate shaft S4 and the differential DM, but the present application is not limited thereto.
  • the transmission connection between the intermediate shaft S4 and the differential DM can also be realized by selecting the gear pair formed by the fourth gear G4 or the sixth gear G6 and the input gear of the differential DM. In this way, it is possible to flexibly adjust the position of the differential DM and change the transmission ratio of the torque transmission path accordingly as required.
  • the present application also provides a vehicle including the above-mentioned hybrid power system, which has the same function and effect as the above-mentioned hybrid power system.
  • the hybrid power system includes a control module, and the control module can control the hybrid power system so that the hybrid power system has multiple working modes.
  • the control module does not have to be mechanically integrated with the hybrid system, particularly the components or features shown in the figures, nor does the control module have to be dedicated to controlling the hybrid system.
  • a control module may comprise a plurality of control units. A part of the sub-modules or control unit of the control module may be a control module or control unit of the vehicle.

Abstract

一种混合动力系统,包括第一电机(EM1)和第二电机(EM2),第一电机(EM1)与发动机(ICE)同轴配置且始终传动联接,第二电机(EM2)与第一电机(EM1)平行配置且错开配置;变速器的第一输入轴(S1)与第一电机(EM1)经由第一离合单元(C1)受控地传动联接,第二输入轴(S2)与第一电机(EM1)经由第二离合单元(C2)受控地传动联接,第三输入轴(S3)与第二电机(EM2)始终传动联接。第一输入轴(S1)、第二输入轴(S2)和第三输入轴(S3)三者分别通过不同的齿轮副与中间轴(S4)始终传动联接。该混合动力系统减小了整个系统的轴向尺寸,改善了整个系统的封装空间,简化了结构且降低了成本。还提供一种包括上述混合动力系统的车辆。

Description

混合动力系统及车辆 技术领域
本申请涉及车辆领域,更具体地涉及混合动力系统及包括该混合动力系统的车辆。
背景技术
如图1所示,在一种现有的混合动力系统中,包括发动机ICE、第一电机EM1、第二电机EM2和变速器,其中第一电机EM1主要用作发电机,第二电机EM2主要用作电动机。该混合动力系统能够工作在包括串联工作模式和并联工作模式等的多种工作模式下。变速器包括离合器C0,利用离合器C0的不同离合单元的接合/分离能够改变发动机ICE的工作状态,使得发动机ICE能够驱动第一电机EM1以及向差速器DM传递驱动扭矩。在该混合动力系统中,当利用发动机ICE向差速器DM传递驱动扭矩时变速器有两挡可用(利用变速器的同步器A进行换挡),当利用第二电机EM2向差速器DM传递扭矩时变速器只有一挡可用。
但是,在这种混合动力系统中,一方面,由于发动机ICE与第一电机EM1和第二电机EM2平行配置且错开配置,而且发动机ICE、第一电机EM1和第二电机EM2需要两根中间轴与差速器DM实现传动联接,因而使得整个混合动力系统的封装尺寸过大,成本较高;另一方面,发动机ICE和第一电机EM1需要通过附加的齿轮副和较长的轴实现传动联接,因而这也导致整个混合动力系统的成本较高。
发明内容
基于上述现有技术的缺陷而做出了本申请。本申请的一个目的在于提供 一种新型的混合动力系统,其能够实现与背景技术中所述的混合动力系统同样或更多的工作模式,并且封装尺寸更小且成本更低。本申请的另一个目的在于提供一种包括上述混合动力系统的车辆。
为了实现上述目的,本申请采用如下的技术方案。
本申请提供了一种如下的混合动力系统,所述混合动力系统包括第一电机、第二电机、双离合器和变速器,所述第一电机用于与发动机同轴配置并用于与所述发动机始终传动联接,所述第二电机与所述第一电机平行配置且在所述第一电机的径向上与所述第一电机错开配置,
所述变速器包括第一输入轴、第二输入轴、第三输入轴和中间轴,所述双离合器包括第一离合单元和第二离合单元,所述第一输入轴与所述第一电机经由所述第一离合单元受控地传动联接,所述第二输入轴与所述第一电机经由所述第二离合单元受控地传动联接,所述第三输入轴与所述第二电机始终传动联接,所述第一输入轴、所述第二输入轴和所述第三输入轴三者分别通过不同的齿轮副与所述中间轴始终传动联接。
在一个可选的方案中,所述变速器还包括第一齿轮、第二齿轮、第三齿轮、第四齿轮、第五齿轮和第六齿轮,
所述第一齿轮与所述第一输入轴抗扭连接,所述第二齿轮与所述第二输入轴抗扭连接,所述第三齿轮所述第三输入轴抗扭连接,所述第四齿轮、所述第五齿轮和所述第六齿轮均与所述中间轴抗扭连接,
所述第一齿轮与所述第四齿轮始终处于啮合状态,所述第二齿轮与所述第五齿轮始终处于啮合状态,所述第三齿轮与所述第六齿轮始终处于啮合状态。
在另一个可选的方案中,所述混合动力系统还包括差速器,所述差速器的输入齿轮与所述第四齿轮、所述第五齿轮和所述第六齿轮中的一者始终处于啮合状态。
在另一个可选的方案中,所述双离合器位于所述第一电机的转子的径向内侧。
在另一个可选的方案中,所述混合动力系统还包括控制模块,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现纯电机驱动模式,
其中,当所述混合动力系统处于所述纯电机驱动模式时,所述第二电机处于驱动状态,所述第一离合单元和所述第二离合单元均分离,所述第二电机向所述变速器传递扭矩以用于驱动。
在另一个可选的方案中,所述混合动力系统还包括控制模块和所述发动机,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现纯发动机驱动模式,
当所述混合动力系统处于所述纯发动机驱动模式时,所述发动机处于驱动状态,所述第二电机处于非工作状态,所述第一离合单元或所述第二离合单元接合,所述发动机向所述变速器传递扭矩以用于驱动。
在另一个可选的方案中,所述混合动力系统还包括控制模块和所述发动机,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现混合动力驱动模式,
当所述混合动力系统处于所述混合动力驱动模式时,所述发动机处于驱动状态,所述第二电机处于驱动状态,所述第一离合单元或所述第二离合单元接合,所述发动机和所述第二电机向所述变速器传递扭矩以用于驱动。
在另一个可选的方案中,所述混合动力系统还包括控制模块和所述发动机,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现行驶时启动发动机模式,
当所述混合动力系统处于所述行驶时启动发动机模式时,所述发动机待启动,所述第一电机处于驱动状态,所述第二电机处于驱动状态,所述第一离合单元和所述第二列和单元均分离,所述第二电机向所述变速器传递扭矩 以用于驱动,所述第一电机向所述发动机传递扭矩以启动所述发动机。
在另一个可选的方案中,所述混合动力系统还包括控制模块,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现制动能量回收模式,
当所述混合动力系统处于所述制动能量回收模式时,所述第二电机处于发电状态,所述第一离合单元和所述第二离合单元均分离,所述第二电机接受来自所述变速器的扭矩以用于发电。
本申请还提供了一种如下的车辆,所述车辆包括以上技术方案中任意一项技术方案所述的混合动力系统。
通过采用上述技术方案,本申请提供了一种新型的混合动力系统及包括该混合动力系统的车辆。该混合动力系统包括第一电机、第二电机、双离合器和变速器。第一电机用于与发动机同轴配置并用于与发动机始终传动联接,第二电机与第一电机平行配置且在第一电机的径向上与第一电机错开配置。变速器包括第一输入轴、第二输入轴、第三输入轴和中间轴,双离合器包括第一离合单元和第二离合单元。第一输入轴与第一电机经由第一离合单元受控地传动联接,第二输入轴与第一电机经由第二离合单元受控地传动联接。第三输入轴与第二电机始终传动联接。第一输入轴、第二输入轴和第三输入轴三者分别通过不同的齿轮副与中间轴始终传动联接。
这里,优选地,第一齿轮与第一输入轴直接连接,第二齿轮与第二输入轴直接连接,第三齿轮与第三输入轴直接连接,第四齿轮、第五齿轮和第六齿轮与中间轴直接连接。
这样,由于第一电机与第二电机采用平行配置且错开配置的方案,因而与背景技术中说明的混合动力系统相比减小了整个系统的封装尺寸。而且,第一电机与发动机采用同轴配置且第一电机与第二电机采用平行配置且错开配置的方案,还改善了整个系统的封装空间,使得本申请的混合动力系统 适用于各种车辆。进一步地,发动机、第一电机和第二电机都通过公共的第五齿轮和中间轴与差速器实现传动联接,这也简化了混合动力系统的结构,降低了成本。
附图说明
图1是示出了一种现有的混合动力系统的拓扑结构的示意图。
图2是示出了根据本申请的一实施例的混合动力系统的拓扑结构的示意图。
图3A是示出了图2中的混合动力系统在纯电机驱动模式下的扭矩传递路径的示意图,其中虚线表示第二电机的驱动扭矩的传递路径。
图3B是示出了图2中的混合动力系统在第一纯发动机驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机的驱动扭矩的传递路径。
图3C是示出了图2中的混合动力系统在第二纯发动机驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机的驱动扭矩的传递路径。
图3D是示出了图2中的混合动力系统在第一混合动力驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩的传递路径。
图3E是示出了图2中的混合动力系统在第二混合动力驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩的传递路径。
图3F是示出了图2中的混合动力系统在行驶时启动发动机模式下的扭矩传递路径的示意图,其中虚线表示第一电机和第二电机的驱动扭矩的传递路径。
图3G是示出了图2中的混合动力系统在制动能量回收模式下的扭矩传递路径的示意图,其中虚线表示向第二电机传递的扭矩的传递路径。
附图标记说明
ICE发动机 DMF双质量飞轮 EM1第一电机 EM2第二电机 C0离合器 C双离合器 C1第一离合单元 C2第二离合单元 A同步器 S1第一输入轴 S2第二输入轴 S3第三输入轴 S4中间轴 G1第一齿轮 G2第二齿轮 G3第三齿轮 G4第四齿轮 G5第五齿轮 G6第六齿轮 DM差速器。
具体实施方式
以下将结合说明书附图详细说明本申请的具体实施例。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
在本申请中,“传动联接”是指两个部件之间能够传递扭矩地连接,如无特殊说明,包括这两个部件之间直接连接或者间接连接。
在本申请中,“抗扭连接”是指两个部件能够一起转动以传递扭矩地连接,例如齿轮与轴之间通过花键结构能够实现上述抗扭连接。
(根据本申请的一实施例的混合动力系统的结构)
如图2所示,根据本申请的一实施例的混合动力系统包括发动机ICE、双质量飞轮DMF、第一电机EM1、第二电机EM2、双离合器C、变速器、差速器DM、两根半轴以及电池(未示出)。
具体地,在本实施例中,发动机ICE的曲轴经由双质量飞轮DMF与第一电机EM1的转子支架始终传动联接。双质量飞轮DMF用于衰减来自发动机ICE的扭振,本申请的混合动力系统还可以采用其它结构的减振器来实现衰减扭振的功能。由此,发动机ICE的扭矩能够传递到第一电机EM1,以驱动第一电机EM1进行发电;另外,第一电机EM1的扭矩能够传递到发动机ICE,以启动发动机ICE。
在本实施例中,第一电机EM1包括定子、能够相对于定子转动的转子以及与转子固定的转子支架。如上所述,第一电机EM1的转子支架与发动机ICE的曲轴传动联接,第一电机EM1的转子的中心轴线与发动机ICE的曲轴的中心轴线同轴,使得第一电机EM1与发动机ICE实现同轴配置。而且,转子支架还与双离合器C的第一离合单元C1和第二离合单元C2对应的外毂抗扭连接。另外,第一电机EM1还与电池电连接。这样,在第一电机EM1由电池供给电能的情况下,第一电机EM1作为电动机能够启动发动机ICE;在第一电机EM1获得来自发动机ICE的扭矩的情况下,第一电机EM1作为发电机向电池充电。第一电机EM1主要用于发电以向电池充电和启动发动机ICE。
在本实施例中,第二电机EM2包括定子和能够相对于定子转动的转子。第二电机EM2的转子与变速器的第三输入轴S3抗扭连接。第二电机EM2的转子的中心轴线与第一电机EM1的转子的中心轴线彼此平行且错开一定的距离,使得第二电机EM2与第一电机EM1实现平行配置和错开配置。另外,第二电机EM2还与电池电连接。这样,在第二电机EM2由电池供给电能的情况下,第二电机EM2作为电动机能够向变速器传递驱动扭矩;在第二电机EM2获得来自变速器的扭矩的情况下,第二电机EM2作为发电机向电池充电。第二电机EM2主要用于驱动和进行制动能量回收。
在本实施例中,双离合器C例如为湿式摩擦双离合器,也就是说双离合器C可以利用液压油控制其离合单元(包括摩擦盘和压板)的接合和分离。双离合器C整合到第一电机EM1的转子的径向内侧,使得双离合器C与第一电机EM1在轴向上重叠配置,这样能够缩短整个混合动力系统的轴向尺寸。双离合器C包括能够分别独立工作的第一离合单元C1和第二离合单元C2。第一离合单元C1对应的外毂和第二离合单元C2对应的外毂均与第一电机EM1的转子支架抗扭连接,第一离合单元C1对应的内毂与变速器的第一输入轴S1抗扭连接,第二离合单元C2对应的内毂与变速器的第二输入轴S2抗扭连接。这样,当第一离合单元C1接合时,第一电机EM1的转子支架与变速器的第一输入轴S1实现传动联接;当第一离合单元C1分离时,第一电机EM1的转子支 架与变速器的第一输入轴S1之间解除传动联接。当第二离合单元C2接合时,第一电机EM1的转子支架与变速器的第二输入轴S2实现传动联接;当第二离合单元C2分离时,第一电机EM1的转子支架与变速器的第二输入轴S2之间解除传动联接。
在本实施例中,如图2所示,变速器包括第一输入轴S1、第二输入轴S2、第三输入轴S3和中间轴S4。第一输入轴S1是空心轴,第二输入轴S2是实心轴。第二输入轴S2以与第一输入轴S1同轴的方式穿过第一输入轴S1,第一输入轴S1和第二输入轴S2能够彼此独立地转动。第三输入轴S3和中间轴S4与第一输入轴S1和第二输入轴S2平行配置,并且第三输入轴S3和中间轴S4与第一输入轴S1和第二输入轴S2在变速器的径向上错开。
变速器还包括第一齿轮G1、第二齿轮G2、第三齿轮G3、第四齿轮G4、第五齿轮G5和第六齿轮G6。第一齿轮G1与第一输入轴S1抗扭连接。第二齿轮G2与第二输入轴S2抗扭连接。第三齿轮G3与第三输入轴S3抗扭连接。第四齿轮G4、第五齿轮G5和第六齿轮G6与中间轴S4抗扭连接。第一齿轮G1与第四齿轮G4始终处于啮合状态,使得第一输入轴S1经由第一齿轮G1和第四齿轮G4构成的齿轮副与中间轴S4始终传动联接。第二齿轮G2与第五齿轮G5始终处于啮合状态,使得第二输入轴S2经由第二齿轮G2和第五齿轮G5构成的齿轮副与中间轴S4始终传动联接。第三齿轮G3与第六齿轮G6始终处于啮合状态,使得第三输入轴S3经由第三齿轮G3和第六齿轮G6构成的齿轮副与中间轴S4始终传动联接。第五齿轮G5与差速器DM的输入齿轮始终处于外啮合状态,使得中间轴S4与差速器DM始终传动联接。利用第五齿轮G5作为向差速器DM传递扭矩的齿轮,而不额外设置其它齿轮,能够减小部件的数量,减小混合动力系统的成本,有利于缩短整个系统的轴向尺寸。
在本实施例中,差速器DM可以为锥齿轮差速器。虽然在本实施例中差速器DM不包括在变速器中,但是根据需要也可以将差速器DM整合到变速器中。进一步地,两根半轴的一端分别安装于差速器DM的锥齿轮,另一端分别安装于两个车轮(图中未示出)。
这样,通过以上结构,实现了一种新型的混合动力系统,与背景技术中说明的混合动力系统相比,其封装尺寸更小且成本更低。以下将说明该混合动力系统的工作模式。
(根据本申请的一实施例的混合动力系统的工作模式)
在图2中示出的根据本申请的一实施例的混合动力系统包括控制模块(图中未示出),该控制模块能够控制混合动力系统使得该混合动力系统具有多种工作模式,包括但不限于纯电机驱动模式、第一纯发动机驱动模式、第二纯发动机驱动模式、第一混合动力驱动模式、第二混合动力驱动模式、行驶时启动发动机模式和制动能量回收模式。
在以下的表1中示出了上述示例性的工作模式中发动机ICE、第一电机EM1、第二电机EM2、双离合器C的第一离合单元C1和第二离合单元C2的工作状态。
【表1】
模式 ICE EM1 EM2 C1 C2
EV        
ENG1      
ENG2      
HV1    
HV2    
RES      
REC        
对于以上表1中的内容进行如下说明。
1.关于表1中的模式
EV表示纯电机驱动模式。
ENG1表示第一纯发动机驱动模式。
ENG2表示第二纯发动机驱动模式。
HV1表示第一混合动力驱动模式。
HV2表示第二混合动力驱动模式。
RES表示行驶时启动发动机模式。
REC表示制动能量回收模式。
2.表1中的第一行中的ICE、EM1、EM2、C1、C2分别与图2中附图标记相对应,即分别表示图2的混合动力系统中的发动机、第一电机、第二电机、第一离合单元、第二离合单元。
3.关于符号“█”
对于表1中ICE、EM1、EM2所在的列,有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于工作状态,没有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于非工作状态。
对于表1中的C1所在的列,有该符号表示第一离合单元C1接合,没有该符号表示第一离合单元C1分离。
对于表1中的C2所在的列,有该符号表示第二离合单元C2接合,没有该符号表示第二离合单元C2分离。
结合以上的表1,对图2中的混合动力系统的工作模式进行更具体的说明。
如表1所示,图2中的混合动力系统的控制模块能够控制混合动力系统使混合动力系统实现纯电机驱动模式EV。
当混合动力系统处于纯电机驱动模式EV时,
发动机ICE可以处于非工作状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离。
这样,如图3A所示,第二电机EM2经由第三输入轴S3→第三齿轮G3→第六齿轮G6→中间轴S4→第五齿轮G5向差速器DM传递扭矩以用于驱动。
可以理解,在纯电机驱动模式EV中,发动机ICE和第一电机EM1还可以 处于工作状态,这样,第二电机EM2驱动车辆行驶的同时,发动机ICE可以驱动第一电机EM1发电。
进一步地,如表1所示,图2中的混合动力系统的控制模块能够控制混合动力系统使混合动力系统实现第一纯发动机驱动模式ENG1。
当混合动力系统处于第一纯发动机驱动模式ENG1时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于非工作状态;
第一离合单元C1接合,第二离合单元C2分离。
这样,如图3B所示,发动机ICE经由双质量飞轮DMF→第一离合单元C1→第一输入轴S1→第一齿轮G1→第四齿轮G4→中间轴S4→第五齿轮G5向差速器DM传递扭矩以用于驱动。该第一发动机驱动模式ENG1适用于车辆中速状态。
可以理解,可选地,在第一纯发动机驱动模式ENG1中,第一电机EM1可以处于工作(发电)状态。
进一步地,如表1所示,图2中的混合动力系统的控制模块能够控制混合动力系统使混合动力系统实现第二纯发动机驱动模式ENG2。
当混合动力系统处于第二纯发动机驱动模式ENG2时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于非工作状态;
第一离合单元C1分离,第二离合单元C2接合。
这样,如图3C所示,发动机ICE经由双质量飞轮DMF→第二离合单元C2→第二输入轴S2→第二齿轮G2→第五齿轮G5向差速器DM传递扭矩以用于驱动。该第二发动机驱动模式ENG2适用于车辆高速状态。
可以理解,可选地,在第二纯发动机驱动模式ENG2中,第一电机EM1可以处于工作(发电)状态。
进一步地,如表1所示,图2中的混合动力系统的控制模块能够控制混合动力系统使混合动力系统实现第一混合动力驱动模式HV1。
当混合动力系统处于第一混合动力驱动模式HV1时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于驱动状态;
第一离合单元C1接合,第二离合单元C2分离。
这样,如图3D所示,一方面,第二电机EM2经由第三输入轴S3→第三齿轮G3→第六齿轮G6→中间轴S4→第五齿轮G5向差速器DM传递扭矩以用于驱动;另一方面,发动机ICE经由双质量飞轮DMF→第一离合单元C1→第一输入轴S1→第一齿轮G1→第四齿轮G4→中间轴S4→第五齿轮G5向差速器DM传递扭矩以用于驱动。该第一混合动力驱动模式HV1适用于车辆中速状态。
进一步地,如表1所示,图2中的混合动力系统的控制模块能够控制混合动力系统使混合动力系统实现第二混合动力驱动模式HV2。
当混合动力系统处于第二混合动力驱动模式HV2时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2接合。
这样,如图3E所示,一方面,第二电机EM2经由第三输入轴S3→第三齿轮G3→第六齿轮G6→中间轴S4→第五齿轮G5向差速器DM传递扭矩以用于驱动;另一方面,发动机ICE经由双质量飞轮DMF→第二离合单元C2→第二输入轴S2→第二齿轮G2→第五齿轮G5向差速器DM传递扭矩以用于驱动。该第二混合动力驱动模式HV2适用于车辆高速状态。
进一步地,如表1所示,图2中的混合动力系统的控制模块还能够控制混合动力系统使混合动力系统实现行驶时启动发动机模式RES。
当混合动力系统处于行驶时启动发动机模式RES时,
发动机ICE处于非工作状态,并且待启动;
第一电机EM1处于驱动状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离。
这样,如图3F所示,一方面,第二电机EM2经由第三输入轴S3→第三齿轮G3→第六齿轮G6→中间轴S4→第五齿轮G5向差速器DM传递扭矩以用于驱动;另一方面,第一电机EM1经由双质量飞轮DMF向发动机ICE传递扭矩,以启动发动机ICE。
进一步地,如表1所示,图2中的混合动力系统的控制模块还能够控制混合动力系统使混合动力系统实现制动能量回收模式REC。
当混合动力系统处于制动能量回收模式REC时,
发动机ICE可以处于非工作状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于发电状态;
第一离合单元C1分离,第二离合单元C2分离。
这样,如图3G所示,来自车轮的扭矩经由两根半轴→差速器DM→第五齿轮G5→中间轴S4→第六齿轮G6→第三齿轮G3→第三输入轴S3向第二电机EM2传递扭矩以用于发电。
可以理解,可选地,在制动能量回收模式REC中,第一电机EM1可以处于工作(发电)状态。
由此,本申请的混合动力系统能够根据需要实现各种工作模式,具有与背景技术中说明的混合动力系统相同或更多的工作模式,从而适用车辆的各种不同的行驶状态。
应当理解,上述实施方式仅是示例性的,不用于限制本申请。本领域技术人员可以在本申请的教导下对上述实施方式做出各种变型和改变,而不脱离本申请的范围。另外,进行如下的补充说明。
i.如图2所示,在本申请的混合动力系统中,各轴(包括但不限于第一输入轴S1、第二输入轴S2、第三输入轴S3和中间轴S4)、第一电机EM1和第二电机EM2的转子以及两根半轴均被轴承支撑。轴承可以是球轴承或者圆锥滚子轴承等。
ii.在根据本申请的混合动力系统处于混合动力驱动模式时,发动机ICE和第二电机EM2在中间轴S4实现功率分流。为了实现这种功率分流,可以调节齿轮副的传动比来匹配发动机ICE和第二电机EM2的速度。
iii.在以上的具体实施方式中说明了通过第五齿轮G5与差速器DM的输入齿轮构成的齿轮副实现中间轴S4与差速器DM之间的传动联接,但是本申请不限于此。还可以通过选择第四齿轮G4或第六齿轮G6与差速器DM的输入齿轮构成的齿轮副实现中间轴S4与差速器DM之间的传动联接。这样,能够根据需要灵活地对差速器DM进行位置调整并且对应地改变扭矩传递路径的传动比。
iv.本申请还提供了一种包括上述混合动力系统的车辆,其具有上述混合动力系统同样的功能和效果。
v.可以理解,虽然在上面的描述中,说明了混合动力系统包括控制模块,该控制模块能够控制混合动力系统使得该混合动力系统具有多种工作模式。但是,该控制模块不必与混合动力系统,特别是附图中示出的各部件或特征机械地整合在一起,控制模块也不必专门用于控制混合动力系统。控制模块可以包括多个控制单元。控制模块的一部分子模块或控制单元可以是车辆的控制模块或控制单元。

Claims (10)

  1. 一种混合动力系统,所述混合动力系统包括第一电机(EM1)、第二电机(EM2)、双离合器(C)和变速器,所述第一电机(EM1)用于与发动机(ICE)同轴配置并用于与所述发动机(ICE)始终传动联接,所述第二电机(EM2)与所述第一电机(EM1)平行配置且在所述第一电机(EM1)的径向上与所述第一电机(EM1)错开配置,
    所述变速器包括第一输入轴(S1)、第二输入轴(S2)、第三输入轴(S3)和中间轴(S4),所述双离合器(C)包括第一离合单元(C1)和第二离合单元(C2),所述第一输入轴(S1)与所述第一电机(EM1)经由所述第一离合单元(C1)受控地传动联接,所述第二输入轴(S2)与所述第一电机(EM1)经由所述第二离合单元(C2)受控地传动联接,所述第三输入轴(S3)与所述第二电机(EM2)始终传动联接,所述第一输入轴(S1)、所述第二输入轴(S2)和所述第三输入轴(S3)三者分别通过不同的齿轮副与所述中间轴(S4)始终传动联接。
  2. 根据权利要求1所述的混合动力系统,其特征在于,所述变速器还包括第一齿轮(G1)、第二齿轮(G2)、第三齿轮(G3)、第四齿轮(G4)、第五齿轮(G5)和第六齿轮(G6),
    所述第一齿轮(G1)与所述第一输入轴(S1)抗扭连接,所述第二齿轮(G2)与所述第二输入轴(S2)抗扭连接,所述第三齿轮(G3)所述第三输入轴(S3)抗扭连接,所述第四齿轮(G4)、所述第五齿轮(G5)和所述第六齿轮(G6)均与所述中间轴(S4)抗扭连接,
    所述第一齿轮(G1)与所述第四齿轮(G4)始终处于啮合状态,所述第二齿轮(G2)与所述第五齿轮(G5)始终处于啮合状态,所述第三齿轮(G3)与所述第六齿轮(G6)始终处于啮合状态。
  3. 根据权利要求1或2所述的混合动力系统,其特征在于,所述混合动力系统还包括差速器(DM),所述差速器(DM)的输入齿轮与所述第四齿轮 (G4)、所述第五齿轮(G5)和所述第六齿轮(G6)中的一者始终处于啮合状态。
  4. 根据权利要求1至3中任一项所述的混合动力系统,其特征在于,所述双离合器(C)位于所述第一电机(EM1)的转子的径向内侧。
  5. 根据权利要求1至4中任一项所述的混合动力系统,其特征在于,所述混合动力系统还包括控制模块,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现纯电机驱动模式,
    其中,当所述混合动力系统处于所述纯电机驱动模式时,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)和所述第二离合单元(C2)均分离,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
  6. 根据权利要求1至5中任一项所述的混合动力系统,其特征在于,所述混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述混合动力系统使所述混合动力系统实现纯发动机驱动模式,
    当所述混合动力系统处于所述纯发动机驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于非工作状态,所述第一离合单元(C1)或所述第二离合单元(C2)接合,所述发动机(ICE)向所述变速器传递扭矩以用于驱动。
  7. 根据权利要求1至6中任一项所述的混合动力系统,其特征在于,所述混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述混合动力系统使所述混合动力系统实现混合动力驱动模式,
    当所述混合动力系统处于所述混合动力驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)或所述第二离合单元(C2)接合,所述发动机(ICE)和所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
  8. 根据权利要求1至7中任一项所述的混合动力系统,其特征在于,所述 混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述混合动力系统使所述混合动力系统实现行驶时启动发动机模式,
    当所述混合动力系统处于所述行驶时启动发动机模式时,所述发动机(ICE)待启动,所述第一电机(EM1)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)和所述第二列和单元均分离,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动,所述第一电机(EM1)向所述发动机(ICE)传递扭矩以启动所述发动机(ICE)。
  9. 根据权利要求1至8中任一项所述的混合动力系统,其特征在于,所述混合动力系统还包括控制模块,所述控制模块能够控制所述混合动力系统使所述混合动力系统实现制动能量回收模式,
    当所述混合动力系统处于所述制动能量回收模式时,所述第二电机(EM2)处于发电状态,所述第一离合单元(C1)和所述第二离合单元(C2)均分离,所述第二电机(EM2)接受来自所述变速器的扭矩以用于发电。
  10. 一种车辆,所述车辆包括权利要求1至9中任一项所述的混合动力系统。
PCT/CN2021/115998 2021-09-01 2021-09-01 混合动力系统及车辆 WO2023028922A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/115998 WO2023028922A1 (zh) 2021-09-01 2021-09-01 混合动力系统及车辆
CN202180097156.4A CN117203074A (zh) 2021-09-01 2021-09-01 混合动力系统及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115998 WO2023028922A1 (zh) 2021-09-01 2021-09-01 混合动力系统及车辆

Publications (1)

Publication Number Publication Date
WO2023028922A1 true WO2023028922A1 (zh) 2023-03-09

Family

ID=85410733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115998 WO2023028922A1 (zh) 2021-09-01 2021-09-01 混合动力系统及车辆

Country Status (2)

Country Link
CN (1) CN117203074A (zh)
WO (1) WO2023028922A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116331180A (zh) * 2023-05-26 2023-06-27 中国第一汽车股份有限公司 车辆传动系统的控制方法及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101797884A (zh) * 2010-04-20 2010-08-11 上海交通大学 双离合器无级变速混联式混合动力系统
CN108382187A (zh) * 2018-03-27 2018-08-10 中国第汽车股份有限公司 双电机混合动力系统及其控制方法
CN109484155A (zh) * 2018-12-17 2019-03-19 北京航空航天大学 双电机双行星排多模式机电耦合传动装置
US20190225069A1 (en) * 2018-01-25 2019-07-25 Zhihui Duan Hybrid electric drive train of a motor vehicle
CN110450620A (zh) * 2019-06-20 2019-11-15 无锡明恒混合动力技术有限公司 一种低成本的平行轴式混合动力系统及其控制方法
CN110573768A (zh) * 2017-03-13 2019-12-13 腓特烈斯港齿轮工厂股份公司 双离合器变速器组件以及机动车
DE102018221452A1 (de) * 2018-12-12 2020-06-18 Zf Friedrichshafen Ag Doppelkupplungsgetriebeanordnung, Kraftfahrzeug sowie Verfahren zum Betrieb einer Doppelkupplungsgetriebeanordnung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101797884A (zh) * 2010-04-20 2010-08-11 上海交通大学 双离合器无级变速混联式混合动力系统
CN110573768A (zh) * 2017-03-13 2019-12-13 腓特烈斯港齿轮工厂股份公司 双离合器变速器组件以及机动车
US20190225069A1 (en) * 2018-01-25 2019-07-25 Zhihui Duan Hybrid electric drive train of a motor vehicle
CN108382187A (zh) * 2018-03-27 2018-08-10 中国第汽车股份有限公司 双电机混合动力系统及其控制方法
DE102018221452A1 (de) * 2018-12-12 2020-06-18 Zf Friedrichshafen Ag Doppelkupplungsgetriebeanordnung, Kraftfahrzeug sowie Verfahren zum Betrieb einer Doppelkupplungsgetriebeanordnung
CN109484155A (zh) * 2018-12-17 2019-03-19 北京航空航天大学 双电机双行星排多模式机电耦合传动装置
CN110450620A (zh) * 2019-06-20 2019-11-15 无锡明恒混合动力技术有限公司 一种低成本的平行轴式混合动力系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116331180A (zh) * 2023-05-26 2023-06-27 中国第一汽车股份有限公司 车辆传动系统的控制方法及车辆

Also Published As

Publication number Publication date
CN117203074A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US9579966B2 (en) Hybrid powertrain for a motor vehicle, hybrid vehicle, and use thereof
US7762366B2 (en) Axle drive unit for a hybrid electric vehicle
US11186162B2 (en) Twin system electric all-wheel drive supplementary drive axle
US20090188732A1 (en) Drive Unit for an Electric Hybrid Vehicle
EP3848215B1 (en) Transmission for a hybrid vehicle
US10308105B2 (en) Drive device for a hybrid-driven motor vehicle
JP5921773B2 (ja) ハイブリッド駆動自動車用駆動装置
US9670990B2 (en) Motor vehicle drive train and method of operating a drive train
US20100258367A1 (en) Travel drive system with multiple transmission paths for hybrid vehicle and method using same
CN111032402A (zh) 用于混合动力机动车的混合动力动力传动系
US20230050096A1 (en) Gearbox for an electric powertrain
CN108909433B (zh) 用于混合动力车辆的动力系统
WO2023028922A1 (zh) 混合动力系统及车辆
JP3097528B2 (ja) ハイブリッド駆動装置
CN110315953A (zh) 一种带取力器的双速比纯电动卡车驱动桥
CN115723551A (zh) 单挡混合动力系统及车辆
CN105829773B (zh) 运输机的驱动装置
WO2023028911A1 (zh) 单挡混合动力系统及车辆
WO2023028916A1 (zh) 单挡混合动力系统及车辆
CN210821811U (zh) 混合动力变速器
CN210416189U (zh) 一种带取力器的双速比纯电动卡车驱动桥
WO2023010246A1 (zh) 混合动力系统及车辆
CN115723552A (zh) 单挡混合动力系统及车辆
CN115723550A (zh) 单挡混合动力系统及车辆
CN109910587A (zh) 混合动力系统及混合动力车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955468

Country of ref document: EP

Kind code of ref document: A1