WO2023028916A1 - 单挡混合动力系统及车辆 - Google Patents
单挡混合动力系统及车辆 Download PDFInfo
- Publication number
- WO2023028916A1 WO2023028916A1 PCT/CN2021/115956 CN2021115956W WO2023028916A1 WO 2023028916 A1 WO2023028916 A1 WO 2023028916A1 CN 2021115956 W CN2021115956 W CN 2021115956W WO 2023028916 A1 WO2023028916 A1 WO 2023028916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- engine
- power system
- hybrid power
- motor
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 72
- 238000011084 recovery Methods 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000009977 dual effect Effects 0.000 description 6
- 230000004323 axial length Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/40—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present application relates to the field of vehicles, and more specifically to a single-speed hybrid system and a vehicle including the single-speed hybrid system.
- an existing hybrid power system includes an engine ICE, a first electric machine EM1, a second electric machine EM2 and a transmission, wherein the first electric machine EM1 is mainly used as a generator, and the second electric machine EM2 is mainly used for as a motor.
- the hybrid power system can work in multiple working modes including series working mode and parallel working mode. Regardless of the working mode, when the engine ICE is used for driving, the transmission has only one gear available, and when the second electric motor EM2 is used for driving, the transmission has only one gear available. Therefore, the hybrid system may be called a single-speed hybrid system.
- the axial length of the entire single-gear hybrid power system is too long due to the nested arrangement of the shafts connected to the first motor EM1 and the second motor EM2 , many vehicles cannot use this kind of single-speed hybrid power system; on the other hand, the shaft processing of the nested configuration is difficult and the cost is high; The shaft realizes the transmission coupling, which leads to the high cost of the entire single-gear hybrid system.
- the present application is made based on the defects of the above-mentioned prior art.
- One purpose of this application is to provide a new type of single-speed hybrid power system, which can realize the same or more working modes as the single-speed hybrid power system described in the background art, and has a smaller axial length and lower cost .
- Another object of the present application is to provide a vehicle including the above-mentioned single-speed hybrid system.
- the present application provides a single-speed hybrid power system as follows, including a first motor, a second motor, a clutch and a transmission, wherein the first motor is configured coaxially with the engine and is used for constant transmission with the engine coupling, the second motor is arranged coaxially with the first motor,
- the transmission includes a first input shaft, a second input shaft, an intermediate shaft, a first gear, a second gear, a third gear, and a fourth gear, and the first input shaft is connected to the first motor via the clutch.
- the first gear is connected torsionally fixed to the first input shaft
- the second gear is connected torsionally fixed to the second input shaft
- the third gear is connected torsionally fixed to the intermediate shaft
- the fourth The gears are in torque-proof connection with the intermediate shaft, the first gear is always in mesh with the third gear, and the second gear is always in mesh with the fourth gear.
- the single-speed hybrid power system further includes a differential, and the input gear of the differential is always in mesh with the third gear.
- both the first input shaft and the second input shaft are solid shafts
- the first gear has a first bearing seat, and one end of the second input shaft is supported by the first bearing seat via the first bearing, or the second gear has a second bearing seat, and the first One end of an input shaft is supported by the second bearing housing via the second bearing.
- the single-gear hybrid system further includes a control module, and the control module is capable of controlling the single-gear hybrid system so that the single-gear hybrid system realizes a pure motor drive mode,
- the second motor when the single-speed hybrid system is in the pure motor driving mode, the second motor is in a driving state, the clutch is disengaged, and the second motor transmits torque to the transmission for driving.
- the single-gear hybrid system further includes a control module and the engine, and the control module can control the single-gear hybrid system so that the single-gear hybrid system realizes a pure engine drive mode
- the single-speed hybrid system When the single-speed hybrid system is in the pure engine driving mode, the engine is in the driving state, the second electric motor is in the non-working state, the clutch is engaged, and the engine transmits torque to the transmission for use to drive.
- the single-speed hybrid power system further includes a control module and the engine, and the control module can control the single-speed hybrid power system so that the single-speed hybrid power system realizes hybrid power drive mode,
- the engine When the single-speed hybrid system is in the hybrid driving mode, the engine is in the driving state, the second electric motor is in the driving state, the clutch is engaged, and the engine and the second electric motor are driving to the The transmission transmits torque for drive.
- the single-gear hybrid system further includes a control module and the engine, and the control module can control the single-gear hybrid system so that the single-gear hybrid system realizes series drive model,
- the engine When the single-speed hybrid system is in the series drive mode, the engine is in the driving state, the first motor is in the generating state, the second motor is in the driving state, the clutch is disengaged, and the engine drives The first electric machine generates electricity and the second electric machine transmits torque to the transmission for drive.
- the single-gear hybrid system further includes a control module and the engine, and the control module can control the single-gear hybrid system so that the single-gear hybrid system realizes Start engine mode,
- the single-gear hybrid system When the single-gear hybrid system is in the engine start mode while driving, the engine is ready to start, the first electric motor is in the driving state, the second electric motor is in the driving state, the clutch is disengaged, and the second electric motor is in the driving state.
- the second electric machine transmits torque to the transmission for driving, and the first electric machine transmits torque to the engine to start the engine.
- the single-gear hybrid system further includes a control module, and the control module is capable of controlling the single-gear hybrid system so that the single-gear hybrid system realizes a braking energy recovery mode,
- the second motor When the single-speed hybrid system is in the braking energy recovery mode, the second motor is in a power generation state, the clutch is disengaged, and the second motor receives torque from the transmission to generate power.
- the present application also provides the following vehicle, which includes the single-speed hybrid power system described in any one of the above technical solutions.
- the present application provides a single-speed hybrid power system and a vehicle including the single-speed hybrid power system.
- the single-speed hybrid power system includes a first motor, a second motor, a clutch and a transmission.
- the first motor is configured coaxially with the engine and is used for constant transmission connection with the engine, and the second motor is configured coaxially with the first motor.
- the transmission includes a first input shaft, a second input shaft, an intermediate shaft, a first gear, a second gear, a third gear, and a fourth gear.
- the first input shaft is connected to the first motor via a clutch in a controlled transmission manner, and the second input shaft is always connected to the second motor through transmission.
- the first gear is connected to the first input shaft torsionally fixed
- the second gear is connected to the second input shaft torsionally fixed
- the third gear is connected to the intermediate shaft torsionally fixed
- the fourth gear is connected to the intermediate shaft torsionally fixed
- the first gear and the third The gears are always in the meshing state, and the second gear and the fourth gear are always in the meshing state.
- the first gear is directly connected to the first input shaft
- the second gear is directly connected to the second input shaft
- the third gear and the fourth gear are directly connected to the intermediate shaft.
- the packaging space of the entire system is improved, making the single-speed hybrid system of the present application suitable for various vehicle.
- the engine, the first electric motor and the second electric motor are respectively connected to the common intermediate shaft through a gear pair, which also simplifies the structure of the single-speed hybrid power system and reduces the cost.
- FIG. 1 is a schematic diagram showing the topology of a conventional single-speed hybrid power system.
- FIG. 2 is a schematic diagram showing the topology of a single-speed hybrid power system according to an embodiment of the present application.
- FIG. 3A is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the pure motor driving mode, wherein the dotted line indicates the transmission path of the driving torque of the second electric motor.
- FIG. 3B is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the pure engine driving mode, where the dotted line indicates the transmission path of the driving torque of the engine.
- FIG. 3C is a schematic diagram showing a torque transmission path of the single-speed hybrid system in FIG. 2 in a hybrid driving mode, wherein the dotted line indicates the transmission path of the driving torque of the engine and the second electric machine.
- FIG. 3D is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the series driving mode, wherein the dotted line indicates the transmission path of the driving torque of the engine and the second electric machine.
- FIG. 3E is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the engine start mode while driving, wherein the dotted line indicates the transmission path of the driving torque of the first electric machine and the second electric machine.
- FIG. 3F is a schematic diagram showing the torque transmission path of the single-speed hybrid power system in FIG. 2 in the braking energy recovery mode, wherein the dotted line indicates the torque transmission path to the second electric machine.
- transmission coupling refers to a connection between two components capable of transmitting torque, including direct connection or indirect connection between these two components unless otherwise specified.
- torque-resistant connection refers to a connection in which two parts can rotate together to transmit torque
- the above-mentioned torque-resistant connection can be realized through a spline structure between a gear and a shaft.
- a single-speed hybrid system includes an engine ICE, a dual-mass flywheel DMF, a first motor EM1, a second motor EM2, a clutch C, a transmission, a differential DM, two half shaft and battery (not shown).
- the crankshaft of the engine ICE is always drivingly coupled with the rotor support of the first electric machine EM1 via the dual mass flywheel DMF.
- the dual-mass flywheel DMF is used to attenuate the torsional vibration from the engine ICE, and the hybrid power system of the present application can also use dampers of other structures to achieve the function of attenuating torsional vibration.
- the torque of the engine ICE can be transmitted to the first electric machine EM1 to drive the first electric machine EM1 to generate electricity; in addition, the torque of the first electric machine EM1 can be transmitted to the engine ICE to start the engine ICE.
- the first electric machine EM1 includes a stator, a rotor capable of rotating relative to the stator, and a rotor bracket fixed to the rotor.
- the rotor bracket of the first electric machine EM1 is always connected with the crankshaft of the engine ICE, and the central axis of the rotor of the first electric machine EM1 is coaxial with the central axis of the crankshaft of the engine ICE, so that the first electric machine EM1 and the engine ICE realize the same axis configuration.
- the rotor carrier is also connected in a rotationally fixed manner to the outer hub of the clutch C.
- the first motor EM1 is also electrically connected to the battery.
- the first electric machine EM1 when the first electric machine EM1 is supplied with electric energy by the battery, the first electric machine EM1 can start the engine ICE as a motor; Charge.
- the first electric machine EM1 is mainly used to generate electricity to charge the battery and start the engine ICE.
- the second electric machine EM2 includes a stator and a rotor capable of rotating relative to the stator.
- the rotor of the second electric machine EM2 is permanently connected in a rotationally fixed manner to the second input shaft S2 of the transmission.
- the central axis of the rotor of the second electric machine EM2 is consistent with the central axis of the rotor of the first electric machine EM1, so that the second electric machine EM2 and the first electric machine EM1 realize coaxial arrangement.
- the second motor EM2 is also electrically connected to the battery. In this way, when the second electric machine EM2 is supplied with electric energy by the battery, the second electric machine EM2 can transmit driving torque to the speed changer as a motor; Charging batteries.
- the second electric motor EM2 is mainly used for driving and recovering braking energy.
- the clutch C is, for example, a wet friction clutch, which means that the clutch C can use hydraulic oil to control the engagement and disengagement of its clutch units (including friction discs and pressure plates).
- the clutch C is integrated into the radial inner side of the rotor of the first electric machine EM1, so that the clutch C and the first electric machine EM1 are overlapped in the axial direction, so that the axial dimension of the entire single-speed hybrid power system can be shortened.
- the outer hub of the clutch C is connected torsionally fixed to the rotor support of the first electric machine EM1
- the inner hub of the clutch C is connected torsionally fixedly to the first input shaft S1 of the transmission. In this way, when the clutch unit of the clutch C is engaged, the rotor support of the first motor EM1 is connected with the first input shaft S1 of the transmission; The transmission coupling between the input shafts S1 is released.
- the transmission includes a first input shaft S1 , a second input shaft S2 and an intermediate shaft S3 .
- the first input shaft S1, the second input shaft S2 and the intermediate shaft S3 are all solid shafts.
- Both the first input shaft S1 and the second input shaft S2 are arranged coaxially, and the intermediate shaft S3 is arranged in parallel with both the first input shaft S1 and the second input shaft S2 at intervals in the radial direction of the transmission.
- the transmission also includes a first gear G1, a second gear G2, a third gear G3, and a fourth gear G4.
- the first gear G1 is connected in a rotationally fixed manner to the first input shaft S1
- the first gear G1 has external teeth.
- the second gear G2 is connected in a rotationally fixed manner to the second input shaft S2, and the second gear G2 has external teeth.
- Both the third gear G3 and the fourth gear G4 are rotationally connected to the countershaft S3, and the third gear G3 and the fourth gear G4 have external teeth.
- the first gear G1 and the third gear G3 are always in an externally meshed state, so that the first input shaft S1 is always in driving connection with the intermediate shaft S3 via the gear pair formed by the first gear G1 and the third gear G3.
- the second gear G2 and the fourth gear G4 are always in an externally meshed state, so that the second input shaft S2 is always in transmission connection with the intermediate shaft S3 through the gear pair formed by the second gear G2 and the fourth gear G4.
- the third gear G3 is always in external mesh with the input gear of the differential DM, so that the intermediate shaft S3 is always in transmission connection with the differential DM.
- the differential DM may be a bevel gear differential.
- the differential DM is not included in the transmission in this embodiment, it is also possible to integrate the differential DM into the transmission as needed. Further, one end of the two axle shafts is respectively installed on the bevel gear of the differential DM, and the other end is respectively installed on two wheels (not shown in the figure).
- first input shaft S1, the second input shaft S2, the intermediate shaft S3 and the two half shafts can be properly supported by bearings, and at least part of the bearings can be properly supported by the casing of the transmission or the single-speed hybrid system.
- a bearing seat is formed on the second gear G2, and one end of the first input shaft S1 is supported on the bearing seat via a bearing such as a needle bearing.
- a bearing such as a needle bearing.
- a bearing seat may be provided on the first bearing G1, and one end of the second input shaft S2 may be supported on the bearing seat via a bearing.
- the single-speed hybrid system includes a control module (not shown in the figure), which can control the single-speed hybrid system so that the single-speed hybrid system has multiple Various working modes, including but not limited to pure motor drive mode, pure engine drive mode, hybrid drive mode, series drive mode, engine start mode while driving and braking energy recovery mode.
- Table 1 below shows the working states of the engine ICE, the first electric machine EM1, the second electric machine EM2, and the clutch C in the above-mentioned exemplary working modes.
- EV means pure motor drive mode.
- ENG stands for engine-only drive mode.
- HV Hybrid Drive Mode
- SD means series drive mode.
- RES means start the engine mode while driving.
- REC means braking energy recovery mode.
- ICE, EM1, EM2, and C in the first row in Table 1 correspond to the reference numerals in Fig. 2 respectively, that is, respectively represent the engine, the first motor, the second Motor, clutch.
- control module of the single-gear hybrid power system in Fig. 2 can control the single-gear hybrid power system so that the single-gear hybrid power system realizes the pure motor drive mode EV.
- Engine ICE can be in non-working state
- the first motor EM1 can be in a non-working state
- the second motor EM2 is in a driving state
- the second motor EM2 transmits torque to the differential DM for driving via the second input shaft S2 ⁇ second gear G2 ⁇ fourth gear G4 ⁇ intermediate shaft S3 ⁇ third gear G3.
- control module of the single-gear hybrid system in FIG. 2 can control the single-gear hybrid system so that the single-gear hybrid system realizes the pure engine driving mode ENG.
- Engine ICE is in driving state
- the first motor EM1 can be in a non-working state
- the second motor EM2 is in a non-working state
- the engine ICE transmits torque to the differential DM for driving via the dual mass flywheel DMF ⁇ clutch C ⁇ first input shaft S1 ⁇ first gear G1 ⁇ third gear G3.
- the first electric machine EM1 can be in a working (power generating) state.
- control module of the single-speed hybrid power system in FIG. 2 can control the single-speed hybrid power system so that the single-speed hybrid power system realizes the hybrid driving mode HV.
- Engine ICE is in driving state
- the first motor EM1 can be in a non-working state
- the second motor EM2 is in a driving state
- the second motor EM2 transmits torque to the differential DM for driving via the second input shaft S2 ⁇ second gear G2 ⁇ fourth gear G4 ⁇ intermediate shaft S3 ⁇ third gear G3;
- the ICE transmits torque to the differential DM for driving via the dual mass flywheel DMF ⁇ clutch C ⁇ first input shaft S1 ⁇ first gear G1 ⁇ third gear G3.
- control module of the single-gear hybrid system in FIG. 2 can also control the single-gear hybrid system so that the single-gear hybrid system realizes the series drive mode SD.
- Engine ICE is in driving state
- the first motor EM1 is in a power generation state
- the second motor EM2 is in a driving state
- the second electric motor EM2 transmits torque to the differential DM via the second input shaft S2 ⁇ second gear G2 ⁇ fourth gear G4 ⁇ intermediate shaft S3 ⁇ third gear G3 for
- the engine ICE transmits torque to the first electric machine EM1 via the dual mass flywheel DMF, so that the first electric machine EM1 generates electricity to charge the battery.
- the series drive mode SD can be used; when the battery charge level is high, the pure motor drive mode EV can be used.
- control module of the single-gear hybrid system in FIG. 2 can also control the single-gear hybrid system so that the single-gear hybrid system can start the engine mode RES while driving.
- the engine ICE is in a non-working state and is waiting to be started;
- the first motor EM1 is in a driving state
- the second motor EM2 is in a driving state
- the second electric motor EM2 transmits torque to the differential DM via the second input shaft S2 ⁇ second gear G2 ⁇ fourth gear G4 ⁇ intermediate shaft S3 ⁇ third gear G3 for
- the first electric machine EM1 transmits torque to the engine ICE via the dual mass flywheel DMF to start the engine.
- control module of the single-speed hybrid power system in FIG. 2 can also control the single-speed hybrid power system so that the single-speed hybrid power system realizes the braking energy recovery mode REC.
- Engine ICE can be in non-working state
- the first motor EM1 can be in a non-working state
- the second electric machine EM2 is in the state of generating electricity
- the torque from the wheels passes through two half shafts ⁇ differential DM ⁇ third gear G3 ⁇ intermediate shaft S3 ⁇ fourth gear G4 ⁇ second gear G2 ⁇ second input shaft S2 to the second
- the electric machine EM2 transmits torque for generating electricity.
- the first electric machine EM1 may be in a working (generating) state.
- the single-speed hybrid power system of the present application can realize various working modes according to needs, and has the same or more working modes than the single-speed hybrid power system described in the background technology, so as to be applicable to various driving states of the vehicle .
- each shaft (including but not limited to the first input shaft S1, the second input shaft S2 and the intermediate shaft S3), the first electric machine EM1 and the second Both the rotor of the electric motor EM2 and the differential DM are supported by bearings.
- the bearings may be ball bearings or tapered roller bearings or the like.
- the engine ICE and the second electric machine EM2 implement power splitting at the intermediate shaft S3.
- the transmission ratio of the gear pair can be adjusted to match the speed of the engine ICE and the second electric machine EM2.
- the transmission ratio of the torque transmission path of the second electric machine EM2 can be 10.25
- the torque transmission path of the engine ICE can be 10.25.
- the gear ratio can be 2.903, for example.
- both the engine ICE and the first electric machine EM1 are realized through a two-stage gear transmission mechanism (consisting of gear G1, gear G3 and the input gear of the differential) and the differential DM
- the second motor EM2 also realizes transmission connection with the differential DM through a two-stage gear transmission mechanism (consisting of gears G2, G4, G3 and the input gear of the differential).
- the present application also provides a vehicle including the above-mentioned single-speed hybrid system, which has the same functions and effects as the above-mentioned single-speed hybrid system.
- the single-speed hybrid power system includes a control module
- the control module can control the single-speed hybrid power system so that the single-speed hybrid power system has multiple working modes.
- the control module does not have to be mechanically integrated with the single-speed hybrid system, particularly the components or features shown in the drawings, nor does the control module need to be dedicated to controlling the single-speed hybrid system.
- a control module may comprise a plurality of control units. A part of the sub-modules or control unit of the control module may be a control module or control unit of the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
一种单挡混合动力系统,包括第一电机(EM1)、第二电机(EM2)、离合器(C)和变速器;第一电机(EM1)用于与发动机(ICE)同轴配置,并用于与发动机(ICE)始终传动联接,第二电机(EM2)与第一电机(EM1)同轴配置;第一电机(EM1)与第一输入轴(S1)经由离合器(C)受控地传动联接,第二电机(EM2)与第二输入轴(S2)始终传动联接;第一输入轴(S1)和第二输入轴(S2)分别通过不同的齿轮副与中间轴(S3)传动联接。该单挡混合动力系统减小了整个系统的轴向尺寸,改善了整个系统的封装空间,简化了结构且降低了成本。还提供一种包括该单挡混合动力系统的车辆。
Description
本申请涉及车辆领域,更具体地涉及单挡混合动力系统及包括该单挡混合动力系统的车辆。
如图1所示,在一种现有的混合动力系统中,包括发动机ICE、第一电机EM1、第二电机EM2和变速器,其中第一电机EM1主要用作发电机,第二电机EM2主要用作电动机。该混合动力系统能够工作在包括串联工作模式和并联工作模式等的多种工作模式下。无论在何种工作模式下,当利用发动机ICE进行驱动时变速器只有一挡可用,当利用第二电机EM2进行驱动时变速器也只有一挡可用。因此,该混合动力系统可以被称为单挡混合动力系统。
在这种单挡混合动力系统中,一方面,由于与第一电机EM1和第二电机EM2两者传动联接的轴采用嵌套配置方式,因而使得整个单挡混合动力系统的轴向长度过长,很多车辆都不能使用这种单挡混合动力系统;另一方面,嵌套配置的轴加工困难,成本高;还一方面,发动机ICE和第一电机EM1需要通过附加的齿轮副和较长的轴实现传动联接,因而导致整个单挡混合动力系统的成本较高。
发明内容
基于上述现有技术的缺陷而做出了本申请。本申请的一个目的在于提供一种新型的单挡混合动力系统,其能够实现与背景技术中所述的单挡混合动力系统同样或更多的工作模式,并且轴向长度更小且成本更低。本申请的另一个目的在于提供一种包括上述单挡混合动力系统的车辆。
为了实现上述目的,本申请采用如下的技术方案。
本申请提供了一种如下的单挡混合动力系统,包括第一电机、第二电机、离合器和变速器,其中,所述第一电机用于与发动机同轴配置,并用于与所述发动机始终传动联接,所述第二电机与所述第一电机同轴配置,
所述变速器包括第一输入轴、第二输入轴、中间轴、第一齿轮、第二齿轮、第三齿轮和第四齿轮,所述第一输入轴与所述第一电机经由所述离合器受控地传动联接,所述第二输入轴与所述第二电机始终传动联接,
所述第一齿轮与所述第一输入轴抗扭连接,所述第二齿轮与所述第二输入轴抗扭连接,所述第三齿轮与所述中间轴抗扭连接,所述第四齿轮与所述中间轴抗扭连接,所述第一齿轮和所述第三齿轮始终处于啮合状态,所述第二齿轮与所述第四齿轮始终处于啮合状态。
在一种可选的方案中,所述单挡混合动力系统还包括差速器,所述差速器的输入齿轮与所述第三齿轮始终处于啮合状态。
在另一种可选的方案中,所述第一输入轴和所述第二输入轴均为实心轴,
所述第一齿轮具有第一轴承座,所述第二输入轴的一端经由所述第一轴承由所述第一轴承座支撑,或者,所述第二齿轮具有第二轴承座,所述第一输入轴的一端经由所述第二轴承由所述第二轴承座支撑。
在另一种可选的方案中,所述单挡混合动力系统还包括控制模块,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现纯电机驱动模式,
其中,当所述单挡混合动力系统处于所述纯电机驱动模式时,所述第二电机处于驱动状态,所述离合器分离,所述第二电机向所述变速器传递扭矩以用于驱动。
在另一种可选的方案中,所述单挡混合动力系统还包括控制模块和所述 发动机,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现纯发动机驱动模式,
当所述单挡混合动力系统处于所述纯发动机驱动模式时,所述发动机处于驱动状态,所述第二电机处于非工作状态,所述离合器接合,所述发动机向所述变速器传递扭矩以用于驱动。
在另一种可选的方案中,所述单挡混合动力系统还包括控制模块和所述发动机,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现混合动力驱动模式,
当所述单挡混合动力系统处于所述混合动力驱动模式时,所述发动机处于驱动状态,所述第二电机处于驱动状态,所述离合器接合,所述发动机和所述第二电机向所述变速器传递扭矩以用于驱动。
在另一种可选的方案中,所述单挡混合动力系统还包括控制模块和所述发动机,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现串联驱动模式,
当所述单挡混合动力系统处于所述串联驱动模式时,所述发动机处于驱动状态,所述第一电机处于发电状态,所述第二电机处于驱动状态,所述离合器分离,所述发动机驱动所述第一电机进行发电,所述第二电机向所述变速器传递扭矩以用于驱动。
在另一种可选的方案中,所述单挡混合动力系统还包括控制模块和所述发动机,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现行驶时启动发动机模式,
当所述单挡混合动力系统处于所述行驶时启动发动机模式时,所述发动机待启动,所述第一电机处于驱动状态,所述第二电机处于驱动状态,所述离合器分离,所述第二电机向所述变速器传递扭矩以用于驱动,所述第一电机向所述发动机传递扭矩以启动所述发动机。
在另一种可选的方案中,所述单挡混合动力系统还包括控制模块,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现制动能量回收模式,
当所述单挡混合动力系统处于所述制动能量回收模式时,所述第二电机处于发电状态,所述离合器分离,所述第二电机接受来自所述变速器的扭矩以发电。
本申请还提供了一种如下的车辆,所述车辆包括以上技术方案中任意一项技术方案所述的单挡混合动力系统。
通过采用上述技术方案,本申请提供了一种单挡混合动力系统及包括该单挡混合动力系统的车辆。该单挡混合动力系统包括第一电机、第二电机、离合器和变速器。第一电机用于与发动机同轴配置,并用于与发动机始终传动联接,第二电机与第一电机同轴配置。变速器包括第一输入轴、第二输入轴、中间轴、第一齿轮、第二齿轮、第三齿轮和第四齿轮。第一输入轴与第一电机经由离合器受控地传动联接,第二输入轴与第二电机始终传动联接。第一齿轮与第一输入轴抗扭连接,第二齿轮与第二输入轴抗扭连接,第三齿轮与中间轴抗扭连接,第四齿轮与中间轴抗扭连接,第一齿轮和第三齿轮始终处于啮合状态,第二齿轮与第四齿轮始终处于啮合状态。
这里,优选地,第一齿轮与第一输入轴直接连接,第二齿轮与第二输入轴直接连接,第三齿轮和第四齿轮与中间轴直接连接。
这样,由于第一电机用于与发动机采用同轴配置且第一电机与第二电机采用同轴配置的方案,改善了整个系统的封装空间,使得本申请的单挡混合动力系统适用于各种车辆。进一步地,发动机、第一电机和第二电机分别通过一个齿轮副与公共的中间轴实现传动联接,这也简化了单挡混合动力系统的结构,降低了成本。
图1是示出了一种现有的单挡混合动力系统的拓扑结构的示意图。
图2是示出了根据本申请的一实施例的单挡混合动力系统的拓扑结构的示意图。
图3A是示出了图2中的单挡混合动力系统在纯电机驱动模式下的扭矩传递路径的示意图,其中虚线表示第二电机的驱动扭矩的传递路径。
图3B是示出了图2中的单挡混合动力系统在纯发动机驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机的驱动扭矩的传递路径。
图3C是示出了图2中的单挡混合动力系统在混合动力驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩的传递路径。
图3D是示出了图2中的单挡混合动力系统在串联驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩的传递路径。
图3E是示出了图2中的单挡混合动力系统在行驶时启动发动机模式下的扭矩传递路径的示意图,其中虚线表示第一电机和第二电机的驱动扭矩的传递路径。
图3F是示出了图2中的单挡混合动力系统在制动能量回收模式下的扭矩传递路径的示意图,其中虚线表示向第二电机传递的扭矩的传递路径。
附图标记说明
ICE发动机 DMF双质量飞轮 EM1第一电机 EM2第二电机 C离合器 S1第一输入轴 S2第二输入轴 S3中间轴 G1第一齿轮 G2第二齿轮 G3第三齿轮 G4第四齿轮 DM差速器。
以下将结合说明书附图详细说明本申请的具体实施例。应当理解,这些 具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
在本申请中,“传动联接”是指两个部件之间能够传递扭矩地连接,如无特殊说明,包括这两个部件之间直接连接或者间接连接。
在本申请中,“抗扭连接”是指两个部件能够一起转动以传递扭矩地连接,例如齿轮与轴之间通过花键结构能够实现上述抗扭连接。
(根据本申请的一实施例的单挡混合动力系统的结构)
如图2所示,根据本申请的一实施例的单挡混合动力系统包括发动机ICE、双质量飞轮DMF、第一电机EM1、第二电机EM2、离合器C、变速器、差速器DM、两根半轴以及电池(未示出)。
具体地,在本实施例中,发动机ICE的曲轴经由双质量飞轮DMF与第一电机EM1的转子支架始终传动联接。双质量飞轮DMF用于衰减来自发动机ICE的扭振,本申请的混合动力系统还可以采用其它结构的减振器来实现衰减扭振的功能。由此,发动机ICE的扭矩能够传递到第一电机EM1,以驱动第一电机EM1进行发电;另外,第一电机EM1的扭矩能够传递到发动机ICE,以启动发动机ICE。
在本实施例中,第一电机EM1包括定子、能够相对于定子转动的转子以及与转子固定的转子支架。如上所述,第一电机EM1的转子支架与发动机ICE的曲轴始终传动联接,第一电机EM1的转子的中心轴线与发动机ICE的曲轴的中心轴线同轴,使得第一电机EM1与发动机ICE实现同轴配置。而且,转子支架还与离合器C的外毂抗扭连接。另外,第一电机EM1还与电池电连接。这样,在第一电机EM1由电池供给电能的情况下,第一电机EM1作为电动机能够启动发动机ICE;在第一电机EM1获得来自发动机ICE的扭矩的情况下,第一电机EM1作为发电机向电池充电。第一电机EM1主要用于发电以向电池充电和启动发动机ICE。
在本实施例中,第二电机EM2包括定子和能够相对于定子转动的转子。 第二电机EM2的转子与变速器的第二输入轴S2始终抗扭连接。第二电机EM2的转子的中心轴线与第一电机EM1的转子的中心轴线一致,使得第二电机EM2与第一电机EM1实现同轴配置。另外,第二电机EM2还与电池电连接。这样,在第二电机EM2由电池供给电能的情况下,第二电机EM2作为电动机能够向变速器传递驱动扭矩;在第二电机EM2获得来自变速器的扭矩的情况下,第二电机EM2作为发电机向电池充电。第二电机EM2主要用于驱动和进行制动能量回收。
在本实施例中,离合器C例如为湿式摩擦离合器,也就是说离合器C可以利用液压油控制其离合单元(包括摩擦盘和压板)的接合和分离。离合器C整合到第一电机EM1的转子的径向内侧,使得离合器C与第一电机EM1在轴向上重叠配置,这样能够缩短整个单挡混合动力系统的轴向尺寸。离合器C的外毂与第一电机EM1的转子支架抗扭连接,离合器C的内毂与变速器的第一输入轴S1抗扭连接。这样,当离合器C的离合单元接合时,第一电机EM1的转子支架与变速器的第一输入轴S1实现传动联接;当离合器C的离合单元分离时,第一电机EM1的转子支架与变速器的第一输入轴S1之间解除传动联接。
可以理解,如本领域技术人员所了解的,有时会将离合器C的离合单元接合/分离称为离合器C接合/分离。
在本实施例中,如图2所示,变速器包括第一输入轴S1、第二输入轴S2和中间轴S3。第一输入轴S1、第二输入轴S2和中间轴S3均为实心轴。第一输入轴S1和第二输入轴S2两者同轴配置,中间轴S3与第一输入轴S1和第二输入轴S2两者在变速器的径向上间隔开地平行配置。
变速器还包括第一齿轮G1、第二齿轮G2、第三齿轮G3和第四齿轮G4。第一齿轮G1与第一输入轴S1抗扭连接,第一齿轮G1具有外齿。第二齿轮G2与第二输入轴S2抗扭连接,第二齿轮G2具有外齿。第三齿轮G3和第四齿轮G4均与中间轴S3抗扭连接,第三齿轮G3和第四齿轮G4具有外齿。第一齿轮G1与第三齿轮G3始终处于外啮合状态,使得第一输入轴S1经由第一齿轮G1 和第三齿轮G3构成的齿轮副与中间轴S3始终传动联接。第二齿轮G2与第四齿轮G4始终处于外啮合状态,使得第二输入轴S2经由第二齿轮G2和第四齿轮G4构成的齿轮副与中间轴S3始终传动联接。第三齿轮G3与差速器DM的输入齿轮始终处于外啮合状态,使得中间轴S3与差速器DM始终传动联接。
在本实施例中,差速器DM可以为锥齿轮差速器。虽然在本实施例中差速器DM不包括在变速器中,但是根据需要也可以将差速器DM整合到变速器中。进一步地,两根半轴的一端分别安装于差速器DM的锥齿轮,另一端分别安装于两个车轮(图中未示出)。
可以理解,第一输入轴S1、第二输入轴S2、中间轴S3和两个半轴可以由轴承适当地支撑,至少部分轴承可以适当地由变速器或者说单挡混合动力系统的壳体支撑。
如图2所示,在本申请的一个实施方式中,第二齿轮G2上形成有轴承座,第一输入轴S1的一端经由例如滚针轴承的轴承支撑于该轴承座。与第一输入轴S1的该一端经由该轴承支撑于变速器或者说单挡混合动力系统的壳体相比,这简化了支撑部的结构,并可以减小轴向尺寸。
当然,本申请不限于此。例如,替代地,可以在第一轴承G1上设置轴承座,使第二输入轴S2的一端经由轴承支撑于该轴承座。
这样,通过以上结构,实现了一种新型的单挡混合动力系统,与背景技术中说明的单挡混合动力系统相比,其能够用于各种车辆且成本更低。
以下将说明该单挡混合动力系统的工作模式。
(根据本申请的一实施例的单挡混合动力系统的工作模式)
在图2中示出的根据本申请的一实施例的单挡混合动力系统包括控制模块(图中未示出),该控制模块能够控制单挡混合动力系统使得该单挡混合动力系统具有多种工作模式,包括但不限于纯电机驱动模式、纯发动机驱动模式、混合动力驱动模式、串联驱动模式、行驶时启动发动机模式和制动能量回收模式。
在以下的表1中示出了上述示例性的工作模式中发动机ICE、第一电机 EM1、第二电机EM2、离合器C的工作状态。
【表1】
模式 | ICE | EM1 | EM2 | C |
EV | █ | |||
ENG | █ | █ | ||
HV | █ | █ | █ | |
SD | █ | █ | █ | |
RES | █ | █ | ||
REC | █ |
对于以上表1中的内容进行如下说明。
1.关于表1中的模式
EV表示纯电机驱动模式。
ENG表示纯发动机驱动模式。
HV表示混合动力驱动模式。
SD表示串联驱动模式。
RES表示行驶时启动发动机模式。
REC表示制动能量回收模式。
2.表1中的第一行中的ICE、EM1、EM2、C分别与图2中附图标记相对应,即分别表示图2的单挡混合动力系统中的发动机、第一电机、第二电机、离合器。
3.关于符号“█”
对于表1中ICE、EM1、EM2所在的列,有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于工作状态,没有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于非工作状态。
对于表1中的C所在的列,有该符号表示离合器C接合,没有该符号表示离合器C分离。
结合以上的表1,对图2中的单挡混合动力系统的工作模式进行更具体的说明。
如表1所示,图2中的单挡混合动力系统的控制模块能够控制单挡混合动力系统使单挡混合动力系统实现纯电机驱动模式EV。
当单挡混合动力系统处于纯电机驱动模式EV时,
发动机ICE可以处于非工作状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于驱动状态;
离合器C分离。
这样,如图3A所示,第二电机EM2经由第二输入轴S2→第二齿轮G2→第四齿轮G4→中间轴S3→第三齿轮G3向差速器DM传递扭矩以用于驱动。
进一步地,如表1所示,图2中的单挡混合动力系统的控制模块能够控制单挡混合动力系统使单挡混合动力系统实现纯发动机驱动模式ENG。
当单挡混合动力系统处于纯发动机驱动模式ENG时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于非工作状态;
离合器C接合。
这样,如图3B所示,发动机ICE经由双质量飞轮DMF→离合器C→第一输入轴S1→第一齿轮G1→第三齿轮G3向差速器DM传递扭矩以用于驱动。
可以理解,可选地,在纯发动机驱动模式ENG中,第一电机EM1可以处于工作(发电)状态。
进一步地,如表1所示,图2中的单挡混合动力系统的控制模块能够控制单挡混合动力系统使单挡混合动力系统实现混合动力驱动模式HV。
当单挡混合动力系统处于混合动力驱动模式HV时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于驱动状态;
离合器C接合。
这样,如图3C所示,第二电机EM2经由第二输入轴S2→第二齿轮G2→第四齿轮G4→中间轴S3→第三齿轮G3向差速器DM传递扭矩以用于驱动;发动机ICE经由双质量飞轮DMF→离合器C→第一输入轴S1→第一齿轮G1→第三齿轮G3向差速器DM传递扭矩以用于驱动。
进一步地,如表1所示,图2中的单挡混合动力系统的控制模块还能够控制单挡混合动力系统使单挡混合动力系统实现串联驱动模式SD。
当单挡混合动力系统处于串联驱动模式SD时,
发动机ICE处于驱动状态;
第一电机EM1处于发电状态;
第二电机EM2处于驱动状态;
离合器C分离。
这样,如图3D所示,一方面,第二电机EM2经由第二输入轴S2→第二齿轮G2→第四齿轮G4→中间轴S3→第三齿轮G3向差速器DM传递扭矩以用于驱动;另一方面,发动机ICE经由双质量飞轮DMF向第一电机EM1传递扭矩,以使得第一电机EM1发电,从而对电池充电。可以理解,当电池荷电水平较低时,可以采用串联驱动模式SD;当电池荷电水平较高时,可以采用纯电机驱动模式EV。
进一步地,如表1所示,图2中的单挡混合动力系统的控制模块还能够控制单挡混合动力系统使单挡混合动力系统实现行驶时启动发动机模式RES。
当单挡混合动力系统处于驱动时启动发动机模式RES时,
发动机ICE处于非工作状态,并且待启动;
第一电机EM1处于驱动状态;
第二电机EM2处于驱动状态;
离合器C分离。
这样,如图3E所示,一方面,第二电机EM2经由第二输入轴S2→第二齿 轮G2→第四齿轮G4→中间轴S3→第三齿轮G3向差速器DM传递扭矩以用于驱动;另一方面,第一电机EM1经由双质量飞轮DMF向发动机ICE传递扭矩,以启动发动机。
进一步地,如表1所示,图2中的单挡混合动力系统的控制模块还能够控制单挡混合动力系统使单挡混合动力系统实现制动能量回收模式REC。
当单挡混合动力系统处于制动能量回收模式REC时,
发动机ICE可以处于非工作状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于发电状态;
离合器C分离。
这样,如图3F所示,来自车轮的扭矩经由两根半轴→差速器DM→第三齿轮G3→中间轴S3→第四齿轮G4→第二齿轮G2→第二输入轴S2向第二电机EM2传递扭矩以用于发电。
可以理解,可选地,在制动能量回收模式REC中,第一电机EM1可以处于工作(发电)状态。
由此,本申请的单挡混合动力系统能够根据需要实现各种工作模式,具有与背景技术中说明的单挡混合动力系统相同或更多的工作模式,从而适用车辆的各种不同的行驶状态。
应当理解,上述实施方式仅是示例性的,不用于限制本申请。本领域技术人员可以在本申请的教导下对上述实施方式做出各种变型和改变,而不脱离本申请的范围。另外,进行如下的补充说明。
i.如图2所示,在本申请的单挡混合动力系统中,各轴(包括但不限于第一输入轴S1、第二输入轴S2和中间轴S3)、第一电机EM1和第二电机EM2的转子以及差速器DM均被轴承支撑。轴承可以是球轴承或者圆锥滚子轴承等。
ii.在根据本申请的单挡混合动力系统处于混合动力驱动模式时,发动机ICE和第二电机EM2在中间轴S3实现功率分流。为了实现这种功率分流, 可以调节齿轮副的传动比来匹配发动机ICE和第二电机EM2的速度,例如第二电机EM2的扭矩传递路径的传动比例如可以为10.25,发动机ICE的扭矩传递路径的传动比例如可以为2.903。
iii.在本申请的单挡混合动力系统中,发动机ICE和第一电机EM1两者通过两级齿轮传动机构(由齿轮G1、齿轮G3和差速器的输入齿轮构成)与差速器DM实现传动联接,第二电机EM2也通过两级齿轮传动机构(由齿轮G2、齿轮G4以及齿轮G3和差速器的输入齿轮构成)与差速器DM实现传动联接。这样,在有利于调节发动机ICE和第一电机EM1两者向差速器DM的扭矩传递路径的传动比,以及第二电机EM2向差速器DM的扭矩传递路径的传动比的情况下,还能够避免工作效率由于更多级齿轮传递机构而大幅降低的问题。
iv.本申请还提供了一种包括上述单挡混合动力系统的车辆,其具有上述单挡混合动力系统同样的功能和效果。
v.可以理解,虽然在上面的描述中,说明了单挡混合动力系统包括控制模块,该控制模块能够控制单挡混合动力系统使得该单挡混合动力系统具有多种工作模式。但是,该控制模块不必与单挡混合动力系统,特别是附图中示出的各部件或特征机械地整合在一起,控制模块也不必专门用于控制单挡混合动力系统。控制模块可以包括多个控制单元。控制模块的一部分子模块或控制单元可以是车辆的控制模块或控制单元。
Claims (10)
- 一种单挡混合动力系统,包括第一电机(EM1)、第二电机(EM2)、离合器(C)和变速器,其中,所述第一电机(EM1)用于与发动机(ICE)同轴配置,并用于与所述发动机(ICE)始终传动联接,所述第二电机(EM2)与所述第一电机(EM1)同轴配置,所述变速器包括第一输入轴(S1)、第二输入轴(S2)、中间轴(S3)、第一齿轮(G1)、第二齿轮(G2)、第三齿轮(G3)和第四齿轮(G4),所述第一输入轴(S1)与所述第一电机(EM1)经由所述离合器(C)受控地传动联接,所述第二输入轴(S2)与所述第二电机(EM2)始终传动联接,所述第一齿轮(G1)与所述第一输入轴(S1)抗扭连接,所述第二齿轮(G2)与所述第二输入轴(S2)抗扭连接,所述第三齿轮(G3)与所述中间轴(S3)抗扭连接,所述第四齿轮(G4)与所述中间轴(S3)抗扭连接,所述第一齿轮(G1)和所述第三齿轮(G3)始终处于啮合状态,所述第二齿轮(G2)与所述第四齿轮(G4)始终处于啮合状态。
- 根据权利要求1所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括差速器,所述差速器的输入齿轮与所述第三齿轮(G3)始终处于啮合状态。
- 根据权利要求1或2所述的单挡混合动力系统,其特征在于,所述第一输入轴(S1)和所述第二输入轴(S2)均为实心轴,所述第一齿轮(G1)具有第一轴承座,所述第二输入轴(S2)的一端经由所述第一轴承由所述第一轴承座支撑,或者,所述第二齿轮(G2)具有第二轴承座,所述第一输入轴(S2)的一端经由所述第二轴承由所述第二轴承座支撑。
- 根据权利要求1至3中任一项所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括控制模块,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现纯电机驱动模式,其中,当所述单挡混合动力系统处于所述纯电机驱动模式时,所述第二电机(EM2)处于驱动状态,所述离合器(C)分离,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
- 根据权利要求1至4中任一项所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现纯发动机驱动模式,当所述单挡混合动力系统处于所述纯发动机驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于非工作状态,所述离合器(C)接合,所述发动机(ICE)向所述变速器传递扭矩以用于驱动。
- 根据权利要求1至5中任一项所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现混合动力驱动模式,当所述单挡混合动力系统处于所述混合动力驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述离合器(C)接合,所述发动机(ICE)和所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
- 根据权利要求1至6中任一项所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现串联驱动模式,当所述单挡混合动力系统处于所述串联驱动模式时,所述发动机(ICE)处于驱动状态,所述第一电机(EM1)处于发电状态,所述第二电机(EM2)处于驱动状态,所述离合器(C)分离,所述发动机(ICE)驱动所述第一电 机(EM1)进行发电,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
- 根据权利要求1至7中任一项所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现行驶时启动发动机模式,当所述单挡混合动力系统处于所述行驶时启动发动机模式时,所述发动机(ICE)待启动,所述第一电机(EM1)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述离合器(C)分离,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动,所述第一电机(EM1)向所述发动机(ICE)传递扭矩以启动所述发动机(ICE)。
- 根据权利要求1至8中任一项所述的单挡混合动力系统,其特征在于,所述单挡混合动力系统还包括控制模块,所述控制模块能够控制所述单挡混合动力系统使所述单挡混合动力系统实现制动能量回收模式,当所述单挡混合动力系统处于所述制动能量回收模式时,所述第二电机(EM2)处于发电状态,所述离合器(C)分离,所述第二电机(EM2)接受来自所述变速器的扭矩以发电。
- 一种车辆,所述车辆包括权利要求1至9中任一项所述的单挡混合动力系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/115956 WO2023028916A1 (zh) | 2021-09-01 | 2021-09-01 | 单挡混合动力系统及车辆 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/115956 WO2023028916A1 (zh) | 2021-09-01 | 2021-09-01 | 单挡混合动力系统及车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023028916A1 true WO2023028916A1 (zh) | 2023-03-09 |
Family
ID=85411850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/115956 WO2023028916A1 (zh) | 2021-09-01 | 2021-09-01 | 单挡混合动力系统及车辆 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023028916A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060108130A (ko) * | 2005-04-12 | 2006-10-17 | 다이모스(주) | 하이브리드 전기 자동차의 동력 전달 장치 |
CN102848898A (zh) * | 2012-09-19 | 2013-01-02 | 长城汽车股份有限公司 | 混合动力驱动总成及应用其的混合动力驱动汽车 |
US20160369873A1 (en) * | 2015-06-19 | 2016-12-22 | Hyundai Motor Company | Transmission apparatus of hybrid vehicle |
CN108382187A (zh) * | 2018-03-27 | 2018-08-10 | 中国第汽车股份有限公司 | 双电机混合动力系统及其控制方法 |
CN108422849A (zh) * | 2018-04-04 | 2018-08-21 | 精进电动科技股份有限公司 | 一种纵置双动力源车辆驱动总成 |
CN108482098A (zh) * | 2018-03-12 | 2018-09-04 | 舍弗勒技术股份两合公司 | 混合动力系统及混合动力车辆 |
CN109849642A (zh) * | 2019-03-13 | 2019-06-07 | 合肥工业大学 | 一种多模式的混合动力耦合驱动系统 |
-
2021
- 2021-09-01 WO PCT/CN2021/115956 patent/WO2023028916A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060108130A (ko) * | 2005-04-12 | 2006-10-17 | 다이모스(주) | 하이브리드 전기 자동차의 동력 전달 장치 |
CN102848898A (zh) * | 2012-09-19 | 2013-01-02 | 长城汽车股份有限公司 | 混合动力驱动总成及应用其的混合动力驱动汽车 |
US20160369873A1 (en) * | 2015-06-19 | 2016-12-22 | Hyundai Motor Company | Transmission apparatus of hybrid vehicle |
CN108482098A (zh) * | 2018-03-12 | 2018-09-04 | 舍弗勒技术股份两合公司 | 混合动力系统及混合动力车辆 |
CN108382187A (zh) * | 2018-03-27 | 2018-08-10 | 中国第汽车股份有限公司 | 双电机混合动力系统及其控制方法 |
CN108422849A (zh) * | 2018-04-04 | 2018-08-21 | 精进电动科技股份有限公司 | 一种纵置双动力源车辆驱动总成 |
CN109849642A (zh) * | 2019-03-13 | 2019-06-07 | 合肥工业大学 | 一种多模式的混合动力耦合驱动系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11391348B2 (en) | Transmission and power system for use in hybrid vehicle | |
CN109130830B (zh) | 用于混合动力车辆的变速器及动力系统 | |
CN106696676B (zh) | 包括模块化传动单元的动力系 | |
US7762366B2 (en) | Axle drive unit for a hybrid electric vehicle | |
US8672068B2 (en) | Drive unit for an electric hybrid vehicle | |
US10124668B2 (en) | Center differential gear assembly for a drive device of a motor vehicle | |
US9631709B2 (en) | Hybrid drive device for a motor vehicle | |
KR101628130B1 (ko) | 4륜 구동 하이브리드 차량용 동력전달장치 | |
US8727932B2 (en) | Hybrid vehicle drive device | |
US7699737B2 (en) | Electric axle drive unit | |
EP3750734B1 (en) | Hybrid transmission and hybrid electric vehicle | |
CN108909433B (zh) | 用于混合动力车辆的动力系统 | |
US20210291637A1 (en) | Power system for hybrid vehicles | |
US8974338B2 (en) | Two-mode electrically-variable transmission with offset motor and two planetary gear sets | |
US9664261B1 (en) | Planetary differential CVT with anti-freewheel one way clutch | |
WO2023028922A1 (zh) | 混合动力系统及车辆 | |
WO2023028916A1 (zh) | 单挡混合动力系统及车辆 | |
CN115723551A (zh) | 单挡混合动力系统及车辆 | |
WO2023028911A1 (zh) | 单挡混合动力系统及车辆 | |
CN215153911U (zh) | 双电机双离合混合动力变速器及车辆 | |
WO2022227302A1 (zh) | 混合动力变速器和汽车 | |
WO2023010246A1 (zh) | 混合动力系统及车辆 | |
CN115723550A (zh) | 单挡混合动力系统及车辆 | |
CN115723552A (zh) | 单挡混合动力系统及车辆 | |
WO2022165673A1 (zh) | 双电机混合动力模块及其工作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955463 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21955463 Country of ref document: EP Kind code of ref document: A1 |