WO2023026823A1 - Electronic component processing device - Google Patents

Electronic component processing device Download PDF

Info

Publication number
WO2023026823A1
WO2023026823A1 PCT/JP2022/030102 JP2022030102W WO2023026823A1 WO 2023026823 A1 WO2023026823 A1 WO 2023026823A1 JP 2022030102 W JP2022030102 W JP 2022030102W WO 2023026823 A1 WO2023026823 A1 WO 2023026823A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
electronic component
component
processing
section
Prior art date
Application number
PCT/JP2022/030102
Other languages
French (fr)
Japanese (ja)
Inventor
純正 淀川
Original Assignee
上野精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上野精機株式会社 filed Critical 上野精機株式会社
Publication of WO2023026823A1 publication Critical patent/WO2023026823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B15/00Attaching articles to cards, sheets, strings, webs, or other carriers
    • B65B15/04Attaching a series of articles, e.g. small electrical components, to a continuous web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B57/00Automatic control, checking, warning, or safety devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present disclosure relates to an electronic component processing apparatus.
  • Patent Document 1 discloses a holding means driving device for driving and controlling electronic component holding means for holding electronic components.
  • This holding means driving device has a load sensor that directly detects the load applied to the operating rod when the movable holding portion is pushed down.
  • the present disclosure provides a processing apparatus useful for improving the reliability of electronic components.
  • An electronic component processing apparatus includes a component holding unit configured to hold an electronic component, and a circular orbit passing through a processing area for performing a predetermined process on the electronic component.
  • a rotation drive configured to rotate the support about the central axis of the circular orbit; and a displacement configured to displace the component holder in the processing area.
  • a load detection unit configured to detect a load applied to the electronic component when the displacement drive unit displaces the component holding unit in the processing area; and a displacement of the component holding unit.
  • a controller configured to detect an abnormality in contact with the electronic component based on transition of a detection value by the load detection unit from a first timing to a second timing when the electronic component is moved.
  • a processing device useful for improving the reliability of electronic components is provided.
  • FIG. 1 is a plan view schematically showing an example of an electronic component processing apparatus according to a first embodiment.
  • FIG. 2 is a side view schematically showing an example of an electronic component processing apparatus.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the controller.
  • FIG. 4 is a graph showing an example of detection results by the load detection unit.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the controller.
  • FIG. 6 is a flow chart showing an example of a series of control processes executed by the controller.
  • FIGS. 7(a) to 7(d) are schematic diagrams exemplifying how recovery processing is performed on a carrier tape.
  • FIGS. 8(a) to 8(d) are schematic diagrams exemplifying recovery processing when abnormal contact occurs with an electronic component.
  • FIG. 9 is a side view schematically showing an example of an electronic component processing apparatus.
  • FIG. 10 is a flow chart showing an example of a series of control processes executed by the controller.
  • FIGS. 11(a) to 11(c) are schematic diagrams exemplifying the state of supply processing from the carrier tape.
  • FIG. 12 is a plan view schematically showing an example of an electronic component processing apparatus according to the second embodiment.
  • FIG. 13 is a side view schematically showing an example of an electronic component processing apparatus.
  • FIG. 14 is a plan view schematically showing an example of an electronic component processing apparatus according to the third embodiment.
  • FIG. 15 is a side view schematically showing an example of an electronic component processing apparatus.
  • FIG. 16 is a plan view schematically showing an example of an electronic component processing apparatus according to the fourth embodiment.
  • FIG. 17 is a flow chart showing an example of a series of control processes executed by the controller.
  • An electronic component processing apparatus 1 shown in FIGS. 1 and 2 is a so-called die sorter.
  • the processing device 1 is a device that sequentially conveys a plurality of electronic components W, performs processing such as appearance inspection, electrical property inspection, and marking, and then packs them in storage members such as carrier tapes and trays.
  • the electronic component W to be processed is, for example, a component that is separated into individual pieces by dicing or the like after being formed in a pre-process of semiconductor manufacturing.
  • the processing device 1 includes a transport processing section 2 and a controller 100.
  • the transport processing section 2 has a rotary transport unit 10 (rotary transport section) and a plurality of processing units 40 .
  • the rotary transfer unit 10 transfers the electronic component W along the circular track CR.
  • the electronic component W to be conveyed has main surfaces Wa and Wb that are parallel to each other (opposite to each other).
  • the rotary transfer unit 10 has, for example, a support section 12 , a plurality of component holding sections 14 , a rotation drive section 16 and a plurality of elevation drive sections 18 .
  • the support portion 12 supports a plurality of component holding portions 14. Specifically, the support portion 12 supports the plurality of component holding portions 14 so that each component holding portion 14 is positioned on the predetermined circular orbit CR.
  • the support portion 12 is provided so as to be rotatable around the central axis Ax of the circular orbit CR.
  • the circular orbit CR may be a horizontal circular orbit
  • the central axis Ax may be a vertical axis line (may extend along the vertical direction).
  • the support portion 12 is, for example, a turntable.
  • a plurality of component holding portions 14 are arranged at regular intervals along the circumference around the central axis Ax and fixed to the support portion 12 .
  • Each of the component holding portions 14 is configured to hold an electronic component W.
  • the component holding section 14 may hold the electronic component W by any method. Specific examples of the method for holding the electronic component W include vacuum adsorption, electrostatic adsorption, gripping, and the like.
  • the component holding section 14 may vacuum-suck one of the main surfaces Wa and Wb from one side in a direction perpendicular to the support section 12 (upper surface of the turntable).
  • the component holding section 14 has a suction section 22, a holder 24, and a spring 26, as shown in FIG.
  • the suction portion 22 is configured to suction one of the main surfaces Wa, Wb of the electronic component W from above.
  • the suction part 22 is, for example, a suction rod formed to extend perpendicularly to the support part 12, and sucks the electronic component W at its lower end.
  • the holder 24 is fixed to the outer peripheral portion of the support portion 12 and holds the suction portion 22 so that it can move up and down.
  • the spring 26 resists the descent of the adsorption part 22 by its elasticity.
  • the spring 26 is elastically deformed in accordance with the descent of the adsorption section 22 when a downward external force is applied to the upper end of the adsorption section 22, and elastically returns when the downward external force is removed to move the adsorption section 22 to the height before it was lowered. push back.
  • the component holding section 14 may have a valve for switching between on and off of the vacuum suction by the suction section 22 according to an operation instruction from the controller 100 .
  • a specific example of the valve is an electromagnetic valve.
  • the rotation drive section 16 is configured to rotate the support section 12 around the central axis Ax of the circular orbit CR.
  • the rotary drive unit 16 uses a power source such as an electric motor to rotate the support unit 12 around the central axis Ax by direct drive without gears.
  • the plurality of component holders 14 move along the horizontal circular orbit CR centered on the central axis Ax.
  • the electronic component W held by the component holding section 14 is conveyed along the circular track CR.
  • the rotary drive section 16 is controlled to repeat rotation and stop of the support section 12 at the angular pitch (angular pitch around the central axis Ax) between the adjacent component holding sections 14 .
  • a plurality of stop positions SP the plurality of positions at which the plurality of component holding portions 14 (more specifically, the plurality of suction portions 22) are arranged when the rotation driving portion 16 stops the support portion 12 will be referred to as “a plurality of stop positions SP”. .
  • the plurality of lifting drive units 18 are configured to displace the plurality of component holding units 14 individually. 1, illustration of the elevation driving section 18 is omitted, and FIG. 2 shows one elevation driving section 18 out of the plurality of elevation driving sections 18.
  • the elevation driving unit 18 (displacement driving unit) applies an external force to the component holding unit 14 that holds the electronic component W placed at the stop position SP, thereby moving the component holding unit 14 in one direction perpendicular to the support unit 12 . move it to the side.
  • the elevation driving unit 18 moves the component holding unit 14 downward, for example, in the vertical direction.
  • a plurality of elevation drive units 18 may be provided so as to respectively correspond to a plurality of stop positions SP.
  • the lifting drive section 18 may not be provided at the stop position SP where the component holding section 14 does not need to be displaced.
  • the up-and-down drive part 18 is arrange
  • the elevation driving section 18 is positioned above the component holding section 14 arranged at the corresponding stop position SP.
  • the up-and-down drive unit 18 moves downward the component holding units 14 that are successively arranged at the corresponding stop positions SP.
  • the transport processing section 2 may have a fixing section 38 that fixes (holds) the plurality of elevation drive sections 18 .
  • the fixed portion 38 is, for example, a plate-like member arranged above the support portion 12 .
  • the fixed portion 38 is provided so as not to rotate together with the support portion 12 . Therefore, even if the support portion 12 rotates, the plurality of elevation driving portions 18 do not move.
  • the elevation drive unit 18 has, for example, a holder 32, an operating rod 34, and a motor 36. As shown in FIG.
  • the holder 32 is fixed to the outer peripheral portion of the fixed portion 38 in the vicinity of the stop position SP.
  • the operating rod 34 is provided on the holder 32 so as to be movable with respect to the holder 32 (fixed portion 38).
  • the operating rod 34 extends, for example, in the vertical direction and is held by the holder 32 so as to be movable in the vertical direction.
  • the operating rod 34 may be positioned vertically above the suction portion 22 of the component holding portion 14 when the component holding portion 14 is positioned at the stop position SP.
  • the motor 36 functions as a drive source and moves the operating rod 34 downward. A portion of the motor 36 may contact the operating rod 34 when moving the operating rod 34 downward.
  • Motor 36 is, for example, a servo motor.
  • the operating rod 34 when the operating rod 34 is lowered by the motor 36 , the lower end of the operating rod 34 contacts the upper end of the adsorption section 22 .
  • the adsorption portion 22 is displaced (moves downward).
  • the operating rod 34 is lifted by the motor 36, the downward force exerted by the operating rod 34 on the attracting portion 22 is released, and the reaction force of the spring 26 causes the attracting portion 22 to return to the height before it was displaced. .
  • a plurality of processing units 40 are provided so as to correspond to some stop positions SP, respectively. Unlike the example shown in FIG. 1, a processing unit 40 may be provided at each stop position SP.
  • the processing unit 40 is configured to perform predetermined processing on the electronic component W in the processing area PA including the corresponding stop position SP.
  • the processing area PA is an area for performing predetermined processing on the electronic component W, and is positioned on the circular orbit CR. That is, the circular orbit CR passes through the processing area PA.
  • the lifting drive section 18 is arranged at the stop position SP where the processing area PA is set.
  • processing performed on the electronic component W includes any action that changes the state of the electronic component W. For example, marking the electronic component W, causing the electronic component W to be held by the component holding unit 14 (handing over), and recovering the electronic component W from the component holding unit 14 (receiving) are referred to as “processing ”. Further, executing some kind of inspection on the electronic component W also corresponds to "processing" because it changes a state in which the inspection data is unknown to a state in which the inspection data is known.
  • the multiple processing units 40 include, for example, a component supply unit 42 , a component recovery unit 44 , and one or more intermediate processing units 46 .
  • the component supply unit 42 is a unit that supplies electronic components W to the rotary transfer unit 10 .
  • the component supply unit 42 is arranged at one of the stop positions SP.
  • the component supply unit 42 conveys the carrier tape 60 containing a plurality of electronic components W to the corresponding stop position SP.
  • a carrier tape 60 conveyed by the component supply unit 42 has a plurality of storage portions 62 each storing a plurality of electronic components W therein.
  • the component supply unit 42 conveys the carrier tape 60 so that the storage portions 62 (the electronic components W stored in the storage portions 62) are arranged in order in the processing area PA including the corresponding stop position SP.
  • the component holder 14 moved to the corresponding stop position SP in a state where the container 62 containing the electronic component W is arranged in the processing area PA (area for supplying the electronic component W) is moved by the up-and-down drive unit 18 While being displaced, it receives the electronic component W inside the accommodating portion 62 .
  • the electronic component W is supplied from the component supply unit 42 to the rotary transfer unit 10 .
  • the stop position SP where the component supply unit 42 supplies the electronic component W will be referred to as a "supply stop position SP”.
  • the processing area PA including the supply stop position SP is referred to as "supply area SA".
  • the component recovery unit 44 is a unit that recovers the electronic components W from the rotary transfer unit 10 .
  • the component recovery unit 44 is arranged at one of the stop positions SP.
  • the component recovery unit 44 conveys the carrier tape 60 capable of accommodating a plurality of electronic components W (the carrier tape 60 with an empty storage portion 62) to the corresponding stop position SP.
  • the component recovery unit 44 conveys the carrier tape 60 so that the storage portions 62 in which the electronic components W are not stored are arranged in order in the processing area PA including the corresponding stop position SP.
  • the carrier tape 60 is made of resin and formed in a film shape (sheet shape).
  • the stop position SP at which the component recovery unit 44 recovers the electronic component W will be referred to as a "collection stop position SP”.
  • the processing area PA including the stop position SP for recovery is referred to as a "collection area RA".
  • the supply stop position SP side is called the "upstream side”
  • the recovery stop position SP side is called the "downstream side”.
  • the electronic component W is conveyed from the upstream side to the downstream side on the circular track CR.
  • the intermediate processing unit 46 is a unit that performs predetermined processing on the electronic component W at any stop position SP other than the stop positions SP for supply and recovery. Specific examples of processing by the intermediate processing unit 46 include electrical property inspection, optical property inspection, appearance inspection, posture or position correction, and marking (laser marking).
  • the processing device 1 has a load detection section 50 .
  • the load detection unit 50 is configured to detect the load applied to the electronic component W when the elevation drive unit 18 displaces the component holding unit 14 in the processing area PA.
  • the load detection unit 50 detects the load applied to the electronic component W processed in the processing area PA, for example, when the elevation driving unit 18 lowers the component holding unit 14 in the processing area PA.
  • the load detection unit 50 may be a sensor that detects load by any method.
  • the load detection unit 50 may be a mechanical sensor such as a strain gauge that detects changes in electrical resistance, or may be a load cell.
  • the load detection section 50 may be provided in the elevation drive section 18 so as to detect the load applied to the elevation drive section 18 .
  • the load detection unit 50 is provided on the operating rod 34 so as to detect the load applied to the operating rod 34 of the elevation driving unit 18, for example.
  • the load applied to the operating rod 34 includes, for example, the force received from the motor 36 and the force received from the component holding portion 14 . (the reaction force of the spring 26). Further, the load applied to the electronic component W to be processed when the component holding portion 14 is displaced is reflected in the load applied to the operating rod 34 .
  • the load detection unit 50 outputs detection results to the controller 100 .
  • a plurality of lifting drive units 18 are arranged in each of the plurality of processing areas PA, a plurality of load detection units 50 may be provided corresponding to the plurality of lifting drive units 18, respectively.
  • the suction unit 22 sucking the electronic component W is lowered by the lifting drive unit 18 so that the electronic component W does not come into contact with the carrier tape 60 until the suction of the electronic component W is released.
  • the electronic component W attracted by the suction portion 22 may come into contact with the carrier tape 60 .
  • the load that the electronic component W receives at this time includes the external force (reaction force) applied to the electronic component W from the carrier tape 60 .
  • the load detection portion 50 provided on the operating rod 34 can detect the load that the electronic component W receives when it comes into contact with the carrier tape 60 .
  • the detection of the load received by the electronic component W is performed not only when the electronic component W is in contact with the carrier tape 60 but also when the electronic component W is not in contact with the carrier tape 60 . (that is, detecting that the load received by the electronic component W is zero).
  • the processing device 1 may comprise an input/output device 102 connected to the controller 100 (see FIG. 1).
  • the input/output device 102 is a device for inputting a user instruction indicating an instruction from a user such as a worker to the controller 100 and for outputting information from the controller 100 to the worker or the like.
  • the input/output device 102 may include a keyboard, operation panel, or mouse as an input device, and may include a monitor (for example, a liquid crystal display) as an output device.
  • the input/output device 102 may be a touch panel in which an input device and an output device are integrated. Controller 100 and input/output device 102 may be integrated.
  • the controller 100 is composed of one or more control computers.
  • the controller 100 controls the transport processing section 2 and the load detection section 50 according to a predetermined control procedure so that a plurality of electronic components W are sequentially subjected to predetermined processing.
  • the controller 100 includes, for example, an operation control unit 112, a load information acquisition unit 114, an abnormality determination unit 116, a model storage unit 118, and a notification unit 122 as a functional configuration (hereinafter referred to as "function modules"). and Processing executed by these functional modules corresponds to processing executed by the controller 100 .
  • control processing to distinguish it from the processing for the electronic component W in the transport processing section 2 .
  • the operation control unit 112 controls the transport processing unit 2 so as to perform corresponding processing on the electronic components W at several stop positions SP while transporting each of the plurality of electronic components W along the circular track CR. is configured as The operation control unit 112 controls the transport processing unit 2 so as to sequentially perform (repeatedly perform) the processing in each processing area PA for the plurality of electronic components W in the processing area PA.
  • the operation control unit 112 may cause the transport processing unit 2 to execute control processing for ejecting the electronic component W when an abnormality in contact with the electronic component W is detected.
  • the operation control unit 112 stops the operation of the transport processing unit 2, for example. In this case, the operation control unit 112 may control the transport processing unit 2 so as to interrupt the predetermined processing that is continuously performed on the plurality of electronic components W in each processing area PA.
  • the motion control section 112 intermittently rotates the support section 12 by the rotation drive section 16 so that the plurality of component holding sections 14 are sequentially arranged at the plurality of stop positions SP. Intermittently rotating means that the supporting portion 12 alternately rotates and stops.
  • the motion control section 112 intermittently rotates the support section 12 by the rotation driving section 16 at the same angular pitch as the adjacent component holding sections 14 on the circular orbit CR. As a result, one of the component holding portions 14 (one of the suction portions 22) is arranged in order at each stop position SP.
  • the operation control unit 112 controls the elevation driving unit 18, the component holding unit 14, and the electronic components W so that the electronic components W are recovered from the rotary transfer unit 10 to the component recovery unit 44 in the recovery area RA including the stop position SP for recovery. It controls the parts recovery unit 44 .
  • the operation control unit 112 causes the component recovery unit 44 to pitch-convey the carrier tape 60 so that the empty storage portions 62 of the carrier tape 60 are sequentially arranged in the recovery area RA.
  • Pitch transport means that the carrier tape 60 is moved by the same pitch as the pitch between adjacent housing portions 62 in the carrier tape 60 .
  • the operation control section 112 lowers the suction section 22 of the component holding section 14 by the elevation drive section 18 corresponding to the recovery stop position SP.
  • the operation control unit 112 lowers the suction unit 22, for example, to such an extent that the main surface Wb of the electronic component W held by the suction unit 22 comes into contact with the storage unit 62 located in the recovery area RA. Then, the operation control unit 112 controls the elevation driving unit 18 so that the suction unit 22 returns to the height before the descent after releasing the suction by the suction unit 22 .
  • the load information acquisition unit 114 is configured to acquire a value detected by the load detection unit 50 when the component holding unit 14 is displaced by the elevation drive unit 18 in the processing area PA (recovery area RA). For example, the load information acquisition unit 114 detects the load applied to the lifting drive unit 18 when the suction unit 22 of the component holding unit 14 placed at the stop position SP for collection is lowered by the lifting drive unit 18 . A value detected by the detection unit 50 is acquired.
  • the load information acquisition section 114 may continuously acquire the detection value by the load detection section 50 during any period including the period during which the lifting drive section 18 displaces the component holding section 14 .
  • the load information acquisition unit 114 acquires data indicating temporal changes in the values detected by the load detection unit 50 .
  • data indicating the time change of the detection value obtained from the load detection unit 50 during an arbitrary period including the period during which the component holding unit 14 is displaced by the elevation driving unit 18 will be referred to as "time-series data”.
  • the load information acquisition unit 114 acquires time-series data indicating changes in the load over time from when the component holding unit 14 starts to displace to when the component holding unit 14 returns to its original height. do.
  • the load information acquisition unit 114 may continuously acquire the values detected by the load detection unit 50 during the above arbitrary period.
  • the load information acquisition unit 114 may (intermittently) acquire the value detected by the load detection unit 50 in each sampling cycle.
  • the sampling period may be set in advance so that the tendency of load change can be grasped in the time-series data, or may be set each time according to a user's instruction or the like.
  • the load information acquisition unit 114 may continue acquiring detection values by the load detection unit 50 while the processing device 1 is operating (while the processing of the plurality of electronic components W is continued). In this case, the load information acquisition unit 114 extracts detection value data for an arbitrary period including the period during which the component holding unit 14 is being displaced by the elevation driving unit 18 from the continuously acquired detection value data. , the above time-series data may be acquired.
  • the abnormality determination unit 116 is configured to detect an abnormality in contact with the electronic component W to be processed in the processing area PA based on the value detected by the load detection unit 50 . Specifically, the abnormality determination unit 116 determines whether or not the contact with the electronic component W is abnormal based on the value detected by the load detection unit 50 .
  • the abnormal contact with the electronic component W is, for example, an object (such as the carrier tape 60 described in the next paragraph) that may cause the electronic component W to malfunction compared to the case where the processing of the electronic component W is normal. ) means to make strong contact with
  • the suction unit 22 When the suction unit 22 is displaced so that the electronic component W sucked by the suction unit 22 does not come into contact with the carrier tape 60 before the suction release, the electronic component W is displaced before the suction release when the processing of the electronic component W is normal.
  • the load experienced by is approximately equal to zero.
  • the fact that the electronic component W contacts the carrier tape 60 before the suction release itself is an abnormal contact with the electronic component W.
  • FIG. As an example of a case where the electronic component W contacts the carrier tape 60 abnormally, when the suction unit 22 is lowered, the opening edge of the accommodation portion 62 and its vicinity (the accommodation portion 62 of the carrier tape 60 is not provided).
  • the base portion may be in contact with the electronic component W.
  • the opening edge of the housing portion 62 is a boundary portion between the side surface inside the housing portion 62 and the base portion.
  • the abnormality determination unit 116 detects an abnormality in the contact with the electronic component W based on the transition of the detection value by the load detection unit 50 from the first timing to the second timing when the suction unit 22 of the component holding unit 14 is displaced. detect.
  • the second timing is timing different from the first timing.
  • the first timing is, for example, from the time when the lifting drive unit 18 starts displacing the suction unit 22 to the time when the electronic component W that the suction unit 22 is sucking can come into contact with another member (eg, the carrier tape 60). Any timing between In one example, the first timing is the main surface Wb (main surface facing downward) of the electronic component W that is sucked by the sucking unit 22 from the time when the lifting drive unit 18 actually starts lowering the sucking unit 22 . It is any timing until the height position reaches the base portion of the carrier tape 60 .
  • the second timing is, for example, any time between when the electronic component W attracted by the suction unit 22 can come into contact with another member until the suction unit 22 returns to the position before the displacement after the electronic component W is released from the suction. This is the timing.
  • the second timing is the time from when the height position of the main surface Wb of the electronic component W adsorbed by the adsorption unit 22 reaches the base portion of the carrier tape 60 to when the adsorption of the electronic component W is released. It is the timing of either
  • the abnormality determination unit 116 performs electronic Abnormal contact with component W is detected.
  • the abnormality determination unit 116 may determine whether or not the contact with the electronic component W is abnormal based on the time-series data.
  • the time-series data includes detection values obtained from the load detection unit 50 during a period including at least the first timing and the second timing.
  • the abnormality determination unit 116 may determine whether or not the contact with the electronic component W is abnormal based on the time-series data acquired from the load detection unit 50 and a determination model constructed in advance (the electronic component It may also detect anomalies in contact with W).
  • the determination model is constructed by machine learning so as to output a determination result as to whether or not the contact with the electronic component W is abnormal in response to the input of time series data indicating the time change of the load applied to the electronic component W. model.
  • Machine learning is a method of autonomously discovering laws or rules by learning repeatedly based on given information.
  • the decision model can be constructed using algorithms and data structures.
  • the judgment model is realized using, for example, a neural network, which is an information processing model imitating the mechanism of human cranial nerves.
  • a specific machine learning algorithm that is performed when constructing a judgment model is not particularly limited.
  • the model storage unit 118 stores the judgment model.
  • the controller 100 may construct the determination model by performing machine learning based on learning data for constructing the determination model. Specifically, the controller 100 performs machine learning using data given as input for machine learning and a label that is the correct answer for the output of machine learning, thereby autonomously creating a determination model for determining the presence or absence of an abnormality. may be generated in Inputs for machine learning are various time-series data. The output of machine learning is the determination result as to whether or not the contact with the electronic component W is abnormal.
  • the controller 100 uses multiple combinations of time-series data and labels to iteratively learn a technique for determining whether contact with the electronic component W is abnormal.
  • the stage of autonomously generating a judgment model corresponds to the learning phase.
  • the abnormality determination unit 116 of the controller 100 uses the determination model stored in the model storage unit 118 to determine whether or not contact with the electronic component W is abnormal from time-series data. , to determine the presence or absence of abnormal contact.
  • a decision model which is a trained model, is portable between computers. Therefore, the controller 100 may store the judgment model in the model storage unit 118 by acquiring the judgment model constructed in another computer. In this case, the controller 100 may execute the production phase (determination phase) without executing the learning phase.
  • Fig. 4 shows various time-series data used in the learning phase.
  • the horizontal axis indicates time, and the vertical axis indicates the detected value by the load detection section 50 .
  • the graph indicated by “a” is the time-series data classified (labeled) that the contact with the electronic component W is normal, and is indicated by "b", “c” and “d”.
  • the graph shown is time-series data classified as abnormal contact with the electronic component W.
  • the judgment model may be constructed by preparing time-series data for a normal contact state without preparing time-series data for abnormal contact states. In this case, the constructed judgment model calculates the degree of divergence between the time-series data in which the contact state is unknown and various time-series data in the normal state, thereby judging whether or not there is an abnormality in the electronic component W. good.
  • the notification unit 122 is configured to notify a user such as an operator of the result of abnormality determination by the abnormality determination unit 116 .
  • the notification unit 122 outputs information indicating that an abnormality has been detected to the input/output device 102 .
  • the notification unit 122 may output to the monitor of the input/output device 102 information indicating that an abnormality has been detected and information for identifying the electronic component W that has made abnormal contact.
  • the information for identifying the electronic component W that has made abnormal contact may be any information that can identify the individual electronic component W.
  • the operation control unit 112 interrupts (temporarily stops) the processing for collecting the electronic components W before the next accommodation unit 62 is placed in the collection area RA.
  • the notification unit 122 causes the monitor to display a message such as "the electronic component W that was accommodated immediately before in the accommodation unit 62 is in abnormal contact" as information for specifying the electronic component W that has made abnormal contact. good too.
  • the controller 100 has a circuit 150 as shown in FIG. Circuitry 150 includes one or more processors 152 , memory 154 , storage 156 , input/output ports 158 and timers 162 .
  • the storage 156 has a computer-readable storage medium such as a non-volatile semiconductor memory.
  • the storage 156 stores a program for causing the controller 100 to control the transport processing section 2, the load detection section 50, and the input/output device 102 according to a preset control procedure.
  • the storage 156 stores programs for configuring each functional module described above.
  • the memory 154 temporarily stores the program loaded from the storage medium of the storage 156 and the calculation result by the processor 152 .
  • the processor 152 configures each functional module of the controller 100 by executing the program in cooperation with the memory 154 .
  • the input/output port 158 inputs/outputs electric signals to/from the transport processing unit 2, the load detection unit 50, the input/output device 102, and the like according to commands from the processor 152.
  • the timer 162 measures the elapsed time by, for example, counting reference pulses of a constant cycle.
  • the circuit 150 is not necessarily limited to configuring each function by a program.
  • the circuit 150 may configure at least part of its functions by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) integrating this.
  • FIG. 6 is a flow chart showing a series of control processes for sequentially recovering a plurality of electronic components W to the storage portions 62 of the carrier tape 60 in the processing area PA (collection area RA) including the stop position SP for recovery. be.
  • the controller 100 may continue to acquire detection values from the load detection section 50 while continuously executing this series of control processes.
  • the suction unit 22 of the component holding unit 14 holding the electronic component W to be collected is positioned at the stop position SP one upstream of the stop position SP for collection, and the controller 100 first executes step S11.
  • step S11 for example, the operation control unit 112 rotates the support unit 12 by the rotation driving unit 16 so that the suction unit 22 sucking the electronic component W to be collected is positioned at the recovery stop position SP. .
  • the operation control unit 112 waits until the end of the processing of the electronic component W in all of the processing areas PA set in the transport processing unit 2, and then causes the rotation driving unit 16 to start rotating the supporting unit 12. good too.
  • the operation control unit 112 may control the rotation driving unit 16 so that the electronic component W is rotationally conveyed along the circular orbit CR after the processing with the longest processing time in the processing area PA is completed. In this case, the time during which the supporter 12 is stopped during the intermittent operation of the supporter 12 substantially coincides with the longest processing time.
  • step S12 for example, the operation control section 112 causes the component recovery unit 44 to pitch-convey the carrier tape 60 so that the storage section 62, which is to store the electronic component W to be recovered, is arranged in the recovery area RA.
  • the suction unit 22 that holds the electronic component W to be collected and the storage unit 62 that is to store the electronic component W are arranged in the recovery area RA for performing the delivery process of the electronic component W ( See FIG. 7(a)).
  • step S13 the operation control section 112 controls the corresponding elevation driving section 18 so as to lower the suction section 22 holding the electronic component W to be collected.
  • the operation control unit 112 may control the elevation driving unit 18 so as to move the adsorption unit 22 downward by a predetermined amount of descent.
  • the amount of descent is such that the electronic component W to be collected is accommodated in the accommodation portion 62 to be accommodated in a state in which it has been lowered by the amount of descent, and a slight clearance is provided between the main surface Wb and the bottom surface of the accommodation portion 62.
  • FIGS. 7A and 7B illustrate the operation of lowering the suction unit 22.
  • the electronic component W to be collected is normally accommodated in the accommodation unit 62.
  • step S ⁇ b>14 for example, the operation control section 112 controls the component holding section 14 so as to release the suction by the suction section 22 .
  • step S15 for example, the operation control unit 112 controls the elevation driving unit 18 so as to return the suction unit 22 to the height before the displacement.
  • FIG. 7(c) illustrates an operation when the suction portion 22 returns to the height before displacement.
  • step S16 the load information acquisition unit 114 acquires time-series data indicating temporal changes in the detected value by the load detection unit 50 in a period including at least the first timing and the second timing.
  • the load information acquisition unit 114 extracts data from the start of step S13 to the end of step S15 from the data of the detected value by the load detection unit 50 that is continuously acquired, thereby Get series data. That is, the load information acquisition unit 114 acquires time-series data indicating the time-dependent change in the load applied to the lifting drive unit 18 during the period from the start of the displacement of the adsorption unit 22 to the end of the displacement of the adsorption unit 22. do.
  • step S17 the abnormality determination unit 116 determines whether or not the contact with the electronic component W to be collected is abnormal.
  • the abnormality determination unit 116 inputs the time-series data obtained in step S16 to the determination model stored in the model storage unit 118, and obtains the output result from the determination model to determine the presence or absence of contact abnormality. You may
  • step S17 if an abnormality in contact with the electronic component W to be collected is not detected (step S17: NO), the control process executed by the controller 100 returns to step S11. In this case, the controller 100 executes a series of control processes of steps S11 to S17 for the next electronic component W to be collected.
  • FIG. 7(d) illustrates how the suction unit 22 for sucking the next electronic component W to be collected and the next storage unit 62 are arranged in the collection area RA.
  • step S17 if an abnormality in contact with the electronic component W to be collected is detected in step S17 (step S17: YES), the control process executed by the controller 100 proceeds to step S18.
  • step S18 for example, the operation control unit 112 stops the operation of the transport processing unit 2 (interrupts the transport and processing operations of the electronic component W by the transport processing unit 2).
  • the operation control unit 112 intermittently operates the support unit 12 by the rotation drive unit 16 and keeps the component holding unit 14 by each of the up-and-down drive units 18 until there is a user instruction from the operator or the like in the next step S19. , and processing operations by all the processing units 40 are not performed.
  • the operation control unit 112 may control the transport processing unit 2 to interrupt the transport and processing operations of the electronic component W for a time longer than the longest processing time of all the processing units 40 . That is, the operation control unit 112 intermittently operates the supporting unit 12, displacing the component holding unit 14, And the processing operation by each processing unit 40 may not be executed.
  • the notification unit 122 outputs to the input/output device 102 information indicating that an abnormality in the contact state of the electronic component W to be collected has been detected and information for specifying the electronic component W. good too.
  • FIGS. 8(a) to 8(d) exemplify a state in which contact with the electronic component W is abnormal when the suction portion 22 is displaced by the elevation driving portion 18.
  • FIG. 8(a) and 8(b) when the suction unit 22 for sucking the electronic component W to be collected is lowered, the electronic component W is caught by the opening edge of the storage unit 62 and its It is in contact with the vicinity (the base portion of the carrier tape 60 where the accommodation portion 62 is not provided).
  • FIG. 8( c ) when the electronic component W contacts the edge of the opening and its vicinity, at least a portion of the electronic component W is removed from the opening of the housing portion 62 when the suction by the suction portion 22 is released. There is a possibility of riding on the rim (base part).
  • FIG. 8(d) illustrates a state in which the operation control unit 112 interrupts the transportation and processing operations of the electronic component W.
  • the suction unit 22 that has been sucking the electronic component W to be collected remains in the collection area RA.
  • the storage portion 62 in which the electronic component W that has made abnormal contact is stored in an inclined state without the carrier tape 60 being transported remains in the collection area RA.
  • step S19 the controller 100 waits until it receives a user instruction to restart the operation from a user such as a worker.
  • the operation control unit 112 suspends the transportation and processing operations of the electronic component W until the operator or the like executes a user instruction instructing restart.
  • the operator or the like may eject the electronic component W determined to be in abnormal contact from the carrier tape 60 based on the information displayed on the monitor of the input/output device 102, for example.
  • the control process executed by the controller 100 Upon receiving a user instruction indicating a restart instruction from an operator or the like, the control process executed by the controller 100 returns to step S11.
  • the controller 100 executes a series of control processes of steps S11 to S17 for the next electronic component W to be collected.
  • the controller 100 controls the transport processing unit 2 so that the electronic component W to be collected next is stored in the storage unit 62 to which the electronic component W determined to have made abnormal contact is delivered. good too.
  • the controller 100 causes the transfer processing section 2 to continuously execute the series of control processing described above.
  • the above-described series of control processing shown in FIG. 6 is an example, and can be changed as appropriate.
  • the controller 100 may execute one step and the next step in parallel, or may execute each step in an order different from the above example.
  • the controller 100 may perform step S11 after performing step S12, or may perform step S11 and step S12 in parallel so as to at least partially overlap.
  • the timing of stopping the operation when abnormal contact is detected is not limited to the above example.
  • the controller 100 detects an abnormality in the contact with the electronic component W
  • the controller 100 starts pitch transportation for arranging the next storage unit 62 at the recovery stop position SP, and before stopping the pitch transportation
  • the transport processing unit 2 may be controlled so as to stop the operation of the transport processing unit 2 .
  • the controller 100 performs the transfer process after performing the pitch transport for arranging the next storage unit 62 at the recovery stop position SP, and before displacing the adsorption unit 22 that adsorbs the next electronic component W to be recovered.
  • the transport processing unit 2 may be controlled so as to stop the operation of the unit 2 .
  • the controller 100 controls the housing portion 62 housing the electronic component W determined to be in abnormal contact.
  • the operation by the transport processing unit 2 may be stopped before sealing with tape.
  • the electronic component W determined to be in abnormal contact may be ejected by the transport processing unit 2.
  • the transport processing section 2 may have a discharge unit 70, as shown in FIG.
  • the ejecting unit 70 is a unit that ejects the electronic component W determined to be in abnormal contact from the accommodating member (carrier tape 60 ) based on an operation instruction from the controller 100 .
  • the ejection unit 70 has, for example, an ejection holding portion 72 , a drive portion 74 and an ejection bin 76 .
  • the ejection holding part 72 is configured to be able to hold the electronic component W.
  • the discharge holder 72 may hold the electronic component W by any method.
  • the discharge holder 72 can hold the electronic component W by vacuum suction, for example.
  • the driving section 74 includes a power source such as an electric motor, and moves the ejection holding section 72 along a predetermined direction.
  • the drive unit 74 may move the ejection holding unit 72 along each of the horizontal direction and the vertical direction.
  • the ejection bin 76 accommodates the electronic component W separated from the ejection holding portion 72 .
  • the electronic components W are discharged from the carrier tape 60 by accommodating the electronic components W in the discharge bin 76 .
  • FIG. 10 is a flow chart showing another example of a series of control processes for sequentially collecting a plurality of electronic components W into the storage portions 62 of the carrier tape 60 in the collection area RA.
  • the electronic component W is ejected by the ejection unit 70 when an abnormality in contact with the electronic component W is detected.
  • Controller 100 executes steps S31 to S37 in the same manner as steps S11 to S17 in the series of control processes shown in FIG.
  • step S37 when an abnormality in contact with the electronic component W to be collected is detected (step S37: YES), the control process executed by the controller 100 proceeds to step S38.
  • step S ⁇ b>38 for example, the operation control section 112 controls the discharge unit 70 so as to discharge the electronic component W determined to be in abnormal contact from the housing section 62 .
  • the operation control unit 112 moves the ejection holding unit 72 to a position where the electronic component W to be ejected can be picked up by the drive unit 74, and controls the ejection holding unit 72 to hold the electronic component W. .
  • the operation control unit 112 controls the ejection holding unit 72 so that the ejection holding unit 72 holding the electronic component W is moved to above the ejection bin 76 by the driving unit 74 and the electronic component W is released from the suction. do.
  • step S38 the control process executed by the controller 100 returns to step S31. Then, the controller 100 executes a series of control processes of steps S31 to S37 for the next electronic component W to be collected. While the control process of step S38 is being executed, the operation control section 112 interrupts the transportation and processing operations of the electronic component W by the transportation processing section 2 . For example, while executing the control process of step S38, the motion control unit 112 intermittently operates the support unit 12 by the rotation drive unit 16, displaces the component holding unit 14 by each of all the elevation drive units 18, and no processing operations are performed by any processing unit 40 .
  • the processing device 1 may discharge the electronic component W determined to be abnormally contacted by the rotary transfer unit 10 instead of the discharge unit 70 .
  • the processing apparatus 1 stores the next electronic component W in the accommodation unit 62 in which the electronic component W was to be accommodated. A part W may be accommodated.
  • Abnormal contact with the electronic component W is not limited to the case where the electronic component W released from adsorption rides on the opening edge of the housing portion 62, as exemplified in FIGS. 8(a) to 8(d).
  • the electronic component W may come into contact with the opening edge of the accommodating portion 62 once and be accommodated in the accommodating portion 62 as in the normal state. Further, the electronic component W may contact the opening edge of the housing portion 62 once and be housed in the housing portion 62 in an oblique state between the side surface and the bottom surface of the housing portion 62 .
  • the graph indicated by “b” is time-series data of the load when the electronic component W is housed in the housing portion 62 in the same manner as in the normal state after contacting the opening edge.
  • the graph indicated by “c” is time-series data when the electronic component W is accommodated in the accommodating portion 62 in an inclined state, and the graph indicated by “d” is the electronic component W running over the edge of the opening. This is time-series data when it is stored in a
  • the abnormality determination unit 116 may determine the type of abnormality in addition to determining whether there is an abnormality in contact with the electronic component W.
  • the abnormality determination unit 116 determines the type of abnormality using a determination model constructed by machine learning so as to output the determination result of the presence or absence of abnormality, including the type of abnormality, in response to the input of time-series data. can be determined.
  • the notification unit 122 may cause the monitor of the input/output device 102 to display information indicating the type of abnormality.
  • the notification unit 122 may cause the monitor of the input/output device 102 to display time-series data (graph) when a contact abnormality is detected.
  • the component recovery unit 44 recovers the electronic components W to the carrier tape 60, but the component recovery unit 44 may also recover the electronic components W to the storage tray.
  • the storage tray may be made of hard resin.
  • the storage tray may have a plurality of storage pockets arranged in a row, or may have a plurality of storage pockets arranged in rows and columns in two directions perpendicular to each other.
  • the load information acquisition unit 114 is information indicating the load applied to the electronic component W when the lifting drive unit 18 displaces the adsorption unit 22 in order to collect the electronic component W in the storage pocket arranged in the collection area RA. may be acquired from the load detection unit 50 .
  • the abnormality determination unit 116 may determine whether there is an abnormality in contact with the electronic component W based on the load time-series data obtained from the load detection unit 50, as in the case where the carrier tape 60 is used.
  • the abnormality determination unit 116 may determine the presence or absence of abnormal contact of the electronic component W using a determination model constructed by machine learning based on time-series data for learning obtained when the storage tray is used.
  • the load applied to the electronic component W to be supplied is detected, and the electronic component W is detected. may be detected.
  • FIGS. 11A to 11C in the processing area PA (supply area SA) including the supply stop position SP corresponding to the component supply unit 42, the suction unit 22 of the component holding unit 14 A load detection unit 50 may be provided in the lifting drive unit 18 that displaces the .
  • a series of control processes are executed as follows.
  • the operation control section 112 moves the support section 12 by the rotation drive section 16 so that the suction section 22 that does not hold (suck) the electronic component W is arranged in the supply area SA. After or during this movement, the operation control unit 112 causes the component supply unit 42 to pitch-convey the carrier tape 60 so that the container 62 containing the electronic component W to be supplied is arranged in the supply area SA. . As a result, as shown in FIG. 11A, the suction section 22 that does not suck the electronic component W and the storage section 62 that stores the electronic component W to be supplied are opposed to each other.
  • the operation control section 112 controls the elevation drive section 18 to lower the adsorption section 22 .
  • the operation control unit 112 is designed to contact the electronic component W or slightly between the suction surface (lower surface) of the suction unit 22 and the main surface Wa of the electronic component W.
  • the suction unit 22 may be lowered by the lifting drive unit 18 to such an extent that a sufficient clearance is provided.
  • the operation control section 112 controls the component holding section 14 so that the suction section 22 starts sucking the electronic component W.
  • the operation control section 112 controls the elevation driving section 18 so that the component holding section 14 with the electronic component W sucked returns to the height before the displacement.
  • the electronic components W are supplied to the rotary transport unit 10 from the carrier tape 60 transported by the component supply unit 42 .
  • the load information acquiring unit 114 during the period from the time when the suction unit 22 that does not absorb the electronic component W starts to descend to the time when the suction unit 22 returns to the height before the displacement after the electronic component W is suctioned, A value detected by the load detection unit 50 may be acquired, or data of the detected value (load time-series data) during the period may be extracted.
  • the suction portion 22 contacts the electronic component W inside the housing portion 62 , the reaction force from the electronic component W to the suction portion 22 is reflected in the time-series data obtained from the load detection portion 50 .
  • the load detection unit 50 detects the load applied to the electronic component W when the suction unit 22 is displaced to receive the electronic component W. As shown in FIG.
  • the abnormality determination unit 116 is based on the transition of the detected value by the load detection unit 50 from the first timing to the second timing when the suction unit 22 is displaced. to detect an abnormality in contact with the electronic component W.
  • the first timing is any timing from when the lifting drive unit 18 starts displacing the suction unit 22 to when the suction unit 22 is stopped.
  • the second timing is any timing from when the suction unit 22 is stopped to when the suction unit 22 returns to the position before displacement after the electronic component W is sucked.
  • the abnormality determination unit 116 determines whether or not there is an abnormality in contact with the electronic component W based on the load time-series data obtained from the load detection unit 50 in a period including at least the first timing and the second timing. good.
  • the abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when supplying the electronic component W from the carrier tape 60 to determine abnormal contact of the electronic component W to be supplied. The presence or absence may be determined.
  • the controller 100 receives information indicating the load applied to the electronic components W when supplying the electronic components W to the rotary transfer unit 10 from a storage tray in which a plurality of electronic components W are stored. may be acquired and abnormal contact with the electronic component W may be detected.
  • the processing device 1 may be configured to process one type of electronic component W. Alternatively, the processing device 1 may be configured to process different types of electronic components W from each other. In the processing device 1, the part type of the electronic part W to be processed may be changed in a predetermined processing unit (for example, the number of days or the number of processed parts). The processing apparatus 1 may continuously process the plurality of electronic components W of the second type after continuously processing the plurality of electronic components W of the first type. At least one of the size and weight may be different among the plurality of types of electronic components W.
  • a plurality of different types of carrier tapes 60 may be used depending on the component type (kind) of the electronic component W, and the electronic component W may be collected.
  • the component collection unit 44 collects the electronic components W from the rotary transport unit 10 onto, for example, the carrier tape 60 corresponding to the component type of the electronic components W to be processed.
  • another component recovery unit 44 capable of transporting the carrier tape 60 corresponding to the component type of the electronic component W to be processed may be used.
  • the tendency of the time-series data obtained when the electronic component W is collected on the carrier tape 60 differs. More specifically, the tendency of change in the time-series data obtained when the electronic component W makes abnormal contact with the carrier tape 60 differs depending on the component type of the electronic component W.
  • the controller 100 may detect abnormal contact with the electronic component W to be processed using a determination model corresponding to the component type of the electronic component W to be processed.
  • the model storage unit 118 described above may store a database in which component types (a plurality of component types) of a plurality of types of electronic components W are associated with a plurality of determination models. In the database, for example, one determination model is associated with each part type.
  • various time-series data may be prepared as learning data for each component type (one type of electronic component W), and then a determination model corresponding to the component type may be constructed.
  • the controller 100 may have a product type information acquisition unit 132 and a model selection unit 134 as functional modules (see FIG. 3).
  • the product type information acquisition unit 132 acquires information indicating the component type of the electronic component W to be processed (hereinafter referred to as "product type information").
  • the product type information acquisition unit 132 may acquire the product type information by any method.
  • the product type information acquisition unit 132 acquires product type information based on, for example, a user instruction (user input via the input/output device 102) indicating the component type of the electronic component W.
  • the product type information acquisition unit 132 (controller 100) reads an identification code indicating the type of electronic component W instead of a user instruction, or obtains information from a file or data in which the type of electronic component W is written. , you may acquire the variety information.
  • the model selection unit 134 selects a judgment model corresponding to the electronic component W to be processed from among a plurality of judgment models based on the product type information.
  • the model selection unit 134 selects a determination model constructed for the electronic component W to be processed, for example, by referring to the database stored in the model storage unit 118 .
  • the selection of the determination model by the model selection unit 134 may be performed (every time) when the component type of the electronic component W to be processed is replaced.
  • the abnormality determination unit 116 determines whether the contact with the electronic component W to be processed is abnormal based on the time-series data acquired from the load detection unit 50 and the determination model corresponding to the electronic component W to be processed. may be determined (an abnormality in contact with the electronic component W to be processed may be detected). Also when the electronic component W is supplied by the component supply unit 42, the controller 100 selects a corresponding determination model according to the component type of the electronic component W to be processed, and determines the electronic component at the time of supply. Abnormal contact with W may be detected.
  • Different types of carrier tapes 60 may be used for electronic components W of the same component type.
  • a corresponding determination model may be constructed for each type of carrier tape 60 .
  • the controller 100 may select a determination model according to the type of the carrier tape 60 and then detect abnormal contact with the electronic component W using the determination model.
  • the controller 100 may select a determination model according to the combination of the component type of the electronic component W and the type of the carrier tape 60, and then detect the abnormal contact with the electronic component W using the selected determination model.
  • the processing apparatus 1 has a component holding unit 14 configured to hold the electronic component W, and a processing area PA for executing a predetermined process on the electronic component W.
  • a support portion 12 that supports the component holding portion 14 so as to be positioned on the circular orbit CR passing therethrough, a rotation driving portion 16 that is configured to rotate the support portion 12 around the central axis Ax of the circular orbit CR, and a processing area PA
  • the displacement drive unit Elevating drive unit 18
  • the displacement drive unit displaces the component holding unit 14 in the transport processing unit 2
  • the displacement drive unit displaces the component holding unit 14 in the processing area PA
  • the load detection unit 50 Based on the transition of the detected value by the load detection unit 50 configured to detect the load applied to the electronic component W and the load detection unit 50 from the first timing to the second timing when the component holding unit 14 is displaced and a controller 100 configured to detect abnormal contact with the electronic component W.
  • the value detected by the load sensor may include loads detected by various factors, and even if abnormal contact occurs, only a load close to normal is applied in some cases. For this reason, it is difficult to distinguish between the detected load value in the normal state and the detected load value in the abnormal state at each time.
  • an abnormality in the contact with the electronic component W is detected based on the transition of the load detection value between different timings. Since an abnormality is detected by observing a change in the load applied to the electronic component W in this manner, an abnormality in contact with the electronic component W can be detected with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W.
  • the controller 100 may control the transport processing unit 2 so as to sequentially perform a predetermined process in the processing area PA on a plurality of electronic components W, and when an abnormality in contact with the electronic components W is detected, the transport The operation of the processing unit 2 may be stopped. In this case, when the controller 100 detects an abnormal contact, the operator or the transport processing unit 2 can confirm the electronic component W that is in abnormal contact and remove the electronic component W. Therefore, it is more useful for improving the reliability of the electronic component W.
  • the controller 100 may be configured to detect an abnormality in contact with the electronic component W based on time-series data indicating changes over time in values detected by the load detection unit 50 .
  • the time-series data in the normal state and the time-series data in the event of a contact abnormality are likely to differ in their changing tendencies. Therefore, an abnormality in contact with the electronic component W can be detected with high accuracy. Therefore, it is more useful for improving the reliability of the electronic component W.
  • the controller 100 determines whether or not the contact with the electronic component W is abnormal according to the time-series data acquired from the load detection unit 50 and the input of the time-series data. It may be configured to detect an abnormality in contact with the electronic component W based on the model. In this case, by making a judgment using a judgment model constructed by machine learning, it is possible to detect an abnormality in contact with the electronic component W with higher accuracy. Therefore, it is more useful for improving the reliability of the electronic component W.
  • the controller 100 selects a determination model from among a plurality of determination models based on a database in which a plurality of component types and a plurality of determination models are associated with each other and the component type of the electronic component W; and detecting an abnormality in contact with the electronic component W based on the time-series data acquired from the unit 50 and the determination model corresponding to the electronic component W.
  • the tendency of the time-series data when an abnormality in contact with the electronic component W occurs may change.
  • an abnormality in contact with the electronic component W can be detected with higher accuracy. Therefore, it is more useful for improving the reliability of the electronic component W.
  • the displacement driving section may be configured to displace the component holding section 14 by applying an external force to the component holding section 14 .
  • the load detection section 50 may be provided in the displacement drive section. When an external force is applied to displace the component holding portion 14, the component holding portion 14 and the displacement drive portion come into contact with each other. Data on the load associated with the contact is reflected in the value detected by the load detection unit 50 . Since the processing device 1 detects an abnormality based on the time-series data, the abnormality can be detected without considering the load associated with the contact between the component holding section 14 and the displacement driving section. Therefore, it is useful for detecting abnormal contact with the electronic component W with high accuracy. By providing the load detection unit 50 in the displacement driving unit, there is no need to provide a load detection unit in each rotating component holding unit 14, and the device configuration of the processing apparatus 1 provided with a plurality of component holding units 14 can be simplified. useful for
  • the carrier tape 60 is made of a resin film, the carrier tape 60 is pushed in when the electronic component W comes into contact with the edge of the opening of the carrier tape 60 or the like. As a result, the reaction force from the carrier tape 60 to the electronic component W becomes weaker, making it difficult to distinguish between the normal load detection value and the abnormal load detection value compared to the case of using other housing members.
  • the presence or absence of an abnormality is determined based on the transition of the detected load value between different timings (for example, time-series data). Also, it is possible to determine abnormality with high accuracy.
  • FIG. 12A An electronic component processing apparatus according to a second embodiment will be described with reference to FIGS. 12 and 13.
  • FIG. Instead of the carrier tape 60 or the storage tray, the electronic components W may be collected on a wafer sheet, or the electronic components W may be supplied from the wafer sheet.
  • the transport processing section 2A has a rotary transport unit 10A and a component recovery unit 44A.
  • the rotary transfer unit 10A displaces the component holder along the central axis Ax
  • the rotary transfer unit 10A displaces the component holder along the radial direction of the circumference centered on the central axis Ax. Displace.
  • the rotary transfer unit 10A has, for example, a support section 12A, a plurality of component holding sections 14A, a rotation drive section 16A, and a plurality of forward/backward drive sections 18A.
  • the support portion 12A supports a plurality of component holding portions 14A. Specifically, the support portion 12A supports the plurality of component holding portions 14A so that each of the plurality of component holding portions 14A is positioned on the circular orbit CR.
  • the support portion 12A is rotatable around the central axis Ax of the circular orbit CR.
  • the support portion 12A is, for example, a turntable.
  • the plurality of component holding portions 14A are arranged at regular intervals along the circumference around the central axis Ax and fixed to the support portion 12A.
  • the component holding portion 14A may hold the electronic component W by any method.
  • the component holding portion 14A for example, vacuum-sucks either the main surface Wa or Wb from one side along the radial direction of the circumference centered on the central axis Ax.
  • the component holding section 14A has a suction section 22A and a holder 24A.
  • the suction part 22A is provided (fixed) to the support part 12A via a holder 24A so that the suction surface faces the outside of the circular track CR.
  • suction parts may be provided in the support part 12A so that the front-end
  • suction parts are comprised so that the main surface Wa of the electronic component W may be adsorb
  • the central axis Ax, the suction portion 22A, and the electronic component W are arranged in this order along the radial direction of the circular orbit CR.
  • the holder 24A is fixed to the outer peripheral portion of the support portion 12A and holds the suction portion 22A displaceably.
  • the terms “inner” and “outer” are used with respect to the central axis Ax.
  • the rotary drive section 16A like the rotary drive section 16, is configured to rotate the support section 12A around the central axis Ax. Due to the rotation of the support portion 12A by the rotary drive portion 16A, the plurality of component holding portions 14A move along the circular orbit CR centered on the central axis Ax. As a result, the electronic component W held by the component holding portion 14A is conveyed along the circumference around the central axis Ax.
  • the rotation drive section 16A is controlled to repeat rotation and stop of the support section 12A at the angular pitch (angular pitch around the central axis Ax) between the adjacent component holding sections 14A.
  • the plurality of positions on the circular orbit CR where the plurality of component holding units 14A (the plurality of suction units 22A) are arranged will also be referred to as “the plurality of stop positions SP ”.
  • the plurality of advance/retreat drive portions 18A are configured to move the suction portion 22A of the component holding portion 14A along the radial direction of the circular orbit CR in the processing area PA (recovery area RA) including the stop position SP for recovery. 18A (displacement drive section).
  • the advance/retreat drive portion 18A displaces the suction portion 22A from the central axis Ax toward the outside of the circular orbit CR.
  • the forward/backward drive unit 18A has, for example, a holder 32A, an operating rod 34A, and a motor 36A.
  • the holder 32A is provided so as not to move along with the rotation of the support portion 12A by the rotary drive portion 16A.
  • the operating rod 34A is provided on the holder 32A so as to be displaceable with respect to the holder 32A.
  • the operating rod 34A extends, for example, along the radial direction of the circular track CR, and is held by the holder 32A so as to be movable along the radial direction.
  • the operating rod 34A may be positioned inside (closer to the central axis Ax) than the component holding portion 14 when the component holding portion 14A is positioned at the stop position SP.
  • the motor 36A functions as a drive source and displaces (moves) the operating rod 34A outside the circular orbit CR.
  • Motor 36A may include an eccentric cam.
  • the outward facing tip of the operating rod 34A contacts the transmission section 28A of the component holding section 14A.
  • the transmission portion 28A is connected to the adsorption portion 22A and transmits the external force received from the operation rod 34A to the adsorption portion 22A.
  • the transmission portion 28A is provided so as not to interfere with the support portion 12A when displaced.
  • the operation rod 34A is moved further outward while the operation rod 34A is in contact with the transmission portion 28A, the adsorption portion 22A is displaced (moves outward).
  • the state in which the operating rod 34A exerts an outward force on the attracting portion 22A is released, and the attracting portion 22A returns to the position before it was displaced.
  • a load detection section 50 is provided in the advance/retreat drive section 18A in the same manner as the elevation drive section 18 . Specifically, the load detection portion 50 is provided on the operating rod 34A. The load detector 50 detects a load (external force) applied to the operating rod 34A.
  • the component recovery unit 44A is a processing unit that sequentially recovers a plurality of electronic components W from the rotary transfer unit 10A in the recovery area RA.
  • the component recovery unit 44A has, for example, a sheet holding section 82 and a sheet position adjusting section 84. As shown in FIG.
  • the sheet holding part 82 holds the wafer sheet 66 .
  • Electronic components W collected from the rotary transfer unit 10 are attached to the wafer sheet 66 .
  • the main surface Wb of the electronic component W is attached to the attachment surface 66a of the wafer sheet 66 .
  • a ring frame (not shown) may be attached to the peripheral portion of the wafer sheet 66, and the sheet holding portion 82 may hold the ring frame.
  • the sheet holding portion 82 faces (is parallel to) the tip end face of the adsorption portion 22A positioned at the collection stop position SP, with the sticking surface 66a standing vertically.
  • a wafer sheet 66 is held around the circular orbit CR.
  • the sheet position adjusting portion 84 is arranged to hold the sheet along a plane intersecting the direction in which the wafer sheet 66 and the suction portion 22A positioned at the recovery stop position SP face each other (the radial direction of the circumference around the central axis Ax). Adjust the position of the portion 82 .
  • the sheet position adjusting section 84 may change the position of the sheet holding section 82 along a plane perpendicular to the direction in which the wafer sheet 66 and the suction section 22A face each other. By changing the position of the sheet holding portion 82, the position of the wafer sheet 66 held by the sheet holding portion 82 is changed.
  • the seat position adjusting section 84 may include two driving sections that move the sheet holding section 82 along two directions perpendicular to each other.
  • the operation control section 112 of the controller 100 rotates the support section 12A by the rotation driving section 16A so that the suction section 22A holding (adsorbing) the electronic component W is arranged in the recovery area RA. Then, the operation control section 112 controls the sheet position adjusting section 84 so that the planned pasting area of the electronic component W to be collected on the wafer sheet 66 is arranged in the collection area RA.
  • the operation control section 112 controls the advance/retreat drive section 18A so as to move the suction section 22A positioned at the recovery stop position SP outward.
  • the operation control section 112 moves the adsorption section 22 by the advance/retreat drive section 18A until the electronic component W adsorbed by the adsorption section 22A comes into contact with the sticking surface 66a of the wafer sheet 66 .
  • the operation control section 112 controls the component holding section 14A so as to cancel the suction of the electronic component W by the suction section 22A.
  • the operation control section 112 controls the advance/retreat driving section 18A so as to return the suction section 22A in the state of releasing the suction of the electronic component W to the position before the displacement.
  • the load information acquisition unit 114 determines the load information during the period from the time when the suction unit 22A that is suctioning the electronic component W starts to move to the time when the suction unit 22A is returned to the position before displacement after the suction of the electronic component W is released.
  • Data load time-series data indicating the time change of the detected value by the load detection unit 50 may be acquired.
  • the abnormality determination unit 116 determines whether there is an abnormality in the contact with the electronic components W based on the load time-series data obtained from the load detection unit 50. good.
  • the abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when the electronic components W are collected on the wafer sheet 66 to detect abnormal contact with the electronic components W to be collected. The presence or absence may be determined.
  • the operation control unit 112 may cause the transport processing unit 2A to suspend the processing such as recovery in the transport processing unit 2A.
  • An example of abnormal contact when collecting electronic components W onto the wafer sheet 66 is that the electronic components W to be collected come into contact with the electronic components W already attached to the wafer sheet 66 . Further, as the abnormal contact, it is conceivable that the attitude of the electronic component W sucked by the sucking portion 22A deviates from the standard state, and the wafer sheet 66 receives a reaction force different from normal.
  • the transport processing section 2A has a component supply unit 42A.
  • the plurality of advance/retreat drive portions 18A move the suction portion 22A of the component holding portion 14A along the radial direction of the circular orbit CR in the processing area PA (supply area SA) including the stop position SP for supply. (displacement driver).
  • the component supply unit 42A is a processing unit that sequentially supplies a plurality of electronic components W to the rotary transfer unit 10 in the supply area SA.
  • the component supply unit 42A has, for example, a sheet holding portion 82, a sheet position adjusting portion 84, and a protruding portion 86. As shown in FIG.
  • the sheet holding section 82 and the sheet position adjusting section 84 of the component supply unit 42A have the same configurations and functions as the sheet holding section 82 and the sheet position adjusting section 84 of the component collecting unit 44A, except that they hold the wafer sheet 64. .
  • the wafer sheet 64 held by the sheet holding section 82 of the component supply unit 42A has an adhesive sticking surface 64a to which a semiconductor wafer is stuck.
  • the semiconductor wafer is attached to the attachment surface 64a in a state in which it is cut into a plurality of electronic components W by dicing or the like.
  • the main surface Wb of the electronic component W may be attached to the attachment surface 64a.
  • the projecting portion 86 is arranged so as to sandwich the wafer sheet 64 (the electronic component W to be supplied) between itself and the supply stop position SP.
  • the protruding portion 86 protrudes a region of the wafer sheet 64 to which the electronic components W to be supplied are attached so as to approach the stop position SP for supply.
  • the protruding portion 86 protrudes the region from the back surface 64b of the wafer sheet 64 toward the sticking surface 64a.
  • the protruding portion 86 protrudes the above region toward the suction portion 22A when the suction portion 22A arranged at the stop position SP for supply is displaced to suck the electronic component W to be supplied.
  • suction parts and the electronic component W of the supply object contact.
  • the electronic component W is transferred from the wafer sheet 64 to the suction section 22A by retracting inwardly by the advance/retreat driving section 18A.
  • the load information acquisition unit 114 detects the load in a period from the time when the suction unit 22A, which does not absorb the electronic component W, starts to move to the time when the suction unit 22A returns to the position before displacement after the electronic component W has been absorbed.
  • Data load time-series data
  • the reaction force from the electronic component W to the suction portion 22A is reflected in the time-series data obtained from the load detection portion 50.
  • the abnormality determination unit 116 determines whether there is an abnormality in contact with the electronic components W based on the load time-series data obtained from the load detection unit 50. good.
  • the abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when the electronic components W are supplied from the wafer sheet 64 to determine abnormal contact of the electronic components W to be supplied. The presence or absence may be determined.
  • the transport processing section 2A has, for example, a defective product ejection unit 48A.
  • the defective product discharge unit 48A is a unit that collects electronic components W classified as defective products.
  • the defective product discharge unit 48A is arranged, for example, at a stop position SP downstream of the recovery stop position SP.
  • the defective product discharge unit 48A may be arranged at the stop position SP upstream of the stop position SP for collection.
  • the component recovery unit 44A recovers electronic components W classified as non-defective products.
  • the operation control unit 112 transfers the electronic component W from the rotary transfer unit 10 to the defective product discharging unit 48A.
  • the component holding unit 14 and the defective product ejection unit 48A are controlled so as to eject the .
  • the operation control unit 112 continues various processes including the supply of the electronic component W. may
  • the operation control unit 112 causes the electronic component W to be placed in the component recovery unit 44A when the adsorption unit 22A that adsorbs the electronic component W determined to be in abnormal contact is placed at the recovery stop position SP.
  • the transport processing section 2A is controlled so as not to be collected.
  • the operation control unit 112 removes the electronic component W determined to be in abnormal contact with the defective product ejection unit 48A when the suction unit 22A is placed at the stop position SP where the defective product ejection unit 48A is arranged.
  • the transport processing unit 2 is controlled to collect.
  • the controller 100 may cause the transport processing unit 2 to execute the process for discharging the electronic component W while continuing various processes including the supply of the electronic component W to the transport processing unit 2 .
  • abnormal contact with the electronic component W can be detected with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W.
  • part of the contents described in the first embodiment and its modification may be applied.
  • FIG. 14 and 15 A plurality of electronic components W may be sequentially transported by two or more rotating transport units, and when the electronic components W are transferred between the rotating transport units, the load applied to the electronic components W is detected, and the electronic component W is detected. The presence or absence of an abnormality in contact with the component W may be determined.
  • a processing apparatus 1B shown in FIGS. 14 and 15 includes a transport processing section 2B instead of the transport processing sections 2 and 2A.
  • the transport processing section 2B has rotary transport units 10B and 10C, a component supply unit 42B, a component recovery unit 44B, and a defective product ejection unit 48B.
  • Each of the rotary transfer units 10B and 10C is configured in the same manner as the rotary transfer unit 10A.
  • the rotary transfer unit 10B is configured to move a plurality of component holders 14A along a circular track CR1 around the central axis Ax1.
  • the rotary transfer unit 10C is configured to move a plurality of component holders 14A along a circular track CR2 around the central axis Ax2.
  • the central axis Ax1 and the central axis Ax2 may be parallel to each other or may be vertical axes.
  • the circular trajectory CR1 and the circular trajectory CR2 may be arranged along one horizontal direction without overlapping each other.
  • the rotary transport unit 10B transports the electronic component W supplied from the component supply unit 42B to a stop position SP for delivery to the rotary transport unit 10C (hereinafter referred to as "delivery stop position SP").
  • the electronic component W is transferred from the rotary transfer unit 10B to the rotary transfer unit 10C in a processing area PA (hereinafter referred to as a "transfer area TA") that includes the transfer stop position SP and is used for the transfer process.
  • the rotary transfer unit 10C transfers the electronic component W received from the rotary transfer unit 10B to the stop position SP where the component recovery unit 44B is arranged.
  • the defective product discharge unit 48B is arranged at a stop position SP upstream of the stop position SP where the component recovery unit 44B is arranged.
  • the transport processing unit 2B has an advance/retreat drive unit 18A (displacement drive unit) that moves the component holding unit 14A arranged at the delivery stop position SP toward the outside of the circular track CR1.
  • the rotary transfer unit 10C does not have an advance/retreat drive section for moving the component holding section 14A that receives the electronic component W in the delivery area TA (see also FIG. 15).
  • the operation control section 112 of the controller 100 controls the rotary transfer unit 10B so that the suction section 22A of the rotary transfer unit 10B holding (adsorbing) the electronic component W is arranged in the delivery area TA. Then, the operation control section 112 controls the rotary transfer unit 10C so that the suction section 22A (the suction section 22A of the rotary transfer unit 10C) scheduled to receive the electronic component W is arranged in the delivery area TA.
  • the operation control section 112 controls the advance/retreat drive section 18A so as to move the suction section 22A arranged in the transfer area TA outward.
  • the operation control unit 112 controls the advance/retreat driving unit 18A until the electronic component W that is being sucked by the sucking unit 22A contacts the sucking surface (the surface facing the outside of the circular track CR2) of the sucking unit 22A of the rotary transfer unit 10C. to move the suction portion 22A to be driven.
  • the operation control unit 112 controls the rotary transfer unit 10C to start sucking (sucking) the electronic component W by the suction unit 22A of the rotary transfer unit 10C, the electronic component W is picked up by the suction unit 22A of the rotary transfer unit 10B.
  • the rotary transfer unit 10B is controlled so as to release W from being sucked.
  • the operation control section 112 controls the advance/retreat driving section 18A so as to return the suction section 22A in the state of releasing the suction of the electronic component W to the position before the displacement.
  • the operation control unit 112 before the electronic component W held by the suction unit 22A contacts the reception side suction unit 22A,
  • the rotary transport unit 10C may be controlled so as to start suctioning (sucking) by the suction section 22A on the receiving side.
  • the load information acquisition unit 114 acquires the detected value by the load detection unit 50 provided in the forward/backward drive unit 18A.
  • the load information acquisition section 114 returns the suction section 22A to the position before the displacement after releasing the suction of the electronic component W from the time when the suction section 22A of the rotary transfer unit 10B that is suctioning the electronic component W starts to move.
  • Data load time-series data indicating the time change of the detected value by the load detection unit 50 during the period up to the point in time may be acquired.
  • the abnormality determination unit 116 determines whether there is an abnormality in the contact with the electronic components W based on the load time-series data obtained from the load detection unit 50. good.
  • the abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when the electronic component W is transferred to another rotary transfer unit to detect abnormal contact with the electronic component W to be delivered. You may determine the presence or absence of When detecting abnormal contact with an electronic component W, the operation control unit 112 may control the transport processing unit 2B so that the electronic component W determined to be in abnormal contact is collected in the defective product discharge unit 48B.
  • Abnormal contact when the electronic component W is handed over to another rotary transfer unit is caused, for example, by the suction unit 22A scheduled to receive the electronic component W already holding the other electronic component W for some reason. As a result, it is conceivable that a reaction force different from that during normal operation is generated. Further, as the abnormal contact, it is conceivable that a reaction force different from that in the normal state is generated due to the deviation of the posture of the electronic component W sucked by the sucking section 22A of the rotary transfer unit 10B from the standard state. .
  • the suction section 22A of the rotary transfer unit 10C (the suction section 22A scheduled to receive the electronic component W) is displaced to the outside of the circular track CR2, whereby the electronic component W is transferred. may be performed.
  • an advance/retreat driving section 18A that displaces the suction section 22A to receive the electronic component W may be arranged, and the load detection section 50 may be provided in the advance/retreat driving section 18A.
  • the controller 100 based on the time-series data reflecting the reaction force received by the suction unit 22A from the electronic component W when the suction unit 22A to receive the electronic component W is displaced, The presence or absence of an abnormality in contact with the electronic component W may be determined.
  • the central axis Ax1 and the central axis Ax2 may be horizontal axes.
  • One of the central axis Ax1 and the central axis Ax2 may be a horizontal axis, and the other may be a vertical axis.
  • the number of component holders 14A included in the rotary transfer unit 10B may be the same as or different from the number of component holders 14 included in the rotary transfer unit 10A.
  • the size of the circular trajectory CR1 may be the same as or different from the size of the circular trajectory CR2.
  • the transport processing section 2B may have one or more other rotating transport units in addition to the rotating transport units 10B and 10C.
  • the electronic component W may be transferred between one of the rotary transfer units 10B and 10C and any other rotary transfer unit, and the load applied to the electronic component W during the transfer may be detected. and determination of presence/absence of abnormal contact.
  • the controller 100 may detect the load and determine the presence or absence of abnormal contact in the transfer between the rotating transfer units different from the above example.
  • the load may be detected and the presence or absence of abnormal contact may be determined.
  • a satellite transports the electronic parts W along a circular orbit (circular orbit) set to intersect the stop positions SP located between the supply and recovery stop positions SP. A table is mentioned.
  • a rotary pickup that delivers (supplies) the electronic component W to the rotary transfer unit 10 at the stop position SP for supply.
  • an electronic component W is transferred between a rotary transfer unit such as the rotary transfer unit 10 and an intermediate processing unit 46 that executes a predetermined process including transfer of the electronic component W to and from the rotary transfer unit, a load is applied. and determination of the presence or absence of abnormal contact may be performed.
  • the electronic component W is transferred in a state in which the suction portion of one unit and the suction portion of the other unit face each other in the vertical direction. may be performed.
  • the operation control unit 112 provides a slight clearance so that the suction unit on the receiving side and the electronic component W do not come into contact with each other.
  • the operation control unit 112 may cause the electronic component W to be transferred by canceling the suction by the suction unit on the delivery side. In this case, contact of the electronic component W with the receiving suction portion before the displacement of one suction portion is completed can also be a cause of abnormal contact.
  • abnormal contact with the electronic component W can be detected with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W.
  • a part of the contents described in the first embodiment and its modification may be applied to the processing apparatus 1B according to the third embodiment.
  • FIG. 16 An electronic component processing apparatus according to a fourth embodiment will be described with reference to FIGS. 16 and 17.
  • FIG. The detection of the load and the determination of the presence or absence of abnormal contact may be performed when the component holding portion 14 (suction portion 22) is displaced without the electronic component W being transferred.
  • the transport processing section 2 of the processing apparatus 1 ⁇ /b>C shown in FIG. 16 has a component inspection unit 90 as one of the intermediate processing units 46 .
  • the component inspection unit 90 is a unit that inspects the electronic component W in an inspection area IA (processing area) including one of the stop positions SP.
  • the component inspection unit 90 is a processing unit that inspects the electrical characteristics of the electronic component W, for example.
  • the component inspection unit 90 includes a stylus 92 .
  • the component inspection unit 90 obtains electrical characteristics by applying a voltage to an electrode included in an electronic component W to be inspected, while the probe 92 is in contact with the electrode.
  • the electrodes included in the electronic component W may be provided on the main surface Wb.
  • FIG. 17 is a flowchart showing a series of control processes executed by the controller 100 of the processing device 1C. While this series of control processes is being executed, the load information acquisition unit 114 obtains the detected value from the load detection unit 50 provided in the elevation drive unit 18 corresponding to the stop position SP where the parts inspection unit 90 is arranged. You can continue to get it. Controller 100 executes step S51 in the same manner as step S11 shown in FIG. Next, the controller 100 executes step S52. In step S ⁇ b>52 , for example, the operation control unit 112 causes the corresponding lift driving unit 18 to start lowering the suction unit 22 holding (sucking) the electronic component W to be inspected.
  • step S53 the controller 100 determines whether the load value obtained from the load detection unit 50 (the load value at each acquisition timing) has reached a predetermined set value.
  • the predetermined set value is set in advance to a value that enables inspection of electrical characteristics by the component inspection unit 90 .
  • step S ⁇ b>54 for example, the operation control section 112 stops the lifting drive section 18 from lowering the suction section 22 sucking the electronic component W to be inspected.
  • the operation control section 112 may control the elevation drive section 18 so that the load value obtained from the load detection section 50 follows a predetermined set value even after the descent is stopped.
  • step S ⁇ b>55 for example, the controller 100 applies a voltage to the electrodes of the electronic component W using the component inspection unit 90 and acquires information indicating electrical characteristics from the stylus 92 .
  • step S56 for example, the load information acquisition unit 114 extracts data of detection values from the start of step S52 to the end of step S55 from the data of detection values continuously acquired by the load detection unit 50. By doing so, the above time-series data is obtained. That is, the load information acquisition unit 114 indicates the time change in the value detected by the load detection unit 50 during the period from the time when the electronic component W to be inspected starts to descend to the time when the acquisition of the information indicating the electrical characteristics ends. Get time series data.
  • step S57 in the same manner as step S17.
  • step S57 when the contact abnormality with respect to the electronic component W to be inspected is detected (step S57: YES), the controller 100 executes steps S58 and S59 in the same manner as steps S18 and S19.
  • the controller 100 may execute steps S58 and S59 even when the information indicating the electrical characteristics indicates an abnormality.
  • the posture of the electronic component W to be inspected sucked by the sucking unit 22A deviates from the standard state, and the electronic component W is different from the normal state. It is conceivable that different reaction forces are received from the stylus 92 .
  • the component inspection unit 90 may be a processing unit that inspects properties other than electrical properties.
  • the component inspection unit 90 may be, for example, a processing unit that inspects optical characteristics by causing the light emitting surface of the electronic component W to emit light.
  • the processing device 1C according to the fourth embodiment it is possible to detect an abnormality in contact with the electronic component W with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W.
  • a part of the contents described in the first embodiment and its modification may be applied to the processing apparatus 1C according to the fourth embodiment.
  • the electronic component processing apparatus may detect a load applied to the electronic component W in each of the plurality of processing areas, and detect abnormal contact with the electronic component W.
  • the electronic component processing apparatus may detect an abnormality in contact with the electronic component W for each processing area using a judgment model constructed by machine learning for each processing area.

Abstract

This electronic component processing device is provided with a conveyance processing unit, a load detection unit, and a controller. The conveyance processing unit is provided with a component retention unit, a supporting unit that supports the component retention unit, a rotation driving unit that rotates the supporting unit, and a displacement driving unit that displaces the component retention unit. The load detection unit detects a load applied to an electronic component. The controller detects contact abnormality with respect to an electronic component.

Description

電子部品の処理装置electronic component processing equipment
 本開示は、電子部品の処理装置に関する。 The present disclosure relates to an electronic component processing apparatus.
 特許文献1には、電子部品を保持する電子部品保持手段を駆動制御するための保持手段駆動装置が開示されている。この保持手段駆動装置は、可動保持部を押し下げる際に操作ロッドに加わる荷重を直接的に検知する荷重センサを有する。 Patent Document 1 discloses a holding means driving device for driving and controlling electronic component holding means for holding electronic components. This holding means driving device has a load sensor that directly detects the load applied to the operating rod when the movable holding portion is pushed down.
日本国特開2009-136950号公報Japanese Patent Application Laid-Open No. 2009-136950
 本開示は、電子部品の信頼性を向上させるのに有用な処理装置を提供する。 The present disclosure provides a processing apparatus useful for improving the reliability of electronic components.
 本開示の一側面に係る電子部品の処理装置は、電子部品を保持するように構成された部品保持部と、電子部品に対して所定の処理を実行するための処理領域を通る円軌道に位置するように部品保持部を支持する支持部と、円軌道の中心軸まわりに支持部を回転させるように構成された回転駆動部と、処理領域において部品保持部を変位させるように構成された変位駆動部とを有する搬送処理部と、処理領域において変位駆動部が部品保持部を変位させた際に、電子部品に加わる荷重を検出するように構成された荷重検出部と、部品保持部を変位させた際の第1タイミングから第2タイミングまでの荷重検出部による検出値の推移に基づいて、電子部品に対する接触の異常を検知するように構成されたコントローラと、を備える。 An electronic component processing apparatus according to one aspect of the present disclosure includes a component holding unit configured to hold an electronic component, and a circular orbit passing through a processing area for performing a predetermined process on the electronic component. a rotation drive configured to rotate the support about the central axis of the circular orbit; and a displacement configured to displace the component holder in the processing area. a load detection unit configured to detect a load applied to the electronic component when the displacement drive unit displaces the component holding unit in the processing area; and a displacement of the component holding unit. a controller configured to detect an abnormality in contact with the electronic component based on transition of a detection value by the load detection unit from a first timing to a second timing when the electronic component is moved.
 本開示によれば、電子部品の信頼性を向上させるのに有用な処理装置が提供される。 According to the present disclosure, a processing device useful for improving the reliability of electronic components is provided.
図1は、第1実施形態に係る電子部品の処理装置の一例を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an example of an electronic component processing apparatus according to a first embodiment. 図2は、電子部品の処理装置の一例を模式的に示す側面図である。FIG. 2 is a side view schematically showing an example of an electronic component processing apparatus. 図3は、コントローラの機能構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the functional configuration of the controller. 図4は、荷重検出部による検出結果の一例を示すグラフである。FIG. 4 is a graph showing an example of detection results by the load detection unit. 図5は、コントローラのハードウェア構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the hardware configuration of the controller. 図6は、コントローラが実行する一連の制御処理の一例を示すフローチャートである。FIG. 6 is a flow chart showing an example of a series of control processes executed by the controller. 図7(a)~図7(d)は、キャリアテープへの回収処理の様子を例示する模式図である。FIGS. 7(a) to 7(d) are schematic diagrams exemplifying how recovery processing is performed on a carrier tape. 図8(a)~図8(d)は、電子部品に対する異常接触が生じた場合の回収処理の様子を例示する模式図である。FIGS. 8(a) to 8(d) are schematic diagrams exemplifying recovery processing when abnormal contact occurs with an electronic component. 図9は、電子部品の処理装置の一例を模式的に示す側面図である。FIG. 9 is a side view schematically showing an example of an electronic component processing apparatus. 図10は、コントローラが実行する一連の制御処理の一例を示すフローチャートである。FIG. 10 is a flow chart showing an example of a series of control processes executed by the controller. 図11(a)~図11(c)は、キャリアテープからの供給処理の様子を例示する模式図である。FIGS. 11(a) to 11(c) are schematic diagrams exemplifying the state of supply processing from the carrier tape. 図12は、第2実施形態に係る電子部品の処理装置の一例を模式的に示す平面図である。FIG. 12 is a plan view schematically showing an example of an electronic component processing apparatus according to the second embodiment. 図13は、電子部品の処理装置の一例を模式的に示す側面図である。FIG. 13 is a side view schematically showing an example of an electronic component processing apparatus. 図14は、第3実施形態に係る電子部品の処理装置の一例を模式的に示す平面図である。FIG. 14 is a plan view schematically showing an example of an electronic component processing apparatus according to the third embodiment. 図15は、電子部品の処理装置の一例を模式的に示す側面図である。FIG. 15 is a side view schematically showing an example of an electronic component processing apparatus. 図16は、第4実施形態に係る電子部品の処理装置の一例を模式的に示す平面図である。FIG. 16 is a plan view schematically showing an example of an electronic component processing apparatus according to the fourth embodiment. 図17は、コントローラが実行する一連の制御処理の一例を示すフローチャートである。FIG. 17 is a flow chart showing an example of a series of control processes executed by the controller.
 以下、図面を参照していくつかの実施形態について説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。図面には必要に応じてXYZ直交座標系が示される。例えば、X軸及びY軸が水平方向であり、Z軸が鉛直方向である。 Several embodiments will be described below with reference to the drawings. In the explanation, the same reference numerals are given to the same elements or elements having the same function, and duplicate explanations are omitted. An XYZ orthogonal coordinate system is shown in the drawings as needed. For example, the X and Y axes are horizontal and the Z axis is vertical.
[第1実施形態]
 最初に、図1~図11(c)を参照しながら、第1実施形態に係る電子部品の処理装置について説明する。図1及び図2に示される電子部品の処理装置1は、所謂ダイソータである。処理装置1は、複数の電子部品Wを順に搬送しながら、外観検査、電気特性検査、及びマーキング等の処理を施した上でキャリアテープ及びトレイ等の収容部材に梱包する装置である。処理対象の電子部品Wは、例えば、半導体製造の前工程で形成された後にダイシング等によって個片化された部品である。
[First embodiment]
First, an electronic component processing apparatus according to the first embodiment will be described with reference to FIGS. 1 to 11(c). An electronic component processing apparatus 1 shown in FIGS. 1 and 2 is a so-called die sorter. The processing device 1 is a device that sequentially conveys a plurality of electronic components W, performs processing such as appearance inspection, electrical property inspection, and marking, and then packs them in storage members such as carrier tapes and trays. The electronic component W to be processed is, for example, a component that is separated into individual pieces by dicing or the like after being formed in a pre-process of semiconductor manufacturing.
 図1及び図2に示されるように、処理装置1は、搬送処理部2と、コントローラ100とを備える。搬送処理部2は、回転搬送ユニット10(回転搬送部)と、複数の処理ユニット40とを有する。 As shown in FIGS. 1 and 2, the processing device 1 includes a transport processing section 2 and a controller 100. As shown in FIGS. The transport processing section 2 has a rotary transport unit 10 (rotary transport section) and a plurality of processing units 40 .
(回転搬送ユニット)
 回転搬送ユニット10は、電子部品Wを円軌道CRに沿って搬送する。搬送対象の電子部品Wは、互いに平行な(互いに逆向きの)主面Wa,Wbを有する。回転搬送ユニット10は、例えば、支持部12と、複数の部品保持部14と、回転駆動部16と、複数の昇降駆動部18とを有する。
(rotary transfer unit)
The rotary transfer unit 10 transfers the electronic component W along the circular track CR. The electronic component W to be conveyed has main surfaces Wa and Wb that are parallel to each other (opposite to each other). The rotary transfer unit 10 has, for example, a support section 12 , a plurality of component holding sections 14 , a rotation drive section 16 and a plurality of elevation drive sections 18 .
 支持部12は、複数の部品保持部14を支持する。具体的には、支持部12は、各部品保持部14が所定の円軌道CRに位置するように、複数の部品保持部14を支持する。支持部12は、円軌道CRの中心軸Axまわりに回転可能となるように設けられている。円軌道CRは水平な円軌道であってもよく、中心軸Axは鉛直な軸線であってもよい(鉛直方向に沿って延びていてもよい)。支持部12は、例えば、ターンテーブルである。 The support portion 12 supports a plurality of component holding portions 14. Specifically, the support portion 12 supports the plurality of component holding portions 14 so that each component holding portion 14 is positioned on the predetermined circular orbit CR. The support portion 12 is provided so as to be rotatable around the central axis Ax of the circular orbit CR. The circular orbit CR may be a horizontal circular orbit, and the central axis Ax may be a vertical axis line (may extend along the vertical direction). The support portion 12 is, for example, a turntable.
 複数の部品保持部14は、中心軸Axを中心とする円周に沿って等間隔に配置されており、支持部12に固定されている。複数の部品保持部14それぞれは、電子部品Wを保持するように構成されている。部品保持部14は、いかなる方式で電子部品Wを保持してもよい。電子部品Wを保持する方式の具体例としては、真空吸着、静電気式の吸着、及び把持等が挙げられる。部品保持部14は、支持部12(ターンテーブルの上面)に垂直な方向の一方側から、主面Wa,Wbのいずれかを真空吸着してもよい。 A plurality of component holding portions 14 are arranged at regular intervals along the circumference around the central axis Ax and fixed to the support portion 12 . Each of the component holding portions 14 is configured to hold an electronic component W. As shown in FIG. The component holding section 14 may hold the electronic component W by any method. Specific examples of the method for holding the electronic component W include vacuum adsorption, electrostatic adsorption, gripping, and the like. The component holding section 14 may vacuum-suck one of the main surfaces Wa and Wb from one side in a direction perpendicular to the support section 12 (upper surface of the turntable).
 一例では、部品保持部14は、図2に示されるように、吸着部22と、ホルダ24と、スプリング26とを有する。吸着部22は、電子部品Wの主面Wa,Wbのいずれかを上方から吸着するように構成されている。吸着部22は、例えば、支持部12に対して垂直に延びるように形成された吸着ロッドであり、その下端部において電子部品Wを吸着する。ホルダ24は、支持部12の外周部に固定され、吸着部22を昇降可能に保持する。 In one example, the component holding section 14 has a suction section 22, a holder 24, and a spring 26, as shown in FIG. The suction portion 22 is configured to suction one of the main surfaces Wa, Wb of the electronic component W from above. The suction part 22 is, for example, a suction rod formed to extend perpendicularly to the support part 12, and sucks the electronic component W at its lower end. The holder 24 is fixed to the outer peripheral portion of the support portion 12 and holds the suction portion 22 so that it can move up and down.
 スプリング26は、その弾力により、吸着部22の下降に抗する。スプリング26は、吸着部22の上端部に下向きの外力が付与された場合に吸着部22の下降に応じて弾性変形し、下向きの外力がなくなると弾性復帰して吸着部22を下降前の高さに押し戻す。部品保持部14は、コントローラ100からの動作指示に応じて、吸着部22による真空吸着のオン及びオフを切り替えるためのバルブを有してもよい。バルブの具体例としては、電磁バルブ等が挙げられる。 The spring 26 resists the descent of the adsorption part 22 by its elasticity. The spring 26 is elastically deformed in accordance with the descent of the adsorption section 22 when a downward external force is applied to the upper end of the adsorption section 22, and elastically returns when the downward external force is removed to move the adsorption section 22 to the height before it was lowered. push back. The component holding section 14 may have a valve for switching between on and off of the vacuum suction by the suction section 22 according to an operation instruction from the controller 100 . A specific example of the valve is an electromagnetic valve.
 回転駆動部16は、円軌道CRの中心軸Axまわりに支持部12を回転させるように構成されている。回転駆動部16は、例えば、電動モータ等の動力源を用いて、ギヤを介さないダイレクトドライブによって中心軸Axまわりに支持部12を回転させる。これにより、中心軸Axを中心とする水平な円軌道CRに沿って複数の部品保持部14が移動する。その結果、部品保持部14によって保持されている電子部品Wが、円軌道CRに沿って搬送される。回転駆動部16は、隣り合う部品保持部14同士の角度ピッチ(中心軸Axまわりの角度ピッチ)にて、支持部12の回転と停止とを繰り返すように制御される。以下、回転駆動部16が支持部12を停止させる際に複数の部品保持部14(より詳細には、複数の吸着部22)それぞれが配置される複数の位置を「複数の停止位置SP」という。 The rotation drive section 16 is configured to rotate the support section 12 around the central axis Ax of the circular orbit CR. The rotary drive unit 16 uses a power source such as an electric motor to rotate the support unit 12 around the central axis Ax by direct drive without gears. As a result, the plurality of component holders 14 move along the horizontal circular orbit CR centered on the central axis Ax. As a result, the electronic component W held by the component holding section 14 is conveyed along the circular track CR. The rotary drive section 16 is controlled to repeat rotation and stop of the support section 12 at the angular pitch (angular pitch around the central axis Ax) between the adjacent component holding sections 14 . Hereinafter, the plurality of positions at which the plurality of component holding portions 14 (more specifically, the plurality of suction portions 22) are arranged when the rotation driving portion 16 stops the support portion 12 will be referred to as “a plurality of stop positions SP”. .
 複数の昇降駆動部18は、複数の部品保持部14を個別に変位させるように構成されている。なお、図1では、昇降駆動部18の図示は省略されており、図2では複数の昇降駆動部18のうちの1つの昇降駆動部18が示されている。昇降駆動部18(変位駆動部)は、停止位置SPに配置された電子部品Wを保持する部品保持部14に外力を加えることで、その部品保持部14を支持部12に垂直な方向の一方側に移動させる。昇降駆動部18は、例えば、鉛直方向において部品保持部14を下方に移動させる。 The plurality of lifting drive units 18 are configured to displace the plurality of component holding units 14 individually. 1, illustration of the elevation driving section 18 is omitted, and FIG. 2 shows one elevation driving section 18 out of the plurality of elevation driving sections 18. As shown in FIG. The elevation driving unit 18 (displacement driving unit) applies an external force to the component holding unit 14 that holds the electronic component W placed at the stop position SP, thereby moving the component holding unit 14 in one direction perpendicular to the support unit 12 . move it to the side. The elevation driving unit 18 moves the component holding unit 14 downward, for example, in the vertical direction.
 複数の昇降駆動部18は、複数の停止位置SPにそれぞれ対応するように設けられてもよい。部品保持部14を変位させる必要がない停止位置SPには、昇降駆動部18が設けられていなくてもよい。昇降駆動部18は、対応する停止位置SP又はその近傍に配置されている。昇降駆動部18は、対応する停止位置SPに配置されている部品保持部14の上方に位置する。昇降駆動部18は、対応する停止位置SPに順次配置されてくる部品保持部14を下方に移動させる。 A plurality of elevation drive units 18 may be provided so as to respectively correspond to a plurality of stop positions SP. The lifting drive section 18 may not be provided at the stop position SP where the component holding section 14 does not need to be displaced. The up-and-down drive part 18 is arrange|positioned in the corresponding stop position SP or its vicinity. The elevation driving section 18 is positioned above the component holding section 14 arranged at the corresponding stop position SP. The up-and-down drive unit 18 moves downward the component holding units 14 that are successively arranged at the corresponding stop positions SP.
 搬送処理部2は、複数の昇降駆動部18を固定する(保持する)固定部38を有してもよい。固定部38は、例えば、支持部12の上方に配置されている板状の部材である。固定部38は、支持部12と共に回転しないように設けられている。そのため、支持部12が回転しても、複数の昇降駆動部18は移動しない。昇降駆動部18は、例えば、ホルダ32と、操作ロッド34と、モータ36とを有する。 The transport processing section 2 may have a fixing section 38 that fixes (holds) the plurality of elevation drive sections 18 . The fixed portion 38 is, for example, a plate-like member arranged above the support portion 12 . The fixed portion 38 is provided so as not to rotate together with the support portion 12 . Therefore, even if the support portion 12 rotates, the plurality of elevation driving portions 18 do not move. The elevation drive unit 18 has, for example, a holder 32, an operating rod 34, and a motor 36. As shown in FIG.
 ホルダ32は、停止位置SPの近傍において固定部38の外周部に固定されている。操作ロッド34は、ホルダ32(固定部38)に対して移動可能となるようにホルダ32に設けられている。操作ロッド34は、例えば、鉛直方向に沿って延びており、鉛直方向に沿って移動可能となるようにホルダ32に保持されている。操作ロッド34は、部品保持部14が停止位置SPに位置する場合に、その部品保持部14の吸着部22の鉛直上方に位置してもよい。モータ36は、駆動源として機能し、操作ロッド34を下方に移動させる。操作ロッド34を下方に移動させる際に、モータ36の一部が操作ロッド34に接触してもよい。モータ36は、例えば、サーボモータである。 The holder 32 is fixed to the outer peripheral portion of the fixed portion 38 in the vicinity of the stop position SP. The operating rod 34 is provided on the holder 32 so as to be movable with respect to the holder 32 (fixed portion 38). The operating rod 34 extends, for example, in the vertical direction and is held by the holder 32 so as to be movable in the vertical direction. The operating rod 34 may be positioned vertically above the suction portion 22 of the component holding portion 14 when the component holding portion 14 is positioned at the stop position SP. The motor 36 functions as a drive source and moves the operating rod 34 downward. A portion of the motor 36 may contact the operating rod 34 when moving the operating rod 34 downward. Motor 36 is, for example, a servo motor.
 一例では、モータ36によって操作ロッド34が下降すると、操作ロッド34の下端部が吸着部22の上端部に接触する。操作ロッド34が吸着部22に接触した状態で、操作ロッド34が更に下降すると、吸着部22が変位する(下方に移動する)。モータ36によって操作ロッド34が上昇すると、操作ロッド34が吸着部22に対して下向きの力を付与した状態が解除され、スプリング26の反力によって、吸着部22が変位する前の高さに戻る。 In one example, when the operating rod 34 is lowered by the motor 36 , the lower end of the operating rod 34 contacts the upper end of the adsorption section 22 . When the operation rod 34 is in contact with the adsorption portion 22 and the operation rod 34 is further lowered, the adsorption portion 22 is displaced (moves downward). When the operating rod 34 is lifted by the motor 36, the downward force exerted by the operating rod 34 on the attracting portion 22 is released, and the reaction force of the spring 26 causes the attracting portion 22 to return to the height before it was displaced. .
(処理ユニット)
 複数の処理ユニット40は、いくつかの停止位置SPにそれぞれ対応するように設けられている。図1に示される例とは異なり、全ての停止位置SPそれぞれに処理ユニット40が設けられてもよい。処理ユニット40は、対応する停止位置SPを含む処理領域PAにおいて、電子部品Wに対して予め定められた処理を施すように構成されている。処理領域PAは、電子部品Wに対して所定の処理を実行するための領域であり、円軌道CR上に位置している。すなわち、円軌道CRは、処理領域PAを通る。処理領域PAが設定される停止位置SPには、上記昇降駆動部18が配置されている。
(processing unit)
A plurality of processing units 40 are provided so as to correspond to some stop positions SP, respectively. Unlike the example shown in FIG. 1, a processing unit 40 may be provided at each stop position SP. The processing unit 40 is configured to perform predetermined processing on the electronic component W in the processing area PA including the corresponding stop position SP. The processing area PA is an area for performing predetermined processing on the electronic component W, and is positioned on the circular orbit CR. That is, the circular orbit CR passes through the processing area PA. The lifting drive section 18 is arranged at the stop position SP where the processing area PA is set.
 本開示において、電子部品Wに対して行う「処理」は、電子部品Wの状態を変化させるあらゆる行為を含む。例えば、電子部品Wにマーキング等を施すこと、電子部品Wを部品保持部14に保持させること(引き渡すこと)、及び部品保持部14から電子部品Wを回収すること(受け取ること)は、「処理」に該当する。また、電子部品Wに対する何らかの検査を実行することも、検査データが未知の状態を検査データが既知の状態に変化させるので「処理」に該当する。複数の処理ユニット40は、例えば、部品供給ユニット42と、部品回収ユニット44と、1又は複数の中間処理ユニット46とを含む。 In the present disclosure, "processing" performed on the electronic component W includes any action that changes the state of the electronic component W. For example, marking the electronic component W, causing the electronic component W to be held by the component holding unit 14 (handing over), and recovering the electronic component W from the component holding unit 14 (receiving) are referred to as “processing ”. Further, executing some kind of inspection on the electronic component W also corresponds to "processing" because it changes a state in which the inspection data is unknown to a state in which the inspection data is known. The multiple processing units 40 include, for example, a component supply unit 42 , a component recovery unit 44 , and one or more intermediate processing units 46 .
 部品供給ユニット42は、回転搬送ユニット10に対して電子部品Wを供給するユニットである。部品供給ユニット42は、いずれかの停止位置SPに配置されている。一例では、部品供給ユニット42は、複数の電子部品Wを収容した状態のキャリアテープ60を、対応する停止位置SPまで搬送する。部品供給ユニット42が搬送するキャリアテープ60は、複数の電子部品Wをそれぞれ収容した複数の収容部62を有する。部品供給ユニット42は、対応する停止位置SPを含む処理領域PAに、各収容部62(各収容部62に収容された電子部品W)を順に配置するようにキャリアテープ60を搬送する。 The component supply unit 42 is a unit that supplies electronic components W to the rotary transfer unit 10 . The component supply unit 42 is arranged at one of the stop positions SP. In one example, the component supply unit 42 conveys the carrier tape 60 containing a plurality of electronic components W to the corresponding stop position SP. A carrier tape 60 conveyed by the component supply unit 42 has a plurality of storage portions 62 each storing a plurality of electronic components W therein. The component supply unit 42 conveys the carrier tape 60 so that the storage portions 62 (the electronic components W stored in the storage portions 62) are arranged in order in the processing area PA including the corresponding stop position SP.
 処理領域PA(電子部品Wを供給するための領域)に電子部品Wを収容した収容部62が配置された状態で、対応する停止位置SPに移動した部品保持部14が、昇降駆動部18により変位されつつ、当該収容部62内の電子部品Wを受け取る。これにより、部品供給ユニット42から回転搬送ユニット10に電子部品Wが供給される。以下、部品供給ユニット42が電子部品Wを供給する停止位置SPを「供給用の停止位置SP」と称する。また、供給用の停止位置SPを含む処理領域PAを「供給領域SA」と表記する。 The component holder 14 moved to the corresponding stop position SP in a state where the container 62 containing the electronic component W is arranged in the processing area PA (area for supplying the electronic component W) is moved by the up-and-down drive unit 18 While being displaced, it receives the electronic component W inside the accommodating portion 62 . As a result, the electronic component W is supplied from the component supply unit 42 to the rotary transfer unit 10 . Hereinafter, the stop position SP where the component supply unit 42 supplies the electronic component W will be referred to as a "supply stop position SP". Also, the processing area PA including the supply stop position SP is referred to as "supply area SA".
 部品回収ユニット44は、回転搬送ユニット10から電子部品Wを回収するユニットである。部品回収ユニット44は、いずれかの停止位置SPに配置されている。一例では、部品回収ユニット44は、複数の電子部品Wを収容することが可能なキャリアテープ60(収容部62が空の状態のキャリアテープ60)を、対応する停止位置SPまで搬送する。部品回収ユニット44は、対応する停止位置SPを含む処理領域PAに、電子部品Wが収容されていない状態の各収容部62を順に配置するようにキャリアテープ60を搬送する。キャリアテープ60は、樹脂製であり、フィルム状(シート状)に形成されている。 The component recovery unit 44 is a unit that recovers the electronic components W from the rotary transfer unit 10 . The component recovery unit 44 is arranged at one of the stop positions SP. In one example, the component recovery unit 44 conveys the carrier tape 60 capable of accommodating a plurality of electronic components W (the carrier tape 60 with an empty storage portion 62) to the corresponding stop position SP. The component recovery unit 44 conveys the carrier tape 60 so that the storage portions 62 in which the electronic components W are not stored are arranged in order in the processing area PA including the corresponding stop position SP. The carrier tape 60 is made of resin and formed in a film shape (sheet shape).
 処理領域PA(電子部品Wを回収するための領域)に電子部品Wが収容されていない収容部62が配置された状態で、対応する停止位置SPに移動した部品保持部14が、昇降駆動部18により変位されつつ、当該収容部62内に電子部品Wを引き渡す。これにより、回転搬送ユニット10から部品回収ユニット44に電子部品Wが回収される。以下、部品回収ユニット44が電子部品Wを回収する停止位置SPを「回収用の停止位置SP」と称する。また、回収用の停止位置SPを含む処理領域PAを「回収領域RA」と表記する。円軌道CRにおいて供給用の停止位置SP側を「上流側」といい、回収用の停止位置SP側を「下流側」という。電子部品Wは、円軌道CRにおいて上流側から下流側に搬送される。 The component holder 14 moved to the corresponding stop position SP in a state where the container 62 not containing the electronic component W is arranged in the processing area PA (area for collecting the electronic component W) is moved to the up-and-down drive unit. 18, the electronic component W is transferred into the accommodating portion 62. As shown in FIG. As a result, the electronic component W is recovered from the rotary transfer unit 10 to the component recovery unit 44 . Hereinafter, the stop position SP at which the component recovery unit 44 recovers the electronic component W will be referred to as a "collection stop position SP". Also, the processing area PA including the stop position SP for recovery is referred to as a "collection area RA". In the circular orbit CR, the supply stop position SP side is called the "upstream side", and the recovery stop position SP side is called the "downstream side". The electronic component W is conveyed from the upstream side to the downstream side on the circular track CR.
 中間処理ユニット46は、供給用及び回収用の停止位置SP以外のいずれかの停止位置SPにおいて、電子部品Wに対して所定の処理を施すユニットである。中間処理ユニット46による処理の具体例としては、電気特性検査、光学特性検査、外観検査、姿勢又は位置の補正、及びマーキング(レーザマーキング)等が挙げられる。 The intermediate processing unit 46 is a unit that performs predetermined processing on the electronic component W at any stop position SP other than the stop positions SP for supply and recovery. Specific examples of processing by the intermediate processing unit 46 include electrical property inspection, optical property inspection, appearance inspection, posture or position correction, and marking (laser marking).
(荷重検出部)
 図2に示されるように、処理装置1は、荷重検出部50を備える。荷重検出部50は、処理領域PAにおいて昇降駆動部18が部品保持部14を変位させた際に、電子部品Wに加わる荷重を検出するように構成されている。荷重検出部50は、例えば、処理領域PAにおいて昇降駆動部18が部品保持部14を下降させた際に、その処理領域PAにおいて処理が行われる電子部品Wに加わる荷重を検出する。荷重検出部50は、いかなる方式で荷重を検出するセンサであってもよい。荷重検出部50は、ひずみゲージ等の電気抵抗値の変化を検出する力学的センサであってもよく、ロードセルであってもよい。
(Load detector)
As shown in FIG. 2 , the processing device 1 has a load detection section 50 . The load detection unit 50 is configured to detect the load applied to the electronic component W when the elevation drive unit 18 displaces the component holding unit 14 in the processing area PA. The load detection unit 50 detects the load applied to the electronic component W processed in the processing area PA, for example, when the elevation driving unit 18 lowers the component holding unit 14 in the processing area PA. The load detection unit 50 may be a sensor that detects load by any method. The load detection unit 50 may be a mechanical sensor such as a strain gauge that detects changes in electrical resistance, or may be a load cell.
 荷重検出部50は、昇降駆動部18に加わる荷重を検出するように昇降駆動部18に設けられてもよい。荷重検出部50は、例えば、昇降駆動部18の操作ロッド34に加わる荷重を検出するように、操作ロッド34に設けられる。電子部品Wに対して所定の処理を行うために操作ロッド34によって部品保持部14を変位させた際に、操作ロッド34に加わる荷重には、例えば、モータ36から受ける力と、部品保持部14からの反力(スプリング26の反力)とが含まれる。また、部品保持部14を変位させた際に、処理対象の電子部品Wに加わる荷重は、操作ロッド34に加わる荷重に反映される。荷重検出部50は、検出結果をコントローラ100に出力する。複数の処理領域PAのそれぞれに複数の昇降駆動部18が配置される場合、複数の昇降駆動部18に複数の荷重検出部50がそれぞれ対応して設けられてもよい。 The load detection section 50 may be provided in the elevation drive section 18 so as to detect the load applied to the elevation drive section 18 . The load detection unit 50 is provided on the operating rod 34 so as to detect the load applied to the operating rod 34 of the elevation driving unit 18, for example. When the component holding portion 14 is displaced by the operating rod 34 in order to perform a predetermined process on the electronic component W, the load applied to the operating rod 34 includes, for example, the force received from the motor 36 and the force received from the component holding portion 14 . (the reaction force of the spring 26). Further, the load applied to the electronic component W to be processed when the component holding portion 14 is displaced is reflected in the load applied to the operating rod 34 . The load detection unit 50 outputs detection results to the controller 100 . When a plurality of lifting drive units 18 are arranged in each of the plurality of processing areas PA, a plurality of load detection units 50 may be provided corresponding to the plurality of lifting drive units 18, respectively.
 以下では、回転搬送ユニット10から部品回収ユニット44に電子部品Wが回収される回収領域RAにおいて、部品保持部14を変位させる際に、電子部品Wに加わる荷重を検出する場合を例示する。回収領域RAの上方に位置する昇降駆動部18に設けられている荷重検出部50は、電子部品Wを保持した部品保持部14の吸着部22を下降させて、キャリアテープ60の収容部62に電子部品Wを引き渡す際に、その電子部品Wが受ける荷重を検出する。 In the following, a case of detecting the load applied to the electronic component W when displacing the component holding portion 14 in the recovery area RA where the electronic component W is recovered from the rotary transfer unit 10 to the component recovery unit 44 will be exemplified. The load detection unit 50 provided in the lifting drive unit 18 located above the recovery area RA lowers the suction unit 22 of the component holding unit 14 holding the electronic component W to the holding unit 62 of the carrier tape 60 . When the electronic component W is handed over, the load received by the electronic component W is detected.
 一例では、電子部品Wの吸着を解除するまで、キャリアテープ60に電子部品Wが接触しないように、電子部品Wを吸着した吸着部22が昇降駆動部18によって下降する。しかしながら、何らかの原因によって、キャリアテープ60の収容部62に電子部品Wを引き渡す際に、吸着部22によって吸着されている電子部品Wがキャリアテープ60に接触してしまう場合がある。このときに電子部品Wが受ける荷重は、キャリアテープ60からその電子部品Wに加わる外力(反力)を含む。 In one example, the suction unit 22 sucking the electronic component W is lowered by the lifting drive unit 18 so that the electronic component W does not come into contact with the carrier tape 60 until the suction of the electronic component W is released. However, for some reason, when the electronic component W is delivered to the housing portion 62 of the carrier tape 60 , the electronic component W attracted by the suction portion 22 may come into contact with the carrier tape 60 . The load that the electronic component W receives at this time includes the external force (reaction force) applied to the electronic component W from the carrier tape 60 .
 吸着部22によって吸着されている電子部品Wがキャリアテープ60に接触した場合に、その電子部品Wが受ける荷重が、昇降駆動部18の操作ロッド34に加わる。そのため、操作ロッド34に設けられた荷重検出部50は、キャリアテープ60に接触した場合に電子部品Wが受ける荷重を検出可能である。なお、本開示において、電子部品Wが受ける荷重を検出することは、電子部品Wがキャリアテープ60に接触した場合だけでなく、電子部品Wがキャリアテープ60に接触していない状態で電子部品Wが受ける荷重を検出すること(すなわち、電子部品Wが受ける荷重がゼロであると検出すること)を含む。 When the electronic component W adsorbed by the adsorption section 22 contacts the carrier tape 60 , the load received by the electronic component W is applied to the operating rod 34 of the elevation drive section 18 . Therefore, the load detection portion 50 provided on the operating rod 34 can detect the load that the electronic component W receives when it comes into contact with the carrier tape 60 . In the present disclosure, the detection of the load received by the electronic component W is performed not only when the electronic component W is in contact with the carrier tape 60 but also when the electronic component W is not in contact with the carrier tape 60 . (that is, detecting that the load received by the electronic component W is zero).
(コントローラ)
 処理装置1は、コントローラ100に接続された入出力デバイス102を備えてもよい(図1参照)。入出力デバイス102は、作業者等のユーザからの指示を示すユーザ指示をコントローラ100に入力すると共に、コントローラ100からの情報を作業者等に出力するための装置である。入出力デバイス102は、入力デバイスとして、キーボード、操作パネル、又はマウスを含んでいてもよく、出力デバイスとして、モニタ(例えば液晶ディスプレイ)を含んでいてもよい。入出力デバイス102は、入力デバイス及び出力デバイスが一体化されたタッチパネルであってもよい。コントローラ100及び入出力デバイス102が一体化されていてもよい。
(controller)
The processing device 1 may comprise an input/output device 102 connected to the controller 100 (see FIG. 1). The input/output device 102 is a device for inputting a user instruction indicating an instruction from a user such as a worker to the controller 100 and for outputting information from the controller 100 to the worker or the like. The input/output device 102 may include a keyboard, operation panel, or mouse as an input device, and may include a monitor (for example, a liquid crystal display) as an output device. The input/output device 102 may be a touch panel in which an input device and an output device are integrated. Controller 100 and input/output device 102 may be integrated.
 コントローラ100は、1つ又は複数の制御用コンピュータによって構成される。コントローラ100は、複数の電子部品Wに対して所定の処理が順に施されるように、予め定められた制御手順に従って搬送処理部2及び荷重検出部50を制御する。コントローラ100は、機能上の構成(以下、「機能モジュール」という。)として、例えば、動作制御部112と、荷重情報取得部114と、異常判定部116と、モデル記憶部118と、報知部122とを有する。これらの機能モジュールが実行する処理は、コントローラ100が実行する処理に相当する。以下、コントローラ100又は各機能モジュールが実行する処理を、搬送処理部2での電子部品Wに対する処理と区別するために「制御処理」と称する。 The controller 100 is composed of one or more control computers. The controller 100 controls the transport processing section 2 and the load detection section 50 according to a predetermined control procedure so that a plurality of electronic components W are sequentially subjected to predetermined processing. The controller 100 includes, for example, an operation control unit 112, a load information acquisition unit 114, an abnormality determination unit 116, a model storage unit 118, and a notification unit 122 as a functional configuration (hereinafter referred to as "function modules"). and Processing executed by these functional modules corresponds to processing executed by the controller 100 . Hereinafter, the processing executed by the controller 100 or each functional module will be referred to as “control processing” to distinguish it from the processing for the electronic component W in the transport processing section 2 .
 動作制御部112は、複数の電子部品Wそれぞれを円軌道CRに沿って搬送しながら、いくつかの停止位置SPにおいて電子部品Wに対して対応する処理を行うように搬送処理部2を制御するように構成されている。動作制御部112は、各処理領域PAにおいて複数の電子部品Wに対して、その処理領域PAにおける処理を順に行うように(繰り返し実行されるように)搬送処理部2を制御する。動作制御部112は、電子部品Wに対する接触の異常を検知した場合に、その電子部品Wを排出するための制御処理を搬送処理部2に実行させてもよい。動作制御部112は、例えば、搬送処理部2による動作を停止させる。この場合、動作制御部112は、各処理領域PAにおける複数の電子部品Wに対して継続して行う所定の処理を中断するように搬送処理部2を制御してもよい。 The operation control unit 112 controls the transport processing unit 2 so as to perform corresponding processing on the electronic components W at several stop positions SP while transporting each of the plurality of electronic components W along the circular track CR. is configured as The operation control unit 112 controls the transport processing unit 2 so as to sequentially perform (repeatedly perform) the processing in each processing area PA for the plurality of electronic components W in the processing area PA. The operation control unit 112 may cause the transport processing unit 2 to execute control processing for ejecting the electronic component W when an abnormality in contact with the electronic component W is detected. The operation control unit 112 stops the operation of the transport processing unit 2, for example. In this case, the operation control unit 112 may control the transport processing unit 2 so as to interrupt the predetermined processing that is continuously performed on the plurality of electronic components W in each processing area PA.
 動作制御部112は、複数の部品保持部14それぞれが複数の停止位置SPに順次配置されるように、回転駆動部16により支持部12を間欠的に回転させる。間欠的に回転とは、支持部12の回転と停止とを交互に繰り返すことを意味する。動作制御部112は、円軌道CR上において隣り合う部品保持部14同士の角度ピッチと同じピッチで、回転駆動部16により支持部12を間欠的に回転させる。これにより、各停止位置SPには、いずれか1つの部品保持部14(いずれか1つの吸着部22)が順に配置される。 The motion control section 112 intermittently rotates the support section 12 by the rotation drive section 16 so that the plurality of component holding sections 14 are sequentially arranged at the plurality of stop positions SP. Intermittently rotating means that the supporting portion 12 alternately rotates and stops. The motion control section 112 intermittently rotates the support section 12 by the rotation driving section 16 at the same angular pitch as the adjacent component holding sections 14 on the circular orbit CR. As a result, one of the component holding portions 14 (one of the suction portions 22) is arranged in order at each stop position SP.
 動作制御部112は、回収用の停止位置SPを含む回収領域RAにおいて、回転搬送ユニット10から部品回収ユニット44に電子部品Wが回収されるように、昇降駆動部18、部品保持部14、及び部品回収ユニット44を制御する。動作制御部112は、キャリアテープ60の空の各収容部62が、回収領域RAに順に配置されるように、部品回収ユニット44によりキャリアテープ60をピッチ搬送させる。ピッチ搬送とは、キャリアテープ60において隣り合う収容部62同士のピッチと同じピッチ分だけキャリアテープ60を移動させることを意味する。 The operation control unit 112 controls the elevation driving unit 18, the component holding unit 14, and the electronic components W so that the electronic components W are recovered from the rotary transfer unit 10 to the component recovery unit 44 in the recovery area RA including the stop position SP for recovery. It controls the parts recovery unit 44 . The operation control unit 112 causes the component recovery unit 44 to pitch-convey the carrier tape 60 so that the empty storage portions 62 of the carrier tape 60 are sequentially arranged in the recovery area RA. Pitch transport means that the carrier tape 60 is moved by the same pitch as the pitch between adjacent housing portions 62 in the carrier tape 60 .
 動作制御部112は、回収用の停止位置SPに対応する昇降駆動部18により、部品保持部14の吸着部22を下降させる。動作制御部112は、例えば、吸着部22が保持する電子部品Wの主面Wbが、回収領域RAに位置する収容部62に接触する程度まで吸着部22を下降させる。そして、動作制御部112は、吸着部22による吸着を解除した後に、下降前の高さに吸着部22が戻るように昇降駆動部18を制御する。 The operation control section 112 lowers the suction section 22 of the component holding section 14 by the elevation drive section 18 corresponding to the recovery stop position SP. The operation control unit 112 lowers the suction unit 22, for example, to such an extent that the main surface Wb of the electronic component W held by the suction unit 22 comes into contact with the storage unit 62 located in the recovery area RA. Then, the operation control unit 112 controls the elevation driving unit 18 so that the suction unit 22 returns to the height before the descent after releasing the suction by the suction unit 22 .
 荷重情報取得部114は、処理領域PA(回収領域RA)において昇降駆動部18により部品保持部14を変位させた際に、荷重検出部50による検出値を取得するように構成されている。荷重情報取得部114は、例えば、回収用の停止位置SPに配置された部品保持部14の吸着部22を、昇降駆動部18により下降させた際に、その昇降駆動部18に設けられた荷重検出部50による検出値を取得する。 The load information acquisition unit 114 is configured to acquire a value detected by the load detection unit 50 when the component holding unit 14 is displaced by the elevation drive unit 18 in the processing area PA (recovery area RA). For example, the load information acquisition unit 114 detects the load applied to the lifting drive unit 18 when the suction unit 22 of the component holding unit 14 placed at the stop position SP for collection is lowered by the lifting drive unit 18 . A value detected by the detection unit 50 is acquired.
 荷重情報取得部114は、昇降駆動部18により部品保持部14を変位させている期間を含む任意の期間において、荷重検出部50による検出値を継続して取得してもよい。この場合、荷重情報取得部114は、荷重検出部50による検出値の時間変化を示すデータを取得する。以下、昇降駆動部18により部品保持部14を変位させている期間を含む任意の期間において、荷重検出部50から取得される検出値の時間変化を示すデータを「時系列データ」と称する。一例では、荷重情報取得部114は、部品保持部14の変位を開始する時点から、部品保持部14が元の高さに戻った時点までの期間における荷重の時間変化を示す時系列データを取得する。 The load information acquisition section 114 may continuously acquire the detection value by the load detection section 50 during any period including the period during which the lifting drive section 18 displaces the component holding section 14 . In this case, the load information acquisition unit 114 acquires data indicating temporal changes in the values detected by the load detection unit 50 . Hereinafter, data indicating the time change of the detection value obtained from the load detection unit 50 during an arbitrary period including the period during which the component holding unit 14 is displaced by the elevation driving unit 18 will be referred to as "time-series data". In one example, the load information acquisition unit 114 acquires time-series data indicating changes in the load over time from when the component holding unit 14 starts to displace to when the component holding unit 14 returns to its original height. do.
 荷重情報取得部114は、上記任意の期間において、荷重検出部50による検出値を連続して取得してもよい。荷重情報取得部114は、サンプリング周期ごとに荷重検出部50による検出値を(間欠的に)取得してもよい。サンプリング周期は、時系列データにおいて荷重の変化の傾向を把握できるように予め設定されていてもよく、ユーザ指示等により、その都度設定されてもよい。荷重情報取得部114は、処理装置1を稼働している間(複数の電子部品Wの処理を継続している間)、荷重検出部50による検出値の取得を継続してもよい。この場合、荷重情報取得部114は、継続して取得した検出値のデータから、昇降駆動部18により部品保持部14を変位させている期間を含む任意の期間における検出値のデータを抽出することで、上記時系列データを取得してもよい。 The load information acquisition unit 114 may continuously acquire the values detected by the load detection unit 50 during the above arbitrary period. The load information acquisition unit 114 may (intermittently) acquire the value detected by the load detection unit 50 in each sampling cycle. The sampling period may be set in advance so that the tendency of load change can be grasped in the time-series data, or may be set each time according to a user's instruction or the like. The load information acquisition unit 114 may continue acquiring detection values by the load detection unit 50 while the processing device 1 is operating (while the processing of the plurality of electronic components W is continued). In this case, the load information acquisition unit 114 extracts detection value data for an arbitrary period including the period during which the component holding unit 14 is being displaced by the elevation driving unit 18 from the continuously acquired detection value data. , the above time-series data may be acquired.
 異常判定部116は、荷重検出部50による検出値に基づいて、処理領域PAにおける処理対象の電子部品Wに対する接触の異常を検知するように構成されている。具体的には、異常判定部116は、荷重検出部50による検出値に基づいて、電子部品Wに対する接触が異常であるか否かを判定する。電子部品Wに対する接触の異常とは、例えば、電子部品Wへの処理が正常である場合に比べて、電子部品Wが故障し得る程度に何らかの対象物(例えば次の段落で説明するキャリアテープ60)に強く接触することを意味する。 The abnormality determination unit 116 is configured to detect an abnormality in contact with the electronic component W to be processed in the processing area PA based on the value detected by the load detection unit 50 . Specifically, the abnormality determination unit 116 determines whether or not the contact with the electronic component W is abnormal based on the value detected by the load detection unit 50 . The abnormal contact with the electronic component W is, for example, an object (such as the carrier tape 60 described in the next paragraph) that may cause the electronic component W to malfunction compared to the case where the processing of the electronic component W is normal. ) means to make strong contact with
 吸着部22に吸着された電子部品Wが吸着解除前にキャリアテープ60に接触しないように吸着部22を変位させる場合、電子部品Wへの処理が正常であるときに吸着解除前に電子部品Wが受ける荷重はゼロに略等しい。この場合、電子部品Wが吸着解除前にキャリアテープ60に接触すること自体が、電子部品Wに対する接触の異常となる。キャリアテープ60に電子部品Wが異常に接触する場合の例として、吸着部22を下降させた際に収容部62の開口縁及びその近傍(キャリアテープ60のうちの収容部62が設けられていないベース部分)に電子部品Wが接触する場合が挙げられる。収容部62の開口縁は、収容部62内の側面とベース部分との境界部分である。 When the suction unit 22 is displaced so that the electronic component W sucked by the suction unit 22 does not come into contact with the carrier tape 60 before the suction release, the electronic component W is displaced before the suction release when the processing of the electronic component W is normal. The load experienced by is approximately equal to zero. In this case, the fact that the electronic component W contacts the carrier tape 60 before the suction release itself is an abnormal contact with the electronic component W. FIG. As an example of a case where the electronic component W contacts the carrier tape 60 abnormally, when the suction unit 22 is lowered, the opening edge of the accommodation portion 62 and its vicinity (the accommodation portion 62 of the carrier tape 60 is not provided). The base portion) may be in contact with the electronic component W. The opening edge of the housing portion 62 is a boundary portion between the side surface inside the housing portion 62 and the base portion.
 異常判定部116は、部品保持部14の吸着部22を変位させた際の第1タイミングから第2タイミングまでの荷重検出部50による検出値の推移に基づいて、電子部品Wに対する接触の異常を検知する。第2タイミングは、第1タイミングと異なるタイミングである。第1タイミング及び第2タイミングは、それらのタイミング間での荷重検出部50による検出値の推移において、吸着部22が変位した際の電子部品Wに対する異常接触に起因して電子部品Wに加わる荷重の変化が表れるタイミングである。 The abnormality determination unit 116 detects an abnormality in the contact with the electronic component W based on the transition of the detection value by the load detection unit 50 from the first timing to the second timing when the suction unit 22 of the component holding unit 14 is displaced. detect. The second timing is timing different from the first timing. At the first timing and the second timing, the load applied to the electronic component W due to abnormal contact with the electronic component W when the suction unit 22 is displaced in transition of the detection value by the load detection unit 50 between these timings. This is the timing when changes in
 第1タイミングは、例えば、昇降駆動部18による吸着部22の変位を開始した時点から、吸着部22が吸着している電子部品Wが他の部材(例えば、キャリアテープ60)に接触し得る時点までの間のいずれかのタイミングである。一例では、第1タイミングは、昇降駆動部18によって吸着部22の下降が実際に開始された時点から、吸着部22が吸着している電子部品Wの主面Wb(下方を向く主面)の高さ位置がキャリアテープ60のベース部分に到達する時点までの間のいずれかのタイミングである。第2タイミングは、例えば、吸着部22が吸着した電子部品Wが他の部材に接触し得る時点から、電子部品Wの吸着を解除後に吸着部22が変位前の位置に戻るまでの間のいずれかのタイミングである。一例では、第2タイミングは、吸着部22が吸着した電子部品Wの主面Wbの高さ位置がキャリアテープ60のベース部分に到達した時点から、電子部品Wの吸着を解除する時点までの間のいずれかのタイミングである。 The first timing is, for example, from the time when the lifting drive unit 18 starts displacing the suction unit 22 to the time when the electronic component W that the suction unit 22 is sucking can come into contact with another member (eg, the carrier tape 60). Any timing between In one example, the first timing is the main surface Wb (main surface facing downward) of the electronic component W that is sucked by the sucking unit 22 from the time when the lifting drive unit 18 actually starts lowering the sucking unit 22 . It is any timing until the height position reaches the base portion of the carrier tape 60 . The second timing is, for example, any time between when the electronic component W attracted by the suction unit 22 can come into contact with another member until the suction unit 22 returns to the position before the displacement after the electronic component W is released from the suction. This is the timing. In one example, the second timing is the time from when the height position of the main surface Wb of the electronic component W adsorbed by the adsorption unit 22 reaches the base portion of the carrier tape 60 to when the adsorption of the electronic component W is released. It is the timing of either
 異常判定部116は、例えば、昇降駆動部18により部品保持部14を変位させている期間を含む任意の期間における荷重検出部50による検出値の時間変化を示す上記時系列データに基づいて、電子部品Wに対する接触の異常を検知する。異常判定部116は、時系列データに基づいて、電子部品Wに対する接触が異常であるか否かを判定してもよい。時系列データには、少なくとも第1タイミング及び第2タイミングを含む期間において荷重検出部50から得られる検出値が含まれる。 For example, the abnormality determination unit 116 performs electronic Abnormal contact with component W is detected. The abnormality determination unit 116 may determine whether or not the contact with the electronic component W is abnormal based on the time-series data. The time-series data includes detection values obtained from the load detection unit 50 during a period including at least the first timing and the second timing.
 異常判定部116は、荷重検出部50から取得した時系列データと、予め構築された判定モデルとに基づいて、電子部品Wに対する接触が異常であるか否かを判定してもよい(電子部品Wに対する接触の異常を検知してもよい)。判定モデルは、電子部品Wに加わる荷重の時間変化を示す時系列データの入力に応じて、電子部品Wに対する接触が異常であるか否かの判定結果を出力するように、機械学習により構築されたモデルである。 The abnormality determination unit 116 may determine whether or not the contact with the electronic component W is abnormal based on the time-series data acquired from the load detection unit 50 and a determination model constructed in advance (the electronic component It may also detect anomalies in contact with W). The determination model is constructed by machine learning so as to output a determination result as to whether or not the contact with the electronic component W is abnormal in response to the input of time series data indicating the time change of the load applied to the electronic component W. model.
 機械学習とは、与えられた情報に基づいて反復的に学習することで、法則又はルールを自律的に見つけ出す手法をいう。上記判定モデルは、アルゴリズム及びデータ構造を用いて構築することができる。判定モデルは、例えば、人間の脳神経の仕組みを模した情報処理のモデルであるニューラルネットワークを用いて実現される。判定モデルを構築する際に行われる機械学習の具体的なアルゴリズムは特に限定されない。  Machine learning is a method of autonomously discovering laws or rules by learning repeatedly based on given information. The decision model can be constructed using algorithms and data structures. The judgment model is realized using, for example, a neural network, which is an information processing model imitating the mechanism of human cranial nerves. A specific machine learning algorithm that is performed when constructing a judgment model is not particularly limited.
 モデル記憶部118は、上記判定モデルを記憶する。コントローラ100は、判定モデルを構築するための学習用のデータに基づいて、機械学習を行うことで上記判定モデルを構築してもよい。具体的には、コントローラ100は、機械学習の入力として与えられるデータと、機械学習の出力の正解であるラベルとを用いて機械学習を行うことで、異常の有無を判定する判定モデルを自律的に生成してもよい。機械学習の入力は、種々の時系列データである。機械学習の出力は、電子部品Wに対する接触が異常であるか否かの判定結果である。コントローラ100は、時系列データ及びラベルの複数の組合せを用いて、電子部品Wに対する接触が異常であるか否かを判定する手法を反復的に学習する。 The model storage unit 118 stores the judgment model. The controller 100 may construct the determination model by performing machine learning based on learning data for constructing the determination model. Specifically, the controller 100 performs machine learning using data given as input for machine learning and a label that is the correct answer for the output of machine learning, thereby autonomously creating a determination model for determining the presence or absence of an abnormality. may be generated in Inputs for machine learning are various time-series data. The output of machine learning is the determination result as to whether or not the contact with the electronic component W is abnormal. The controller 100 uses multiple combinations of time-series data and labels to iteratively learn a technique for determining whether contact with the electronic component W is abnormal.
 以上のように、判定モデルを自律的に生成する段階は学習フェーズに相当する。コントローラ100の異常判定部116は、生産フェーズ又は判定フェーズにおいて、モデル記憶部118に記憶された判定モデルを用いて、電子部品Wに対する接触が異常であるか否かが未知である時系列データから、異常接触の有無を判定する。学習済みのモデルである判定モデルは、コンピュータ間で移植可能である。従って、コントローラ100は、他のコンピュータにおいて構築された判定モデルを取得することで、モデル記憶部118にその判定モデルを記憶させてもよい。この場合、コントローラ100は、学習フェーズを実行せずに、生産フェーズ(判定フェーズ)を実行してもよい。 As described above, the stage of autonomously generating a judgment model corresponds to the learning phase. In the production phase or the determination phase, the abnormality determination unit 116 of the controller 100 uses the determination model stored in the model storage unit 118 to determine whether or not contact with the electronic component W is abnormal from time-series data. , to determine the presence or absence of abnormal contact. A decision model, which is a trained model, is portable between computers. Therefore, the controller 100 may store the judgment model in the model storage unit 118 by acquiring the judgment model constructed in another computer. In this case, the controller 100 may execute the production phase (determination phase) without executing the learning phase.
 図4には、学習フェーズで用いられる種々の時系列データが示されている。横軸は時間を示し、縦軸は荷重検出部50による検出値を示している。図4において、「a」で示されるグラフは、電子部品Wに対する接触が正常であると分類された(ラベル付けられた)時系列データであり、「b」「c」及び「d」で示されるグラフは、電子部品Wに対する接触が異常であると分類された時系列データである。「b」「c」及び「d」で示されるグラフでは、電子部品Wに対する接触の状態(異常の種類)が互いに異なっている。 Fig. 4 shows various time-series data used in the learning phase. The horizontal axis indicates time, and the vertical axis indicates the detected value by the load detection section 50 . In FIG. 4, the graph indicated by "a" is the time-series data classified (labeled) that the contact with the electronic component W is normal, and is indicated by "b", "c" and "d". The graph shown is time-series data classified as abnormal contact with the electronic component W. FIG. In the graphs indicated by "b", "c" and "d", the state of contact (type of abnormality) with respect to the electronic component W is different from each other.
 学習フェーズにおいて、接触の状態が互いに異なる種々の時系列データ(異常であると分類された時系列データ)が用いられてもよい。これに代えて、学習フェーズにおいて、接触の状態が異常である時系列データを準備せずに、正常時の時系列データを準備したうで、判定モデルが構築されてもよい。この場合、構築される判定モデルは、接触状態が未知の時系列データと、正常時の種々の時系列データとの乖離度を算出することで、電子部品Wに対する異常の有無を判定してもよい。 In the learning phase, various time-series data with different contact states (time-series data classified as abnormal) may be used. Alternatively, in the learning phase, the judgment model may be constructed by preparing time-series data for a normal contact state without preparing time-series data for abnormal contact states. In this case, the constructed judgment model calculates the degree of divergence between the time-series data in which the contact state is unknown and various time-series data in the normal state, thereby judging whether or not there is an abnormality in the electronic component W. good.
 図3に戻り、報知部122は、異常判定部116による異常判定の結果を作業者等のユーザに報知するように構成されている。報知部122は、例えば、電子部品Wに対する接触の異常が検知された場合に、異常が検知されたことを示す情報を入出力デバイス102に出力する。報知部122は、異常が検知されたことを示す情報と、異常接触した電子部品Wを特定するための情報とを、入出力デバイス102が有するモニタに出力してもよい。異常接触した電子部品Wを特定するための情報は、電子部品Wの個体を特定可能な情報であればよい。 Returning to FIG. 3, the notification unit 122 is configured to notify a user such as an operator of the result of abnormality determination by the abnormality determination unit 116 . For example, when an abnormality in contact with the electronic component W is detected, the notification unit 122 outputs information indicating that an abnormality has been detected to the input/output device 102 . The notification unit 122 may output to the monitor of the input/output device 102 information indicating that an abnormality has been detected and information for identifying the electronic component W that has made abnormal contact. The information for identifying the electronic component W that has made abnormal contact may be any information that can identify the individual electronic component W. FIG.
 一例では、動作制御部112によって、次の収容部62が回収領域RAに配置される前に、電子部品Wの回収のための処理が中断(一時的に停止)される。この場合、報知部122は、「収容部62に直前に収容された電子部品Wで異常接触有り」のようなメッセージを、異常接触した電子部品Wを特定するための情報としてモニタに表示させてもよい。 In one example, the operation control unit 112 interrupts (temporarily stops) the processing for collecting the electronic components W before the next accommodation unit 62 is placed in the collection area RA. In this case, the notification unit 122 causes the monitor to display a message such as "the electronic component W that was accommodated immediately before in the accommodation unit 62 is in abnormal contact" as information for specifying the electronic component W that has made abnormal contact. good too.
 図5に示されるように、コントローラ100は、回路150を有する。回路150は、1つ又は複数のプロセッサ152と、メモリ154と、ストレージ156と、入出力ポート158と、タイマ162とを含む。ストレージ156は、例えば不揮発性の半導体メモリ等、コンピュータによって読み取り可能な記憶媒体を有する。ストレージ156は、予め設定された制御手順で搬送処理部2、荷重検出部50、及び入出力デバイス102を制御することをコントローラ100に実行させるためのプログラムを記憶している。例えばストレージ156は、上述した各機能モジュールを構成するためのプログラムを記憶している。 The controller 100 has a circuit 150 as shown in FIG. Circuitry 150 includes one or more processors 152 , memory 154 , storage 156 , input/output ports 158 and timers 162 . The storage 156 has a computer-readable storage medium such as a non-volatile semiconductor memory. The storage 156 stores a program for causing the controller 100 to control the transport processing section 2, the load detection section 50, and the input/output device 102 according to a preset control procedure. For example, the storage 156 stores programs for configuring each functional module described above.
 メモリ154は、ストレージ156の記憶媒体からロードしたプログラム及びプロセッサ152による演算結果を一時的に記憶する。プロセッサ152は、メモリ154と協働して上記プログラムを実行することで、コントローラ100の各機能モジュールを構成する。入出力ポート158は、プロセッサ152からの指令に従って、搬送処理部2、荷重検出部50、及び入出力デバイス102等との間で電気信号の入出力を行う。タイマ162は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。なお、回路150は、必ずしもプログラムにより各機能を構成するものに限られない。例えば回路150は、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により少なくとも一部の機能を構成してもよい。 The memory 154 temporarily stores the program loaded from the storage medium of the storage 156 and the calculation result by the processor 152 . The processor 152 configures each functional module of the controller 100 by executing the program in cooperation with the memory 154 . The input/output port 158 inputs/outputs electric signals to/from the transport processing unit 2, the load detection unit 50, the input/output device 102, and the like according to commands from the processor 152. FIG. The timer 162 measures the elapsed time by, for example, counting reference pulses of a constant cycle. Note that the circuit 150 is not necessarily limited to configuring each function by a program. For example, the circuit 150 may configure at least part of its functions by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) integrating this.
(制御方法)
 続いて、コントローラ100が実行する制御手順(制御方法)の一例について説明する。図6は、回収用の停止位置SPを含む処理領域PA(回収領域RA)において、キャリアテープ60の各収容部62に複数の電子部品Wを順に回収するための一連の制御処理を示すフローチャートである。コントローラ100は、この一連の制御処理を継続して実行している間、荷重検出部50からの検出値の取得を継続して行ってもよい。この一連の処理では、回収対象の電子部品Wを保持した部品保持部14の吸着部22が、回収用の停止位置SPよりも1つ上流の停止位置SPに配置されている状態で、コントローラ100が、最初にステップS11を実行する。
(Control method)
Next, an example of a control procedure (control method) executed by the controller 100 will be described. FIG. 6 is a flow chart showing a series of control processes for sequentially recovering a plurality of electronic components W to the storage portions 62 of the carrier tape 60 in the processing area PA (collection area RA) including the stop position SP for recovery. be. The controller 100 may continue to acquire detection values from the load detection section 50 while continuously executing this series of control processes. In this series of processes, the suction unit 22 of the component holding unit 14 holding the electronic component W to be collected is positioned at the stop position SP one upstream of the stop position SP for collection, and the controller 100 first executes step S11.
 ステップS11では、例えば、動作制御部112が、回収対象の電子部品Wを吸着している吸着部22を回収用の停止位置SPに配置するように、回転駆動部16により支持部12を回転させる。動作制御部112は、搬送処理部2において設定される処理領域PAの全てにおいて、電子部品Wに対する処理が終了するタイミングまで待機したうえで、回転駆動部16による支持部12の回転を開始させてもよい。動作制御部112は、処理領域PAでの処理時間が最も長い処理が終了した後に、電子部品Wを円軌道CRに沿って回転搬送するように回転駆動部16を制御してもよい。この場合、支持部12の間欠動作において支持部12を停止させる時間は、最も長い処理時間に略一致する。 In step S11, for example, the operation control unit 112 rotates the support unit 12 by the rotation driving unit 16 so that the suction unit 22 sucking the electronic component W to be collected is positioned at the recovery stop position SP. . The operation control unit 112 waits until the end of the processing of the electronic component W in all of the processing areas PA set in the transport processing unit 2, and then causes the rotation driving unit 16 to start rotating the supporting unit 12. good too. The operation control unit 112 may control the rotation driving unit 16 so that the electronic component W is rotationally conveyed along the circular orbit CR after the processing with the longest processing time in the processing area PA is completed. In this case, the time during which the supporter 12 is stopped during the intermittent operation of the supporter 12 substantially coincides with the longest processing time.
 次に、コントローラ100は、ステップS12を実行する。ステップS12では、例えば、動作制御部112が、回収対象の電子部品Wが収容される予定の収容部62が、回収領域RAに配置されるように、部品回収ユニット44によりキャリアテープ60をピッチ搬送させる。これにより、回収対象の電子部品Wを保持する吸着部22、及びその電子部品Wが収容される予定の収容部62が、電子部品Wの引き渡し処理を行うための回収領域RAに配置される(図7(a)参照)。 Next, the controller 100 executes step S12. In step S12, for example, the operation control section 112 causes the component recovery unit 44 to pitch-convey the carrier tape 60 so that the storage section 62, which is to store the electronic component W to be recovered, is arranged in the recovery area RA. Let As a result, the suction unit 22 that holds the electronic component W to be collected and the storage unit 62 that is to store the electronic component W are arranged in the recovery area RA for performing the delivery process of the electronic component W ( See FIG. 7(a)).
 次に、コントローラ100は、ステップS13を実行する。ステップS13では、例えば、動作制御部112が、回収対象の電子部品Wを保持する吸着部22を下降させるように対応する昇降駆動部18を制御する。動作制御部112は、予め定められた下降量だけ吸着部22を下方に移動させるように昇降駆動部18を制御してもよい。下降量は、回収対象の電子部品Wが、その下降量だけ下降した状態において、収容予定の収容部62内に収容され、主面Wbと収容部62の底面との間に僅かにクリアランスが設けられる程度に設定されてもよい。図7(a)及び図7(b)には、吸着部22を下降させている動作が例示されており、この例では、回収対象の電子部品Wが、収容部62に正常に収容されている。 Next, the controller 100 executes step S13. In step S13, for example, the operation control section 112 controls the corresponding elevation driving section 18 so as to lower the suction section 22 holding the electronic component W to be collected. The operation control unit 112 may control the elevation driving unit 18 so as to move the adsorption unit 22 downward by a predetermined amount of descent. The amount of descent is such that the electronic component W to be collected is accommodated in the accommodation portion 62 to be accommodated in a state in which it has been lowered by the amount of descent, and a slight clearance is provided between the main surface Wb and the bottom surface of the accommodation portion 62. It may be set to the extent that FIGS. 7A and 7B illustrate the operation of lowering the suction unit 22. In this example, the electronic component W to be collected is normally accommodated in the accommodation unit 62. there is
 次に、コントローラ100は、ステップS14,S15を実行する。ステップS14では、例えば、動作制御部112が、吸着部22による吸着を解除するように部品保持部14を制御する。ステップS15では、例えば、動作制御部112が、吸着部22を変位前の高さに戻すように昇降駆動部18を制御する。図7(c)には、吸着部22が変位前の高さに戻す際の動作が例示されている。以上の制御処理により、吸着部22から収容予定の収容部62に電子部品Wが引き渡される。すなわち、回転搬送ユニット10から、部品回収ユニット44が搬送するキャリアテープ60に電子部品Wが回収される。 Next, the controller 100 executes steps S14 and S15. In step S<b>14 , for example, the operation control section 112 controls the component holding section 14 so as to release the suction by the suction section 22 . In step S15, for example, the operation control unit 112 controls the elevation driving unit 18 so as to return the suction unit 22 to the height before the displacement. FIG. 7(c) illustrates an operation when the suction portion 22 returns to the height before displacement. By the control process described above, the electronic component W is handed over from the adsorption unit 22 to the accommodation unit 62 to be accommodated. That is, the electronic components W are collected from the rotary conveying unit 10 onto the carrier tape 60 conveyed by the component collecting unit 44 .
 次に、コントローラ100は、ステップS16を実行する。ステップS16では、例えば、荷重情報取得部114が、少なくとも第1タイミング及び第2タイミングを含む期間における荷重検出部50による検出値の時間変化を示す時系列データを取得する。一例では、荷重情報取得部114は、継続して取得している荷重検出部50による検出値のデータから、ステップS13の開始時点からステップS15の終了時点までのデータを抽出することで、上記時系列データを取得する。すなわち、荷重情報取得部114は、吸着部22の変位を開始してから、吸着部22の変位を終了するまでの期間において、昇降駆動部18に加わる荷重の時間変化を示す時系列データを取得する。 Next, the controller 100 executes step S16. In step S16, for example, the load information acquisition unit 114 acquires time-series data indicating temporal changes in the detected value by the load detection unit 50 in a period including at least the first timing and the second timing. In one example, the load information acquisition unit 114 extracts data from the start of step S13 to the end of step S15 from the data of the detected value by the load detection unit 50 that is continuously acquired, thereby Get series data. That is, the load information acquisition unit 114 acquires time-series data indicating the time-dependent change in the load applied to the lifting drive unit 18 during the period from the start of the displacement of the adsorption unit 22 to the end of the displacement of the adsorption unit 22. do.
 次に、コントローラ100は、ステップS17を実行する。ステップS17では、例えば、異常判定部116が、回収対象の電子部品Wに対する接触が異常である否かを判定する。異常判定部116は、ステップS16で得られた時系列データをモデル記憶部118が記憶する判定モデルに入力したうえで、その判定モデルからの出力結果を得ることによって、接触の異常の有無を判定してもよい。 Next, the controller 100 executes step S17. In step S17, for example, the abnormality determination unit 116 determines whether or not the contact with the electronic component W to be collected is abnormal. The abnormality determination unit 116 inputs the time-series data obtained in step S16 to the determination model stored in the model storage unit 118, and obtains the output result from the determination model to determine the presence or absence of contact abnormality. You may
 ステップS17において、回収対象の電子部品Wに対する接触の異常が検知されなかった場合(ステップS17:NO)、コントローラ100が実行する制御処理は、ステップS11に戻る。この場合、コントローラ100は、次の回収対象の電子部品Wについて、ステップS11~S17の一連の制御処理を実行する。図7(d)には、次の回収対象の電子部品Wを吸着する吸着部22及び次の収容部62が、回収領域RAに配置された様子が例示されている。 In step S17, if an abnormality in contact with the electronic component W to be collected is not detected (step S17: NO), the control process executed by the controller 100 returns to step S11. In this case, the controller 100 executes a series of control processes of steps S11 to S17 for the next electronic component W to be collected. FIG. 7(d) illustrates how the suction unit 22 for sucking the next electronic component W to be collected and the next storage unit 62 are arranged in the collection area RA.
 一方、ステップS17において、回収対象の電子部品Wに対する接触の異常が検知された場合(ステップS17:YES)、コントローラ100が実行する制御処理は、ステップS18に進む。ステップS18では、例えば、動作制御部112が、搬送処理部2による動作を停止させる(搬送処理部2による電子部品Wの搬送及び処理動作を中断させる)。一例では、動作制御部112は、次のステップS19での作業者等からのユーザ指示があるまで、回転駆動部16による支持部12の間欠動作、全ての昇降駆動部18それぞれによる部品保持部14の変位動作、及び全ての処理ユニット40による処理動作を実行しない。 On the other hand, if an abnormality in contact with the electronic component W to be collected is detected in step S17 (step S17: YES), the control process executed by the controller 100 proceeds to step S18. In step S18, for example, the operation control unit 112 stops the operation of the transport processing unit 2 (interrupts the transport and processing operations of the electronic component W by the transport processing unit 2). In one example, the operation control unit 112 intermittently operates the support unit 12 by the rotation drive unit 16 and keeps the component holding unit 14 by each of the up-and-down drive units 18 until there is a user instruction from the operator or the like in the next step S19. , and processing operations by all the processing units 40 are not performed.
 動作制御部112は、全ての処理ユニット40による処理時間のうちの最長時間よりも長い時間だけ、電子部品Wの搬送及び処理動作を中断するように搬送処理部2を制御してもよい。すなわち、動作制御部112は、電子部品Wに対する処理が正常である場合に支持部12を間欠的に停止させる時間よりも長い時間だけ、支持部12の間欠動作、部品保持部14の変位動作、及び各処理ユニット40による処理動作を実行しなくてもよい。ステップS18では、報知部122が、回収対象の電子部品Wについて接触状態の異常が検知されたことを示す情報と、その電子部品Wを特定するための情報とを入出力デバイス102に出力してもよい。 The operation control unit 112 may control the transport processing unit 2 to interrupt the transport and processing operations of the electronic component W for a time longer than the longest processing time of all the processing units 40 . That is, the operation control unit 112 intermittently operates the supporting unit 12, displacing the component holding unit 14, And the processing operation by each processing unit 40 may not be executed. In step S18, the notification unit 122 outputs to the input/output device 102 information indicating that an abnormality in the contact state of the electronic component W to be collected has been detected and information for specifying the electronic component W. good too.
 図8(a)~図8(d)には、昇降駆動部18により吸着部22を変位させた際に、電子部品Wに対する接触が異常である場合の様子が例示されている。図8(a)及び図8(b)に示されるように、回収対象の電子部品Wを吸着する吸着部22を下降させた際に、その電子部品Wが、収容部62の開口縁及びその近傍(キャリアテープ60のうちの収容部62が設けられていないベース部分)に接触している。図8(c)に示されるように、電子部品Wが開口縁及びその近傍に接触した場合、吸着部22による吸着を解除したときに、電子部品Wの少なくとも一部が、収容部62の開口縁(ベース部分)に乗り上げる可能性がある。 FIGS. 8(a) to 8(d) exemplify a state in which contact with the electronic component W is abnormal when the suction portion 22 is displaced by the elevation driving portion 18. FIG. As shown in FIGS. 8(a) and 8(b), when the suction unit 22 for sucking the electronic component W to be collected is lowered, the electronic component W is caught by the opening edge of the storage unit 62 and its It is in contact with the vicinity (the base portion of the carrier tape 60 where the accommodation portion 62 is not provided). As shown in FIG. 8( c ), when the electronic component W contacts the edge of the opening and its vicinity, at least a portion of the electronic component W is removed from the opening of the housing portion 62 when the suction by the suction portion 22 is released. There is a possibility of riding on the rim (base part).
 図8(d)には、動作制御部112によって、電子部品Wの搬送及び処理動作が中断した状態の様子が例示されている。図8(d)に例示される中断した状態では、回収対象の電子部品Wを吸着していた吸着部22が回収領域RAに留まる。また、キャリアテープ60の搬送が行われずに、異常接触した電子部品Wが傾いた状態で収容されている収容部62が、回収領域RAに留まる。 FIG. 8(d) illustrates a state in which the operation control unit 112 interrupts the transportation and processing operations of the electronic component W. As shown in FIG. In the interrupted state illustrated in FIG. 8D, the suction unit 22 that has been sucking the electronic component W to be collected remains in the collection area RA. In addition, the storage portion 62 in which the electronic component W that has made abnormal contact is stored in an inclined state without the carrier tape 60 being transported remains in the collection area RA.
 次に、コントローラ100は、ステップS19を実行する。ステップS19では、コントローラ100が、作業者等のユーザからの動作の再開を指示するユーザ指示を受け付けるまで待機する。すなわち、再開を指示するユーザ指示が作業者等によって実行されるまで、動作制御部112は、電子部品Wの搬送及び処理動作を中断する。作業者等は、例えば、入出力デバイス102のモニタに表示される情報に基づいて、異常接触したと判定された電子部品Wをキャリアテープ60から排出してもよい。 Next, the controller 100 executes step S19. In step S19, the controller 100 waits until it receives a user instruction to restart the operation from a user such as a worker. In other words, the operation control unit 112 suspends the transportation and processing operations of the electronic component W until the operator or the like executes a user instruction instructing restart. The operator or the like may eject the electronic component W determined to be in abnormal contact from the carrier tape 60 based on the information displayed on the monitor of the input/output device 102, for example.
 作業者等からの再開の指示を示すユーザ指示を受け付けると、コントローラ100が実行する制御処理は、ステップS11に戻る。コントローラ100は、次の回収対象の電子部品Wについて、ステップS11~S17の一連の制御処理を実行する。この場合、コントローラ100は、異常接触したと判定された電子部品Wが引き渡される予定であった収容部62に、次の回収予定の電子部品Wを収容するように搬送処理部2を制御してもよい。コントローラ100は、処理装置1を稼働させている間、以上の一連の制御処理を搬送処理部2に継続して実行させる。 Upon receiving a user instruction indicating a restart instruction from an operator or the like, the control process executed by the controller 100 returns to step S11. The controller 100 executes a series of control processes of steps S11 to S17 for the next electronic component W to be collected. In this case, the controller 100 controls the transport processing unit 2 so that the electronic component W to be collected next is stored in the storage unit 62 to which the electronic component W determined to have made abnormal contact is delivered. good too. While the processing apparatus 1 is operating, the controller 100 causes the transfer processing section 2 to continuously execute the series of control processing described above.
(変形例)
 図6に示される上述の一連の制御処理は一例であり、適宜変更可能である。上記一連の制御処理において、コントローラ100は、一のステップと次のステップとを並列に実行してもよく、上述した例とは異なる順序で各ステップを実行してもよい。例えば、コントローラ100は、ステップS12を実行した後に、ステップS11を実行してもよく、ステップS11とステップS12とを少なくとも部分的に重複するように並行して実行してもよい。
(Modification)
The above-described series of control processing shown in FIG. 6 is an example, and can be changed as appropriate. In the series of control processes described above, the controller 100 may execute one step and the next step in parallel, or may execute each step in an order different from the above example. For example, the controller 100 may perform step S11 after performing step S12, or may perform step S11 and step S12 in parallel so as to at least partially overlap.
 異常接触を検知した場合での動作の停止タイミングは、上述の例に限られない。コントローラ100は、電子部品Wに対する接触の異常を検知した場合に、次の収容部62を回収用の停止位置SPに配置するためのピッチ搬送を開始した後、そのピッチ搬送を停止する前に、搬送処理部2による動作を停止させるように搬送処理部2を制御してもよい。コントローラ100は、次の収容部62を回収用の停止位置SPに配置するためのピッチ搬送を行った後に、次に回収予定の電子部品Wを吸着する吸着部22を変位させる前に、搬送処理部2による動作を停止させるように搬送処理部2を制御してもよい。収容部62に電子部品Wが収容された後に、収容部62を覆うようにテープで封止される場合、コントローラ100は、異常接触したと判定された電子部品Wが収容されている収容部62をテープで封止する前に、搬送処理部2による動作を停止してもよい。 The timing of stopping the operation when abnormal contact is detected is not limited to the above example. When the controller 100 detects an abnormality in the contact with the electronic component W, the controller 100 starts pitch transportation for arranging the next storage unit 62 at the recovery stop position SP, and before stopping the pitch transportation, The transport processing unit 2 may be controlled so as to stop the operation of the transport processing unit 2 . The controller 100 performs the transfer process after performing the pitch transport for arranging the next storage unit 62 at the recovery stop position SP, and before displacing the adsorption unit 22 that adsorbs the next electronic component W to be recovered. The transport processing unit 2 may be controlled so as to stop the operation of the unit 2 . After the electronic component W is housed in the housing portion 62, when the housing portion 62 is sealed with tape so as to cover the housing portion 62, the controller 100 controls the housing portion 62 housing the electronic component W determined to be in abnormal contact. The operation by the transport processing unit 2 may be stopped before sealing with tape.
 電子部品Wに対する接触の異常が検知された場合に、搬送処理部2による動作を中断するのに加えて、異常接触したと判定された電子部品Wが搬送処理部2によって排出されてもよい。図9に示されるように、例えば、搬送処理部2は、排出ユニット70を有してもよい。排出ユニット70は、コントローラ100からの動作指示に基づいて、異常接触したと判定された電子部品Wを収容部材(キャリアテープ60)から排出するユニットである。排出ユニット70は、例えば、排出保持部72と、駆動部74と、排出ビン76とを有する。 When an abnormality in contact with the electronic component W is detected, in addition to interrupting the operation of the transport processing unit 2, the electronic component W determined to be in abnormal contact may be ejected by the transport processing unit 2. For example, the transport processing section 2 may have a discharge unit 70, as shown in FIG. The ejecting unit 70 is a unit that ejects the electronic component W determined to be in abnormal contact from the accommodating member (carrier tape 60 ) based on an operation instruction from the controller 100 . The ejection unit 70 has, for example, an ejection holding portion 72 , a drive portion 74 and an ejection bin 76 .
 排出保持部72は、電子部品Wを保持可能に構成されている。排出保持部72は、いかなる方式で電子部品Wを保持してもよい。排出保持部72は、例えば、真空吸着により電子部品Wを保持可能である。駆動部74は、電動モータ等の動力源を含み、排出保持部72を所定の方向に沿って移動させる。駆動部74は、水平な一方向と鉛直方向とのそれぞれに沿って、排出保持部72を移動させてもよい。排出ビン76は、排出保持部72から離脱した電子部品Wを収容する。排出ビン76に電子部品Wが収容されることで、キャリアテープ60から電子部品Wが排出される。 The ejection holding part 72 is configured to be able to hold the electronic component W. The discharge holder 72 may hold the electronic component W by any method. The discharge holder 72 can hold the electronic component W by vacuum suction, for example. The driving section 74 includes a power source such as an electric motor, and moves the ejection holding section 72 along a predetermined direction. The drive unit 74 may move the ejection holding unit 72 along each of the horizontal direction and the vertical direction. The ejection bin 76 accommodates the electronic component W separated from the ejection holding portion 72 . The electronic components W are discharged from the carrier tape 60 by accommodating the electronic components W in the discharge bin 76 .
 図10は、回収領域RAにおいて、キャリアテープ60の各収容部62に複数の電子部品Wを順に回収するための一連の制御処理の別の例を示すフローチャートである。この一連の制御処理では、電子部品Wに対する接触の異常が検知された場合に、排出ユニット70によって電子部品Wが排出される。コントローラ100は、図6に示される一連の制御処理でのステップS11~S17と同様に、ステップS31~S37を実行する。 FIG. 10 is a flow chart showing another example of a series of control processes for sequentially collecting a plurality of electronic components W into the storage portions 62 of the carrier tape 60 in the collection area RA. In this series of control processes, the electronic component W is ejected by the ejection unit 70 when an abnormality in contact with the electronic component W is detected. Controller 100 executes steps S31 to S37 in the same manner as steps S11 to S17 in the series of control processes shown in FIG.
 ステップS37において、回収対象の電子部品Wに対する接触の異常が検知された場合(ステップS37:YES)、コントローラ100が実行する制御処理は、ステップS38に進む。ステップS38では、例えば、動作制御部112が、異常接触したと判定された電子部品Wを収容部62から排出するように排出ユニット70を制御する。一例では、動作制御部112は、駆動部74により排出保持部72を排出対象の電子部品Wを吸着可能な位置まで移動させて、その電子部品Wを保持するように排出保持部72を制御する。そして、動作制御部112は、駆動部74により、電子部品Wを保持した排出保持部72を排出ビン76の上方まで移動させて、電子部品Wの吸着を解除するように排出保持部72を制御する。 In step S37, when an abnormality in contact with the electronic component W to be collected is detected (step S37: YES), the control process executed by the controller 100 proceeds to step S38. In step S<b>38 , for example, the operation control section 112 controls the discharge unit 70 so as to discharge the electronic component W determined to be in abnormal contact from the housing section 62 . In one example, the operation control unit 112 moves the ejection holding unit 72 to a position where the electronic component W to be ejected can be picked up by the drive unit 74, and controls the ejection holding unit 72 to hold the electronic component W. . Then, the operation control unit 112 controls the ejection holding unit 72 so that the ejection holding unit 72 holding the electronic component W is moved to above the ejection bin 76 by the driving unit 74 and the electronic component W is released from the suction. do.
 ステップS38の実行後、コントローラ100が実行する制御処理は、ステップS31に戻る。そして、コントローラ100は、次の回収対象の電子部品Wについて、ステップS31~S37の一連の制御処理を実行する。ステップS38の制御処理が実行されている間、動作制御部112は、搬送処理部2による電子部品Wの搬送及び処理動作を中断させる。一例では、動作制御部112は、ステップS38の制御処理を実行している間に、回転駆動部16による支持部12の間欠動作、全ての昇降駆動部18それぞれによる部品保持部14の変位動作、及び全ての処理ユニット40による処理動作を実行しない。 After executing step S38, the control process executed by the controller 100 returns to step S31. Then, the controller 100 executes a series of control processes of steps S31 to S37 for the next electronic component W to be collected. While the control process of step S38 is being executed, the operation control section 112 interrupts the transportation and processing operations of the electronic component W by the transportation processing section 2 . For example, while executing the control process of step S38, the motion control unit 112 intermittently operates the support unit 12 by the rotation drive unit 16, displaces the component holding unit 14 by each of all the elevation drive units 18, and no processing operations are performed by any processing unit 40 .
 処理装置1は、電子部品Wに対する異常接触が検知された場合に、排出ユニット70に代えて、回転搬送ユニット10によって、異常接触したと判定された電子部品Wを排出してもよい。処理装置1は、排出ユニット70又は回転搬送ユニット10によって、異常接触したと判定された電子部品Wを排出した後に、その電子部品Wが収容される予定であった収容部62に、次の電子部品Wを収容してもよい。 When abnormal contact with the electronic component W is detected, the processing device 1 may discharge the electronic component W determined to be abnormally contacted by the rotary transfer unit 10 instead of the discharge unit 70 . After ejecting the electronic component W determined to be in abnormal contact by the ejecting unit 70 or the rotary transfer unit 10, the processing apparatus 1 stores the next electronic component W in the accommodation unit 62 in which the electronic component W was to be accommodated. A part W may be accommodated.
 電子部品Wに対する接触の異常は、図8(a)~図8(d)に例示されるように、吸着が解除された電子部品Wが収容部62の開口縁に乗り上げる場合に限られない。例えば、電子部品Wが収容部62の開口縁に一度接触し、正常時と同様に収容部62に収容される場合もある。また、電子部品Wが収容部62の開口縁に一度接触し、収容部62内の側面と底面との間で斜めの状態で収容部62内に収容される場合もある。図4において、「b」で示されるグラフは、電子部品Wが開口縁に接触した後に正常時と同様に収容部62に収容された場合の荷重の時系列データである。「c」で示されるグラフは、電子部品Wが収容部62内で傾いた状態で収容される場合の時系列データであり、「d」で示されるグラフは、電子部品Wが開口縁に乗り上げた状態で収容される場合の時系列データである。 Abnormal contact with the electronic component W is not limited to the case where the electronic component W released from adsorption rides on the opening edge of the housing portion 62, as exemplified in FIGS. 8(a) to 8(d). For example, the electronic component W may come into contact with the opening edge of the accommodating portion 62 once and be accommodated in the accommodating portion 62 as in the normal state. Further, the electronic component W may contact the opening edge of the housing portion 62 once and be housed in the housing portion 62 in an oblique state between the side surface and the bottom surface of the housing portion 62 . In FIG. 4, the graph indicated by "b" is time-series data of the load when the electronic component W is housed in the housing portion 62 in the same manner as in the normal state after contacting the opening edge. The graph indicated by "c" is time-series data when the electronic component W is accommodated in the accommodating portion 62 in an inclined state, and the graph indicated by "d" is the electronic component W running over the edge of the opening. This is time-series data when it is stored in a
 図4に例示されるように、電子部品Wに対する接触の異常が、どのように発生しているのかに応じて、時系列データの変化傾向(荷重検出部50による検出値の推移)が異なる。そのため、異常判定部116は、電子部品Wに対する接触の異常の有無の判定に加えて、異常の種類を判別してもよい。異常判定部116は、例えば、時系列データの入力に応じて、異常の種類も含めて異常の有無の判定結果を出力するように機械学習により構築された判定モデルを用いて、異常の種類を判別してもよい。報知部122は、異常の種類を示す情報を入出力デバイス102のモニタに表示させてもよい。報知部122は、接触の異常が検知されたときの時系列データ(グラフ)を入出力デバイス102のモニタに表示させてもよい。 As exemplified in FIG. 4, the change tendency of the time-series data (transition of the detected value by the load detection unit 50) differs depending on how the contact abnormality with the electronic component W occurs. Therefore, the abnormality determination unit 116 may determine the type of abnormality in addition to determining whether there is an abnormality in contact with the electronic component W. FIG. For example, the abnormality determination unit 116 determines the type of abnormality using a determination model constructed by machine learning so as to output the determination result of the presence or absence of abnormality, including the type of abnormality, in response to the input of time-series data. can be determined. The notification unit 122 may cause the monitor of the input/output device 102 to display information indicating the type of abnormality. The notification unit 122 may cause the monitor of the input/output device 102 to display time-series data (graph) when a contact abnormality is detected.
 上述の例では、部品回収ユニット44は、キャリアテープ60に電子部品Wを回収するが、部品回収ユニット44は、収納トレイに電子部品Wを回収してもよい。収納トレイは、硬質樹脂製であってもよい。収納トレイは、1列に配列された複数の収納ポケットを有してもよく、互いに直交する2方向に行列状に配列された複数の収納ポケットを有してもよい。荷重情報取得部114は、回収領域RAに配置された収納ポケットに電子部品Wを回収するために、昇降駆動部18が吸着部22を変位させる際に、電子部品Wに加われる荷重を示す情報を荷重検出部50から取得してもよい。 In the above example, the component recovery unit 44 recovers the electronic components W to the carrier tape 60, but the component recovery unit 44 may also recover the electronic components W to the storage tray. The storage tray may be made of hard resin. The storage tray may have a plurality of storage pockets arranged in a row, or may have a plurality of storage pockets arranged in rows and columns in two directions perpendicular to each other. The load information acquisition unit 114 is information indicating the load applied to the electronic component W when the lifting drive unit 18 displaces the adsorption unit 22 in order to collect the electronic component W in the storage pocket arranged in the collection area RA. may be acquired from the load detection unit 50 .
 異常判定部116は、キャリアテープ60が用いられる場合と同様に、荷重検出部50から得られる荷重の時系列データに基づき、電子部品Wに対する接触の異常の有無を判定してもよい。異常判定部116は、収納トレイを用いた際に得られる学習用の時系列データに基づき機械学習により構築された判定モデルを用いて、電子部品Wの異常接触の有無を判定してもよい。 The abnormality determination unit 116 may determine whether there is an abnormality in contact with the electronic component W based on the load time-series data obtained from the load detection unit 50, as in the case where the carrier tape 60 is used. The abnormality determination unit 116 may determine the presence or absence of abnormal contact of the electronic component W using a determination model constructed by machine learning based on time-series data for learning obtained when the storage tray is used.
 部品回収ユニット44による電子部品Wの回収に代えて又は加えて、部品供給ユニット42による電子部品Wの供給が行われる際に、供給対象の電子部品Wに加わる荷重が検出され、その電子部品Wに対する接触の異常が検知されてもよい。図11(a)~図11(c)に示されるように、部品供給ユニット42に対応する供給用の停止位置SPを含む処理領域PA(供給領域SA)において、部品保持部14の吸着部22を変位させる昇降駆動部18に荷重検出部50が設けられてもよい。例えば、以下のように一連の制御処理が実行される。 Instead of or in addition to the recovery of the electronic components W by the component recovery unit 44, when the electronic components W are supplied by the component supply unit 42, the load applied to the electronic component W to be supplied is detected, and the electronic component W is detected. may be detected. As shown in FIGS. 11A to 11C, in the processing area PA (supply area SA) including the supply stop position SP corresponding to the component supply unit 42, the suction unit 22 of the component holding unit 14 A load detection unit 50 may be provided in the lifting drive unit 18 that displaces the . For example, a series of control processes are executed as follows.
 動作制御部112は、電子部品Wを保持(吸着)していない吸着部22が、供給領域SAに配置されるように、回転駆動部16により支持部12を移動させる。この移動後又は移動中に、動作制御部112は、供給対象の電子部品Wが収容されている収容部62を供給領域SAに配置するように、部品供給ユニット42によりキャリアテープ60をピッチ搬送させる。これにより、図11(a)に示されるように、電子部品Wを吸着していない吸着部22と、供給対象の電子部品Wが収容されている収容部62とが互いに対向する。 The operation control section 112 moves the support section 12 by the rotation drive section 16 so that the suction section 22 that does not hold (suck) the electronic component W is arranged in the supply area SA. After or during this movement, the operation control unit 112 causes the component supply unit 42 to pitch-convey the carrier tape 60 so that the container 62 containing the electronic component W to be supplied is arranged in the supply area SA. . As a result, as shown in FIG. 11A, the suction section 22 that does not suck the electronic component W and the storage section 62 that stores the electronic component W to be supplied are opposed to each other.
 次に、動作制御部112は、吸着部22を下降させるように昇降駆動部18を制御する。動作制御部112は、図11(b)に示されるように、電子部品Wに接触する程度まで、又は、吸着部22の吸着面(下面)と電子部品Wの主面Waとの間に僅かなクリアランスが設けられる程度に、昇降駆動部18により吸着部22を下降させてもよい。そして、動作制御部112は、吸着部22による電子部品Wの吸着を開始するように部品保持部14を制御する。その後、動作制御部112は、図11(c)に示されるように、電子部品Wを吸着した状態の部品保持部14を変位前の高さに戻すように昇降駆動部18を制御する。これにより、部品供給ユニット42が搬送するキャリアテープ60から、回転搬送ユニット10に電子部品Wが供給される。 Next, the operation control section 112 controls the elevation drive section 18 to lower the adsorption section 22 . As shown in FIG. 11(b), the operation control unit 112 is designed to contact the electronic component W or slightly between the suction surface (lower surface) of the suction unit 22 and the main surface Wa of the electronic component W. The suction unit 22 may be lowered by the lifting drive unit 18 to such an extent that a sufficient clearance is provided. Then, the operation control section 112 controls the component holding section 14 so that the suction section 22 starts sucking the electronic component W. As shown in FIG. After that, as shown in FIG. 11C, the operation control section 112 controls the elevation driving section 18 so that the component holding section 14 with the electronic component W sucked returns to the height before the displacement. As a result, the electronic components W are supplied to the rotary transport unit 10 from the carrier tape 60 transported by the component supply unit 42 .
 荷重情報取得部114は、電子部品Wを吸着していない吸着部22の下降を開始した時点から、電子部品Wを吸着後に吸着部22を変位前の高さに戻した時点までの期間において、荷重検出部50による検出値を取得してもよく、その期間における検出値のデータ(荷重の時系列データ)を抽出してよい。吸着部22が収容部62内の電子部品Wに接触した際に、電子部品Wから吸着部22への反力が荷重検出部50から得られる時系列データに反映される。このように、荷重検出部50は、電子部品Wを受け取るために吸着部22を変位させた際に、その電子部品Wに加わる荷重を検出する。 The load information acquiring unit 114, during the period from the time when the suction unit 22 that does not absorb the electronic component W starts to descend to the time when the suction unit 22 returns to the height before the displacement after the electronic component W is suctioned, A value detected by the load detection unit 50 may be acquired, or data of the detected value (load time-series data) during the period may be extracted. When the suction portion 22 contacts the electronic component W inside the housing portion 62 , the reaction force from the electronic component W to the suction portion 22 is reflected in the time-series data obtained from the load detection portion 50 . Thus, the load detection unit 50 detects the load applied to the electronic component W when the suction unit 22 is displaced to receive the electronic component W. As shown in FIG.
 異常判定部116は、キャリアテープ60に電子部品Wを回収する場合と同様に、吸着部22を変位させた際の第1タイミングから第2タイミングまでの荷重検出部50による検出値の推移に基づいて、電子部品Wに対する接触の異常を検知する。一例では、第1タイミングは、昇降駆動部18による吸着部22の変位を開始した時点から、吸着部22を停止させる時点までの間のいずれかのタイミングである。第2タイミングは、吸着部22を停止させた時点から、電子部品Wを吸着した後に吸着部22が変位前の位置に戻るまでの間のいずれかのタイミングである。 Similar to the case where the electronic component W is collected on the carrier tape 60, the abnormality determination unit 116 is based on the transition of the detected value by the load detection unit 50 from the first timing to the second timing when the suction unit 22 is displaced. to detect an abnormality in contact with the electronic component W. In one example, the first timing is any timing from when the lifting drive unit 18 starts displacing the suction unit 22 to when the suction unit 22 is stopped. The second timing is any timing from when the suction unit 22 is stopped to when the suction unit 22 returns to the position before displacement after the electronic component W is sucked.
 異常判定部116は、少なくとも第1タイミングと第2タイミングとを含む期間における、荷重検出部50から得られる荷重の時系列データに基づいて、電子部品Wに対する接触の異常の有無を判定してもよい。異常判定部116は、キャリアテープ60から電子部品Wを供給する際に得られる学習用の時系列データに基づき機械学習により構築された判定モデルを用いて、供給対象の電子部品Wの異常接触の有無を判定してもよい。キャリアテープ60に代えて、複数の電子部品Wが収容された状態の収納トレイから、回転搬送ユニット10に電子部品Wを供給する際に、コントローラ100が、電子部品Wに加わる荷重を示す情報を取得し、その電子部品Wに対する異常接触を検知してもよい。 The abnormality determination unit 116 determines whether or not there is an abnormality in contact with the electronic component W based on the load time-series data obtained from the load detection unit 50 in a period including at least the first timing and the second timing. good. The abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when supplying the electronic component W from the carrier tape 60 to determine abnormal contact of the electronic component W to be supplied. The presence or absence may be determined. Instead of the carrier tape 60, the controller 100 receives information indicating the load applied to the electronic components W when supplying the electronic components W to the rotary transfer unit 10 from a storage tray in which a plurality of electronic components W are stored. may be acquired and abnormal contact with the electronic component W may be detected.
 処理装置1は、1種類の電子部品Wに対する処理を行うように構成されていてもよい。これに代えて、処理装置1は、互いに異なる複数種類の電子部品Wに対する処理を行うように構成されていてもよい。処理装置1において、所定の処理単位(例えば、日数又は処理個数)で、処理対象の電子部品Wの部品種別の入れ替えが行われてもよい。処理装置1は、第1種の複数の電子部品Wに対して連続して処理を行った後に、第2種の複数の電子部品Wに対して連続して処理を行ってもよい。複数種類の電子部品Wの間では、サイズ及び重さの少なくとも一方が互いに異なっていてもよい。 The processing device 1 may be configured to process one type of electronic component W. Alternatively, the processing device 1 may be configured to process different types of electronic components W from each other. In the processing device 1, the part type of the electronic part W to be processed may be changed in a predetermined processing unit (for example, the number of days or the number of processed parts). The processing apparatus 1 may continuously process the plurality of electronic components W of the second type after continuously processing the plurality of electronic components W of the first type. At least one of the size and weight may be different among the plurality of types of electronic components W.
 電子部品Wの部品種別(種類)によって、互いに異なる複数種類のキャリアテープ60が用いられて、電子部品Wの回収が行われてもよい。部品回収ユニット44は、例えば、処理対象の電子部品Wの部品種別に対応するキャリアテープ60に、回転搬送ユニット10から電子部品Wを回収する。又は、電子部品Wの部品種別の入れ替えに伴って、処理対象の電子部品Wの部品種別に対応するキャリアテープ60を搬送可能な別の部品回収ユニット44が用いられてもよい。 A plurality of different types of carrier tapes 60 may be used depending on the component type (kind) of the electronic component W, and the electronic component W may be collected. The component collection unit 44 collects the electronic components W from the rotary transport unit 10 onto, for example, the carrier tape 60 corresponding to the component type of the electronic components W to be processed. Alternatively, when the component type of the electronic component W is replaced, another component recovery unit 44 capable of transporting the carrier tape 60 corresponding to the component type of the electronic component W to be processed may be used.
 電子部品Wの部品種別に応じて、電子部品Wがキャリアテープ60に回収される際に得られる時系列データの傾向が異なる。より詳細には、電子部品Wがキャリアテープ60に異常接触した際に得られる時系列データの変化の傾向が、電子部品Wの部品種別によって異なる。そのため、時系列データに基づき電子部品Wに対する異常接触を検知するために、学習フェーズにおいて、複数種類の電子部品Wにそれぞれ対応する複数の判定モデルが構築されてもよい。コントローラ100は、処理対象の電子部品Wの部品種別に応じた判定モデルを用いて、処理対象の電子部品Wに対する異常接触を検知してもよい。 Depending on the component type of the electronic component W, the tendency of the time-series data obtained when the electronic component W is collected on the carrier tape 60 differs. More specifically, the tendency of change in the time-series data obtained when the electronic component W makes abnormal contact with the carrier tape 60 differs depending on the component type of the electronic component W. FIG. Therefore, in order to detect abnormal contact with the electronic component W based on time-series data, a plurality of determination models corresponding to a plurality of types of electronic components W may be constructed in the learning phase. The controller 100 may detect abnormal contact with the electronic component W to be processed using a determination model corresponding to the component type of the electronic component W to be processed.
 上述のモデル記憶部118は、複数種類の電子部品Wの部品種別(複数の部品種別)と複数の判定モデルとが対応付けられたデータベースを記憶してもよい。上記データベースでは、例えば、1つの部品種別ごとに、1つの判定モデルが対応付けられている。学習フェーズにおいて、1つの部品種別(1種類の電子部品W)ごとに、種々の時系列データが学習データとして準備されたうえで、その部品種別に対応する判定モデルが構築されてもよい。コントローラ100は、機能モジュールとして、品種情報取得部132と、モデル選択部134とを有してもよい(図3参照)。 The model storage unit 118 described above may store a database in which component types (a plurality of component types) of a plurality of types of electronic components W are associated with a plurality of determination models. In the database, for example, one determination model is associated with each part type. In the learning phase, various time-series data may be prepared as learning data for each component type (one type of electronic component W), and then a determination model corresponding to the component type may be constructed. The controller 100 may have a product type information acquisition unit 132 and a model selection unit 134 as functional modules (see FIG. 3).
 品種情報取得部132は、処理対象の電子部品Wの部品種別を示す情報(以下、「品種情報」という。)を取得する。品種情報取得部132は、いかなる方法で品種情報を取得してもよい。品種情報取得部132は、例えば、電子部品Wの部品種別を示すユーザ指示(入出力デバイス102を介したユーザ入力)に基づき、品種情報を取得する。品種情報取得部132(コントローラ100)は、ユーザ指示に代えて、電子部品Wの部品種別等を示す識別コードを読み取った結果、又は、電子部品Wの部品種別等が書き込まれたファイル又はデータから、品種情報を取得してもよい。 The product type information acquisition unit 132 acquires information indicating the component type of the electronic component W to be processed (hereinafter referred to as "product type information"). The product type information acquisition unit 132 may acquire the product type information by any method. The product type information acquisition unit 132 acquires product type information based on, for example, a user instruction (user input via the input/output device 102) indicating the component type of the electronic component W. FIG. The product type information acquisition unit 132 (controller 100) reads an identification code indicating the type of electronic component W instead of a user instruction, or obtains information from a file or data in which the type of electronic component W is written. , you may acquire the variety information.
 モデル選択部134は、品種情報に基づいて、複数の判定モデルの中から、処理対象の電子部品Wに対応する判定モデルを選択する。モデル選択部134は、例えば、モデル記憶部118が記憶する上記データベースを参照することで、処理対象の電子部品Wについて構築された判定モデルを選択する。モデル選択部134による判定モデルの選択は、処理対象の電子部品Wの部品品種の入れ替えが行われる際に(度に)行われてもよい。 The model selection unit 134 selects a judgment model corresponding to the electronic component W to be processed from among a plurality of judgment models based on the product type information. The model selection unit 134 selects a determination model constructed for the electronic component W to be processed, for example, by referring to the database stored in the model storage unit 118 . The selection of the determination model by the model selection unit 134 may be performed (every time) when the component type of the electronic component W to be processed is replaced.
 上記異常判定部116は、荷重検出部50から取得した時系列データと、処理対象の電子部品Wに対応する判定モデルとに基づいて、処理対象の電子部品Wに対する接触が異常であるか否かを判定してもよい(処理対象の電子部品Wに対する接触の異常を検知してもよい)。コントローラ100は、部品供給ユニット42による電子部品Wの供給が行われる際にも、処理対象の電子部品Wの部品種別に応じて、対応する判定モデルを選択したうえで、供給時での電子部品Wに対する接触異常を検知してもよい。 The abnormality determination unit 116 determines whether the contact with the electronic component W to be processed is abnormal based on the time-series data acquired from the load detection unit 50 and the determination model corresponding to the electronic component W to be processed. may be determined (an abnormality in contact with the electronic component W to be processed may be detected). Also when the electronic component W is supplied by the component supply unit 42, the controller 100 selects a corresponding determination model according to the component type of the electronic component W to be processed, and determines the electronic component at the time of supply. Abnormal contact with W may be detected.
 電子部品Wの部品種別が同じでも、互いに異なる種類のキャリアテープ60が用いられる場合もある。この場合、キャリアテープ60の種類ごとに、対応する判定モデルが構築されてもよい。コントローラ100は、キャリアテープ60の種類に応じた判定モデルを選択したうえで、その判定モデルを用いて電子部品Wに対する接触異常を検知してもよい。コントローラ100は、電子部品Wの部品種別とキャリアテープ60の種類との組合せに応じた判定モデルを選択したうえで、その判定モデルを用いて電子部品Wに対する接触異常を検知してもよい。 Different types of carrier tapes 60 may be used for electronic components W of the same component type. In this case, a corresponding determination model may be constructed for each type of carrier tape 60 . The controller 100 may select a determination model according to the type of the carrier tape 60 and then detect abnormal contact with the electronic component W using the determination model. The controller 100 may select a determination model according to the combination of the component type of the electronic component W and the type of the carrier tape 60, and then detect the abnormal contact with the electronic component W using the selected determination model.
(実施形態の効果)
 以上に説明した第1実施形態に係る処理装置1は、電子部品Wを保持するように構成された部品保持部14と、電子部品Wに対して所定の処理を実行するための処理領域PAを通る円軌道CRに位置するように部品保持部14を支持する支持部12と、円軌道CRの中心軸Axまわりに支持部12を回転させるように構成された回転駆動部16と、処理領域PAにおいて部品保持部14を変位させるように構成された変位駆動部(昇降駆動部18)とを有する搬送処理部2と、処理領域PAにおいて変位駆動部が部品保持部14を変位させた際に、電子部品Wに加わる荷重を検出するように構成された荷重検出部50と、部品保持部14を変位させた際の第1タイミングから第2タイミングまでの荷重検出部50による検出値の推移に基づいて、電子部品Wに対する接触の異常を検知するように構成されたコントローラ100とを備える。
(Effect of Embodiment)
The processing apparatus 1 according to the first embodiment described above has a component holding unit 14 configured to hold the electronic component W, and a processing area PA for executing a predetermined process on the electronic component W. A support portion 12 that supports the component holding portion 14 so as to be positioned on the circular orbit CR passing therethrough, a rotation driving portion 16 that is configured to rotate the support portion 12 around the central axis Ax of the circular orbit CR, and a processing area PA When the displacement drive unit (elevating drive unit 18) configured to displace the component holding unit 14 in the transport processing unit 2 and the displacement drive unit displaces the component holding unit 14 in the processing area PA, Based on the transition of the detected value by the load detection unit 50 configured to detect the load applied to the electronic component W and the load detection unit 50 from the first timing to the second timing when the component holding unit 14 is displaced and a controller 100 configured to detect abnormal contact with the electronic component W.
 電子部品に対する異常接触を検知する方法として、各時刻の荷重センサによる検出値の大きさを評価して、時刻ごとに接触の異常を判定する方法も考えられる。しかしながら、荷重センサによる検出値には種々の要因で検出される荷重が含まれる場合もあり、また、異常接触が生じても正常時に近い荷重しか加わらない場合もある。そのため、時刻ごとでは正常時での荷重の検出値と異常時での荷重の検出値とが判別し難い。これに対して、上記処理装置1では、互いに異なるタイミング間での荷重の検出値の推移に基づいて、電子部品Wに対する接触の異常が検知される。このように、電子部品Wに加わる荷重の変化を見て異常が検知されるので、電子部品Wに対する接触の異常を精度良く検知することができる。従って、電子部品Wの信頼性の向上に有用である。 As a method of detecting abnormal contact with electronic components, a method of evaluating the magnitude of the detected value by the load sensor at each time and determining contact abnormality at each time is also conceivable. However, the value detected by the load sensor may include loads detected by various factors, and even if abnormal contact occurs, only a load close to normal is applied in some cases. For this reason, it is difficult to distinguish between the detected load value in the normal state and the detected load value in the abnormal state at each time. On the other hand, in the processing device 1, an abnormality in the contact with the electronic component W is detected based on the transition of the load detection value between different timings. Since an abnormality is detected by observing a change in the load applied to the electronic component W in this manner, an abnormality in contact with the electronic component W can be detected with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W.
 コントローラ100は、複数の電子部品Wに対して、処理領域PAにおける所定の処理を順に行うように搬送処理部2を制御してもよく、電子部品Wに対する接触の異常を検知した場合に、搬送処理部2による動作を停止させてもよい。この場合、コントローラ100が接触の異常を検知した際に、作業者等又は搬送処理部2が、異常接触したとされる電子部品Wを確認したうえで、その電子部品Wを排除できる。従って、電子部品Wの信頼性の向上に更に有用である。 The controller 100 may control the transport processing unit 2 so as to sequentially perform a predetermined process in the processing area PA on a plurality of electronic components W, and when an abnormality in contact with the electronic components W is detected, the transport The operation of the processing unit 2 may be stopped. In this case, when the controller 100 detects an abnormal contact, the operator or the transport processing unit 2 can confirm the electronic component W that is in abnormal contact and remove the electronic component W. Therefore, it is more useful for improving the reliability of the electronic component W.
 コントローラ100は、荷重検出部50による検出値の時間変化を示す時系列データに基づいて、電子部品Wに対する接触の異常を検知するように構成されていてもよい。正常時の時系列データと、接触異常が生じた際の時系列データとには、それらの変化傾向に差が生じやすい。そのため、電子部品Wに対する接触の異常を高精度に検知できる。従って、電子部品Wの信頼性の向上に更に有用である。 The controller 100 may be configured to detect an abnormality in contact with the electronic component W based on time-series data indicating changes over time in values detected by the load detection unit 50 . The time-series data in the normal state and the time-series data in the event of a contact abnormality are likely to differ in their changing tendencies. Therefore, an abnormality in contact with the electronic component W can be detected with high accuracy. Therefore, it is more useful for improving the reliability of the electronic component W.
 コントローラ100は、荷重検出部50から取得した時系列データと、時系列データの入力に応じて電子部品Wに対する接触が異常である否かの判定結果を出力するように機械学習により構築された判定モデルとに基づいて、電子部品Wに対する接触の異常を検知するように構成されていてもよい。この場合、機械学習によって構築された判定モデルを用いて判定することで、電子部品Wに対する接触の異常をより高精度に検知できる。従って、電子部品Wの信頼性の向上に更に有用である。 The controller 100 determines whether or not the contact with the electronic component W is abnormal according to the time-series data acquired from the load detection unit 50 and the input of the time-series data. It may be configured to detect an abnormality in contact with the electronic component W based on the model. In this case, by making a judgment using a judgment model constructed by machine learning, it is possible to detect an abnormality in contact with the electronic component W with higher accuracy. Therefore, it is more useful for improving the reliability of the electronic component W.
 コントローラ100は、複数の部品種別と複数の判定モデルとが対応付けられたデータベースと、電子部品Wの部品種別とに基づいて、複数の判定モデルの中から判定モデルを選択することと、荷重検出部50から取得した時系列データと、電子部品Wに対応する判定モデルとに基づいて、電子部品Wに対する接触の異常を検知することと、を実行するように構成されていてもよい。電子部品Wの種別によって、電子部品Wに対する接触の異常が生じた際の時系列データの傾向が変化し得る。上記構成では、処理対象の電子部品Wの種別に応じた判定モデルを用いて判定することで、電子部品Wに対する接触の異常をより高精度に検知できる。従って、電子部品Wの信頼性の向上に更に有用である。 The controller 100 selects a determination model from among a plurality of determination models based on a database in which a plurality of component types and a plurality of determination models are associated with each other and the component type of the electronic component W; and detecting an abnormality in contact with the electronic component W based on the time-series data acquired from the unit 50 and the determination model corresponding to the electronic component W. Depending on the type of the electronic component W, the tendency of the time-series data when an abnormality in contact with the electronic component W occurs may change. In the above configuration, by making a determination using a determination model corresponding to the type of the electronic component W to be processed, an abnormality in contact with the electronic component W can be detected with higher accuracy. Therefore, it is more useful for improving the reliability of the electronic component W.
 変位駆動部は、部品保持部14に外力を加えることで部品保持部14を変位させるように構成されていてもよい。荷重検出部50は、変位駆動部に設けられていてもよい。部品保持部14を変位させるために外力を加える際に、部品保持部14と変位駆動部とが接触する。荷重検出部50による検出値には、その接触に伴う荷重のデータが反映される。処理装置1では、時系列データに基づき異常が検知されるので、部品保持部14と変位駆動部との接触に伴う荷重を考慮せずに、異常を検知することができる。従って、電子部品Wに対する異常接触の高精度な検出に有用である。なお、変位駆動部に荷重検出部50を設けることで、回転する各部品保持部14に荷重検出部を設ける必要がなく、複数の部品保持部14が備えられる処理装置1の装置構成の簡素化に有用である。 The displacement driving section may be configured to displace the component holding section 14 by applying an external force to the component holding section 14 . The load detection section 50 may be provided in the displacement drive section. When an external force is applied to displace the component holding portion 14, the component holding portion 14 and the displacement drive portion come into contact with each other. Data on the load associated with the contact is reflected in the value detected by the load detection unit 50 . Since the processing device 1 detects an abnormality based on the time-series data, the abnormality can be detected without considering the load associated with the contact between the component holding section 14 and the displacement driving section. Therefore, it is useful for detecting abnormal contact with the electronic component W with high accuracy. By providing the load detection unit 50 in the displacement driving unit, there is no need to provide a load detection unit in each rotating component holding unit 14, and the device configuration of the processing apparatus 1 provided with a plurality of component holding units 14 can be simplified. useful for
 上述したように、一例では、キャリアテープ60に電子部品Wが回収される際に、電子部品Wに対する接触の異常が検知される。キャリアテープ60は、樹脂製のフィルムによって構成されるため、電子部品Wがキャリアテープ60の開口縁等に接触した際には、キャリアテープ60が押し込まれる。その結果、キャリアテープ60から電子部品Wへの反力が弱くなり、他の収容部材を用いる場合に比べて、正常時の荷重の検出値と異常時の荷重の検出値とを区別し難い。上記処理装置1では、異なるタイミング間での荷重の検出値の推移(例えば、時系列データ)に基づき異常の有無が判定されるので、キャリアテープ60に電子部品Wが回収される場合であっても、精度良く異常を判定することが可能である。 As described above, in one example, when the electronic components W are collected on the carrier tape 60, an abnormality in contact with the electronic components W is detected. Since the carrier tape 60 is made of a resin film, the carrier tape 60 is pushed in when the electronic component W comes into contact with the edge of the opening of the carrier tape 60 or the like. As a result, the reaction force from the carrier tape 60 to the electronic component W becomes weaker, making it difficult to distinguish between the normal load detection value and the abnormal load detection value compared to the case of using other housing members. In the processing device 1, the presence or absence of an abnormality is determined based on the transition of the detected load value between different timings (for example, time-series data). Also, it is possible to determine abnormality with high accuracy.
[第2実施形態]
 続いて、図12及び図13を参照しながら、第2実施形態に係る電子部品の処理装置について説明する。キャリアテープ60又は収納トレイに代えて、ウェハシートに電子部品Wが回収されてもよく、ウェハシートから電子部品Wが供給されてもよい。図12に示される処理装置1Aは、搬送処理部2に代えて搬送処理部2Aを備える。搬送処理部2Aは、回転搬送ユニット10Aと、部品回収ユニット44Aとを有する。
[Second embodiment]
Next, an electronic component processing apparatus according to a second embodiment will be described with reference to FIGS. 12 and 13. FIG. Instead of the carrier tape 60 or the storage tray, the electronic components W may be collected on a wafer sheet, or the electronic components W may be supplied from the wafer sheet. A processing apparatus 1A shown in FIG. The transport processing section 2A has a rotary transport unit 10A and a component recovery unit 44A.
 上述した回転搬送ユニット10は、中心軸Axに沿って部品保持部を変位させるのに対して、回転搬送ユニット10Aは、中心軸Axを中心とした円周の半径方向に沿って部品保持部を変位させる。回転搬送ユニット10Aは、例えば、支持部12Aと、複数の部品保持部14Aと、回転駆動部16Aと、複数の進退駆動部18Aとを有する。支持部12Aは、複数の部品保持部14Aを支持する。具体的には、支持部12Aは、複数の部品保持部14Aそれぞれが円軌道CRに位置するように、複数の部品保持部14Aを支持する。支持部12Aは、円軌道CRの中心軸Axまわりに回転可能である。支持部12Aは、例えば、ターンテーブルである。 While the rotary transfer unit 10 described above displaces the component holder along the central axis Ax, the rotary transfer unit 10A displaces the component holder along the radial direction of the circumference centered on the central axis Ax. Displace. The rotary transfer unit 10A has, for example, a support section 12A, a plurality of component holding sections 14A, a rotation drive section 16A, and a plurality of forward/backward drive sections 18A. The support portion 12A supports a plurality of component holding portions 14A. Specifically, the support portion 12A supports the plurality of component holding portions 14A so that each of the plurality of component holding portions 14A is positioned on the circular orbit CR. The support portion 12A is rotatable around the central axis Ax of the circular orbit CR. The support portion 12A is, for example, a turntable.
 複数の部品保持部14Aは、中心軸Axを中心とする円周に沿って等間隔に配置されており、支持部12Aに固定されている。部品保持部14Aは、いかなる方式で電子部品Wを保持してもよい。部品保持部14Aは、例えば、中心軸Axを中心とする円周の半径方向に沿った一方側から、主面Wa,Wbのいずれかを真空吸着する。一例では、部品保持部14Aは、吸着部22Aと、ホルダ24Aとを有する。 The plurality of component holding portions 14A are arranged at regular intervals along the circumference around the central axis Ax and fixed to the support portion 12A. The component holding portion 14A may hold the electronic component W by any method. The component holding portion 14A, for example, vacuum-sucks either the main surface Wa or Wb from one side along the radial direction of the circumference centered on the central axis Ax. In one example, the component holding section 14A has a suction section 22A and a holder 24A.
 吸着部22Aは、その吸着面が円軌道CRの外を向くように、ホルダ24Aを介して支持部12Aに設けられている(固定されている)。吸着部22Aは、その吸着面及びその近傍を含む先端部分が、円軌道CRに位置するように支持部12Aに設けられてもよい。吸着部22Aは、円軌道CRの外側に電子部品Wが位置するように、その電子部品Wの主面Waを吸着するように構成されている。この場合、円軌道CRの半径方向に沿って、中心軸Ax、吸着部22A、及び電子部品Wがこの順で並ぶ。ホルダ24Aは、支持部12Aの外周部に固定され、吸着部22Aを変位可能に保持する。本開示では、中心軸Axを基準として「内」及び「外」の用語を使用する。 The suction part 22A is provided (fixed) to the support part 12A via a holder 24A so that the suction surface faces the outside of the circular track CR. 22 A of adsorption|suction parts may be provided in the support part 12A so that the front-end|tip part containing the adsorption|suction surface and its vicinity may be located in circular track|orbit CR. 22 A of adsorption|suction parts are comprised so that the main surface Wa of the electronic component W may be adsorb|sucked so that the electronic component W may be located in the outer side of the circular track|orbit CR. In this case, the central axis Ax, the suction portion 22A, and the electronic component W are arranged in this order along the radial direction of the circular orbit CR. The holder 24A is fixed to the outer peripheral portion of the support portion 12A and holds the suction portion 22A displaceably. In this disclosure, the terms "inner" and "outer" are used with respect to the central axis Ax.
 回転駆動部16Aは、回転駆動部16と同様に、中心軸Axまわりに支持部12Aを回転させるように構成されている。回転駆動部16Aによる支持部12Aの回転により、中心軸Axを中心とする円軌道CRに沿って複数の部品保持部14Aが移動する。その結果、部品保持部14Aに保持されている電子部品Wが、中心軸Axまわりの円周に沿って搬送される。回転駆動部16Aは、隣り合う部品保持部14A同士の角度ピッチ(中心軸Axまわりの角度ピッチ)にて、支持部12Aの回転と停止とを繰り返すように制御される。以下、回転駆動部16Aが支持部12Aを停止させる際に、複数の部品保持部14A(複数の吸着部22A)それぞれが配置される円軌道CR上の複数の位置についても「複数の停止位置SP」という。 The rotary drive section 16A, like the rotary drive section 16, is configured to rotate the support section 12A around the central axis Ax. Due to the rotation of the support portion 12A by the rotary drive portion 16A, the plurality of component holding portions 14A move along the circular orbit CR centered on the central axis Ax. As a result, the electronic component W held by the component holding portion 14A is conveyed along the circumference around the central axis Ax. The rotation drive section 16A is controlled to repeat rotation and stop of the support section 12A at the angular pitch (angular pitch around the central axis Ax) between the adjacent component holding sections 14A. Hereinafter, when the rotation drive unit 16A stops the support unit 12A, the plurality of positions on the circular orbit CR where the plurality of component holding units 14A (the plurality of suction units 22A) are arranged will also be referred to as "the plurality of stop positions SP ”.
 複数の進退駆動部18Aは、回収用の停止位置SPを含む処理領域PA(回収領域RA)において、部品保持部14Aの吸着部22Aを円軌道CRの半径方向に沿って移動させるように構成された進退駆動部18A(変位駆動部)を含む。進退駆動部18Aは、吸着部22Aを中心軸Axから円軌道CRの外側に向かって変位させる。進退駆動部18Aは、図13に示されるように、例えば、ホルダ32Aと、操作ロッド34Aと、モータ36Aとを有する。 The plurality of advance/retreat drive portions 18A are configured to move the suction portion 22A of the component holding portion 14A along the radial direction of the circular orbit CR in the processing area PA (recovery area RA) including the stop position SP for recovery. 18A (displacement drive section). The advance/retreat drive portion 18A displaces the suction portion 22A from the central axis Ax toward the outside of the circular orbit CR. As shown in FIG. 13, the forward/backward drive unit 18A has, for example, a holder 32A, an operating rod 34A, and a motor 36A.
 ホルダ32Aは、回転駆動部16Aによる支持部12Aの回転と共に移動しないように設けられている。操作ロッド34Aは、ホルダ32Aに対して変位可能となるようにホルダ32Aに設けられている。操作ロッド34Aは、例えば、円軌道CRの半径方向に沿って延びており、その半径方向に沿って移動可能となるようにホルダ32Aに保持されている。操作ロッド34Aは、部品保持部14Aが停止位置SPに位置する場合、その部品保持部14よりも内側に(中心軸Ax寄りに)位置してもよい。モータ36Aは、駆動源として機能し、操作ロッド34Aを円軌道CRの外側に変位(移動)させる。モータ36Aは偏心カムを含んでもよい。 The holder 32A is provided so as not to move along with the rotation of the support portion 12A by the rotary drive portion 16A. The operating rod 34A is provided on the holder 32A so as to be displaceable with respect to the holder 32A. The operating rod 34A extends, for example, along the radial direction of the circular track CR, and is held by the holder 32A so as to be movable along the radial direction. The operating rod 34A may be positioned inside (closer to the central axis Ax) than the component holding portion 14 when the component holding portion 14A is positioned at the stop position SP. The motor 36A functions as a drive source and displaces (moves) the operating rod 34A outside the circular orbit CR. Motor 36A may include an eccentric cam.
 一例では、モータ36Aによって操作ロッド34Aが変位すると、操作ロッド34Aの外側を向く先端部が、部品保持部14Aが有する伝達部28Aに接触する。伝達部28Aは、吸着部22Aに接続されており、操作ロッド34Aから受ける外力を吸着部22Aに伝達する。伝達部28Aは、変位した際に支持部12Aと干渉しないように設けられている。操作ロッド34Aが伝達部28Aに接触した状態で、操作ロッド34Aが更に外側に移動すると、吸着部22Aが変位する(外側に向かって移動する)。モータ36Aによって操作ロッド34Aが内側に移動すると、操作ロッド34Aが吸着部22Aに対して外向きの力を付与した状態が解除され、吸着部22Aが変位する前の位置に戻る。 In one example, when the operating rod 34A is displaced by the motor 36A, the outward facing tip of the operating rod 34A contacts the transmission section 28A of the component holding section 14A. The transmission portion 28A is connected to the adsorption portion 22A and transmits the external force received from the operation rod 34A to the adsorption portion 22A. The transmission portion 28A is provided so as not to interfere with the support portion 12A when displaced. When the operation rod 34A is moved further outward while the operation rod 34A is in contact with the transmission portion 28A, the adsorption portion 22A is displaced (moves outward). When the operating rod 34A is moved inward by the motor 36A, the state in which the operating rod 34A exerts an outward force on the attracting portion 22A is released, and the attracting portion 22A returns to the position before it was displaced.
 進退駆動部18Aには、昇降駆動部18と同様に、荷重検出部50が設けられている。具体的には、荷重検出部50は、操作ロッド34Aに荷重検出部50が設けられている。荷重検出部50は、操作ロッド34Aに加わる荷重(外力)を検出する。 A load detection section 50 is provided in the advance/retreat drive section 18A in the same manner as the elevation drive section 18 . Specifically, the load detection portion 50 is provided on the operating rod 34A. The load detector 50 detects a load (external force) applied to the operating rod 34A.
 部品回収ユニット44Aは、回収領域RAにおいて、回転搬送ユニット10Aから複数の電子部品Wを順に回収する処理ユニットである。部品回収ユニット44Aは、例えば、シート保持部82と、シート位置調節部84とを有する。シート保持部82は、ウェハシート66を保持する。ウェハシート66には、回転搬送ユニット10から回収される電子部品Wが貼付される。ウェハシート66の貼付面66aには、例えば、電子部品Wの主面Wbが貼付される。 The component recovery unit 44A is a processing unit that sequentially recovers a plurality of electronic components W from the rotary transfer unit 10A in the recovery area RA. The component recovery unit 44A has, for example, a sheet holding section 82 and a sheet position adjusting section 84. As shown in FIG. The sheet holding part 82 holds the wafer sheet 66 . Electronic components W collected from the rotary transfer unit 10 are attached to the wafer sheet 66 . For example, the main surface Wb of the electronic component W is attached to the attachment surface 66a of the wafer sheet 66 .
 ウェハシート66の周縁部にリングフレーム(不図示)が貼付されていてもよく、シート保持部82は、そのリングフレームを保持してもよい。一例では、シート保持部82は、貼付面66aが垂直に起立した状態で、回収用の停止位置SPに位置している吸着部22Aの先端面に対向するように(平行となるように)、円軌道CRの周囲においてウェハシート66を保持する。 A ring frame (not shown) may be attached to the peripheral portion of the wafer sheet 66, and the sheet holding portion 82 may hold the ring frame. In one example, the sheet holding portion 82 faces (is parallel to) the tip end face of the adsorption portion 22A positioned at the collection stop position SP, with the sticking surface 66a standing vertically. A wafer sheet 66 is held around the circular orbit CR.
 シート位置調節部84は、ウェハシート66と回収用の停止位置SPに位置する吸着部22Aとが対向する方向(中心軸Axまわりの円周の半径方向)に交差する面に沿って、シート保持部82の位置を調節する。シート位置調節部84は、ウェハシート66と上記吸着部22Aとが対向する方向に垂直な面に沿って、シート保持部82の位置を変更してもよい。シート保持部82の位置が変更されることで、シート保持部82に保持されているウェハシート66の位置が変わる。その結果、ウェハシート66において回収対象の電子部品Wが貼付される予定の領域(以下、「貼付予定領域」という。)の位置が変更される。シート位置調節部84は、互いに直交する2方向に沿ってシート保持部82を移動させる2つの駆動部を含んでもよい。 The sheet position adjusting portion 84 is arranged to hold the sheet along a plane intersecting the direction in which the wafer sheet 66 and the suction portion 22A positioned at the recovery stop position SP face each other (the radial direction of the circumference around the central axis Ax). Adjust the position of the portion 82 . The sheet position adjusting section 84 may change the position of the sheet holding section 82 along a plane perpendicular to the direction in which the wafer sheet 66 and the suction section 22A face each other. By changing the position of the sheet holding portion 82, the position of the wafer sheet 66 held by the sheet holding portion 82 is changed. As a result, the position of the area on the wafer sheet 66 to which the electronic component W to be collected is to be attached (hereinafter referred to as the "scheduled attachment area") is changed. The seat position adjusting section 84 may include two driving sections that move the sheet holding section 82 along two directions perpendicular to each other.
 続いて、処理装置1Aのコントローラ100が実行する一連の制御処理について説明する。コントローラ100の動作制御部112は、電子部品Wを保持(吸着)している吸着部22Aが回収領域RAに配置されるように、回転駆動部16Aにより支持部12Aを回転させる。そして、動作制御部112は、ウェハシート66における回収対象の電子部品Wの貼付予定領域が、回収領域RAに配置されるようにシート位置調節部84を制御する。 Next, a series of control processes executed by the controller 100 of the processing device 1A will be described. The operation control section 112 of the controller 100 rotates the support section 12A by the rotation driving section 16A so that the suction section 22A holding (adsorbing) the electronic component W is arranged in the recovery area RA. Then, the operation control section 112 controls the sheet position adjusting section 84 so that the planned pasting area of the electronic component W to be collected on the wafer sheet 66 is arranged in the collection area RA.
 次に、動作制御部112は、回収用の停止位置SPに位置する吸着部22Aを外側に移動させるように、進退駆動部18Aを制御する。動作制御部112は、吸着部22Aが吸着している電子部品Wが、ウェハシート66の貼付面66aに接触する程度まで、進退駆動部18Aにより吸着部22を移動させる。そして、動作制御部112は、吸着部22Aによる電子部品Wの吸着を解除するように部品保持部14Aを制御する。その後、動作制御部112は、電子部品Wの吸着を解除した状態の吸着部22Aを変位前の位置に戻すように進退駆動部18Aを制御する。 Next, the operation control section 112 controls the advance/retreat drive section 18A so as to move the suction section 22A positioned at the recovery stop position SP outward. The operation control section 112 moves the adsorption section 22 by the advance/retreat drive section 18A until the electronic component W adsorbed by the adsorption section 22A comes into contact with the sticking surface 66a of the wafer sheet 66 . Then, the operation control section 112 controls the component holding section 14A so as to cancel the suction of the electronic component W by the suction section 22A. After that, the operation control section 112 controls the advance/retreat driving section 18A so as to return the suction section 22A in the state of releasing the suction of the electronic component W to the position before the displacement.
 荷重情報取得部114は、電子部品Wを吸着している吸着部22Aの移動を開始した時点から、電子部品Wの吸着の解除後に吸着部22Aを変位前の位置に戻した時点までの期間における荷重検出部50による検出値の時間変化を示すデータ(荷重の時系列データ)を取得してもよい。吸着部22Aが吸着する電子部品Wがウェハシート66の貼付面66aに接触した際に、ウェハシート66から電子部品Wへの反力が荷重検出部50から得られる時系列データに反映される。 The load information acquisition unit 114 determines the load information during the period from the time when the suction unit 22A that is suctioning the electronic component W starts to move to the time when the suction unit 22A is returned to the position before displacement after the suction of the electronic component W is released. Data (load time-series data) indicating the time change of the detected value by the load detection unit 50 may be acquired. When the electronic component W to be adsorbed by the adsorption portion 22A contacts the sticking surface 66a of the wafer sheet 66, the reaction force from the wafer sheet 66 to the electronic component W is reflected in the time-series data obtained from the load detection portion 50.
 異常判定部116は、キャリアテープ60に電子部品Wを回収する場合と同様に、荷重検出部50から得られる荷重の時系列データに基づき、電子部品Wに対する接触の異常の有無を判定してもよい。異常判定部116は、ウェハシート66に電子部品Wを回収する際に得られる学習用の時系列データに基づき機械学習により構築された判定モデルを用いて、回収対象の電子部品Wに対する異常接触の有無を判定してもよい。動作制御部112は、電子部品Wに対する異常接触を検知した場合に、搬送処理部2Aでの回収等の処理を搬送処理部2Aに中断させてもよい。 Similar to the case where the electronic components W are collected on the carrier tape 60, the abnormality determination unit 116 determines whether there is an abnormality in the contact with the electronic components W based on the load time-series data obtained from the load detection unit 50. good. The abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when the electronic components W are collected on the wafer sheet 66 to detect abnormal contact with the electronic components W to be collected. The presence or absence may be determined. When detecting an abnormal contact with the electronic component W, the operation control unit 112 may cause the transport processing unit 2A to suspend the processing such as recovery in the transport processing unit 2A.
 ウェハシート66に電子部品Wを回収する際の異常接触としては、例えば、回収対象の電子部品Wが、ウェハシート66に既に貼付されている電子部品Wに接触することが考えられる。また、その異常接触として、吸着部22Aによって吸着された電子部品Wの姿勢が基準状態からずれていることに起因して、ウェハシート66から正常時とは異なる反力を受けることが考えられる。 An example of abnormal contact when collecting electronic components W onto the wafer sheet 66 is that the electronic components W to be collected come into contact with the electronic components W already attached to the wafer sheet 66 . Further, as the abnormal contact, it is conceivable that the attitude of the electronic component W sucked by the sucking portion 22A deviates from the standard state, and the wafer sheet 66 receives a reaction force different from normal.
(変形例)
 部品回収ユニット44Aによる電子部品Wの回収に代えて又は加えて、ウェハシートに貼付された電子部品Wが回転搬送ユニット10Aに供給される際に、供給対象の電子部品Wに加わる荷重が検出され、その電子部品Wに対する接触の異常が検知されてもよい。搬送処理部2Aは、部品供給ユニット42Aを有する。複数の進退駆動部18Aは、供給用の停止位置SPを含む処理領域PA(供給領域SA)において、部品保持部14Aの吸着部22Aを円軌道CRの半径方向に沿って移動させる進退駆動部18A(変位駆動部)を含む。
(Modification)
Instead of or in addition to the recovery of the electronic components W by the component recovery unit 44A, when the electronic components W attached to the wafer sheet are supplied to the rotary transfer unit 10A, the load applied to the electronic components W to be supplied is detected. , an abnormality in contact with the electronic component W may be detected. The transport processing section 2A has a component supply unit 42A. The plurality of advance/retreat drive portions 18A move the suction portion 22A of the component holding portion 14A along the radial direction of the circular orbit CR in the processing area PA (supply area SA) including the stop position SP for supply. (displacement driver).
 部品供給ユニット42Aは、供給領域SAにおいて、回転搬送ユニット10に複数の電子部品Wを順に供給する処理ユニットである。部品供給ユニット42Aは、例えば、シート保持部82と、シート位置調節部84と、突き出し部86とを有する。部品供給ユニット42Aのシート保持部82及びシート位置調節部84は、ウェハシート64を保持する点を除き、部品回収ユニット44Aのシート保持部82及びシート位置調節部84と同様の構成及び機能を有する。 The component supply unit 42A is a processing unit that sequentially supplies a plurality of electronic components W to the rotary transfer unit 10 in the supply area SA. The component supply unit 42A has, for example, a sheet holding portion 82, a sheet position adjusting portion 84, and a protruding portion 86. As shown in FIG. The sheet holding section 82 and the sheet position adjusting section 84 of the component supply unit 42A have the same configurations and functions as the sheet holding section 82 and the sheet position adjusting section 84 of the component collecting unit 44A, except that they hold the wafer sheet 64. .
 部品供給ユニット42Aのシート保持部82が保持するウェハシート64は、半導体ウェハが貼付された粘着性の貼付面64aを有する。その半導体ウェハは、ダイシング等により複数の電子部品Wに切り分けられた状態で貼付面64aに貼付されている。貼付面64aには、電子部品Wの主面Wbが貼付されてもよい。 The wafer sheet 64 held by the sheet holding section 82 of the component supply unit 42A has an adhesive sticking surface 64a to which a semiconductor wafer is stuck. The semiconductor wafer is attached to the attachment surface 64a in a state in which it is cut into a plurality of electronic components W by dicing or the like. The main surface Wb of the electronic component W may be attached to the attachment surface 64a.
 突き出し部86は、供給用の停止位置SPとの間にウェハシート64(供給対象の電子部品W)を挟むように配置される。突き出し部86は、ウェハシート64のうちの供給対象の電子部品Wが貼付されている領域を、供給用の停止位置SPに近づくように突き出す。突き出し部86は、上記領域を、ウェハシート64の裏面64bから貼付面64aに向かって突き出す。突き出し部86は、供給用の停止位置SPに配置された吸着部22Aが、供給対象の電子部品Wを吸着するために変位した際に、上記領域を吸着部22Aに向かって突き出す。これにより、吸着部22Aと供給対象の電子部品Wとが接触する。そして、吸着部22Aが吸着を開始した状態で、進退駆動部18Aによって内側に後退することで、ウェハシート64から吸着部22Aに電子部品Wが引き渡される。 The projecting portion 86 is arranged so as to sandwich the wafer sheet 64 (the electronic component W to be supplied) between itself and the supply stop position SP. The protruding portion 86 protrudes a region of the wafer sheet 64 to which the electronic components W to be supplied are attached so as to approach the stop position SP for supply. The protruding portion 86 protrudes the region from the back surface 64b of the wafer sheet 64 toward the sticking surface 64a. The protruding portion 86 protrudes the above region toward the suction portion 22A when the suction portion 22A arranged at the stop position SP for supply is displaced to suck the electronic component W to be supplied. Thereby, 22 A of adsorption|suction parts and the electronic component W of the supply object contact. Then, in a state where the suction section 22A has started suction, the electronic component W is transferred from the wafer sheet 64 to the suction section 22A by retracting inwardly by the advance/retreat driving section 18A.
 荷重情報取得部114は、電子部品Wを吸着していない吸着部22Aの移動を開始した時点から、電子部品Wを吸着後に吸着部22Aを変位前の位置に戻した時点までの期間における荷重検出部50による検出値の時間変化を示すデータ(荷重の時系列データ)を取得してもよい。吸着部22Aがウェハシート64に貼付された電子部品Wに接触した際に、その電子部品Wから吸着部22Aへの反力が荷重検出部50から得られる時系列データに反映される。 The load information acquisition unit 114 detects the load in a period from the time when the suction unit 22A, which does not absorb the electronic component W, starts to move to the time when the suction unit 22A returns to the position before displacement after the electronic component W has been absorbed. Data (load time-series data) indicating the time change of the detected value by the unit 50 may be obtained. When the suction portion 22A contacts the electronic component W attached to the wafer sheet 64, the reaction force from the electronic component W to the suction portion 22A is reflected in the time-series data obtained from the load detection portion 50.
 異常判定部116は、ウェハシート66に電子部品Wを回収する場合と同様に、荷重検出部50から得られる荷重の時系列データに基づき、電子部品Wに対する接触の異常の有無を判定してもよい。異常判定部116は、ウェハシート64から電子部品Wを供給する際に得られる学習用の時系列データに基づき機械学習により構築された判定モデルを用いて、供給対象の電子部品Wの異常接触の有無を判定してもよい。 Similar to the case where the electronic components W are collected on the wafer sheet 66, the abnormality determination unit 116 determines whether there is an abnormality in contact with the electronic components W based on the load time-series data obtained from the load detection unit 50. good. The abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when the electronic components W are supplied from the wafer sheet 64 to determine abnormal contact of the electronic components W to be supplied. The presence or absence may be determined.
 電子部品Wの異常接触が検知された場合に、搬送処理部2による動作(複数の電子部品Wに対する継続した処理)を中断させずに、異常接触したと判定された電子部品Wを排出する排出処理が実行されてもよい。搬送処理部2Aは、例えば、不良品排出ユニット48Aを有する。不良品排出ユニット48Aは、不良品であると分類された電子部品Wを回収するユニットである。不良品排出ユニット48Aは、例えば、回収用の停止位置SPよりも下流の停止位置SPに配置される。なお、不良品排出ユニット48Aが、回収用の停止位置SPよりも上流の停止位置SPに配置されてもよい。部品回収ユニット44Aは、良品であると分類された電子部品Wを回収する。 Ejection for ejecting the electronic component W determined to be in abnormal contact without interrupting the operation (continuous processing for a plurality of electronic components W) by the transport processing unit 2 when the abnormal contact of the electronic component W is detected. Processing may be performed. The transport processing section 2A has, for example, a defective product ejection unit 48A. The defective product discharge unit 48A is a unit that collects electronic components W classified as defective products. The defective product discharge unit 48A is arranged, for example, at a stop position SP downstream of the recovery stop position SP. The defective product discharge unit 48A may be arranged at the stop position SP upstream of the stop position SP for collection. The component recovery unit 44A recovers electronic components W classified as non-defective products.
 動作制御部112は、不良品と判定された電子部品Wを保持する吸着部22Aが、対応する停止位置SPに配置された際に、回転搬送ユニット10から不良品排出ユニット48Aにその電子部品Wを排出させるように、部品保持部14と不良品排出ユニット48Aとを制御する。ウェハシート64から回転搬送ユニット10に電子部品Wが供給される際に、その電子部品Wに対する異常接触が検知された場合、動作制御部112は、電子部品Wの供給を含む各種処理を継続してもよい。 When the suction unit 22A holding the electronic component W determined to be defective is placed at the corresponding stop position SP, the operation control unit 112 transfers the electronic component W from the rotary transfer unit 10 to the defective product discharging unit 48A. The component holding unit 14 and the defective product ejection unit 48A are controlled so as to eject the . When an abnormal contact with the electronic component W is detected when the electronic component W is supplied from the wafer sheet 64 to the rotary transfer unit 10, the operation control unit 112 continues various processes including the supply of the electronic component W. may
 一例では、動作制御部112は、異常接触したと判定された電子部品Wを吸着する吸着部22Aが、回収用の停止位置SPに配置された際に、部品回収ユニット44Aにその電子部品Wが回収されないように搬送処理部2Aを制御する。そして、動作制御部112は、不良品排出ユニット48Aが配置された停止位置SPに、その吸着部22Aが配置された際に、不良品排出ユニット48Aに異常接触したと判定された電子部品Wを回収するように搬送処理部2を制御する。以上のように、コントローラ100は、電子部品Wの供給を含む各種処理を搬送処理部2に継続させながら、電子部品Wを排出するための処理を搬送処理部2に実行させてもよい。 In one example, the operation control unit 112 causes the electronic component W to be placed in the component recovery unit 44A when the adsorption unit 22A that adsorbs the electronic component W determined to be in abnormal contact is placed at the recovery stop position SP. The transport processing section 2A is controlled so as not to be collected. Then, the operation control unit 112 removes the electronic component W determined to be in abnormal contact with the defective product ejection unit 48A when the suction unit 22A is placed at the stop position SP where the defective product ejection unit 48A is arranged. The transport processing unit 2 is controlled to collect. As described above, the controller 100 may cause the transport processing unit 2 to execute the process for discharging the electronic component W while continuing various processes including the supply of the electronic component W to the transport processing unit 2 .
 以上に説明した第2実施形態に係る処理装置1Aにおいても、電子部品Wに対する接触の異常を精度良く検知することができる。従って、電子部品Wの信頼性の向上に有用である。第2実施形態に係る処理装置1Aにおいて、上記第1実施形態及びその変形例において説明した内容の一部が適用されてもよい。 In the processing apparatus 1A according to the second embodiment described above, abnormal contact with the electronic component W can be detected with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W. In the processing apparatus 1A according to the second embodiment, part of the contents described in the first embodiment and its modification may be applied.
[第3実施形態]
 続いて、図14及び図15を参照しながら、第2実施形態に係る電子部品の処理装置について説明する。2個以上の回転搬送ユニットによって複数の電子部品Wが順に搬送されてもよく、回転搬送ユニット同士での電子部品Wの受け渡しが行われる際に、電子部品Wに加わる荷重が検出され、その電子部品Wに対する接触の異常の有無が判定されてもよい。図14及び図15に示される処理装置1Bは、搬送処理部2,2Aに代えて搬送処理部2Bを備える。搬送処理部2Bは、回転搬送ユニット10B,10Cと、部品供給ユニット42Bと、部品回収ユニット44Bと、不良品排出ユニット48Bとを有する。
[Third embodiment]
Next, an electronic component processing apparatus according to a second embodiment will be described with reference to FIGS. 14 and 15. FIG. A plurality of electronic components W may be sequentially transported by two or more rotating transport units, and when the electronic components W are transferred between the rotating transport units, the load applied to the electronic components W is detected, and the electronic component W is detected. The presence or absence of an abnormality in contact with the component W may be determined. A processing apparatus 1B shown in FIGS. 14 and 15 includes a transport processing section 2B instead of the transport processing sections 2 and 2A. The transport processing section 2B has rotary transport units 10B and 10C, a component supply unit 42B, a component recovery unit 44B, and a defective product ejection unit 48B.
 回転搬送ユニット10B,10Cそれぞれは、回転搬送ユニット10Aと同様に構成されている。回転搬送ユニット10Bは、中心軸Ax1まわりの円軌道CR1に沿って複数の部品保持部14Aを移動させるように構成されている。回転搬送ユニット10Cは、中心軸Ax2まわりの円軌道CR2に沿って複数の部品保持部14Aを移動させるように構成されている。中心軸Ax1及び中心軸Ax2は、互いに平行であってもよく、鉛直な軸線であってもよい。円軌道CR1と円軌道CR2とは、互いに重ならずに、水平な一方向に沿って並んでいてもよい。 Each of the rotary transfer units 10B and 10C is configured in the same manner as the rotary transfer unit 10A. The rotary transfer unit 10B is configured to move a plurality of component holders 14A along a circular track CR1 around the central axis Ax1. The rotary transfer unit 10C is configured to move a plurality of component holders 14A along a circular track CR2 around the central axis Ax2. The central axis Ax1 and the central axis Ax2 may be parallel to each other or may be vertical axes. The circular trajectory CR1 and the circular trajectory CR2 may be arranged along one horizontal direction without overlapping each other.
 回転搬送ユニット10Bは、部品供給ユニット42Bから供給される電子部品Wを、回転搬送ユニット10Cへ受け渡すための停止位置SP(以下、「受渡用の停止位置SP」という。)まで搬送する。受渡用の停止位置SPを含み、受け渡し処理を行うための処理領域PA(以下、「受渡領域TA」という。)において、回転搬送ユニット10Bから回転搬送ユニット10Cへ電子部品Wが受け渡される。回転搬送ユニット10Cは、回転搬送ユニット10Bから受け取った電子部品Wを、部品回収ユニット44Bが配置される停止位置SPまで搬送する。不良品排出ユニット48Bは、部品回収ユニット44Bが配置される停止位置SPよりも上流の停止位置SPに配置されている。 The rotary transport unit 10B transports the electronic component W supplied from the component supply unit 42B to a stop position SP for delivery to the rotary transport unit 10C (hereinafter referred to as "delivery stop position SP"). The electronic component W is transferred from the rotary transfer unit 10B to the rotary transfer unit 10C in a processing area PA (hereinafter referred to as a "transfer area TA") that includes the transfer stop position SP and is used for the transfer process. The rotary transfer unit 10C transfers the electronic component W received from the rotary transfer unit 10B to the stop position SP where the component recovery unit 44B is arranged. The defective product discharge unit 48B is arranged at a stop position SP upstream of the stop position SP where the component recovery unit 44B is arranged.
 搬送処理部2Bは、受渡用の停止位置SPに配置される部品保持部14Aを、円軌道CR1の外側に向けて移動させる進退駆動部18A(変位駆動部)を有する。この例では、回転搬送ユニット10Cは、受渡領域TAにおいて電子部品Wを受け取る部品保持部14Aを移動させる進退駆動部を有しない(図15も参照)。 The transport processing unit 2B has an advance/retreat drive unit 18A (displacement drive unit) that moves the component holding unit 14A arranged at the delivery stop position SP toward the outside of the circular track CR1. In this example, the rotary transfer unit 10C does not have an advance/retreat drive section for moving the component holding section 14A that receives the electronic component W in the delivery area TA (see also FIG. 15).
 続いて、処理装置1Bのコントローラ100が実行する一連の制御処理について説明する。コントローラ100の動作制御部112は、電子部品Wを保持(吸着)している回転搬送ユニット10Bの吸着部22Aが、受渡領域TAに配置されるように回転搬送ユニット10Bを制御する。そして、動作制御部112は、電子部品Wを受け取る予定の吸着部22A(回転搬送ユニット10Cの吸着部22A)が、受渡領域TAに配置されるように回転搬送ユニット10Cを制御する。 Next, a series of control processes executed by the controller 100 of the processing device 1B will be described. The operation control section 112 of the controller 100 controls the rotary transfer unit 10B so that the suction section 22A of the rotary transfer unit 10B holding (adsorbing) the electronic component W is arranged in the delivery area TA. Then, the operation control section 112 controls the rotary transfer unit 10C so that the suction section 22A (the suction section 22A of the rotary transfer unit 10C) scheduled to receive the electronic component W is arranged in the delivery area TA.
 次に、動作制御部112は、受渡領域TAに配置された吸着部22Aを外側に移動させるように、進退駆動部18Aを制御する。動作制御部112は、吸着部22Aが吸着している電子部品Wが、回転搬送ユニット10Cの吸着部22Aの吸着面(円軌道CR2の外側を向く面)に接触する程度まで、進退駆動部18Aにより駆動対象の吸着部22Aを移動させる。そして、動作制御部112は、回転搬送ユニット10Cの吸着部22Aによる電子部品Wの吸着(吸引)を開始するように回転搬送ユニット10Cを制御した後に、回転搬送ユニット10Bの吸着部22Aによる電子部品Wの吸着を解除するように回転搬送ユニット10Bを制御する。その後、動作制御部112は、電子部品Wの吸着を解除した状態の吸着部22Aを変位前の位置に戻すように進退駆動部18Aを制御する。なお、動作制御部112は、進退駆動部18Aにより駆動対象の吸着部22Aを変位させている間、その吸着部22Aが保持する電子部品Wが、受け取り側の吸着部22Aに接触する前に、受け取り側の吸着部22Aによる吸着(吸引)を開始するように回転搬送ユニット10Cを制御してもよい。 Next, the operation control section 112 controls the advance/retreat drive section 18A so as to move the suction section 22A arranged in the transfer area TA outward. The operation control unit 112 controls the advance/retreat driving unit 18A until the electronic component W that is being sucked by the sucking unit 22A contacts the sucking surface (the surface facing the outside of the circular track CR2) of the sucking unit 22A of the rotary transfer unit 10C. to move the suction portion 22A to be driven. Then, after the operation control unit 112 controls the rotary transfer unit 10C to start sucking (sucking) the electronic component W by the suction unit 22A of the rotary transfer unit 10C, the electronic component W is picked up by the suction unit 22A of the rotary transfer unit 10B. The rotary transfer unit 10B is controlled so as to release W from being sucked. After that, the operation control section 112 controls the advance/retreat driving section 18A so as to return the suction section 22A in the state of releasing the suction of the electronic component W to the position before the displacement. Note that while the forward/backward drive unit 18A is displacing the suction unit 22A to be driven, the operation control unit 112, before the electronic component W held by the suction unit 22A contacts the reception side suction unit 22A, The rotary transport unit 10C may be controlled so as to start suctioning (sucking) by the suction section 22A on the receiving side.
 荷重情報取得部114は、進退駆動部18Aに設けられた荷重検出部50による検出値を取得する。荷重情報取得部114は、電子部品Wを吸着している回転搬送ユニット10Bの吸着部22Aの移動を開始した時点から、電子部品Wの吸着の解除後にその吸着部22Aを変位前の位置に戻した時点までの期間における荷重検出部50による検出値の時間変化を示すデータ(荷重の時系列データ)を取得してもよい。回転搬送ユニット10Bの吸着部22Aが吸着する電子部品Wが、回転搬送ユニット10Cの吸着部22Aの吸着面に接触した際に、電子部品Wが回転搬送ユニット10Cの吸着部22Aから受ける反力が、荷重検出部50から得られる時系列データに反映される。 The load information acquisition unit 114 acquires the detected value by the load detection unit 50 provided in the forward/backward drive unit 18A. The load information acquisition section 114 returns the suction section 22A to the position before the displacement after releasing the suction of the electronic component W from the time when the suction section 22A of the rotary transfer unit 10B that is suctioning the electronic component W starts to move. Data (load time-series data) indicating the time change of the detected value by the load detection unit 50 during the period up to the point in time may be acquired. When the electronic component W to be picked up by the suction section 22A of the rotary transfer unit 10B contacts the suction surface of the suction section 22A of the rotary transfer unit 10C, the reaction force that the electronic component W receives from the suction section 22A of the rotary transfer unit 10C is , are reflected in the time-series data obtained from the load detection unit 50 .
 異常判定部116は、キャリアテープ60に電子部品Wを回収する場合と同様に、荷重検出部50から得られる荷重の時系列データに基づき、電子部品Wに対する接触の異常の有無を判定してもよい。異常判定部116は、他の回転搬送ユニットに電子部品Wを引き渡す際に得られる学習用の時系列データに基づき機械学習により構築された判定モデルを用いて、受渡対象の電子部品Wに対する異常接触の有無を判定してもよい。動作制御部112は、電子部品Wに対する異常接触を検知した場合に、異常接触したと判定された電子部品Wを不良品排出ユニット48Bに回収するように搬送処理部2Bを制御してもよい。 Similar to the case where the electronic components W are collected on the carrier tape 60, the abnormality determination unit 116 determines whether there is an abnormality in the contact with the electronic components W based on the load time-series data obtained from the load detection unit 50. good. The abnormality determination unit 116 uses a determination model constructed by machine learning based on time-series data for learning obtained when the electronic component W is transferred to another rotary transfer unit to detect abnormal contact with the electronic component W to be delivered. You may determine the presence or absence of When detecting abnormal contact with an electronic component W, the operation control unit 112 may control the transport processing unit 2B so that the electronic component W determined to be in abnormal contact is collected in the defective product discharge unit 48B.
 他の回転搬送ユニットに電子部品Wを引き渡す際の異常接触としては、例えば、その電子部品Wを受け取る予定の吸着部22Aが、何らかの原因で既に他の電子部品Wを保持していることに起因して、正常時とは異なる反力が生じることが考えられる。また、その異常接触として、回転搬送ユニット10Bの吸着部22Aによって吸着された電子部品Wの姿勢が基準状態からずれていることに起因して、正常時とは異なる反力が生じることが考えられる。 Abnormal contact when the electronic component W is handed over to another rotary transfer unit is caused, for example, by the suction unit 22A scheduled to receive the electronic component W already holding the other electronic component W for some reason. As a result, it is conceivable that a reaction force different from that during normal operation is generated. Further, as the abnormal contact, it is conceivable that a reaction force different from that in the normal state is generated due to the deviation of the posture of the electronic component W sucked by the sucking section 22A of the rotary transfer unit 10B from the standard state. .
(変形例)
 上述の例とは異なり、受渡領域TAにおいて、回転搬送ユニット10Cの吸着部22A(電子部品Wを受け取る予定の吸着部22A)が、円軌道CR2の外側に変位することで、電子部品Wの受け渡しが行われてもよい。この場合、回転搬送ユニット10Cにおいて、電子部品Wを受け取る予定の吸着部22Aを変位させる進退駆動部18Aが配置され、その進退駆動部18Aに荷重検出部50が設けられてもよい。コントローラ100は、上述の例と同様に、電子部品Wを受け取る予定の吸着部22Aを変位させた際のその吸着部22Aが電子部品Wから受ける反力が反映された時系列データに基づいて、電子部品Wに対する接触の異常の有無を判定してもよい。
(Modification)
Unlike the above example, in the transfer area TA, the suction section 22A of the rotary transfer unit 10C (the suction section 22A scheduled to receive the electronic component W) is displaced to the outside of the circular track CR2, whereby the electronic component W is transferred. may be performed. In this case, in the rotary transfer unit 10C, an advance/retreat driving section 18A that displaces the suction section 22A to receive the electronic component W may be arranged, and the load detection section 50 may be provided in the advance/retreat driving section 18A. As in the above example, the controller 100, based on the time-series data reflecting the reaction force received by the suction unit 22A from the electronic component W when the suction unit 22A to receive the electronic component W is displaced, The presence or absence of an abnormality in contact with the electronic component W may be determined.
 中心軸Ax1及び中心軸Ax2は、水平な軸線であってもよい。中心軸Ax1及び中心軸Ax2の一方が水平な軸線であり、他方が鉛直な軸線であってもよい。回転搬送ユニット10Bが有する部品保持部14Aの個数は、回転搬送ユニット10Aが有する部品保持部14の個数と同じであってもよく、異なっていてもよい。円軌道CR1の大きさは、円軌道CR2の大きさと同じであってもよく、異なっていてもよい。 The central axis Ax1 and the central axis Ax2 may be horizontal axes. One of the central axis Ax1 and the central axis Ax2 may be a horizontal axis, and the other may be a vertical axis. The number of component holders 14A included in the rotary transfer unit 10B may be the same as or different from the number of component holders 14 included in the rotary transfer unit 10A. The size of the circular trajectory CR1 may be the same as or different from the size of the circular trajectory CR2.
 搬送処理部2Bは、回転搬送ユニット10B,10Cに加えて、1以上の他の回転搬送ユニットを有してもよい。回転搬送ユニット10B,10Cのいずれか一方と、いずれかの他の回転搬送ユニットとの間で電子部品Wの受け渡しが行われてもよく、その受け渡しの際に、電子部品Wに加わる荷重の検出と、異常接触の有無の判定とが行われてもよい。 The transport processing section 2B may have one or more other rotating transport units in addition to the rotating transport units 10B and 10C. The electronic component W may be transferred between one of the rotary transfer units 10B and 10C and any other rotary transfer unit, and the load applied to the electronic component W during the transfer may be detected. and determination of presence/absence of abnormal contact.
 コントローラ100は、上述の例と異なる回転搬送ユニット同士の間での受け渡しにおいて、荷重の検出と異常接触の有無の判定とを行ってもよい。図1に示される回転搬送ユニット10が、他の回転搬送ユニットとの間で電子部品Wの受け渡しを行う際に、荷重の検出と異常接触の有無の判定とが行われてもよい。他の回転搬送ユニットとしては、供給用及び回収用の停止位置SPの間に位置する停止位置SPに交差するように設定された円軌道(円軌道)に沿って、電子部品Wを搬送する衛星テーブルが挙げられる。また、他の回転搬送ユニットとしては、供給用の停止位置SPにおいて、回転搬送ユニット10に電子部品Wを引き渡す(供給する)ロータリーピックアップが挙げられる。 The controller 100 may detect the load and determine the presence or absence of abnormal contact in the transfer between the rotating transfer units different from the above example. When the rotary transfer unit 10 shown in FIG. 1 transfers the electronic component W to another rotary transfer unit, the load may be detected and the presence or absence of abnormal contact may be determined. As another rotary transport unit, a satellite transports the electronic parts W along a circular orbit (circular orbit) set to intersect the stop positions SP located between the supply and recovery stop positions SP. A table is mentioned. Further, as another rotary transfer unit, there is a rotary pickup that delivers (supplies) the electronic component W to the rotary transfer unit 10 at the stop position SP for supply.
 回転搬送ユニット10等の回転搬送ユニットと、その回転搬送ユニットとの電子部品Wの受け渡しを含む所定の処理を実行する中間処理ユニット46との間で、電子部品Wが受け渡される際に、荷重の検出と異常接触の有無の判定とが行われてもよい。上述した種々の例のいずれかにおいて、図14に示される例と異なり、1つのユニットの吸着部と、他のユニットの吸着部とが上下方向に沿って対向した状態で、電子部品Wの受け渡しが行われてもよい。引き渡し側の吸着部が上方に配置され、受け取り側の吸着部が下方に配置される場合、動作制御部112は、受け取り側の吸着部と電子部品Wとが接触せずに僅かなクリアランスが設けられる程度の位置まで、一方の吸着部を変位させてもよい。そして、動作制御部112は、引き渡し側の吸着部による吸着を解除させて、電子部品Wの受け渡しを実行させてもよい。この場合、一方の吸着部の変位が完了する前に、電子部品Wが受け取り側の吸着部に接触してしまうことも異常接触の一因となり得る。 When an electronic component W is transferred between a rotary transfer unit such as the rotary transfer unit 10 and an intermediate processing unit 46 that executes a predetermined process including transfer of the electronic component W to and from the rotary transfer unit, a load is applied. and determination of the presence or absence of abnormal contact may be performed. In any one of the various examples described above, unlike the example shown in FIG. 14, the electronic component W is transferred in a state in which the suction portion of one unit and the suction portion of the other unit face each other in the vertical direction. may be performed. When the suction unit on the delivery side is arranged above and the suction unit on the receiving side is arranged below, the operation control unit 112 provides a slight clearance so that the suction unit on the receiving side and the electronic component W do not come into contact with each other. You may displace one adsorption|suction part to the position of the grade to which it is. Then, the operation control unit 112 may cause the electronic component W to be transferred by canceling the suction by the suction unit on the delivery side. In this case, contact of the electronic component W with the receiving suction portion before the displacement of one suction portion is completed can also be a cause of abnormal contact.
 第3実施形態に係る処理装置1Bにおいても、電子部品Wに対する接触の異常を精度良く検知することができる。従って、電子部品Wの信頼性の向上に有用である。第3実施形態に係る処理装置1Bにおいて、上記第1実施形態及びその変形例において説明した内容の一部が適用されてもよい。 Also in the processing device 1B according to the third embodiment, abnormal contact with the electronic component W can be detected with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W. A part of the contents described in the first embodiment and its modification may be applied to the processing apparatus 1B according to the third embodiment.
[第4実施形態]
 続いて、図16及び図17を参照しながら、第4実施形態に係る電子部品の処理装置について説明する。電子部品Wの受け渡しを伴わずに、部品保持部14(吸着部22)を変位させる際に、荷重の検出と異常接触の有無の判定とが行われてもよい。図16に示される処理装置1Cの搬送処理部2は、中間処理ユニット46の1つとして、部品検査ユニット90を有する。部品検査ユニット90は、いずれかの停止位置SPを含む検査領域IA(処理領域)において、電子部品Wの検査を行うユニットである。
[Fourth embodiment]
Next, an electronic component processing apparatus according to a fourth embodiment will be described with reference to FIGS. 16 and 17. FIG. The detection of the load and the determination of the presence or absence of abnormal contact may be performed when the component holding portion 14 (suction portion 22) is displaced without the electronic component W being transferred. The transport processing section 2 of the processing apparatus 1</b>C shown in FIG. 16 has a component inspection unit 90 as one of the intermediate processing units 46 . The component inspection unit 90 is a unit that inspects the electronic component W in an inspection area IA (processing area) including one of the stop positions SP.
 部品検査ユニット90は、例えば、電子部品Wの電気特性を検査する処理ユニットである。部品検査ユニット90は、測定子92を含む。部品検査ユニット90は、例えば、検査対象の電子部品Wに含まれる電極が測定子92に接触した状態で、その電極に電圧を印加することで電気特性を取得する。電子部品Wに含まれる上記電極は、主面Wbに設けられていてもよい。 The component inspection unit 90 is a processing unit that inspects the electrical characteristics of the electronic component W, for example. The component inspection unit 90 includes a stylus 92 . For example, the component inspection unit 90 obtains electrical characteristics by applying a voltage to an electrode included in an electronic component W to be inspected, while the probe 92 is in contact with the electrode. The electrodes included in the electronic component W may be provided on the main surface Wb.
 図17は、処理装置1Cのコントローラ100が実行する一連の制御処理を示すフローチャートである。この一連の制御処理が実行される間、荷重情報取得部114は、部品検査ユニット90が配置された停止位置SPに対応する昇降駆動部18に設けられた荷重検出部50から、その検出値を継続して取得してもよい。コントローラ100は、図6に示されるステップS11と同様に、ステップS51を実行する。次に、コントローラ100は、ステップS52を実行する。ステップS52では、例えば、動作制御部112が、上記の対応する昇降駆動部18によって、検査対象の電子部品Wを保持(吸着)している吸着部22の下降を開始させる。 FIG. 17 is a flowchart showing a series of control processes executed by the controller 100 of the processing device 1C. While this series of control processes is being executed, the load information acquisition unit 114 obtains the detected value from the load detection unit 50 provided in the elevation drive unit 18 corresponding to the stop position SP where the parts inspection unit 90 is arranged. You can continue to get it. Controller 100 executes step S51 in the same manner as step S11 shown in FIG. Next, the controller 100 executes step S52. In step S<b>52 , for example, the operation control unit 112 causes the corresponding lift driving unit 18 to start lowering the suction unit 22 holding (sucking) the electronic component W to be inspected.
 次に、コントローラ100は、ステップS53,S54を実行する。ステップS53では、例えば、コントローラ100が、荷重検出部50から得られる荷重値(各取得タイミングでの荷重値)が所定の設定値に到達したかどうかを判断する。所定の設定値は、部品検査ユニット90による電気特性の検査が可能となる値に、予め設定されている。ステップS54では、例えば、動作制御部112が、検査対象の電子部品Wを吸着している吸着部22の下降が昇降駆動部18により停止される。動作制御部112は、下降の停止後も、荷重検出部50から得られる荷重値が、所定の設定値に追従するように昇降駆動部18を制御してもよい。 Next, the controller 100 executes steps S53 and S54. In step S53, for example, the controller 100 determines whether the load value obtained from the load detection unit 50 (the load value at each acquisition timing) has reached a predetermined set value. The predetermined set value is set in advance to a value that enables inspection of electrical characteristics by the component inspection unit 90 . In step S<b>54 , for example, the operation control section 112 stops the lifting drive section 18 from lowering the suction section 22 sucking the electronic component W to be inspected. The operation control section 112 may control the elevation drive section 18 so that the load value obtained from the load detection section 50 follows a predetermined set value even after the descent is stopped.
 次に、コントローラ100は、ステップS55,S56を実行する。ステップS55では、例えば、コントローラ100が、部品検査ユニット90により電子部品Wの電極に電圧を印加し、測定子92から電気特性を示す情報を取得する。ステップS56では、例えば、荷重情報取得部114が、継続して取得している荷重検出部50による検出値のデータから、ステップS52の開始時点からステップS55の終了時点までの検出値のデータを抽出することで、上記時系列データを取得する。すなわち、荷重情報取得部114は、検査対象の電子部品Wの下降を開始した時点から、電気特性を示す情報の取得が終了した時点までの期間における荷重検出部50による検出値の時間変化を示す時系列データを取得する。 Next, the controller 100 executes steps S55 and S56. In step S<b>55 , for example, the controller 100 applies a voltage to the electrodes of the electronic component W using the component inspection unit 90 and acquires information indicating electrical characteristics from the stylus 92 . In step S56, for example, the load information acquisition unit 114 extracts data of detection values from the start of step S52 to the end of step S55 from the data of detection values continuously acquired by the load detection unit 50. By doing so, the above time-series data is obtained. That is, the load information acquisition unit 114 indicates the time change in the value detected by the load detection unit 50 during the period from the time when the electronic component W to be inspected starts to descend to the time when the acquisition of the information indicating the electrical characteristics ends. Get time series data.
 次に、コントローラ100は、ステップS17と同様に、ステップS57を実行する。ステップS57において、検査対象の電子部品Wに対する接触異常が検知された場合(ステップS57:YES)、コントローラ100は、ステップS18,S19と同様に、ステップS58,S59を実行する。コントローラ100は、電気特性を示す情報が異常を示す場合においても、ステップS58,S59を実行してもよい。 Next, the controller 100 executes step S57 in the same manner as step S17. In step S57, when the contact abnormality with respect to the electronic component W to be inspected is detected (step S57: YES), the controller 100 executes steps S58 and S59 in the same manner as steps S18 and S19. The controller 100 may execute steps S58 and S59 even when the information indicating the electrical characteristics indicates an abnormality.
 電子部品Wを検査する際の異常接触としては、例えば、吸着部22Aによって吸着された検査対象の電子部品Wの姿勢が基準状態からずれていることに起因して、電子部品Wが正常時と異なる反力を測定子92から受けることが考えられる。 As for the abnormal contact when inspecting the electronic component W, for example, the posture of the electronic component W to be inspected sucked by the sucking unit 22A deviates from the standard state, and the electronic component W is different from the normal state. It is conceivable that different reaction forces are received from the stylus 92 .
(変形例)
 部品検査ユニット90は、電気特性以外の特性を検査する処理ユニットであってもよい。部品検査ユニット90は、例えば、電子部品Wの発光面を発光させることで、光学特性を検査する処理ユニットであってもよい。
(Modification)
The component inspection unit 90 may be a processing unit that inspects properties other than electrical properties. The component inspection unit 90 may be, for example, a processing unit that inspects optical characteristics by causing the light emitting surface of the electronic component W to emit light.
 第4実施形態に係る処理装置1Cにおいても、電子部品Wに対する接触の異常を精度良く検知することができる。従って、電子部品Wの信頼性の向上に有用である。第4実施形態に係る処理装置1Cにおいて、上記第1実施形態及びその変形例において説明した内容の一部が適用されてもよい。 Also in the processing device 1C according to the fourth embodiment, it is possible to detect an abnormality in contact with the electronic component W with high accuracy. Therefore, it is useful for improving the reliability of the electronic component W. A part of the contents described in the first embodiment and its modification may be applied to the processing apparatus 1C according to the fourth embodiment.
 以上、いつかの実施形態について説明したが、本開示は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。上述した各実施形態についての説明内容は、互いに適用できる。例えば、電子部品の処理装置は、複数の処理領域それぞれにおいて、電子部品Wに加わる荷重を検出し、電子部品Wに対する接触の異常を検知してもよい。電子部品の処理装置は、処理領域ごとに機械学習により構築された判定モデルを用いて、処理領域ごとに電子部品Wに対する接触の異常を検知してもよい。 Although several embodiments have been described above, the present disclosure is not necessarily limited to the above-described embodiments, and various modifications are possible without departing from the gist thereof. The contents of the description of each embodiment described above can be applied to each other. For example, the electronic component processing apparatus may detect a load applied to the electronic component W in each of the plurality of processing areas, and detect abnormal contact with the electronic component W. FIG. The electronic component processing apparatus may detect an abnormality in contact with the electronic component W for each processing area using a judgment model constructed by machine learning for each processing area.
 本出願は、2021年8月24日出願の日本特許出願(特願2021-136339)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-136339) filed on August 24, 2021, the content of which is incorporated herein by reference.
 1,1A,1B,1C…電子部品の処理装置、W…電子部品、2,2A,2B…搬送処理部、10,10A,10B,10C…回転搬送ユニット、12,12A…支持部、CR,CR1,CR2…円軌道、14,14A…部品保持部、16,16A…回転駆動部、18…昇降駆動部、18A…進退駆動部、50…荷重検出部、100…コントローラ。 1, 1A, 1B, 1C... Electronic parts processing apparatus, W... Electronic parts, 2, 2A, 2B... Transfer processing unit, 10, 10A, 10B, 10C... Rotary transfer unit, 12, 12A... Support part, CR, CR1, CR2 Circular orbit 14, 14A Component holding unit 16, 16A Rotation drive unit 18 Elevation drive unit 18A Retraction drive unit 50 Load detection unit 100 Controller.

Claims (6)

  1.  電子部品を保持するように構成された部品保持部と、前記電子部品に対して所定の処理を実行するための処理領域を通る円軌道に位置するように前記部品保持部を支持する支持部と、前記円軌道の中心軸まわりに前記支持部を回転させるように構成された回転駆動部と、前記処理領域において前記部品保持部を変位させるように構成された変位駆動部とを有する搬送処理部と、
     前記処理領域において前記変位駆動部が前記部品保持部を変位させた際に、前記電子部品に加わる荷重を検出するように構成された荷重検出部と、
     前記部品保持部を変位させた際の第1タイミングから第2タイミングまでの前記荷重検出部による検出値の推移に基づいて、前記電子部品に対する接触の異常を検知するように構成されたコントローラと、を備える電子部品の処理装置。
    a component holding portion configured to hold an electronic component; and a support portion supporting the component holding portion so as to be positioned on a circular orbit passing through a processing area for performing a predetermined process on the electronic component. and a transfer processing unit comprising a rotation drive unit configured to rotate the support unit around the central axis of the circular orbit, and a displacement drive unit configured to displace the component holding unit in the processing area. and,
    a load detection unit configured to detect a load applied to the electronic component when the displacement drive unit displaces the component holding unit in the processing area;
    a controller configured to detect an abnormality in contact with the electronic component based on transition of the detection value by the load detection unit from a first timing to a second timing when the component holding unit is displaced; An electronic component processing apparatus comprising:
  2.  前記コントローラは、
      前記電子部品を含む複数の電子部品に対して、前記処理領域における前記所定の処理を順に行うように前記搬送処理部を制御し、
      前記電子部品に対する接触の異常を検知した場合に、前記搬送処理部による動作を停止させる、請求項1に記載の処理装置。
    The controller is
    controlling the transport processing unit to sequentially perform the predetermined processing in the processing area on a plurality of electronic components including the electronic component;
    2. The processing apparatus according to claim 1, wherein an operation of said transport processing unit is stopped when an abnormality in contact with said electronic component is detected.
  3.  前記コントローラは、少なくとも前記第1タイミングと前記第2タイミングとを含む期間における前記荷重検出部による検出値の推移を示す時系列データに基づいて、前記電子部品に対する接触の異常を検知するように構成されている、請求項1又は2に記載の処理装置。 The controller is configured to detect an abnormality in contact with the electronic component based on time-series data indicating changes in values detected by the load detection unit during a period including at least the first timing and the second timing. 3. The processing apparatus according to claim 1 or 2, wherein a
  4.  前記コントローラは、前記荷重検出部から取得した前記時系列データと、前記時系列データの入力に応じて前記電子部品に対する接触が異常である否かの判定結果を出力するように機械学習により構築された判定モデルとに基づいて、前記電子部品に対する接触の異常を検知するように構成されている、請求項3に記載の処理装置。 The controller is constructed by machine learning so as to output the time-series data obtained from the load detection unit and a determination result as to whether or not the contact with the electronic component is abnormal according to the input of the time-series data. 4. The processing apparatus according to claim 3, configured to detect an abnormality in contact with said electronic component based on said judgment model.
  5.  前記コントローラは、
      複数の部品種別と複数の判定モデルとが対応付けられたデータベースと、前記電子部品の部品種別とに基づいて、前記複数の判定モデルの中から前記判定モデルを選択することと、
      前記荷重検出部から取得した前記時系列データと、前記電子部品に対応する前記判定モデルとに基づいて、前記電子部品に対する接触の異常を検知することと、を実行するように構成されている、請求項4に記載の処理装置。
    The controller is
    selecting the determination model from among the plurality of determination models based on a database in which a plurality of component types and a plurality of determination models are associated with each other and the component type of the electronic component;
    Detecting an abnormality in contact with the electronic component based on the time-series data acquired from the load detection unit and the determination model corresponding to the electronic component, 5. The processing apparatus according to claim 4.
  6.  前記変位駆動部は、前記部品保持部に外力を加えることで前記部品保持部を変位させるように構成されており、
     前記荷重検出部は、前記変位駆動部に設けられている、請求項3~5のいずれか一項に記載の処理装置。
    The displacement driving section is configured to displace the component holding section by applying an external force to the component holding section,
    The processing device according to any one of claims 3 to 5, wherein the load detection section is provided in the displacement drive section.
PCT/JP2022/030102 2021-08-24 2022-08-05 Electronic component processing device WO2023026823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-136339 2021-08-24
JP2021136339A JP7089810B1 (en) 2021-08-24 2021-08-24 Electronic component processing equipment

Publications (1)

Publication Number Publication Date
WO2023026823A1 true WO2023026823A1 (en) 2023-03-02

Family

ID=82116111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030102 WO2023026823A1 (en) 2021-08-24 2022-08-05 Electronic component processing device

Country Status (2)

Country Link
JP (1) JP7089810B1 (en)
WO (1) WO2023026823A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251721B1 (en) * 2022-12-26 2023-04-04 上野精機株式会社 Parts processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136950A (en) * 2007-12-04 2009-06-25 Ueno Seiki Kk Holding means driving device, method of controlling the same, and control program
JP2012148807A (en) * 2011-01-20 2012-08-09 Hitachi High-Tech Instruments Co Ltd Taping apparatus and taping method
WO2015151896A1 (en) * 2014-04-04 2015-10-08 上野精機株式会社 Housing unit and electronic component conveyance device
JP2018092428A (en) * 2016-12-05 2018-06-14 ファナック株式会社 Machine tool and machine learning apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136950A (en) * 2007-12-04 2009-06-25 Ueno Seiki Kk Holding means driving device, method of controlling the same, and control program
JP2012148807A (en) * 2011-01-20 2012-08-09 Hitachi High-Tech Instruments Co Ltd Taping apparatus and taping method
WO2015151896A1 (en) * 2014-04-04 2015-10-08 上野精機株式会社 Housing unit and electronic component conveyance device
JP2018092428A (en) * 2016-12-05 2018-06-14 ファナック株式会社 Machine tool and machine learning apparatus

Also Published As

Publication number Publication date
JP7089810B1 (en) 2022-06-23
JP2023030917A (en) 2023-03-08

Similar Documents

Publication Publication Date Title
TWI655445B (en) Handler and part inspection apparatus
US10934032B2 (en) Dispensing canisters for packaging oral solid pharmaceuticals via robotic technology according to patient prescription data
US11376792B2 (en) Robotic additive manufacturing system
US8215540B2 (en) Automated label verify systems and methods for dispensing pharmaceuticals
CA2966186C (en) Automatically verifying packaging of solid pharmaceuticals via robotic technology
WO2023026823A1 (en) Electronic component processing device
AU2009202369A1 (en) System for labelling bags
WO2019167921A1 (en) Container feeding device
JP5765864B2 (en) Electronic component transfer device and taping unit
JP6372911B2 (en) Electronic component posture correction apparatus and electronic component posture correction method for IC handler
KR101812677B1 (en) System and method for flexible high speed transfer of semiconductor components
US20210402441A1 (en) Automated Systems For Use In Sorting Small Objects, And Related Methods
US4519867A (en) Apparatus for automated assembly of shock detectors
TWI738065B (en) Electronic component conveying device and electronic component inspection device
CN115382774A (en) Automatic abnormal material discharging device with checking function and automatic equipment
EP3848294A1 (en) System for dispensing solid pharmaceuticals via robotic technology and corresponding method
JP5462136B2 (en) Sample pretreatment equipment
JP7446029B1 (en) Parts inspection equipment
JPH11103849A (en) Automatic disk arrangement system
CN104425314B (en) Component handler
JP2904523B2 (en) Pallet for cosmetic compact assembly
EP4101544A1 (en) Centrifugal separation apparatus and centrifugal separation method
CN115158734A (en) Equipment abnormal action monitoring system and automation equipment
CN115342721A (en) Equipment track action induction system and automation equipment
JPH0852627A (en) Part assembly device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE