WO2023027147A1 - 細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法 - Google Patents

細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法 Download PDF

Info

Publication number
WO2023027147A1
WO2023027147A1 PCT/JP2022/032050 JP2022032050W WO2023027147A1 WO 2023027147 A1 WO2023027147 A1 WO 2023027147A1 JP 2022032050 W JP2022032050 W JP 2022032050W WO 2023027147 A1 WO2023027147 A1 WO 2023027147A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
channel
cell culture
layer
resin
Prior art date
Application number
PCT/JP2022/032050
Other languages
English (en)
French (fr)
Inventor
孝広 吉岡
隆史 藤本
喬 神園
隆文 赤羽
琢 佐藤
博行 森口
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to US18/681,331 priority Critical patent/US20240327771A1/en
Priority to CN202280056301.9A priority patent/CN117897473A/zh
Priority to EP22861435.0A priority patent/EP4394026A1/en
Priority to JP2023543979A priority patent/JPWO2023027147A1/ja
Publication of WO2023027147A1 publication Critical patent/WO2023027147A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • C12N2535/10Patterned coating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking

Definitions

  • the present invention relates to a cell culture chip, a cell culture device, a cell culture chip manufacturing method, and a cell culture method.
  • monolayer culture which has been used in conventional cell assays, the environment surrounding cells is significantly different from that in vivo. Therefore, monolayer cultured cells often have the problem that many of the functions expressed by the cells in vivo are lost.
  • Recent advances in microfabrication technology and three-dimensional culture technology are expected to overcome this problem and simultaneously improve the throughput and reliability of cell assays.
  • organ-on-a-chip which treats a cell culture chip equipped with a microfluidic device that reproduces a physiological three-dimensional culture environment in vitro as if it were a single organ, has spread and is being applied to drug development.
  • MPS Microphysiological System
  • the substrate on which the cell culture channel is formed and the top plate blocking the cell culture channel are coated with an adhesive layer made of a polyester resin having a Tg of 5° C. or higher.
  • An adhesive layer made of a polyester resin having a Tg of 5° C. or higher has been proposed (for example, Patent Document 1).
  • the human body mimetic system as described above is attracting attention as a technique for evaluating the efficacy and safety of drugs in vitro.
  • drug evaluation cells are cultured in the presence of a drug in a cell culture chip that constitutes the MPS, and the effect of the drug on the cells is observed.
  • As a cell culture chip used for drug evaluation there is no leakage of cell culture medium under perfusion conditions around 37°C, which is close to human body temperature, culture and observation of cells to be evaluated are possible, and there is little decrease in drugs. and other conditions are required.
  • microscopic unevenness is generated on the processed surface. The drug is likely to be adsorbed on these irregularities, which is a factor in reducing the drug in the liquid medicine.
  • the present invention has been made in view of the above circumstances, and includes a cell culture chip capable of suppressing adsorption of a drug to a laser-processed flow path partition wall, a cell culture device comprising the cell culture chip, and the An object of the present invention is to provide a method for manufacturing a cell culture chip and a method for culturing cells using the cell culture chip.
  • the present invention adopts the following configuration.
  • a first aspect of the present invention is a cell culture chip including a laminate having a channel structure therein, wherein the laminate comprises a bottom plate substrate and a channel substrate in which channels are formed by laser processing. , and a top plate substrate in this order, and the channel substrate has a glass transition temperature of 37° C. or higher, an elastic modulus of 1 ⁇ 10 9 Pa or higher at 25° C., and an elastic modulus of 1 at 150° C.
  • a second aspect of the present invention is a cell culture device including the cell culture chip of the first aspect.
  • a third aspect of the present invention is a method for manufacturing a cell culture chip including a laminate having a channel structure therein, comprising: a bottom plate substrate; a channel substrate in which channels are formed by laser processing; a step A of laminating a top plate substrate in this order; A method for producing a cell culture chip containing a resin having an elastic modulus of 1 ⁇ 10 9 Pa or more at 150° C. and an elastic modulus of 1 ⁇ 10 7 Pa or less at 150° C.
  • a fourth aspect of the present invention is a method for culturing cells, comprising the step of culturing cells in the presence of a drug in the channel of the cell culture chip of the first aspect.
  • a cell culture chip a cell culture device including the cell chip, a method for manufacturing the cell culture chip, and the A cell culture method using a cell culture chip is provided.
  • FIG. 1 is a perspective view of a cell culture chip of one embodiment
  • FIG. FIG. 2 is an exploded view of the cell culture chip of FIG. 1
  • FIG. 2 is a cross-sectional view of the cell culture chip of FIG. 1 taken along line III-III.
  • FIG. 2 is a cross-sectional view of the cell culture chip of FIG. 1 taken along line IV-IV.
  • 1 shows an example of the layer configuration of a cell culture chip of one embodiment.
  • 1 shows an example of the layer configuration of a cell culture chip of one embodiment.
  • FIG. 2 is a schematic diagram showing an example of cell culture using the cell culture chip of one embodiment.
  • a first aspect of the present invention is a cell culture chip including a laminate having a channel structure inside.
  • the laminate includes, in this order, a bottom plate substrate, a channel substrate in which channels are formed by laser processing, and a top plate substrate.
  • the channel substrate contains a resin having a glass transition temperature of 37° C. or higher, an elastic modulus of 1 ⁇ 10 9 Pa or higher at 25° C., and an elastic modulus of 1 ⁇ 10 7 Pa or lower at 150° C. .
  • FIG. 1 is a perspective view of a cell culture chip according to one embodiment.
  • FIG. 2 is an exploded view of the cell culture chip 1 of FIG.
  • FIG. 3 is a cross-sectional view of the cell culture chip 1 of FIG. 1 taken along line III-III.
  • FIG. 4 is a cross-sectional view of the cell culture chip 1 of FIG. 1 taken along line IV-IV.
  • the cell culture chip 1 is a laminate having a channel structure inside.
  • a laminate of the cell culture chip 1 is composed of a bottom plate substrate L1, a first channel substrate L2, a porous membrane L3, a second channel substrate L4, a top plate substrate L5, and a cover substrate L6.
  • the bottom plate substrate L1, the first channel substrate L2, the porous film L3, the second channel substrate L4, the top plate substrate L5, and the cover substrate L6 are laminated in this order.
  • a first channel F2 is formed in the first channel substrate L2.
  • a second channel F4 is formed in the second channel substrate L4.
  • the cell culture chip 1 has a port P1 as a chemical solution introduction port to the first channel F2, a port P2 as a chemical solution discharge port from the first channel F2, a port P3 as a chemical solution introduction port to the second channel F4, A port P4 is provided as a chemical solution discharge port from the second flow path F4.
  • the first flow path F2 includes a first central flow path F2a, a first introduction flow path F2b connecting the port P1 and the first central flow path F2a, and a first discharge connecting the port P2 and the first central flow path F2a. It is formed from the flow path F2c.
  • the chemical solution introduced from the port P1 passes through the first introduction channel F2b, the first central channel F2a, and the first discharge channel F2c, and is discharged from the port P2.
  • the second flow path F4 includes a second central flow path F4a, a second introduction flow path F4b connecting the port P3 and the second central flow path F4a, and a second discharge connecting the port P4 and the second central flow path F4a. It is formed from the flow path F4c.
  • the chemical liquid introduced from the port P3 passes through the second introduction channel F4b, the second central channel F4a, and the second discharge channel F4c, and is discharged from the port P4.
  • the first central flow path F2a and the second central flow path F4a are arranged so that at least part of the flow path overlaps with each other.
  • a porous membrane M separates the first central flow path F2a and the second central flow path F4a.
  • the first central channel F2a is a lower channel positioned below the porous membrane M.
  • the second central flow channel F4a is an upper flow channel positioned above the porous membrane M. As shown in FIG.
  • the channel widths of the first central channel F2a and the second central channel F4a can be appropriately set according to the purpose of the cell culture chip 1.
  • Examples of the channel width include 1 ⁇ m to 2000 ⁇ m, 10 ⁇ m to 1500 ⁇ m, 50 ⁇ m to 1000 ⁇ m, or 100 ⁇ m to 500 ⁇ m.
  • the cover substrate L6 has an opening W so that the first central flow path F2a and the second central flow path F4a can be observed.
  • the channel substrates (first channel substrate L2, second channel substrate L4) have a glass transition temperature (hereinafter also referred to as “Tg”) of 37° C. or higher, and an elastic modulus at 25° C. is 1 ⁇ 10 9 Pa or more and the elastic modulus at 150° C. is 1 ⁇ 10 7 Pa or less (hereinafter referred to as “resin A”).
  • Tg glass transition temperature
  • resin A elastic modulus at 25° C. is 1 ⁇ 10 9 Pa or more and the elastic modulus at 150° C. is 1 ⁇ 10 7 Pa or less
  • a channel is formed in the channel substrate by laser processing.
  • the channel substrate forms partition walls of the channels.
  • Resin (A) has a Tg of 37° C. or higher, an elastic modulus of 1 ⁇ 10 9 Pa or higher at 25° C., and an elastic modulus of 1 ⁇ 10 7 Pa or lower at 150° C.
  • Glass transition temperature (Tg) is the temperature at which the glass transition occurs. Tg can be determined as the temperature at which tangent lines intersect at the inflection point of the measured temperature obtained by differential scanning calorimetry (DSC) at a heating rate of 20° C./min.
  • Elastic modulus is a complex elastic modulus measured using a dynamic viscoelasticity measuring device. Specifically, the elastic modulus can be obtained by preparing a resin sheet as a test piece having a size of 5 mm ⁇ 40 mm and measuring the dynamic elastic modulus of the test piece using a dynamic viscoelasticity measuring device. .
  • a tension condition with a frequency of 1 Hz and a temperature increase rate of 2° C./min from a starting temperature of 25° C. to 150° C. may be adopted.
  • the dynamic viscoelasticity measuring device for example, Rheogel-E4000 (manufactured by UBM) can be used.
  • the elastic modulus at 25°C is the complex elastic modulus at 25°C measured with a dynamic viscoelasticity measuring device.
  • the elastic modulus at 150°C is the complex elastic modulus at 150°C measured with a dynamic viscoelasticity measuring device.
  • the resin (A) has a Tg of 37°C or higher.
  • the lower limit of the Tg of the resin (A) is preferably 40°C or higher, more preferably 45°C or higher, still more preferably 50°C or higher, and particularly preferably 55°C or higher, 60°C or higher, or 65°C or higher.
  • the upper limit of the Tg of the resin (A) is not particularly limited, but is preferably 110° C. or lower, more preferably 100° C. or lower, even more preferably 95° C. or lower, and particularly preferably 90° C. or lower, or 85° C. or lower.
  • the Tg of resin (A) is preferably 40 to 110°C, more preferably 45 to 100°C, still more preferably 50 to 95°C, and particularly preferably 55 to 90°C, 60 to 90°C, or 65 to 85°C.
  • the Tg of the resin (A) is within the above range, the sorption of the drug to the channel partition walls is suppressed.
  • the resin (A) has an elastic modulus of 1 ⁇ 10 9 Pa or more at 25°C.
  • the elastic modulus of the resin (A) at 25° C. is preferably 1.5 ⁇ 10 9 Pa or more.
  • the upper limit of the elastic modulus of the resin (A) at 25° C. is not particularly limited, but is preferably 1 ⁇ 10 12 Pa or less, preferably 1 ⁇ 10 11 Pa or less, more preferably 5 ⁇ 10 10 Pa or less, 3 ⁇ 10 10 Pa or less is more preferable, and 2 ⁇ 10 10 Pa or less is particularly preferable.
  • the elastic modulus at 25° C. is within the above range, the rigidity of the channel substrate is maintained.
  • the resin (A) has an elastic modulus at 150° C. of 1 ⁇ 10 7 Pa or less.
  • the elastic modulus of the resin (A) at 150° C. is preferably 8 ⁇ 10 6 Pa or less, more preferably 5 ⁇ 10 6 Pa or less.
  • the lower limit of the elastic modulus of the resin (A) at 150° C. is not particularly limited, but is preferably 1 ⁇ 10 2 Pa or more, more preferably 1 ⁇ 10 3 Pa or more, and even more preferably 1 ⁇ 10 4 Pa or more. , 1 ⁇ 10 5 Pa or more is more preferable, and 1 ⁇ 10 6 Pa or more is particularly preferable.
  • ⁇ 10 2 Pa or more and 1 ⁇ 10 7 Pa or less is preferably 1 ⁇ 10 2 Pa or more and 1 ⁇ 10 7 Pa or less, more preferably 1 ⁇ 10 3 Pa or more and 1 ⁇ 10 7 Pa or less, and 1 ⁇ 10 4 Pa or more.
  • ⁇ 10 7 Pa or less is more preferable, and 1 ⁇ 10 5 Pa or more and 1 ⁇ 10 7 Pa or less is particularly preferable.
  • the resin (A) examples include polyester-based resins, acrylic resins, cycloolefin copolymer-based resins, urethane-based resins, polyolefin-based resins, fluorine-based resins, silicone-based resins, or mixtures or modified resins of these resins. mentioned. Among them, polyester-based resins, acrylic-based resins, and cycloolefin copolymer-based resins are preferable as the resin (A).
  • Polyester resin refers to a resin containing an ester bond (-CO-O-) in its main chain. Polyester resins include polyester resins and polyester urethane resins.
  • a polyester resin can be obtained by copolymerizing a polyvalent carboxylic acid and a polyol.
  • Examples of commercially available polyester resins as the resin (A) include G7 (Tg: 80° C., modulus at 25° C.: 1.84 ⁇ 10 9 Pa, modulus at 150° C.: 3.0%) manufactured by Kurashiki Boseki Co., Ltd.; 00 ⁇ 10 5 Pa), TP220 manufactured by Mitsubishi Chemical Corporation (Tg: 70° C., elastic modulus at 25° C.: 1.99 ⁇ 10 9 Pa, elastic modulus at 150° C.: 2.74 ⁇ 10 3 Pa), TP235 ( Tg: elastic modulus at 65°C and 25°C: 2.38 ⁇ 10 9 Pa, elastic modulus at 150°C: 1.42 ⁇ 10 4 Pa), TP236 (Tg: elastic modulus at 60°C and 25°C: 2.06 ⁇ 10 9 Pa, elastic modulus at 150°C: 6.22 ⁇ 10 4 Pa).
  • the number average molecular weight (Mn) of the polyester resin as the resin (A) is, for example, 5,000 to 100,000.
  • the number average molecular weight (Mn) is determined from polystyrene conversion standards by gel permeation chromatography (GPC).
  • Acrylic resins are polymers of acrylic acid esters or methacrylic acid esters. Acrylic resins can be obtained by polymerizing acrylic acid esters or methacrylic acid esters.
  • resin (A) polymethyl methacrylate (PMMA) is exemplified as an acrylic resin.
  • PMMA polymethyl methacrylate
  • Commercially available products of PMMA include, for example, Acrylite TM EX manufactured by Mitsubishi Chemical Corporation (Tg: 70°C, modulus of elasticity at 25°C: 3.04 ⁇ 10 9 Pa, modulus of elasticity at 150°C: 3.51 ⁇ 10 6 Pa).
  • the number average molecular weight (Mn) of the acrylic resin as the resin (A) is, for example, 5,000 to 200,000.
  • a cycloolefin copolymer resin is a copolymer of a cycloolefin and any monomer.
  • a cycloolefin copolymer resin can be obtained by copolymerizing a cycloolefin and an arbitrary monomer.
  • Examples of commercially available cycloolefin copolymer resins as the resin (A) include APL6509T manufactured by Mitsui Chemicals, Inc. (Tg: 80°C, modulus at 25°C: 1.86 ⁇ 10 10 Pa, modulus at 150°C : 1.71 ⁇ 10 6 Pa).
  • the number average molecular weight (Mn) of the cycloolefin copolymer resin as the resin (A) is, for example, 5,000 to 150,000.
  • the resin (A) may be used alone or in combination of two or more.
  • the channel substrate When the channel substrate has a multilayer structure, the channel substrate preferably has at least one layer containing the resin (A) (hereinafter also referred to as "A layer").
  • the content of the resin (A) in the A layer is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the total mass (100% by mass) of the resin contained in the A layer. is more preferable, and 95% by mass or more is particularly preferable.
  • the content of the resin (A) in the A layer may be 100% by mass with respect to the total mass (100% by mass) of the resin contained in the A layer.
  • the A layer may contain a resin other than resin (A).
  • the A layer may optionally contain additives such as solvents (eg, cyclohexanone, propylene glycol-1-methyl ether acetate (PGMEA), etc.), surfactants, antifoaming agents, and the like.
  • the thickness of the A layer is not particularly limited as long as each member of the flow path substrate can be adhered.
  • the lower limit of the thickness of the layer A is, for example, 50 ⁇ m or more, 100 ⁇ m or more, 150 ⁇ m or more, 200 ⁇ m or more, 250 ⁇ m or more, 300 ⁇ m or more, 350 ⁇ m or more, 400 ⁇ m or more, 450 ⁇ m or more, or 500 ⁇ m or more.
  • Examples of the upper limit of the thickness of the A layer include 2000 ⁇ m or less, 1500 ⁇ m or less, 1000 ⁇ m or less, 900 ⁇ m or less, 800 ⁇ m or less, 750 ⁇ m or less, 700 ⁇ m or less, or 650 ⁇ m or less.
  • the thickness range of the layer A is, for example, 50 ⁇ m to 2000 ⁇ m, 100 ⁇ m to 1500 ⁇ m, 150 ⁇ m to 1000 ⁇ m, 200 ⁇ m to 900 ⁇ m, 250 ⁇ m to 800 ⁇ m, 300 ⁇ m to 750 ⁇ m, 350 ⁇ m to 700 ⁇ m, 400 ⁇ m to 650 ⁇ m, or 450 ⁇ m to 650 ⁇ m. mentioned.
  • the exemplified thickness is the thickness of one layer of the A layer.
  • the channel substrate should include one or more layers A.
  • the number of A layers included in the channel substrate may be 1 to 5, 1 to 4, 1 to 3, 1 to 2, or the like.
  • the ratio (Ra) of the total thickness (ta) of the A layer to the total thickness (T1) of the channel substrate is preferably 50% or more, more preferably 60% or more, and 70%. It is more preferably 80% or more, and particularly preferably 80% or more.
  • the upper limit of the ratio (Ra) is not particularly limited, and may be 100%.
  • the ratio is preferably 95% or less, more preferably 90% or less, even more preferably 85% or less. Examples of the range of the ratio include 50 to 100%, 60 to 95%, 65 to 90%, 70 to 90%, or 75 to 85%.
  • the ratio (Ra) is obtained by the following formula (1).
  • Ra (%) ta/T1 x 100 (1)
  • the channel substrate may include other layers in addition to the A layer.
  • the other layer include a layer (hereinafter also referred to as "B layer”) containing a resin having a Tg of less than 37°C (hereinafter also referred to as "resin (B)").
  • polyester resins having a Tg of less than 37°C examples include polyester resins having a Tg of less than 37°C.
  • Polyester resins include polyester resins and polyester urethane resins.
  • polyester resins having a Tg of less than 37°C examples include Vylon 300 (7°C), Vylon 630 (7°C), Vylon 650 (10°C), Vylon GK130 (15°C), and Vylon GK140 (20°C). , Byron GK150 (20°C), Byron GK190 (11°C), Byron GK330 (16°C), Byron GK590 (15°C), Byron GK680 (10°C), Byron GK780 (36°C), Byron GK890 (17°C), Byron 500 (4°C), Vylon 550 (-15°C), Vylon GK570 (0°C) (manufactured by Toyobo), Elitel UE-3510 (-25°C), Elitel UE-3400 (-20°C), Elitel UE ⁇ 3220 (5° C.), Elitel UE ⁇ 3220 (5° C.), Elitel UE-3500 (15° C.) (manufactured by Unitika Ltd.), G6 ( ⁇ 60° C.) (manufactured by
  • the number average molecular weight (Mn) of the polyester resin as the resin (B) is, for example, 5,000 to 100,000.
  • polyester urethane resins having a Tg of less than 37°C examples include Vylon UR-8300 (23°C), Vylon UR-3500 (10°C), and Vylon UR-6100 (-30°C). The numbers in parenthesis indicate the Tg.
  • the number average molecular weight (Mn) of the polyester urethane resin as the resin (B) is, for example, 5,000 to 100,000.
  • the polyester resin may be crosslinked with a melamine resin or the like.
  • melamine resin examples include the "Sumimar (registered trademark) UR” series manufactured by Sumitomo Chemical Co., Ltd., and the “Cymel (registered trademark)” series manufactured by Mitsui Cytec.
  • the ratio of the resin to the cross-linking agent is such that the cross-linking agent (after reaction) is 5% by mass or more and 30% by mass or less in the second adhesive layer after drying. It is preferable to mix so that
  • the resin (B) may have an elastic modulus of 1 ⁇ 10 7 Pa or less at 150° C.
  • the elastic modulus of the resin (B) at 150° C. may be, for example, 8 ⁇ 10 6 Pa or less, or 5 ⁇ 10 6 Pa or less.
  • the lower limit of the elastic modulus of the resin (B) at 150° C. is not particularly limited, but is, for example, 1 ⁇ 10 2 Pa or more, 1 ⁇ 10 3 Pa or more, 1 ⁇ 10 4 Pa or more, 1 ⁇ 10 5 Pa or more, Alternatively, 1 ⁇ 10 6 Pa or more can be mentioned.
  • the resin (B) may have an elastic modulus at 25° C. of 1 ⁇ 10 9 Pa or more, or 1.5 ⁇ 10 9 Pa or more.
  • the upper limit of the elastic modulus of the resin (B) at 25° C. is not particularly limited, but is, for example, 1 ⁇ 10 12 Pa or less, 1 ⁇ 10 11 Pa or less, 5 ⁇ 10 10 Pa or less, 3 ⁇ 10 10 Pa or less, or 2 ⁇ 10 10 Pa or less.
  • the elastic modulus of the resin (B) at 25° C. is 1 ⁇ 10 9 Pa or more and 1 ⁇ 10 12 Pa or less, 1 ⁇ 10 9 Pa or more and 1 ⁇ 10 11 Pa or less, 1 ⁇ 10 9 Pa or more and 5 ⁇ 10 10 Pa or less. , or 1 ⁇ 10 9 Pa or more and 3 ⁇ 10 10 Pa or less.
  • the resin (B) may be a resin other than a polyester-based resin.
  • examples thereof include acrylic resins, urethane resins, polyolefin resins, fluorine resins, silicone resins, and mixtures or modified resins of these resins.
  • the resin (B) may be used alone or in combination of two or more.
  • the content of the resin (B) in the B layer is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the total mass (100% by mass) of the resin contained in the B layer. is more preferable, and 95% by mass or more is particularly preferable.
  • the content of the resin (B) in the second adhesive may be 100% by mass with respect to the total mass (100% by mass) of the resins contained in the second adhesive.
  • the B layer may contain resins other than resin (A) and resin (B).
  • Layer B may optionally contain additives such as solvents (eg, cyclohexanone, propylene glycol-1-methyl ether acetate (PGMEA), etc.), surfactants, antifoaming agents, and the like.
  • the thickness of the B layer is preferably 100 ⁇ m or less, more preferably 90 ⁇ m or less, even more preferably 80 ⁇ m or less, and particularly preferably 70 ⁇ m or less, or 60 ⁇ m or less.
  • the lower limit of the thickness of the second adhesive layer include 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, and 7 ⁇ m or more.
  • the thickness range of the second adhesive layer include 1 ⁇ m to 100 ⁇ m, 3 ⁇ m to 90 ⁇ m, 5 ⁇ m to 80 ⁇ m, 5 ⁇ m to 70 ⁇ m, 5 ⁇ m to 60 ⁇ m, or 7 ⁇ m to 60 ⁇ m.
  • the exemplified thickness is the thickness of one layer of the B layer. When the thickness of the layer B is within the preferred range, the reduction of the drug is easily suppressed.
  • the ratio (Rb) of the total thickness (tb) of the B layer to the total thickness (T) of the cell culture chip is preferably 20% or less.
  • the ratio (Rb) is preferably 19% or less, more preferably 18% or less, still more preferably 17% or less, and particularly preferably 16% or less, 15% or less, or 14% or less.
  • the ratio of the thickness (tb) of the second adhesive layer is 0%.
  • the ratio (Rb) is obtained by the following formula (1).
  • Rb (%) tb/T x 100 (2)
  • FIG. 5 shows a structural example of a laminate constituting a cell culture chip.
  • a laminate 100 shown in FIG. 5 is composed of a bottom plate substrate L1, a first flow path substrate L2, a porous film L3, a second flow path substrate L4, a top plate substrate L5, and a cover substrate L6 in order from the bottom.
  • A represents the A layer
  • B represents the B layer.
  • the bottom plate substrate L1 forms the bottom of the first flow path F2.
  • the bottom plate substrate L1 is composed of the S1 layer.
  • the material of the S1 layer is not particularly limited, but a material with high biocompatibility is preferable. Since cells may be observed with a phase-contrast microscope or the like while being cultured in the cell culture chip 1, the S1 layer is preferably made of a transparent material, and more preferably a material with low autofluorescence.
  • the S1 layer preferably does not contain a filler (anti-blocking agent) in order to improve transparency.
  • PET polyethylene terephthalate
  • S1 layer polycarbonate
  • cycloolefin polymer polydimethylsiloxane
  • polystyrene polystyrene
  • polyacrylate acrylic resin
  • the S1 layer may have an easy-to-slip layer containing a lubricant component on at least one side.
  • the slippery layer may contain a binder resin component.
  • the lubricant component is not particularly limited, and examples thereof include paraffin wax, microwax, polypropylene wax, polyethylene wax, ethylene-acrylic wax, stearic acid, behenic acid, 12-hydroxystearic acid, stearic acid amide, and oleic acid amide.
  • erucamide methylene bis stearamide, ethylene bis stearamide, ethylene bis oleamide, butyl stearate, monoglyceride stearate, pentaerythritol tetrastearate, hydrogenated castor oil, stearyl stearate, siloxane, higher alcohol Polymers, stearyl alcohol, calcium stearate, zinc stearate, magnesium stearate, lead stearate, silicone (dimethylsiloxane)-based low molecular weight substances (oils), silicone (dimethylsiloxane)-based resins, and the like.
  • the lubricant component may be used alone or in combination of two or more.
  • binder resin component blended in the slippery layer examples include polyester-based resins, polyamide-based resins, polyurethane-based resins, epoxy-based resins, phenol-based resins, acrylic-based resins, polyvinyl acetate-based resins, cellulose-based resins, Styrenic resins, copolymer resins thereof, and the like are included.
  • a styrene-acrylic copolymer resin is preferred because it exhibits superior lubricity when combined with the lubricant component described above.
  • Silicone-based refers to organosiloxanes. They are oily, rubbery, and resinous, and are called silicone oil, silicone rubber, and silicone resin, respectively. Since these have water-repellent action, lubricating action, release action, etc., they are effective in reducing surface friction by being contained in the outermost layer of the film.
  • the thickness of the S1 layer is not particularly limited, but can be, for example, 50 ⁇ m to 300 ⁇ m.
  • the thickness of the substrate S1 is, for example, 100 ⁇ m to 250 ⁇ m, or 150 ⁇ m to 200 ⁇ m.
  • the first channel substrate L2 forms partition walls of the first channel F2.
  • the first channel substrate L2 has a multilayer structure.
  • the first flow path substrate L2 is composed of a laminate in which a B layer, an A layer, and a B layer are laminated in this order.
  • the B layer functions as an adhesive layer.
  • the thickness of the first channel substrate L2 defines the height (vertical width) of the first channel F2. Therefore, the thickness of the first channel substrate L2 can be appropriately set according to the desired height of the first channel F2.
  • the thickness of the first channel substrate L2 may be appropriately adjusted by changing the thickness of the A layer, for example.
  • the thickness of the first channel substrate L2 is, for example, 300 ⁇ m to 2000 ⁇ m. Examples of the thickness of the first channel substrate L2 include 300 ⁇ m to 2000 ⁇ m, 400 to 1800 ⁇ m, 500 ⁇ m to 1500 ⁇ m, 600 ⁇ m to 1200 ⁇ m, 600 ⁇ m to 1000 ⁇ m, 600 ⁇ m to 9000 ⁇ m, 600 ⁇ m to 800 ⁇ m, or 700 ⁇ m to 800 ⁇ m. .
  • the porous membrane L3 partitions the first flow path F2 and the second flow path F4.
  • the porous membrane L3 is composed of the porous membrane M.
  • the porous membrane M is not particularly limited as long as it has a pore size through which the cells to be cultured do not pass but the drug solution can pass through.
  • the average pore size of the porous membrane M is, for example, 0.05 ⁇ m to 10 ⁇ m.
  • the pore density of the porous membrane M is, for example, about 10 5 to 10 9 /cm 2 .
  • the porous membrane M is preferably made of a highly biocompatible material.
  • materials for the porous membrane M include polycarbonate, polyester, polyethylene terephthalate, and polytetrafluoroethylene.
  • the thickness of the porous membrane M is not particularly limited.
  • the thickness of the porous membrane M is, for example, 0.1 ⁇ m to 100 ⁇ m, 0.5 ⁇ m to 50 ⁇ m, 1 ⁇ m to 30 ⁇ m, 5 ⁇ m to 20 ⁇ m, or 5 ⁇ m to 15 ⁇ m.
  • the second channel substrate L4 forms partition walls of the second channel F4.
  • the second channel substrate L4 has a multilayer structure.
  • the layer structure of the second flow path substrate L4 is the same as that of the first flow path substrate L2. That is, the B layer, the A layer, and the B layer are laminated in this order. By providing the B layer on both sides of the A layer, it becomes easier to adhere to the porous membrane L3 and the second flow path substrate L4.
  • the B layer functions as an adhesive layer.
  • the thickness of the second channel substrate L4 defines the height (vertical width) of the second channel F4. Therefore, the thickness of the second flow path substrate L4 can be appropriately set according to the height of the target second flow path F4.
  • the thickness of the second channel substrate L4 may be appropriately adjusted by changing the thickness of the A layer, for example.
  • the thickness of the second channel substrate L4 is, for example, 300 ⁇ m to 2000 ⁇ m.
  • Examples of the thickness of the first channel substrate L2 include 300 ⁇ m to 2000 ⁇ m, 400 ⁇ m to 1800 ⁇ m, 500 ⁇ m to 1500 ⁇ m, 600 ⁇ m to 1200 ⁇ m, 600 ⁇ m to 1000 ⁇ m, 600 ⁇ m to 9000 ⁇ m, 600 ⁇ m to 800 ⁇ m, or 700 ⁇ m to 800 ⁇ m. .
  • the top substrate L5 forms the ceiling of the second flow path F4.
  • the top substrate L5 is composed of the S1 layer.
  • Examples of the S1 layer include those similar to the S1 layer in the bottom plate substrate L1.
  • the thickness of the top board L5 is not particularly limited, but can be, for example, 50 to 600 ⁇ m.
  • the thickness of the top substrate L5 is, for example, 100 ⁇ m to 500 ⁇ m, or 150 ⁇ m to 400 ⁇ m.
  • the cover substrate L6 is provided on the uppermost layer of the cell culture chip.
  • the cover substrate L6 is composed of a laminated body in which a B layer and an S2 layer are laminated in this order.
  • the B layer functions as an adhesive layer.
  • the S2 layer may be observed with a phase-contrast microscope or the like while cells are being cultured in the cell culture chip 1, a material having transparency is preferable, and a material with low autofluorescence is more preferable.
  • the S2 layer preferably does not contain a filler (anti-blocking agent) in order to improve transparency.
  • transparent low autofluorescent materials include glass, polyethylene terephthalate (PET), polycarbonate, cycloolefin polymer, polydimethylsiloxane, polystyrene, polyacrylate (acrylic resin), and polymethyl methacrylate (PMMA). Among them, PMMA is preferable as the material for the S2 layer.
  • the thickness of the S2 layer is not particularly limited, but can be, for example, 500 ⁇ m to 5000 ⁇ m.
  • the thickness of the S2 layer is, for example, 800 ⁇ m to 3000 ⁇ m, 1000 ⁇ m to 2500 ⁇ m, or 1500 ⁇ m to 2500 ⁇ m.
  • the thickness of the cover substrate L6 is not particularly limited, but can be, for example, 500 ⁇ m to 5000 ⁇ m.
  • the thickness of the substrate S2 is, for example, 800 ⁇ m to 3000 ⁇ m, 1000 ⁇ m to 2500 ⁇ m, or 1500 ⁇ m to 2500 ⁇ m.
  • the plurality of S1 layers included in the laminate 100 may all be made of the same material, or may be partially made of different materials.
  • the thicknesses of the multiple S1 layers may be the same or different.
  • the plurality of A layers included in the laminate 100 may all be composed of layers having the same composition, or may be partially composed of layers having different compositions.
  • the thicknesses of the multiple A layers may be the same or different.
  • the plurality of B layers included in the laminate 100 may all be composed of layers having the same composition, or may be partially composed of layers having different compositions. The thicknesses of the multiple B layers may be the same or different.
  • the number of A layers included in the first channel substrate L2 and the second channel substrate L4 can be changed as appropriate.
  • the number of A layers may be, for example, one, two, four, or five. If the number of A layers increases, the number of B layers may increase accordingly. Some or all of the B layers may be omitted.
  • further flow path substrates may be provided. It may also have a bottom plate substrate, a porous membrane, and a top plate substrate for additional channels.
  • the B layer may have a multilayer structure. When the B layer has a multilayer structure, each layer constituting the B layer may contain different types of resin (B).
  • the number of layers constituting the B layer is not particularly limited, but can be, for example, 2 to 5 layers, 2 to 4 layers, 2 to 3 layers, or 2 layers.
  • some of the B layers may have a multi-layer structure, or all of them may have a multi-layer structure.
  • FIG. 6 shows another structural example of the laminate constituting the cell culture chip.
  • a laminate 200 shown in FIG. 6 is composed of a bottom plate substrate L1, a first channel substrate L2, a porous film L3, a second channel substrate L4, and a top plate L5 in order from the bottom.
  • A is the A layer
  • B is the B layer.
  • the laminate 200 is a configuration example that does not have the cover substrate L6.
  • the bottom plate substrate L1, the first channel substrate L2, the porous membrane L3, and the second channel substrate L4 are the same as those in the laminate 100.
  • the top substrate L5 is composed of the S1 layer.
  • the thickness of the top substrate L5 is not particularly limited, but examples thereof include 50 ⁇ m to 300 ⁇ m, 100 ⁇ m to 200 ⁇ m, or 150 ⁇ m to 200 ⁇ m.
  • the relationships among the plurality of S1 layers, the plurality of A layers, and the plurality of B layers included in the laminate 200 are the same as those of the laminate 100 described above.
  • the channel substrate has a glass transition temperature of 37° C. or higher, an elastic modulus of 1 ⁇ 10 9 Pa or higher at 25° C., and an elastic modulus of 1 at 150° C.
  • the cell culture chip of this embodiment can be suitably used for cell culture in the presence of a drug, since the decrease of the drug when the drug solution is perfused or retained in the channel is suppressed.
  • the cell culture chip of the present embodiment can be applied, for example, to drug evaluation tests (effectiveness evaluation tests, safety evaluation tests, etc.) using cells.
  • a second aspect of the present invention is a cell culture device including the cell culture chip of the first aspect.
  • a cell culture device comprises the cell culture chip of the first aspect and a mechanism for performing cell culture with the cell culture chip.
  • the mechanism provided in the cell culture device can be changed as appropriate according to the purpose of cell culture.
  • Mechanisms provided in the cell culture device include, for example, a liquid delivery mechanism (medical solution tank, liquid delivery tube, delivery pump, etc.) for supplying a chemical solution to the channel of the cell culture chip, Drainage mechanism (drainage tank, drainage tube, drainage pump, etc.) for discharging the chemical solution; temperature maintenance mechanism (thermostat, etc.) for maintaining the culture temperature of the cell culture chip, A cleaning mechanism for cleaning (a cleaning liquid tank, a tube, a pump, etc.) and the like are included.
  • a liquid delivery mechanism medical solution tank, liquid delivery tube, delivery pump, etc.
  • Drainage mechanism drainage tank, drainage tube, drainage pump, etc.
  • temperature maintenance mechanism thermostat, etc.
  • a cleaning mechanism for cleaning a cleaning liquid tank, a tube, a pump, etc.
  • the cell culture device of this aspect includes the cell culture chip of the first aspect, it is possible to perform cell culture while suppressing the decrease of the drug in the drug solution. Therefore, it can be suitably used for cell culture in the presence of drugs.
  • the cell culture device of this embodiment is applicable to, for example, drug evaluation tests (effectiveness evaluation tests, safety evaluation tests, etc.) using cells.
  • a third aspect of the present invention is a method of manufacturing a cell culture chip including a laminate having a channel structure inside.
  • the manufacturing method according to this aspect includes a step A of laminating a bottom plate substrate, a flow path substrate in which flow paths are formed by laser processing, and a top plate substrate in this order, and bonding the laminated substrates. and a step B of performing.
  • the channel substrate contains a resin having a glass transition temperature of 37° C. or higher, an elastic modulus of 1 ⁇ 10 9 Pa or higher at 25° C., and an elastic modulus of 1 ⁇ 10 7 Pa or lower at 150° C. .
  • Step A is a step of stacking a bottom plate substrate, a channel substrate having channels formed by laser processing, and a top plate substrate in this order.
  • the flow path substrate may include a first flow path substrate L2 and a second flow path substrate L4.
  • the cell culture chip may further include a porous membrane L3 and a cover substrate L6.
  • Bottom plate substrate L1 As the bottom plate substrate L1, the same one as described above can be used.
  • the bottom plate substrate L1 can be produced by processing the S1 layer into the size of the cell culture chip by laser processing or the like.
  • laser processing for example, a carbon dioxide laser or the like can be used.
  • the first channel substrate L2 preferably has a multilayer structure.
  • each layer constituting the first flow path substrate L2 is produced, and the layers are laminated and pressed to obtain a laminate for the first flow path substrate L2.
  • the pressure bonding of each layer can be performed using a laminator, a press machine, or the like. For example, after laminating each layer, they are pressure-bonded with a laminator and then pressed with a pressing machine, whereby the laminated body for the first flow path substrate L2 in which each layer is joined can be obtained.
  • the laminate for the first channel substrate L2 can be processed into the size of a cell culture chip by laser processing. Furthermore, a flow path is formed by laser processing. For laser processing, for example, a carbon dioxide laser or the like can be used.
  • porous membrane L3 As the porous membrane L3, the same one as described above can be used.
  • the porous membrane L3 can be processed into the size of a cell culture chip by laser processing or the like. Furthermore, necessary processing such as formation of openings for ports P3 and P4 is performed by laser processing or the like.
  • the second channel substrate L4 preferably has a multilayer structure.
  • the second flow path substrate L4 can be produced by the same method as the first flow path substrate L2.
  • the top plate substrate L5 can be the same one as described above.
  • the top substrate L5 may have a multi-layer structure or a single-layer structure.
  • a laminate for the top substrate L5 can be produced in the same manner as for the first channel substrate L2.
  • the laminate for the top substrate L5 or the substrate for the top substrate L5 can be processed into the size of the cell culture chip by laser processing or the like.
  • the top substrate L5 can be manufactured by performing necessary processing such as forming openings for the ports P1 to P4 by laser processing or the like.
  • a cover substrate L6 similar to the above can be used.
  • the cover substrate L6 can be processed into the size of a cell culture chip by laser processing or the like.
  • the top substrate L5 can be manufactured by performing necessary processing such as forming openings for the ports P1 to P4 and the opening W by laser processing or the like.
  • the members prepared as described above are laminated in order of the bottom plate substrate L1, the first channel substrate L2, the porous film L3, the second channel substrate L4, the top plate substrate L5, and the cover substrate L6.
  • the members are laminated so that the positions of the openings for the ports P1 to P4 are aligned.
  • the cover substrate L6 is not laminated.
  • Step B is a step of joining the laminated substrates.
  • each substrate can be performed using a laminator, press machine, or the like.
  • a cell culture chip to which the substrates of the laminate are joined can be obtained by press-bonding the substrates of the laminate with a laminator and then pressurizing them with a pressing machine.
  • the cell culture chip manufactured by the manufacturing method of the present embodiment is the cell culture chip according to the first aspect. Therefore, the production method according to this embodiment can be applied to the production of the cell culture chip according to the first aspect.
  • a fourth aspect of the present invention is a method for culturing cells.
  • a culture method according to this aspect includes a step of culturing cells in the presence of a drug in the channel of the cell culture chip of the first aspect.
  • FIG. 7 is a schematic diagram showing an example of the culture state in this step.
  • the first central flow path F2a and the second central flow path F4a are partitioned by the porous membrane L3.
  • Cells C are cultured on the porous membrane L3 facing the second central flow path F4a.
  • Cell C is not particularly limited, and any cell can be used.
  • Animal cells can be used for the cells C.
  • Animal cells include human cells and cells of animals other than humans (monkeys, mice, rats, guinea pigs, marmosets, dogs, cats, insects, etc.).
  • the cell type is not particularly limited and can be appropriately selected depending on the purpose.
  • Cells include, for example, immune cells, germ cells, nerve cells, fibroblasts, mesenchymal stem cells, hormone-secreting cells, various organ cells, cancer cells, various disease cells, pluripotent stem cells, etc. It is not limited to these.
  • the drug may be a candidate drug to be developed as a therapeutic agent for any disease.
  • examples of drugs include, but are not limited to, low-molecular-weight drugs (molecular weight of 500 or less), medium-molecular-weight drugs (molecular weight of about 500 to 2000), and high-molecular-weight drugs (nucleic acid drugs, protein drugs, polymers, etc.). .
  • the medium used for culture is not particularly limited, and can be appropriately selected according to the cell type.
  • the medium may be a basal medium for animal culture supplemented with a drug for evaluation and optionally necessary components.
  • a known animal basal medium can be used.
  • basal media include Doulbecco's modified Eagle's Medium (DMEM) medium, DMEM/F12 medium, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Ham's F12 medium, Examples include RPMI1640 medium, Fischer's medium, and mixed medium thereof.
  • the basal medium may optionally contain serum (such as fetal bovine serum (FBS)) or serum replacement.
  • FBS fetal bovine serum
  • Serum replacements include, for example, albumin, transferrin, sodium selenite, ITS-X (Invitrogen), Knockout Serum Replacement (KSR), N2 supplement (Invitrogen), B27 supplement (Invitrogen), fatty acids, Insulin, collagen precursors, trace elements, 2-mercaptoethanol, 3′-thiolglycerol, etc.
  • the basal medium optionally contains lipids, amino acids, L-glutamine, Glutamax, non-essential amino acids, vitamins, growth It may contain components such as factors, antibiotics, antioxidants, pyruvic acid, buffers, inorganic salts, etc. These can be used in combination as appropriate.
  • the culture temperature can be, for example, 32-40°C, preferably 35-38°C (eg, 37°C).
  • the CO 2 concentration can be, for example, about 2-5% (eg, 5%).
  • a culture procedure can be performed, for example, as follows. First, the culture medium is injected from the port P1 and introduced into the first central flow path F2a. Next, the cell culture medium is injected from the port P3 to introduce the cell culture medium into the second central flow path F4a. The cell culture medium is retained in the second central flow path F4a and incubated for an arbitrary time to allow the cells to settle on the porous membrane L3. Next, a chemical solution is injected from the port P3 and introduced into the second central flow path F4a to perform cell culture. During cell settlement and culturing, the chemical solution may be perfused through the second flow path F4 or retained in the second flow path F4. The culture medium may be perfused through the first flow path F2 or retained in the first flow path F2 during the culture. By analyzing the state of cells during or after culturing, the effects of drugs on cells can be evaluated.
  • the culture method of the present embodiment since culture is performed using the cell culture chip according to the first aspect, the sorption of the cell culture chip to the channel partition wall and/or the reduction of the drug due to adsorption is suppressed. can do. Therefore, the effects of drugs on cells can be accurately evaluated.
  • a test piece for elastic modulus measurement (film thickness 50 ⁇ m, width 5 mm, length 40 mm) is cut out from the sample of each example above, and is subjected to tension conditions at a frequency of 1 Hz using Rheogel-E4000 (manufactured by UBM). The temperature was measured from 25° C. to 150° C. at a heating rate of 2° C./min. Table 2 shows the measurement results of the elastic modulus.
  • the sample of each example was sterilized by immersing it in 70% ethanol for 30 minutes and air-dried in a clean bench.
  • the laser-processed sample of Example 2 was sterilized by UV irradiation (30 minutes per side) in a clean bench.
  • Samples were then placed in the wells of a 24-well plate and 550 ⁇ L of drug solution was introduced into the wells. Immediately after introduction into the wells, 50 ⁇ L was collected and mixed with 150 ⁇ L of diluting solvent for LC-MS/MS measurement to obtain a pre-incubation sample.
  • the 24-well plate was then covered and placed in an incubator at 37°C.
  • S1, A1, A2, B, and M in the layer structure are as follows.
  • S1 COSMOSHINE A4160 (polyethylene terephthalate)
  • B one or two resins (B) including Vylon 500 (polyester resin)
  • A1 Clanbetter G7 (polyester resin)
  • RA2 Acrylite TM EX (polymethyl methacrylate)
  • M Polyethylene terephthalate porous membrane (average pore size 0.45 ⁇ m, track-etched membrane ipCELLCUTURE, manufactured by it4ip)
  • a sheet for each layer of each member was produced and cut into a size of 200 mm x 150 mm. Sheets of each layer were laminated as shown in Table 4 to produce a laminate of each member.
  • the laminated body of each member was passed through a laminating roll (laminator FA-570, manufactured by Taisei Laminator Co., Ltd.) set at 140° C. and thermocompression bonded (roll load 0.3 MPa, speed 0.1 to 0.5 m / min). .
  • each layer of the laminate was adhered by pressing with a small press machine (H300-05, manufactured by AS ONE) at 105° C. and a load of 3 tons.
  • the first flow path substrate L2 and the second flow path substrate L4 were formed by laser processing to form the first flow path F2 and the second flow path F4, respectively.
  • Through holes for the ports P1 to P4 are formed in the top substrate L5.
  • Through-holes for ports P1 and P2 were formed in the porous membrane L3.
  • a bottom plate substrate L1, a first flow path substrate L2, a porous film L3, a second flow path substrate L4, and a top plate substrate L5 are stacked in this order so that the positions of the ports and flow paths are aligned, and a cell culture chip is obtained.
  • a laminate for use was obtained.
  • the laminate was passed through a laminating roll (laminator FA-570, manufactured by Taisei Laminator Co., Ltd.) set at 140° C. and thermocompression bonded (roll load 0.3 MPa, speed 0.1 to 0.5 m/min). Further, each layer of the laminate was adhered by pressing with a small press machine (H300-05, manufactured by AS ONE) at 50 to 80° C. and a load of 3 tons. Then, using LaserPro, it was cut into a size of 58 mm ⁇ 46 mm to obtain a chip for cell culture.
  • the inside of the channel of the cell culture chip prepared above was washed with 9 mL of PBS. Then, it was sterilized by UV irradiation in a clean bench. UV irradiation was performed for 20 minutes on each side of the cell culture chip. Next, the inside of the channel was washed with 6 mL of PBS and air-dried in a clean bench. A chemical solution was introduced into the channels of the cell culture chip (the first channel F2 and the second channel F4) in an amount corresponding to the volume of the channels, and the cell culture chip was moved so that no air remained in the channels. was kept horizontal.
  • 50 ⁇ L of the drug solution was recovered, mixed with 150 ⁇ L of a dilution solvent for LC-MS/MS measurement, and used as a sample after incubation for 0 hours.
  • 50 ⁇ L of the drug solution was newly introduced into the channels (the first channel F2 and the second channel F4) of the cell culture chip and allowed to stand in an incubator at 37°C.
  • 50 ⁇ L of the drug solution was collected and mixed with 150 ⁇ L of a dilution solvent for LC-MS/MS measurement to obtain a sample after incubation for 48 hours.
  • Drug concentrations in the samples were quantified by LC-MS/MS.
  • the drug residual rate of the sample after 48 hours of incubation was calculated as a relative value when the drug concentration of the sample after 0 hour of incubation was taken as 100%.
  • the cell culture chip of the example can suppress the reduction of the drug compared to the cell culture chip of the comparative example.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

内部に流路構造を有する積層体を含む細胞培養用チップであって、前記積層体が、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とをこの順で含み、前記流路基板が、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む、細胞培養用チップ。

Description

細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法
 本発明は、細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法に関する。
 本願は、2021年8月26日に、日本に出願された特願2021-138142号に基づき優先権を主張し、その内容をここに援用する。
 従来の細胞アッセイで利用されてきた単層培養は、細胞を取り巻く環境が生体内と大きく異なる。そのため、単層培養の培養細胞では、生体内の細胞が発現している機能の多くが失われている点がしばしば問題となる。近年の微細加工技術や三次元培養技術の進歩により、この問題が克服され、細胞アッセイのスループットと信頼性とが同時に向上すること期待されている。特に、生理学的な三次元培養環境をin vitroで再現したマイクロ流体デバイスを備えた細胞培養用チップを1つの臓器のように取り扱うOrgan-on-a-chipという概念が広がり、医薬品開発への応用を意識した研究が世界的に広く展開されつつある。さらに、in vitroで再構成した複数の臓器モデルをマイクロ流路等で接続し、個体応答の再現を目指すBody-on-a-chipという概念も提唱され、急速な注目を集めている。そのようなシステムは、生体模倣システム(Microphysiolocical System:MPS)とも呼ばれている。
 上述のような細胞培養用チップとして、細胞培養用流路が形成された基板と、前記細胞培養用流路を塞ぐ天板とが、Tgが5℃以上のポリエステル系樹脂である接着剤層を介して熱圧着により接合した、中空構造を有するマイクロ流路構造体を備えた細胞培養用チップが提案されている(例えば、特許文献1)。
特開2018-102236号公報
 上述のような人体模倣システムは、in vitroで薬剤の有効性及び安全性を評価する手法として注目されている。薬剤評価においては、MPSを構成する細胞培養用チップにおいて、薬剤の存在下で細胞を培養し、細胞に対する薬剤の影響が観察される。
 薬剤評価に用いられる細胞培養用チップとしては、ヒト体温に近い37℃付近の灌流条件で細胞培地の漏れがないこと、評価対象細胞の培養及び観察が可能であること、並びに薬剤の減少が少ないことが、等の条件が求められる。薬剤の減少が少ないという条件を満たすためには、薬液の灌流中に、流路を形成する隔壁等への薬剤の吸着を抑制する必要がある。しかしながら、レーザー加工により流路を形成すると、加工面にミクロの凹凸が発生する。この凹凸に薬剤が吸着されやすく、薬液中の薬剤減少の要因となっている。
 本発明は、上記事情に鑑みてなされたものであり、レーザー加工された流路隔壁への薬剤の吸着を抑制可能な、細胞培養用チップ、前記細胞培養用チップを含む細胞培養用デバイス、前記細胞培養用チップの製造方法、及び前記細胞培養用チップを用いた細胞の培養方法を提供することを課題とする。
 上記の課題を解決するために、本発明は以下の構成を採用した。
 本発明の第1の態様は、内部に流路構造を有する積層体を含む細胞培養用チップであって、前記積層体が、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とをこの順で含み、前記流路基板が、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む、細胞培養用チップである。
 本発明の第2の態様は、前記第1の態様の細胞培養用チップを含む、細胞培養用デバイスである。
 本発明の第3の態様は、内部に流路構造を有する積層体を含む細胞培養用チップを製造する方法であって、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とを、この順で積層する工程Aと、前記の積層された各基板を、接合する工程Bと、を含み、前記流路基板が、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む、細胞培養用チップの製造方法である。
 本発明の第4の態様は、前記第1の態様の細胞培養用チップの前記流路内で、薬剤の存在下で細胞を培養する工程を含む、細胞の培養方法である。
 本発明によれば、レーザー加工された流路隔壁への薬剤の吸着を抑制可能な、細胞培養用チップ、前記細胞用チップを含む細胞培養用デバイス、前記細胞培養用チップの製造方法、及び前記細胞培養用チップを用いた細胞の培養方法が提供される。
一実施形態の細胞培養用チップの斜視図である。 図1の細胞培養用チップの分解図である。 図1の細胞培養用チップのIII-III切断線による断面図である。 図1の細胞培養用チップのIV-IV切断線による断面図である。 一実施形態の細胞培養用チップの層構成の一例を示す。 一実施形態の細胞培養用チップの層構成の一例を示す。 一実施形態の細胞培養用チップを用いた細胞培養の一例を示す模式図である。
 以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明する。図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。
(細胞培養用チップ)
 本発明の第1の態様は、内部に流路構造を有する積層体を含む細胞培養用チップである。前記積層体は、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とをこの順で含む。前記流路基板は、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む。
 図1は、一実施形態の細胞培養用チップの斜視図である。図2は、図1の細胞培養用チップ1の分解図である。図3は、図1の細胞培養用チップ1のIII-III切断線による断面図である。図4は、図1の細胞培養用チップ1のIV-IV切断線による断面図である。
 細胞培養用チップ1は、内部に流路構造を有する積層体である。細胞培養用チップ1の積層体は、底板基板L1、第1流路基板L2、多孔膜L3、第2流路基板L4、天板基板L5、及びカバー基板L6により構成されている。底板基板L1、第1流路基板L2、多孔膜L3、第2流路基板L4、天板基板L5、及びカバー基板L6は、この順に積層されている。
 第1流路基板L2には、第1流路F2が形成されている。第2流路基板L4には、第2流路F4が形成されている。各基板が上記のように積層されることで、細胞培養用チップ1の内部に、第1流路F2及び第2流路F4からなる流路構造が形成される。
 細胞培養用チップ1には、第1流路F2への薬液導入ポートとしてポートP1、第1流路F2からの薬液排出ポートとしてポートP2、第2流路F4への薬液導入ポートとしてポートP3、第2流路F4からの薬液排出ポートとしてポートP4が設けられている。
 第1流路F2は、第1中央流路F2a、ポートP1と第1中央流路F2aとを接続する第1導入流路F2b、ポートP2と第1中央流路F2aとを接続する第1排出流路F2cから形成される。ポートP1から導入された薬液は、第1導入流路F2b、第1中央流路F2a、及び第1排出流路F2cを経て、ポートP2から排出される。
 第2流路F4は、第2中央流路F4a、ポートP3と第2中央流路F4aとを接続する第2導入流路F4b、ポートP4と第2中央流路F4aとを接続する第2排出流路F4cから形成される。ポートP3から導入された薬液は、第2導入流路F4b、第2中央流路F4a、及び第2排出流路F4cを経て、ポートP4から排出される。
 第1中央流路F2aと第2中央流路F4aとは、少なくとも流路の一部が互いに重なるように配置されている。第1中央流路F2aと、第2中央流路F4aとは、多孔膜Mにより隔てられている。細胞培養用チップ1において、第1中央流路F2aは、多孔膜Mの下部に位置する下層流路である。第2中央流路F4aは、多孔膜Mの上部に位置する上層流路である。
 第1中央流路F2a及び第2中央流路F4aの流路幅は、細胞培養用チップ1の目的に応じて、適宜設定することができる。流路幅としては、例えば、1μm~2000μm、10μm~1500μm、50μm~1000μm、又は100μm~500μm等が挙げられる。
 カバー基板L6は、第1中央流路F2a及び第2中央流路F4aが観察可能なように、開口部Wを備えている。
<流路基板が含む樹脂>
 細胞培養用チップにおいて、流路基板(第1流路基板L2、第2流路基板L4)は、ガラス転移温度(以下、「Tg」ともいう)が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂(以下、「樹脂A」という)を含む。流路基板には、レーザー加工により流路が形成されている。細胞培養用チップにおいて、流路基板は流路の隔壁を形成する。
≪樹脂(A)≫
 樹脂(A)は、Tgが37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である。
 「ガラス転移温度(Tg)」とは、ガラス転移が起きる温度である。Tgは、昇温速度20℃/分の条件における示差走査熱量分析(DSC)によって得られた測定温度の屈曲点における接線の交点となる温度として求めることができる。
 本明細書において、「弾性率」は、動的粘弾性測定装置を用いて測定される複素弾性率である。具体的には、弾性率は、樹脂シートをサイズ5mm×40mmの試験片で作製し、動的粘弾性測定装置を用いて、前記試験片の動的弾性率を測定することにより得ることができる。測定条件は、周波数1Hzの引張条件において、開始温度25℃から150℃まで、昇温速度2℃/分で昇温する条件を採用すればよい。動的粘弾性測定装置としては、例えば、Rheogel-E4000(ユービーエム製)等を用いることができる。
 25℃における弾性率は、動的粘弾性測定装置で測定される25℃における複素弾性率である。150℃における弾性率は、動的粘弾性測定装置で測定される150℃における複素弾性率である。
 樹脂(A)は、37℃以上のTgを有する。樹脂(A)のTgの下限値は、40℃以上が好ましく、45℃以上がより好ましく、50℃以上がさらに好ましく、55℃以上、60℃以上、又は65℃以上が特に好ましい。樹脂(A)のTgの上限値は、特に限定されないが、例えば、110℃以下が好ましく、100℃以下がより好ましく、95℃以下がさらに好ましく、90℃以下、又は85℃以下が特に好ましい。樹脂(A)のTgは、40~110℃が好ましく、45~100℃がより好ましく、50~95℃がさらに好ましく、55~90℃、60~90℃、又は65~85℃が特に好ましい。樹脂(A)のTgが前記範囲内であることにより、流路隔壁への薬剤の収着が抑制される。
 樹脂(A)は、25℃における弾性率が1×10Pa以上である。樹脂(A)の25℃における弾性率は、1.5×10Pa以上が好ましい。樹脂(A)の25℃における弾性率の上限値は、特に限定されないが、例えば、1×1012Pa以下が好ましく、1×1011Pa以下が好ましく、5×1010Pa以下がより好ましく、3×1010Pa以下がさらに好ましく、2×1010Pa以下が特に好ましい。樹脂(A)の25℃における弾性率は、1×10Pa以上1×1012Pa以下が好ましく、1×10Pa以上1×1011Pa以下がより好ましく、1×10Pa以上5×1010Pa以下がさらに好ましく、1×10Pa以上3×1010Pa以下が特に好ましい。25℃における弾性率が前記範囲内であることにより、流路基板の剛性が維持される。
 樹脂(A)は、150℃における弾性率が1×10Pa以下である。樹脂(A)の150℃における弾性率は、8×10Pa以下が好ましく、5×10Pa以下がより好ましい。樹脂(A)の150℃における弾性率の下限値は、特に限定されないが、例えば、1×10Pa以上が好ましく、1×10Pa以上がより好ましく、1×10Pa以上がさらに好ましく、1×10Pa以上がさらに好ましく、1×10Pa以上が特に好ましい。樹脂(A)の150℃における弾性率は、1×10Pa以上1×10Pa以下が好ましく、1×10Pa以上1×10Pa以下がより好ましく、1×10Pa以上1×10Pa以下がさらに好ましく、1×10Pa以上1×10Pa以下が特に好ましい。150℃における弾性率が前記範囲内であることにより、レーザー加工により流路を形成した際に、加工面における凹凸の発生が抑制される。
 樹脂(A)としては、例えば、ポリエステル系樹脂、アクリル系樹脂、シクロオレフィンコポリマー系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、シリコーン系樹脂、又はこれら樹脂の混合物もしくは変性した樹脂等が挙げられる。中でも、樹脂(A)としては、ポリエステル系樹脂、アクリル系樹脂、シクロオレフィンコポリマー系樹脂が好ましい。
 「ポリエステル系樹脂」とは、主鎖にエステル結合(-CO-O-)を含む樹脂をいう。ポリエステル系樹脂としては、ポリエステル樹脂、及びポリエステルウレタン樹脂が挙げられる。
 ポリエステル樹脂は、多価カルボン酸とポリオールを共重合することにより得ることができる。樹脂(A)としてのポリエステル樹脂の市販品としては、例えば、倉敷紡績社製のG7(Tg:80℃、25℃における弾性率:1.84×10Pa、150℃における弾性率:3.00×10Pa)、三菱ケミカル社製のTP220(Tg:70℃、25℃における弾性率:1.99×10Pa、150℃における弾性率:2.74×10Pa)、TP235(Tg:65℃、25℃における弾性率:2.38×10Pa、150℃における弾性率:1.42×10Pa)、TP236(Tg:60℃、25℃における弾性率:2.06×10Pa、150℃における弾性率:6.22×10Pa)等が挙げられる。
 樹脂(A)としてのポリエステル樹脂の数平均分子量(Mn)としては、例えば、5,000~100,000が挙げられる。数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算基準から求められる。
 アクリル系樹脂は、アクリル酸エステル又はメタクリル酸エステルの重合体である。アクリル系樹脂は、アクリル酸エステル又はメタクリル酸エステルを重合することにより得ることができる。樹脂(A)としてもアクリル系樹脂としては、ポリメチルメタクリレート(PMMA)が挙げられる。PMMAの市販品としては、例えば、三菱ケミカル社製のアクリライトTM EX(Tg:70℃、25℃における弾性率:3.04×10Pa、150℃における弾性率:3.51×10Pa)が挙げられる。
 樹脂(A)としてのアクリル系樹脂の数平均分子量(Mn)としては、例えば、5,000~200,000が挙げられる。
 シクロオレフィンコポリマー系樹脂は、シクロオレフィンと任意のモノマーとの共重合体である。シクロオレフィンコポリマー系樹脂は、シクロオレフィンと任意のモノマーとの共重合により得ることができる。樹脂(A)としてのシクロオレフィンコポリマー系樹脂の市販品としては、例えば、三井化学社製のAPL6509T(Tg:80℃、25℃における弾性率:1.86×1010Pa、150℃における弾性率:1.71×10Pa)が挙げられる。
 樹脂(A)としてのシクロオレフィンコポリマー系樹脂の数平均分子量(Mn)としては、例えば、5,000~150,000が挙げられる。
 樹脂(A)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 流路基板が多層構造を有する場合、流路基板は、樹脂(A)を含む層(以下、「A層」ともいう)を少なくとも1つ有することが好ましい。
 A層における樹脂(A)の含有量としては、A層が含有する樹脂の合計質量(100質量%)に対して、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。A層における樹脂(A)の含有量は、A層が含有する樹脂の合計質量(100質量%)に対して、100質量%であってもよい。
 A層は、樹脂(A)以外の樹脂を含有してもよい。また、A層は、適宜、溶剤(例えば、シクロヘキサノン、プロピレングリコール-1-メチルエーテルアセテート(PGMEA)等)、界面活性剤、消泡剤等の添加剤を含有してもよい。
 A層の厚さは、流路基板各部材の接着が可能であれば特に限定されない。A層の厚さの下限値としては、例えば、50μm以上、100μm以上、150μm以上、200μm以上、250μm以上、300μm以上、350μm以上、400μm以上、450μm以上、又は500μm以上等が挙げられる。A層の厚さの上限値としては、例えば、2000μm以下、1500μm以下、1000μm以下、900μm以下、800μm以下、750μm以下、700μm以下、又は650μm以下等が挙げられる。A層の厚さの範囲としては、例えば、50μm~2000μm、100μm~1500μm、150μm~1000μm、200μm~900μm、250μm~800μm、300μm~750μm、350μm~700μm、400μm~650μm、又は450μm~650μm等が挙げられる。前記例示した厚さは、A層の1層の厚さである。
 流路基板は、A層を1つ以上含んでいればよい。流路基板が含むA層の数としては、1~5個、1~4個、1~3個、又は1~2個等が挙げられる。
 流路基板の全体の厚さ(T1)に対するA層の合計の厚さ(ta)の割合(Ra)は、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましく、80%以上であることが特に好ましい。割合(Ra)の上限値は、特に限定されず、100%であってもよい。前記割合は、95%以下であることが好ましく、90%以下であることがより好ましく、85%以下であることがさらに好ましい。前記割合の範囲としては、50~100%、60~95%、65~90%、70~90%、又は75~85%等が挙げられる。割合(Ra)が、前記好ましい範囲内であると、流路の隔壁に対する薬剤の吸着及び収着が抑制される。前記割合(Ra)は、下記式(1)により求められる。
 Ra(%)=ta/T1×100  (1)
≪Tg37℃未満の樹脂:樹脂(B)≫
 流路基板が多層構造である場合、流路基板は、A層に加えて、他の層を含んでいてもよい。前記他の層としては、例えば、Tgが37℃未満である樹脂(以下、「樹脂(B)」ともいう)を含有する層(以下、「B層」ともいう)が挙げられる。流路基板がB層を含むことにより、他の部材との接着が行いやすくなる。
 樹脂(B)としては、Tgが37℃未満のポリエステル系樹脂が挙げられる。ポリエステル系樹脂としては、ポリエステル樹脂、及びポリエステルウレタン樹脂が挙げられる。
 Tgが37℃未満のポリエステル樹脂の市販品としては、例えば、バイロン300(7℃)、バイロン630(7℃)、バイロン650(10℃)、バイロンGK130(15℃)、バイロンGK140(20℃)、バイロンGK150(20℃)、バイロンGK190(11℃)バイロンGK330(16℃)、バイロンGK590(15℃)、バイロンGK680(10℃)、バイロンGK780(36℃)、バイロンGK890(17℃)、バイロン500(4℃)、バイロン550(-15℃)、バイロンGK570(0℃)(以上、東洋紡社製)、エリーテルUE-3510(-25℃)、エリーテルUE-3400(-20℃)、エリーテルUE-3220(5℃)、エリーテルUE-3500(15℃)(以上、ユニチカ社製)、G6(-60℃)(倉敷紡績社製)等が挙げられる。前記括弧内はTgを示す。
 樹脂(B)としてのポリエステル樹脂の数平均分子量(Mn)としては、例えば、5,000~100,000が挙げられる。
 Tgが37℃未満のポリエステルウレタン樹脂の市販品としては、例えば、バイロンUR-8300(23℃)、バイロンUR-3500(10℃)、バイロンUR-6100(-30℃)等が挙げられる。前記括弧内はTgを示す。
 樹脂(B)としてのポリエステルウレタン樹脂の数平均分子量(Mn)としては、例えば、5,000~100,000が挙げられる。
 ポリエステル系樹脂は、メラミン樹脂等で架橋してもよい。メラミン樹脂としては、例えば、住友化学社製の「スミマール(登録商標)UR」シリーズ、三井サイテック社製の「サイメル(登録商標)」シリーズ等が挙げられる。
 なお、樹脂と架橋剤との比率は、加工性等と耐久性とのバランスの観点から、乾燥後の第2接着剤層中に架橋剤(反応後)が5質量%以上30質量%以下となるように配合することが好ましい。
 樹脂(B)は、150℃における弾性率が1×10Pa以下であってもよい。樹脂(B)の150℃における弾性率は、例えば、8×10Pa以下、又は5×10Pa以下であってもよい。樹脂(B)の150℃における弾性率の下限値は、特に限定されないが、例えば、1×10Pa以上、1×10Pa以上、1×10Pa以上、1×10Pa以上、又は1×10Pa以上等が挙げられる。樹脂(B)の150℃における弾性率は、例えば、1×10Pa以上1×10Pa以下、1×10Pa以上1×10Pa以下、1×10Pa以上1×10Pa以下、又は1×10Pa以上1×10Pa以下であってもよい。
 樹脂(B)は、25℃における弾性率が1×10Pa以上、又は1.5×10Pa以上であってもよい。樹脂(B)の25℃における弾性率の上限値は、特に限定されないが、例えば、1×1012Pa以下、1×1011Pa以下、5×1010Pa以下、3×1010Pa以下、又は2×1010Pa以下が挙げられる。樹脂(B)の25℃における弾性率は、1×10Pa以上1×1012Pa以下、1×10Pa以上1×1011Pa以下、1×10Pa以上5×1010Pa以下、又は1×10Pa以上3×1010Pa以下であってもよい。
 樹脂(B)は、ポリエステル系樹脂以外の樹脂であってもよい。例えば、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、シリコーン系樹脂、又はこれら樹脂の混合物もしくは変性した樹脂等が挙げられる。
 樹脂(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 B層における樹脂(B)の含有量としては、B層が含有する樹脂の合計質量(100質量%)に対して、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。第2接着剤における樹脂(B)の含有量は、第2接着剤が含有する樹脂の合計質量(100質量%)に対して、100質量%であってもよい。
 B層は、樹脂(A)及び樹脂(B)以外の樹脂を含有してもよい。B層は、適宜、溶剤(例えば、シクロヘキサノン、プロピレングリコール-1-メチルエーテルアセテート(PGMEA)等)、界面活性剤、消泡剤等の添加剤を含有してもよい。
 流路基板がB層を有する場合、B層の厚さは、100μm以下が好ましく、90μm以下がより好ましく、80μm以下がさらに好ましく、70μm以下、又は60μm以下が特に好ましい。第2接着剤層の厚さの下限値としては、例えば、1μm以上、3μm以上、5μm以上、7μm以上等が挙げられる。第2接着剤層の厚さの範囲としては、例えば、1μm~100μm、3μm~90μm、5μm~80μm、5μm~70μm、5μm~60μm、又は7μm~60μm等が挙げられる。前記例示した厚さは、B層の1層の厚さである。B層の厚さが前記好ましい範囲内であると、薬剤の減少が抑制されやすい。
 細胞培養用チップにおいて、細胞培養用チップの全体の厚さ(T)に対するB層の合計の厚さ(tb)の割合(Rb)は、20%以下であることが好ましい。割合(Rb)を20%以下とすることにより、薬剤の減少が抑制されやすくなる。割合(Rb)は、19%以下が好ましく、18%以下がより好ましく、17%以下がさらに好ましく、16%以下、15%以下、又は14%以下が特に好ましい。細胞培養用チップが第2接着剤層を有しない場合、第2接着剤層の厚さ(tb)の割合は0%となる。前記割合(Rb)は、下記式(1)により求められる。
 Rb(%)=tb/T×100  (2)
<積層体の構成例>
 図5に、細胞培養用チップを構成する積層体の構成例を示す。
 図5に示す積層体100は、下から順に、底板基板L1、第1流路基板L2、多孔膜L3、第2流路基板L4、天板基板L5、及びカバー基板L6から構成されている。図5中、Aは前記A層を表し、Bは前記B層を表す。
≪底板基板L1≫
 底板基板L1は、第1流路F2の底部を形成する。積層体100において、底板基板L1は、S1層により構成されている。S1層の材質は、特に限定されないが、生体適合性の高い材質が好ましい。細胞培養用チップ1で細胞を培養中に、位相差顕微鏡等により観察を行う場合があることから、S1層は、透明性を有する材質が好ましく、低自家蛍光の材質がより好ましい。S1層は、透明性を高めるために、フィラー(アンチブロッキング剤)を含まないことが好ましい。
 透明な低自家蛍光の材質としては、例えば、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート、シクロオレフィンポリマー、ポリジメチルシロキサン、ポリスチレン、ポリアクリレート(アクリル樹脂)等が挙げられる。中でも、S1層の材質としては、PETが好ましい。
 S1層は、少なくとも片面に滑剤成分を含む易滑層を備えていてもよい。また、易滑層にはバインダー樹脂成分が配合されていてもよい。
 滑剤成分としては、特別な限定はなく、例えば、パラフィンワックス、マイクロワックス、ポリプロピレンワックス、ポリエチレンワックス、エチレン-アクリル系ワックス、ステアリン酸、ベヘニン酸、12-ヒドロキシステアリン酸、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールテトラステアレート、硬化ヒマシ油、ステアリン酸ステアリル、シロキサン、高級アルコール系高分子、ステアリルアルコール、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸鉛、シリコーン(ジメチルシロキサン)系の低分子量物(オイル)又はシリコーン(ジメチルシロキサン)系の樹脂などが挙げられる。滑剤成分は、単独で使用してもよく、2種以上を併用してもよい。
 易滑層内に配合されるバインダー樹脂成分としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、アクリル系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、又はこれらの共重合樹脂等が挙げられる。バインダー樹脂成分としては、上述の滑剤成分との組合せでより優れた滑性を発揮することから、スチレン-アクリル系共重合樹脂が好ましい。
 なお、「シリコーン系」とは、オルガノシロキサン類をいう。その性状は、油状、ゴム状、樹脂状のものがあり、各々シリコーン油、シリコーンゴム、シリコーン樹脂と呼ばれる。これらは、いずれも撥水作用、潤滑作用、離型作用等を有しているため、フィルム最表層部に含有させることで、表面の摩擦を低下させるのに有効である。
 S1層の厚さは、特に限定されないが、例えば、50μm~300μmとすることができる。基板S1の厚さとしては、例えば、100μm~250μm、又は150μm~200μm等が挙げられる。
≪第1流路基板L2≫
 第1流路基板L2には、第1流路F2が形成されている。細胞培養用チップにおいて、第1流路基板L2は、第1流路F2の隔壁を形成する。積層体100において、第1流路基板L2は、多層構造を有している。
 積層体100において、第1流路基板L2は、B層、A層、及びB層が、この順に積層された積層体から構成されている。A層の両面にB層を設けることで、底板基板L1及び多孔膜L3との接着が行いやすくなる。B層は、接着剤層として機能する。
 第1流路基板L2の厚さは、第1流路F2の高さ(垂直方向の幅)を規定する。したがって、第1流路基板L2の厚さは、目的の第1流路F2の高さに合わせて適宜設定することができる。第1流路基板L2の厚さは、例えば、A層の厚さを変更することにより、適宜調節してもよい。
 第1流路基板L2の厚さとしては、例えば、300μm~2000μmが挙げられる。第1流路基板L2の厚さとしては、例えば、300μm~2000μm、400~1800μm、500μm~1500μm、600μm~1200μm、600μm~1000μm、600μm~9000μm、600μm~800μm、又は700μm~800μm等が挙げられる。
≪多孔膜L3≫
 多孔膜L3は、第1流路F2と第2流路F4とを仕切るものである。多孔膜L3は、多孔膜Mにより構成される。
 多孔膜Mは、培養対象の細胞が通過せず、薬液が通過可能な孔径を有するものであれば、特に限定されない。多孔膜Mの平均ポアサイズとしては、例えば、0.05μm~10μmが挙げられる。多孔膜Mのポア密度としては、例えば、10~10個/cm程度が挙げられる。
 多孔膜Mは、生体適合性の高い材質で構成されていることが好ましい。多孔膜Mの材質としては、例えば、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリテトラフルオロエチレン等が挙げられる。
 多孔膜Mの厚さは、特に限定されない。多孔膜Mの厚さとしては、例えば、0.1μm~100μm、0.5μm~50μm、1μm~30μm、5μm~20μm、又は5μm~15μm等が挙下られる。
≪第2流路基板L4≫
 第2流路基板L4には、第2流路F4が形成されている。細胞培養用チップにおいて、第2流路基板L4は、第2流路F4の隔壁を形成する。積層体100において、第2流路基板L4は、多層構造を有している。
 積層体100において、第2流路基板L4の層構成は、第1流路基板L2と同様である。すなわち、B層、A層、及びB層が、この順に積層された積層体から構成されている。A層の両面にB層を設けることで、多孔膜L3及び第2流路基板L4との接着が行いやすくなる。B層は、接着剤層として機能する。
 第2流路基板L4の厚さは、第2流路F4の高さ(垂直方向の幅)を規定する。したがって、第2流路基板L4の厚さは、目的の第2流路F4の高さに合わせて適宜設定することができる。第2流路基板L4の厚さは、例えば、A層の厚さを変更することにより、適宜調節してもよい。
 第2流路基板L4の厚さとしては、例えば、300μm~2000μmが挙げられる。第1流路基板L2の厚さとしては、例えば、300μm~2000μm、400μm~1800μm、500μm~1500μm、600μm~1200μm、600μm~1000μm、600μm~9000μm、600μm~800μm、又は700μm~800μm等が挙げられる。
≪天板基板L5≫
 天板基板L5は、第2流路F4の天井を形成する。積層体100において、天板基板L5は、S1層で構成されている。S1層としては、上記底板基板L1におけるS1層と同様のものが挙げられる。
 天板基板L5の厚さは、特に限定されないが、例えば、50~600μmとすることができる。天板基板L5の厚さとしては、例えば、100μ~500μm、又は150μm~400μm等が挙げられる。
≪カバー基板L6≫
 カバー基板L6は、細胞培養用チップの最上層に設けられている。積層体100において、カバー基板L6は、B層、及びS2層が、この順に積層された積層体から構成されている。B層は、接着剤層として機能する。
 S2層は、細胞培養用チップ1で細胞を培養中に、位相差顕微鏡等により観察を行う場合があることから、透明性を有する材質が好ましく、低自家蛍光の材質がより好ましい。S2層は、透明性を高めるために、フィラー(アンチブロッキング剤)を含まないことが好ましい。
 透明な低自家蛍光の材質としては、例えば、ガラス、ポリエチレンテレフタレート(PET)、ポリカーボネート、シクロオレフィンポリマー、ポリジメチルシロキサン、ポリスチレン、ポリアクリレート(アクリル樹脂)、ポリメチルメタクリレート(PMMA)等が挙げられる。中でも、S2層の材質としては、PMMAが好ましい。
 S2層の厚さは、特に限定されないが、例えば、500μm~5000μmとすることができる。S2層の厚さとしては、例えば、800μm~3000μm、1000μm~2500μm、又は1500μm~2500μm等が挙げられる。
 カバー基板L6の厚さは、特に限定されないが、例えば、500μm~5000μmとすることができる。基板S2の厚さとしては、例えば、800μm~3000μm、1000μm~2500μm、又は1500μm~2500μm等が挙げられる。
 積層体100が含む複数のS1層は、全て同じ材質で構成されていてもよく、一部が異なる材質で構成されていてもよい。複数のS1層の厚さは、互いに同じであってもよく、異なっていてもよい。
 積層体100が含む複数のA層は、全て同じ組成の層で構成されていてもよく、一部が異なる組成の層で構成されていてもよい。複数のA層の厚さは、互いに同じであってもよく、異なっていてもよい。
 積層体100が含む複数のB層は、全て同じ組成の層で構成されていてもよく、一部が異なる組成の層で構成されていてもよい。複数のB層の厚さは、互いに同じであってもよく、異なっていてもよい。
(変形例)
 第1流路基板L2及び第2流路基板L4が含むA層の数は、適宜変更することができる。A層の数は、例えば、1個、2個、4個、又は5個等であってもよい。A層の数が増えた場合、B層もそれに応じて増やしてもよい。
 複数のB層は、一部又は全部をなくしてもよい。
 第1流路基板L2、第2流路基板L4に加えて、さらなる流路基板を有してもよい。また、追加の流路用の底板基板、多孔膜、及び天板基板を有してもよい。
 B層は、多層構造を有してもよい。B層が多層構造を有する場合、B層を構成する各層は、それぞれ異なる種類の樹脂(B)を含んでもよい。B層が多層構造を有する場合、B層を構成する層の数は、特に限定されないが、例えば、2~5層、2~4層、2~3層、又は2層とすることができる。複数のB層が存在する場合、複数のB層は、一部が多層構造であってもよく、全部が多層構造であってもよい。
<積層体の他の構成例>
 図6に、細胞培養用チップを構成する積層体の他の構成例を示す。
 図6に示す積層体200は、下から順に、底板基板L1、第1流路基板L2、多孔膜L3、第2流路基板L4、及び天板基板L5から構成されている。図6中、Aは前記A層であり、Bは前記B層である。
 積層体200は、カバー基板L6を有さない構成例である。積層体200において、底板基板L1、第1流路基板L2、多孔膜L3、及び第2流路基板L4は、積層体100におけるものと同じである。
 積層体200において、天板基板L5は、S1層から構成されている。
 積層体200において、天板基板L5の厚さは、特に限定されないが、例えば、50μm~300μm、100μm~200μm、又は150μm~200μm等が挙げられる。
 積層体200が含む複数のS1層、複数のA層、及び複数のB層についての関係は、上記積層体100と同様である。
 本実施形態の細胞培養用チップによれば、流路基板が、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂Aを含む。これにより、薬液を流路に灌流又は滞留させた際に、流路の隔壁に対する薬剤の収着や吸着が抑制される。その結果、薬液中の薬剤の減少が抑制される。したがって、薬剤の減少が抑制された細胞培養用チップを得ることができる。
 本実施形態の細胞培養用チップは、薬液を流路に灌流又は滞留させた際の薬剤減少が抑制されるため、薬剤の存在下での細胞培養に好適に用いることができる。本実施形態の細胞培養用チップは、例えば、細胞を用いた薬剤評価試験(有効性評価試験、安全性評価試験等)に適用可能である。
(細胞培養用デバイス)
 本発明の第2の態様は、前記第1の態様の細胞培養用チップを含む、細胞培養用デバイスである。
 細胞培養用デバイスは、第1の態様の細胞培養用チップと、前記細胞培養用チップで細胞培養を行うための機構を備える。細胞培養用デバイスが備える機構は、細胞培養の目的に応じて適宜変更可能である。
 細胞培養用デバイスが備える機構としては、例えば、細胞培養用チップの流路に薬液を供給するための送液機構(薬液タンク、送液チューブ、送出ポンプ等)、細胞培養用チップの流路から薬液を排出するため排液機構(排液タンク、排液チューブ、排出ポンプ等);細胞培養用チップの培養温度を維持するための温度維持機構(サーモスタット等)、細胞培養用チップの流路を洗浄するための洗浄機構(洗浄液タンク、チューブ、ポンプ等)等が挙げられる。
 本態様の細胞培養用デバイスは、前記第1の態様の細胞培養用チップを含むため、薬液中の薬剤の減少を抑制しつつ、細胞培養を行うことができる。そのため、薬剤の存在下での細胞培養に好適に用いることができる。本態様の細胞培養用デバイスは、例えば、細胞を用いた薬剤評価試験(有効性評価試験、安全性評価試験等)に適用可能である。
(細胞培養用チップの製造方法)
 本発明の第3の態様は、内部に流路構造を有する積層体を含む細胞培養用チップを製造する方法である。本態様にかかる製造方法は、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とを、この順で積層する工程Aと、前記の積層された各基板を接合する工程Bと、を含む。前記流路基板は、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む。
<工程A>
 工程Aは、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とを、この順で積層する工程である。
 流路基板は、第1流路基板L2及び第2流路基板L4を含んでもよい。細胞培養用チップは、さらに、多孔膜L3及びカバー基板L6を含んでもよい。
≪底板基板L1≫
 底板基板L1は、上記と同様のものを用いることができる。底板基板L1は、S1層をレーザー加工等により、細胞培養用チップのサイズに加工することで作製することができる。レーザー加工には、例えば、炭酸ガスレーザー等を用いることができる。
≪第1流路基板L2≫
 第1流路基板L2は、上記と同様のものを用いることができる。第1流路基板L2は、多層構造を有することが好ましい。第1流路基板L2が多層構造を有する場合、第1流路基板L2を構成する各層を作製し、前記各層を積層して圧着することで、第1流路基板L2用の積層体を得ることができる。各層の圧着は、ラミネーター、及びプレス機等を用いて行うことができる。例えば、各層を積層後、ラミネーターで圧着した後、プレス機で加圧することにより、各層が接合された第1流路基板L2用積層体を得ることができる。
 第1流路基板L2用積層体は、レーザー加工により、細胞培養用チップのサイズに加工することができる。さらに、レーザー加工により、流路を形成する。レーザー加工には、例えば、炭酸ガスレーザー等を用いることができる。
≪多孔膜L3≫
 多孔膜L3は、上記と同様のものを用いることができる。多孔膜L3は、レーザー加工等により、細胞培養用チップのサイズに加工することができる。さらに、レーザー加工等により、ポートP3、及びポートP4用の開口の形成す等の必要な加工を行う。
≪第2流路基板L4≫
 第2流路基板L4は、上記と同様のものを用いることができる。第2流路基板L4は、多層構造を有することが好ましい。第2流路基板L4は、第1流路基板L2と同様の方法で作製することができる。
≪天板基板L5≫
 天板基板L5は、上記と同様のものを用いることができる。天板基板L5は、多層構造を有してもよいし、単層構造であってもよい。天板基板L5が多層構造を有する場合、第1流路基板L2と同様の方法で、天板基板L5用積層体を作製することができる。
 天板基板L5用積層体又は天板基板L5用基板は、レーザー加工等により、細胞培養用チップのサイズに加工することができる。さらに、レーザー加工等により、ポートP1~P4用の開口の形成す等の必要な加工を行うことにより、天板基板L5を作製することができる。
≪カバー基板L6≫
 カバー基板L6は、上記と同様のものを用いることができる。カバー基板L6は、レーザー加工等により、細胞培養用チップのサイズに加工することができる。さらに、レーザー加工等により、ポートP1~P4用の開口、開口部Wの形成等の必要な加工を行うことにより、天板基板L5を作製することができる。
 上記のように準備した各部材を、底板基板L1、第1流路基板L2、多孔膜L3、第2流路基板L4、天板基板L5、及びカバー基板L6の順に積層する。各部材の積層の際には、ポートP1~P4用の開口の位置が合うように積層する。なお、細胞培養用チップがカバー基板L6を含まない場合、カバー基板L6の積層は行わない。
<工程B>
 工程Bは、積層された各基板を接合する工程である。
 各基板の接合は、ラミネーター、及びプレス機等を用いて行うことができる。例えば、積層体の各基板を、ラミネーターで圧着した後、プレス機で加圧することにより、積層体の各基板が接合された細胞培養用チップを得ることができる。
 本実施形態の製造方法により製造される細胞培養用チップは、前記第1の態様にかかる細胞培養用チップである。したがって、本実施形態にかかる製造方法は、前記第1の態様にかかる細胞培養用チップの製造に適用することができる。
(細胞の培養方法)
 本発明の第4の態様は、細胞の培養方法である。本態様にかかる培養方法は、前記第1の態様の細胞培養用チップの流路内で、薬剤の存在下で細胞を培養する工程を含む。
<培養工程>
 図7は、本工程における培養状態の一例を示す模式図である。細胞培養用チップ1において、第1中央流路F2a及び第2中央流路F4aは、多孔膜L3で仕切られている。細胞Cは、第2中央流路F4aに面する多孔膜L3上で培養されている。
 細胞Cは、特に限定されず、任意の細胞を用いることができる。細胞Cは、動物細胞を用いることができる。動物細胞としては、ヒト細胞、ヒト以外の動物(サル、マウス、ラット、モルモット、マーモセット、イヌ、ネコ、昆虫等)の細胞が挙げられる。
 細胞の種類は、特に限定されず、目的に応じて適宜選択することができる。細胞としては、例えば、免疫細胞、生殖細胞、神経細胞、線維芽細胞、間葉系幹細胞、ホルモン分泌細胞、各種臓器細胞、がん細胞、各種疾患細胞、多能性幹細胞等が挙げられるが、これらに限定されない。
 薬剤は、任意のものを用いることができる。薬剤は、任意の疾患用治療薬として開発予定の候補薬剤であってもよい。薬剤としては、例えば、低分子薬(分子量500以下)、中分子薬(分子量500~2000程度)、及び高分子薬(核酸医薬、タンパク質医薬、ポリマー等)等が挙げられるが、これらに限定されない。
 培養に用いる培地は、特に限定されず、細胞の種類に応じて適宜選択することができる。培地は、動物培養用の基礎培地に、評価用の薬剤、及び適宜必要な成分を添加したものであってよい。動物用の基礎培地は、公知のものを使用することができる。
 基礎培地としては、例えば、Doulbecco’s modified Eagle’s Medium(DMEM)培地、DMEM/F12培地、IMDM培地、Medium199培地、Eagle’sMinimum Essential Medium(EMEM)培地、αMEM培地、Ham’s F12培地、RPMI1640培地、Fischer’s培地、及びこれらの混合培地等が挙げられる。
 基礎培地は、必要に応じて、血清(牛胎児血清(FBS)など)、又は血清代替物を含んでいてもよい。血清代替物としては、例えば、アルブミン、トランスフェリン、亜セレン酸ナトリウム、ITS-X(Invitrogen)、ノックアウト血清代替物(Knockout Serum Replacement(KSR)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロール等が挙げられる。基礎培地は、必要に応じて、脂質、アミノ酸、L-グルタミン、Glutamax、非必須アミノ酸、ビタミン、増殖因子、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類等の成分を含んでいてもよい。これらは、適宜組み合わせて用いることができる。
 培養条件は、動物細胞の培養に通常用いられる条件を用いることができる。培養温度は、例えば、32~40℃とすることができ、35~38℃(例えば、37℃)が好ましい。CO濃度は、例えば、約2~5%(例えば、5%)とすることができる。
 培養手順は、例えば、以下のように行うことができる。
 まず、ポートP1から培地を注入し、第1中央流路F2aに培地を導入する。次に、ポートP3から細胞培養液を注入し、第2中央流路F4aに細胞培養液を導入する。第2中央流路F4a内に、細胞培養液を滞留させた状態で、任意の時間インキュベートし、多孔膜L3に、細胞を定着させる。次に、ポートP3から薬液を注入し、第2中央流路F4aに薬液を導入し、細胞培養を行う。細胞定着中、及び培養中、薬液は、第2流路F4を灌流させてもよく、第2流路F4内に滞留させてもよい。培養中、培地は、第1流路F2を灌流させてもよく、第1流路F2内に滞留させてもよい。
 培養中又は培養後の細胞の状態を解析することで、細胞に対する薬剤の影響を評価することができる。
 本実施形態の培養方法では、前記第1の態様にかかる細胞培養用チップを用いて培養を行うため、細胞培養用チップの流路隔壁への収着、及び/又は吸着による薬剤の減少を抑制することができる。そのため、細胞に対する薬剤の影響を正確に評価することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
(薬剤減少試験)
<レーザー加工サンプルの作製>
 表1に示す各例のサンプルをレーザー加工により切り出し、レーザー加工用サンプルを作製した。サンプルのレーザー加工には、LaserPro(炭酸ガスレーザー、GCC社製)を用いた。レーザーの出力及び速度は、各サンプルの材質に合わせて調整した。
Figure JPOXMLDOC01-appb-T000001
<弾性率の測定>
 上記各例のサンプルから弾性率測定用の試験片(膜厚50μm、幅5mm、長さ40mm)を切り出し、Rheogel-E4000(ユービーエム製)を使用して、周波数1Hzの引張条件において、開始温度25℃から150℃まで、昇温速度2℃/分で昇温する条件により測定した。弾性率の測定結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
<薬剤減少試験の方法>
 上記で作製した接着剤層付ディスクサンプルを用いて、以下に示す5種の薬剤の減少試験を行った。
 PHN:フェナセチン
 DIC:ジクロフェナク
 MEP:(S)-メフェニトイン
 BUF:ブフラロール
 MDZ:ミダゾラム
 各例のサンプルを、70%エタノールに30分間浸漬して滅菌し、クリーンベンチ内で風乾した。実施例2のレーザー加工サンプルは、クリーンベンチ内でUV照射(片面につき30分)を行い殺菌した。次いで、24ウェルプレートのウェル内にサンプルを置き、薬剤溶液550μLをウェルに導入した。ウェルに導入直後に、50μLを回収し、LC-MS/MS測定用希釈溶媒150μLと混合してインキュベーション前サンプルとした。次いで、24ウェルプレートに蓋をし、37℃のインキュベータ内に静置した。48時間後、ウェルから50μLの薬液を回収し、LC-MS/MS測定用希釈溶媒150μLと混合して48時間インキュベーション後サンプルとした。
 前記サンプル中の薬剤濃度を、LC-MS/MS(EXION AD-QTRAP6500+、SCIEX社製)で定量した。インキュベーション前サンプルの薬剤濃度を100%としたときの相対値として、48時間インキュベーション後サンプルの薬剤残存率を算出し、「薬剤残存率」として表3に示した。
Figure JPOXMLDOC01-appb-T000003
 上記の結果から、実施例1及び実施例2では、レーザー加工サンプルにおける薬剤残存率は、いずれの薬剤においても、レーザー未加工サンプルの薬剤残存率と大きく変わらないことが確認された。一方、比較例1では、レーザー加工サンプルでは、薬剤残存率が低下する傾向があった。特にMUFでは、レーザー加工サンプルで薬剤残存率が大きく低下した。
 参考例1及び参考例2は、レーザー未加工サンプルであるが、一部の薬剤で薬剤残存率が低かった。
(細胞培養用チップを用いた薬剤減少試験)
<細胞培養用チップの作製>
 下記の層構成を有する各例の細胞培養用チップを作製した。括弧内は厚さ(μm)を示す。各部材中の樹脂層は、下層から順に記載した。
Figure JPOXMLDOC01-appb-T000004
 層構成中のS1、A1、A2、B、及びMは、以下の通りである。
 S1:コスモシャインA4160(ポリエチレンテレフタレート)
 B:バイロン500(ポリエステル樹脂)を含む1種又は2種の樹脂(B)
 A1:クランベターG7(ポリエステル樹脂)
 RA2:アクリライトTM EX(ポリメチルメタクリレート)
 M:ポリエチレンテレフタレート製多孔膜(平均ポアサイズ0.45μm、トラックエッチドメンブレンipCELLCUTURE、it4ip社製)
 各部材の各層のシートを作製し、200mm×150mmの大きさにカットした。各層のシートを表4の通りに積層して、各部材の積層体を作製した。前記各部材の積層体を140℃に設定されたラミネートロール(ラミネーターFA-570、大成ラミネータ社製)に通して熱圧着した(ロール荷重0.3MPa、速度0.1~0.5m/分)。さらに、小型プレス機(H300-05、アズワン社製)を用いて、105℃、荷重3tでプレスすることにより、積層体の各層を接着した。
 LaserPro(炭酸ガスレーザー、GCC社製)を用いて、各部材毎に必要なレーザー加工を行った。第1流路基板L2及び第2流路基板L4は、レーザー加工により、第1流路F2及び第2流路F4をそれぞれ形成した。天板基板L5には、ポートP1~ポートP4用の貫通孔を形成した。多孔膜L3には、ポートP1及びポートP2用の貫通孔を形成した。
 底板基板L1、第1流路基板L2、多孔膜L3、第2流路基板L4、及び天板基板L5を各ポート及び流路の位置が合うように、この順で積層し、細胞培養用チップ用積層体を得た。前記積層体を、140℃に設定されたラミネートロール(ラミネーターFA-570、大成ラミネータ社製)に通して熱圧着した(ロール荷重0.3MPa、速度0.1~0.5m/分)。さらに、小型プレス機(H300-05、アズワン社製)を用いて、50~80℃、荷重3tでプレスすることにより、積層体の各層を接着した。
 次いで、LaserProを用いて、58mm×46mmの大きさにカットし、細胞培養用チップを得た。
<薬剤減少試験の方法>
 上記で作製した細胞培養用チップを用いて、以下に示す薬剤の減少試験を行った。
 PHN:フェナセチン
 DIC:ジクロフェナク
 MEP:(S)-メフェニトイン
 MDZ:ミダゾラム
 上記で作製した細胞培養用チップの流路内を9mLのPBSで洗浄した。次いで、クリーンベンチ内でUV照射を行い殺菌した。UV照射は、細胞培養用チップの表裏各20分間行った。次いで、流路内を6mLのPBSで洗浄し、クリーンベンチ内で風乾した。
 細胞培養用チップの流路(第1流路F2、第2流路F4)に、流路の体積に合わせた量の薬液を導入し、流路内に空気が残存しないように細胞培養用チップを水平に維持した。薬液の導入直後に薬液50μLを回収し、150μLのLC-MS/MS測定用希釈溶媒と混合して、0時間インキュベーション後サンプルとした。
 細胞培養用チップの流路(第1流路F2、第2流路F4)に、新たに50μLの薬液を導入し、37℃のインキュベータ内で静置した。薬液導入の48時間後に、50μLの薬液を回収し、150μLのLC-MS/MS測定用希釈溶媒と混合して、48時間インキュベーション後のサンプルとした。
 前記サンプル中の薬剤濃度を、LC-MS/MSで定量した。0時間インキュベーション後サンプルの薬剤濃度を100%としたときの相対値として、48時間インキュベーション後サンプルの薬剤残存率を算出し、「薬剤残存率」として表5に示した。
Figure JPOXMLDOC01-appb-T000005
 実施例の細胞培養用チップは、比較例の細胞培養用チップと比較して、薬剤の減少が抑制できることが確認された。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
L1  底板基板
L2  第1流路基板
L3  多孔膜
L4  第2流路基板
L5  天板基板
L6  カバー基板
P1~P4  ポート
F2  第1流路
F4  第2流路
W  開口部

Claims (7)

  1.  内部に流路構造を有する積層体を含む細胞培養用チップであって、
     前記積層体が、底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とをこの順で含み、
     前記流路基板が、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む、
     細胞培養用チップ。
  2.  前記流路基板は、第1流路が形成された第1流路基板と、第2流路が形成された第2流路基板とを含み、
     前記積層体は、前記第1流路基板と前記第2流路基板との間に、多孔膜をさらに含む、
     請求項1に記載の細胞培養用チップ。
  3.  前記第1流路基板及び前記第2流路基板からなる群より選択される少なくとも1つが、多層構造を有する、請求項2に記載の細胞培養用チップ。
  4.  請求項1~3のいずれか一項に記載の細胞培養用チップを含む、細胞培養用デバイス。
  5.  内部に流路構造を有する積層体を含む細胞培養用チップを製造する方法であって、
     底板基板と、レーザー加工により流路が形成された流路基板と、天板基板とを、この順で積層する工程Aと、
     前記の積層された各基板を接合する工程Bと、を含み、
     前記流路基板が、ガラス転移温度が37℃以上であり、25℃における弾性率が1×10Pa以上であり、且つ150℃における弾性率が1×10Pa以下である、樹脂を含む、
     細胞培養用チップの製造方法。
  6.  前記流路基板が、第1流路が形成された第1流路基板と、第2流路が形成された第2流路基板とを含み、
     前記工程Aが、前記底板基板と、前記第1流路基板と、多孔膜と、前記天板基板とを、この順で、接着剤層を介して積層する工程である、
     請求項5に記載の細胞培養用チップの製造方法。
  7.  請求項1~3のいずれか一項に記載の細胞培養用チップの前記流路内で、薬剤の存在下で細胞を培養する工程を含む、細胞の培養方法。
PCT/JP2022/032050 2021-08-26 2022-08-25 細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法 WO2023027147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/681,331 US20240327771A1 (en) 2021-08-26 2022-08-25 Chip for cell culturing, device for cell culturing, method for manufacturing chip for cell culturing, and method for culturing cells
CN202280056301.9A CN117897473A (zh) 2021-08-26 2022-08-25 细胞培养用芯片、细胞培养用设备、细胞培养用芯片的制造方法、及细胞的培养方法
EP22861435.0A EP4394026A1 (en) 2021-08-26 2022-08-25 Chip for cell culturing, device for cell culturing, method for manufacturing chip for cell culturing, and method for culturing cells
JP2023543979A JPWO2023027147A1 (ja) 2021-08-26 2022-08-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021138142 2021-08-26
JP2021-138142 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023027147A1 true WO2023027147A1 (ja) 2023-03-02

Family

ID=85322918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032050 WO2023027147A1 (ja) 2021-08-26 2022-08-25 細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法

Country Status (5)

Country Link
US (1) US20240327771A1 (ja)
EP (1) EP4394026A1 (ja)
JP (1) JPWO2023027147A1 (ja)
CN (1) CN117897473A (ja)
WO (1) WO2023027147A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033177A (ja) * 2001-07-24 2003-02-04 Mitsuo Okano 高密度細胞アレイ用基板、製造法、及びその利用方法
JP2014109564A (ja) * 2012-12-04 2014-06-12 National Institute Of Advanced Industrial & Technology 標的物質検出用マイクロチップ
JP2018102236A (ja) 2016-12-27 2018-07-05 東京応化工業株式会社 細胞培養用チップの製造方法
US20190336973A1 (en) * 2013-07-26 2019-11-07 The Trustees Of The University Of Pennsylvania Magnetic Separation Filters For Microfluidic Devices
JP2021062417A (ja) * 2019-10-10 2021-04-22 国立研究開発法人日本原子力研究開発機構 マイクロ流路デバイスの製造方法及びマイクロ流路デバイス
JP2021114910A (ja) * 2020-01-22 2021-08-10 東京応化工業株式会社 細胞培養用チップの製造方法
JP2021117119A (ja) * 2020-01-27 2021-08-10 住友ベークライト株式会社 積層体の製造方法
JP2021138142A (ja) 2020-02-28 2021-09-16 株式会社リコー 直接堆積インク推定メカニズム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033177A (ja) * 2001-07-24 2003-02-04 Mitsuo Okano 高密度細胞アレイ用基板、製造法、及びその利用方法
JP2014109564A (ja) * 2012-12-04 2014-06-12 National Institute Of Advanced Industrial & Technology 標的物質検出用マイクロチップ
US20190336973A1 (en) * 2013-07-26 2019-11-07 The Trustees Of The University Of Pennsylvania Magnetic Separation Filters For Microfluidic Devices
JP2018102236A (ja) 2016-12-27 2018-07-05 東京応化工業株式会社 細胞培養用チップの製造方法
JP2021062417A (ja) * 2019-10-10 2021-04-22 国立研究開発法人日本原子力研究開発機構 マイクロ流路デバイスの製造方法及びマイクロ流路デバイス
JP2021114910A (ja) * 2020-01-22 2021-08-10 東京応化工業株式会社 細胞培養用チップの製造方法
JP2021117119A (ja) * 2020-01-27 2021-08-10 住友ベークライト株式会社 積層体の製造方法
JP2021138142A (ja) 2020-02-28 2021-09-16 株式会社リコー 直接堆積インク推定メカニズム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Mylar ® Polyester Film ", DUPONT TEIJIN FILMS, 1 June 2003 (2003-06-01), XP093038983, Retrieved from the Internet <URL:https://usa.dupontteijinfilms.com/wp-content/uploads/2017/01/Mylar_Physical_Properties.pdf> [retrieved on 20230413] *

Also Published As

Publication number Publication date
US20240327771A1 (en) 2024-10-03
JPWO2023027147A1 (ja) 2023-03-02
CN117897473A (zh) 2024-04-16
EP4394026A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
Musah et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip
Lee et al. Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip
Schuh et al. Effect of matrix elasticity on the maintenance of the chondrogenic phenotype
Anene-Nzelu et al. Scalable alignment of three-dimensional cellular constructs in a microfluidic chip
Cho et al. Development of a novel hanging drop platform for engineering controllable 3D microenvironments
Chen et al. Flexible octopus-shaped hydrogel particles for specific cell capture
Cherne et al. A synthetic hydrogel, VitroGel® ORGANOID-3, improves immune cell-epithelial interactions in a tissue chip co-culture model of human gastric organoids and dendritic cells
Tonda‐Turo et al. Porous poly (ε‐caprolactone) nerve guide filled with porous gelatin matrix for nerve tissue engineering
WO2023027147A1 (ja) 細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法
US10870823B2 (en) Biomimetic device
WO2023027145A1 (ja) 細胞培養用チップ、細胞培養用デバイス、細胞培養用チップの製造方法、及び細胞の培養方法
US20140024117A1 (en) Extracellular Matrix Films And Methods Of Making And Using Same
Ma et al. Thermomodulated cell culture/harvest in polydimethylsiloxane microchannels with poly (N-isopropylacrylamide)-grafted surface
Panneerselvam et al. Liposomes equipped with poly (N-isopropyl acryl amide)-containing coatings as potential drug carriers
JP5928008B2 (ja) 細胞培養基材の評価方法及び評価装置、並びに細胞培養基材の製造方法
Apte et al. FluidFM-based fabrication of nanopatterns: promising surfaces for platelet storage application
CA2974619C (en) Method for isolating, removing and analyzing cells
JP2018124201A (ja) モデル血管システム、シアストレス負荷用のモデル血管部及び循環器系疾患の治療薬のスクリーニング方法
WO2023048072A1 (ja) マイクロ流体デバイス、及びマイクロ流体デバイスの使用方法
JP7364825B2 (ja) 培養容器及び培養方法
Wang et al. A multichannel acoustically driven microfluidic chip to study particle-cell interactions
WO2022210056A1 (ja) フィルター及びその製造方法、フィルターデバイス、稀少細胞を分離または分取する方法、並びに細胞懸濁液中の稀少細胞の分析方法
WO2023119938A1 (ja) 細胞培養膜、及び生体組織の製造方法
US9399340B2 (en) Member for ink recording, ink recording body, and laminated body for ink recording
Zhang et al. Polymer Discs with High Interfacial Adhesion Fabricated from Hot-Pressing of Microspheres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543979

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18681331

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280056301.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022861435

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861435

Country of ref document: EP

Effective date: 20240326