WO2019167921A1 - Container feeding device - Google Patents

Container feeding device Download PDF

Info

Publication number
WO2019167921A1
WO2019167921A1 PCT/JP2019/007211 JP2019007211W WO2019167921A1 WO 2019167921 A1 WO2019167921 A1 WO 2019167921A1 JP 2019007211 W JP2019007211 W JP 2019007211W WO 2019167921 A1 WO2019167921 A1 WO 2019167921A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
support
edge
posture
containers
Prior art date
Application number
PCT/JP2019/007211
Other languages
French (fr)
Japanese (ja)
Inventor
和範 平田
将司 三澤
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2019167921A1 publication Critical patent/WO2019167921A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/42Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation
    • B65B43/44Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation from supply magazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G59/00De-stacking of articles
    • B65G59/06De-stacking from the bottom of the stack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G59/00De-stacking of articles
    • B65G59/10De-stacking nested articles

Definitions

  • the present invention relates to a container supply device.
  • Patent Document 1 a container supply apparatus that supplies containers one by one from the lowest container among a plurality of containers stacked up and down is known (see, for example, Patent Document 1 and Patent Document 2).
  • the edge of the lowermost cup supported by being in contact with the upper surface of the rotating body fits into a groove formed in the rotating body as the rotating body rotates. And descend. This separates the lowest cup from the cup assembly.
  • the cup delivery device described in Patent Document 2 has a cup delivery cam having a taper formed on the side surface, and the edge of the lowest cup is supported by the taper. Rotates as a fulcrum Thereby, the support by the taper is released, and the lowest cup is separated from the cup assembly.
  • the edge of the lowest container supported and supported by the rotating body descends along the groove or taper formed in the rotating body by the rotation of the rotating body, and the lowest container is the container. Separated from the collection of For this reason, when the edge of the lowest container does not rest on the rotating body, there may occur a case where the lowermost container is not separated even if the rotating body operates.
  • the edge of the lowest container does not rest on the rotating body, there may occur a case where the lowermost container is not separated even if the rotating body operates.
  • work efficiency is reduced. This is a common problem when not only the lowest container but also two or more containers are separated from the bottom.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to reliably take out containers sequentially from the bottom from an assembly of a plurality of rimmed containers stacked in multiple stages in the vertical direction.
  • a container supply device holds n aggregates (n is A container supply device that separates and supplies a predetermined number of containers to a predetermined position, and includes a base, an edge of the lowest container, and an edge of the n + 1th container from the bottom A first position having a shape that can be inserted between the first position and a second position that can support the edge of the (n + 1) th container from below, and a second position that releases the support; A first support portion and a second posture provided on the base portion and configured to operate between a first posture capable of supporting an edge of the lowest container from below and a second posture releasing the support.
  • a push-down portion having a shape that can be inserted between the edges of the container, and configured to be able to push down the edge of the nth container from below, the first support portion, the second support portion, and A controller for controlling the operation of the push-down unit, wherein the control unit supports the edge of the n + 1th container from the bottom with the first support unit taking the first posture, and the first unit 2
  • the support portion takes the first posture and changes the posture of the second support portion to the second posture from the state where the edge of the lowest container is supported, and the push-down portion causes the edge of the nth container By pushing down from above, the operations of the first support part, the second support part, and the push-down part are controlled so as to drop n containers from the assembly.
  • the support by the second support part is performed. Release and push the edge of the lowest (first from the bottom) container down from above. Thereby, since the lowest container falls from the aggregate
  • the control unit drops the n containers from the assembly by pushing down the edge of the nth container from above by the push-down unit, and then moves the second support unit to the first posture.
  • the first support portion and the second support portion operate so as to drop the aggregate by n steps by changing the posture to the second posture and changing the posture of the first support portion to the second posture. May be controlled.
  • the predetermined position is on the transport path of a transport device that transports a container in a transport direction along the transport path, and the container supply device has the base attached to a wrist, and the base is
  • the robot further includes a robot arm that can be moved in the transport direction of the transport device.
  • the operation of the robot arm is controlled by the control unit, and the control unit determines whether the n containers that have dropped on the transport path are predetermined. You may make it control operation
  • the present invention has the above-described configuration, and can reliably take out the containers in order from the bottom from the assembly of a plurality of edged containers stacked in multiple stages in the vertical direction.
  • FIG. 1 is a diagram showing an overall configuration of a container supply device according to an embodiment of the present invention.
  • FIG. 2 is a front view schematically showing an example of the overall configuration of the robot shown in FIG.
  • FIG. 3 is a diagram showing the configuration of the end effector of the left arm of FIG.
  • FIG. 4 is a perspective view showing the configuration of the end effector of the right arm of FIG.
  • FIG. 5 is a functional block diagram schematically showing the configuration of the control device.
  • FIG. 6 is a first explanatory diagram showing an example of the operation of the container supply device.
  • FIG. 7 is a second explanatory diagram showing an example of the operation of the container supply device.
  • FIG. 1 is a diagram showing an overall configuration of a container supply device 1 according to an embodiment of the present invention.
  • the container supply apparatus 1 is introduced into a food production site or the like, for example.
  • the robot 11 is a double-arm robot including a pair of robot arms (hereinafter also simply referred to as “arms”) 13 and 13 supported by a base 12.
  • the container supply apparatus 1 is not limited to the case where it is configured by the robot 11.
  • a horizontal articulated double-arm robot will be described, but a vertical articulated double-arm robot can be used.
  • the robot 11 can be installed in a limited space (for example, 610 mm ⁇ 620 mm) corresponding to one person.
  • a limited space for example, 610 mm ⁇ 620 mm
  • the direction in which the pair of arms are spread is referred to as the left-right direction
  • the direction parallel to the axis of the base shaft is referred to as the up-down direction
  • the direction orthogonal to the left-right direction and the up-down direction is referred to as the front-rear direction.
  • a table 80 is arranged on the left side of the robot 11.
  • a container placing table 82 for placing the container 41 is disposed on the table 80.
  • the container 41 is, for example, a reverse frustoconical cup container.
  • the container 41 is made of thin paper or synthetic resin.
  • the container 41 is placed on the container mounting table 82 in a state where it is stacked in multiple stages in the vertical direction (hereinafter also simply referred to as “aggregate 40”).
  • a transfer device 50 is disposed in front of the robot 11.
  • the transport device 50 is a belt conveyor that transports the containers 41 supplied by the robot 11 in the transport direction along the transport path 51 (from left to right in the figure).
  • the conveyance path 51 of this embodiment is formed in a straight line.
  • a passage sensor 90 is provided in the transport path 51.
  • the passage sensor 90 is configured to detect that the container 41 has passed the detection position on the transport path 51 and output a detection signal to the robot controller of the robot 11.
  • the passage sensor 90 is a photoelectric sensor including a light projecting unit provided on one side wall of the conveyance path 51 and a light receiving unit provided on the other side wall.
  • a filling device 60 is disposed on the front side of the transport device 50.
  • the filling device 60 is configured to fill a liquid food material (for example, soup) from a filling nozzle 61 into a container 41 conveyed on the conveyance path 51.
  • the filling nozzle 61 is configured to be rotatable in the transport direction (right direction in the drawing) along the movement of the container 41 after filling in order to prevent dripping.
  • a table 81 is arranged on the right side of the robot 11.
  • a measuring instrument 70 is disposed on the table 81.
  • the scale 70 is used for measuring the weight of the container 41 filled with soup.
  • the robot 11 holds the assembly 40 of the containers 41 placed on the container mounting table 82 on the table 80, and conveys the lowest container 41 while holding the assembly 40.
  • the materials are sequentially supplied onto the conveyance path 51 of the apparatus 50, and the container 41 on the conveyance path 51 is filled with ingredients such as soup by the filling apparatus 60.
  • the robot 11 places the container 41 filled with soup on the weighing table of the weighing instrument 70.
  • the weighing operation of the container 41 is performed by the operator visually reading the value of the weighing instrument 70.
  • the work area of the robot 11 is an area that covers a part of the table 80 on which the container table 82 is arranged, the table 81 on which the weighing instrument 70 is arranged, and a conveyance path 51 of the conveyance device 50.
  • FIG. 2 is a front view schematically showing the overall configuration of an example of the robot 11.
  • the robot 11 includes a base 12 fixed to the carriage, a pair of robot arms 13 and 13 supported by the base 12, and a control device 14 housed in the base 12.
  • Each arm 13 is a horizontal articulated robot arm configured to be movable with respect to the base 12, and includes an arm unit 15, a wrist unit 17, and end effectors 18 and 19.
  • the right arm 13 and the left arm 13 may have substantially the same structure. Further, the right arm 13 and the left arm 13 can operate independently or operate in association with each other.
  • the arm portion 15 is composed of a first link 15a and a second link 15b.
  • the first link 15 a is connected to a base shaft 16 fixed to the upper surface of the base 12 by a rotary joint J ⁇ b> 1 and is rotatable around a rotation axis L ⁇ b> 1 passing through the axis of the base shaft 16.
  • the second link 15b is connected to the distal end of the first link 15a by the rotary joint J2, and is rotatable around the rotation axis L2 defined at the distal end of the first link 15a.
  • the list unit 17 includes an elevating unit 17a and a rotating unit 17b.
  • the raising / lowering part 17a is connected with the front-end
  • the rotating part 17b is connected to the lower end of the elevating part 17a by the rotary joint J4, and can be rotated around the rotation axis L3 defined at the lower end of the elevating part 17a.
  • the end effectors 18 and 19 are connected to the rotating part 17b of the wrist part 17, respectively.
  • the end effector 18 is provided at the tip of the right arm 13, and the end effector 19 is provided at the tip of the left arm 13.
  • Each arm 13 having the above configuration has each joint J1 to J4.
  • the arm 13 is provided with a drive servomotor (not shown) and an encoder (not shown) for detecting the rotation angle of the servomotor so as to be associated with each joint J1 to J4. It has been.
  • the rotation axes L1 of the first links 15a and 15a of the two arms 13 and 13 are on the same straight line, and the first link 15a of one arm 13 and the first link 15a of the other arm 13 are up and down. It is arranged with a height difference.
  • FIG. 3A is a perspective view showing the configuration of the end effector 18.
  • FIG. 3B is a front view showing the end effector 18 holding the assembly 40 of the containers 41.
  • FIG. 3C is a plan view seen from the direction of the arrow in FIG.
  • the end effector 18 includes a base portion 20 including a rotating portion 17 b of the wrist portion (wrist portion) 17, a first support portion 21 and a second support portion 22 provided above and below the base portion 20, and a first support portion 21.
  • a third support portion 23 provided and a push-down portion 24 provided on the first support portion 21 are provided (see FIG. 3A).
  • the first support portion 21 has a pair of claws having a shape that can be inserted between the edge 40a of the lowest-order (first from the bottom) container 41 and the edge 40a of the second-most container 41 from the bottom.
  • the thickness of the first support portion 21 in the vertical direction is smaller than the size of the gap formed between the edges 41a of the containers 41 stacked vertically.
  • Each nail is curved inward along the outer periphery of the upper portion of the container 41 (see FIG. 3A).
  • These claws (21) are driven by a single actuator (for example, an air cylinder) provided on the base 20, and translate (left and right in the figure) so as to approach and separate from each other while maintaining parallelism.
  • the first support portion 21 is between a support posture (first posture) capable of supporting the edge 41a of the second container 41 from the bottom (first posture) and a release posture (second posture) for releasing the support. (See FIG. 3B).
  • the first support portion 21 and the second support portion 22 are provided with a gap in the vertical direction.
  • the vertical gap between the first support portion 21 and the second support portion 22 is larger than the edge 41a of the container 41 deposited vertically.
  • the second support part 22 is a pair of claws having the same shape as the pair of claws of the first support part 21. These claws (22) are driven by a single actuator (for example, an air cylinder) provided on the base 20, and translate (left and right in the figure) so as to approach and separate from each other while maintaining parallelism. Thereby, the 2nd support part 22 operate
  • a single actuator for example, an air cylinder
  • the third support portion 23 is provided on the upper surface of the first support portion 21 so as to protrude upward, and supports the side portion of the assembly 40 of the containers 41.
  • the 3rd support part 23 is four support
  • the push-down portion 24 is provided in the first support portion 21 and includes a tip portion 24a and a drive portion 24b that drives the tip portion 24a (see FIG. 3C).
  • the front end portion 24 a has a shape that can be inserted between the edge 41 a of the lowest container 41 and the edge 41 a of the second container 41 from the bottom at the same height as the first support portion 21.
  • the thickness in the vertical direction of the distal end portion 24a is smaller than the size of the gap formed between the edges 41a of the containers 41 deposited vertically.
  • the driving unit 24b has an actuator (for example, an air cylinder) inside, and is configured to drive the tip 24a up and down. Thereby, the front end portion 24 a can move downward with respect to the first support portion 21 from the reference position having the same height as the first support portion 21. Thereby, the edge 41a of the lowest container 41 can be pushed down from the top.
  • the end effector 18 is configured to be able to separate the lowest container 41 from the assembly 40 while holding the assembly 40 of containers 41.
  • FIG. 4 is a perspective view showing the configuration of the end effector 19 of the right arm 13.
  • the end effector 19 includes a base portion 30 including a rotating portion 17 b of a wrist portion (wrist portion) 17, and a grip portion 31 provided on the base portion 30.
  • the grip part 31 has a pair of claws. Each claw is curved inward along the outer periphery of the upper portion of the container 41.
  • These claws (31) are driven by a single actuator (for example, an air cylinder) provided on the base 30 and translate (left and right in the figure) so as to approach and separate from each other while maintaining parallelism.
  • a single actuator for example, an air cylinder
  • the gripping unit 31 can support the edge 41a of the container 41 arranged at a predetermined position (on the transport path 51 of the transport device 50) from below, and a release to release the support. It can operate between postures (second postures).
  • the end effector 19 is configured to hold the container 41 and move it to a predetermined position (on the weighing table of the weighing instrument 70 in FIG. 1).
  • FIG. 5 is a functional block diagram schematically showing the configuration of the control device 14 of the robot 11.
  • the control device 14 includes a calculation unit 14a such as a CPU, a storage unit 14b such as a ROM and a RAM, and a servo control unit 14c.
  • the control device 14 is a robot controller including a computer such as a microcontroller.
  • the control device 14 may be configured by a single control device 14 that performs centralized control, or may be configured by a plurality of control devices 14 that perform distributed control in cooperation with each other.
  • the storage unit 14b stores information such as a basic program as a robot controller and various fixed data.
  • the calculation unit 14a controls various operations of the robot 11 by reading and executing software such as a basic program stored in the storage unit 14b. That is, the arithmetic unit 14a generates a control command for the robot 11 and outputs it to the servo control unit 14c.
  • the servo control unit 14c is configured to control the driving of actuators such as servo motors corresponding to the joints J1 to J4 of each arm 13 of the robot 11 based on the control command generated by the calculation unit 14a.
  • the control device 14 controls the operation of the left robot arm 13 so that the end effector 18 holds the container assembly 40 placed on the container mounting table 82 on the left table 80. Then, the operation of the left robot arm 13 is controlled to move the assembly 40 of the containers 41 held by the end effector 18 onto the transport path 51 of the transport device 50 (see FIG. 6).
  • the control device 14 includes the first support portion 21 and the first support portion 21 so as to maintain the first support portion 21 and the second support portion 22 of the end effector 18 in the support posture.
  • the operation of the second support portion 22 is controlled.
  • the edge 41 a of the lowest container 41 is supported from below by the first support portion 21.
  • the side portions of the assembly 40 of the containers 41 are supported from four directions by the third support portion 23.
  • the control device 14 changes the posture of the first support portion 21 that supports the edge 41a of the lowermost container 41 from the bottom to the release posture, and the second support portion.
  • the operation of the first support portion 21 and the second support portion 22 is controlled so as to maintain 22 in the support posture.
  • the assembly 40 falls by one step, and the edge 41 a of the lowest container 41 is supported from below by the second support portion 22.
  • the control device 14 controls the operation of the first support portion 21 in the end effector 18 so that the first support portion 21 changes its posture from the release posture to the support posture. .
  • the 2nd support part 22 which supports the edge 41a of the lowest container 41 is maintained in a support posture.
  • the first support portion 21 supports the edge 41a of the second container 41 from the bottom, and the second support portion 22 supports the edge 41a of the lowest container 41.
  • the control device 14 supports the edge 41 a of the second container 41 from the bottom in the first effector 18 in the end effector 18, and From the state in which the second support portion 22 takes the support posture and the edge 41a of the lowest container 41 is supported, the second support portion 22 is changed to the release posture, and the push-down portion 24 causes the lowermost container 41 to The operations of the first support portion 21, the second support portion 22, and the push-down portion 24 are controlled so as to push the edge 41a downward from above. Thereby, the lowest container 41 can be dropped from the assembly 40 onto the transport path 51 of the transport device 50.
  • the control device 14 changes the posture of the first support portion 21 that supports the edge 41 a of the next lowest container 41 from below to the release posture, and the second support portion 22.
  • the first support portion 21 and the second support portion 22 are controlled in the support posture, and the operations of the first support portion 21 and the second support portion 22 are controlled.
  • the aggregate 40 drops by one stage, and the edge 41a of the next lowest container 41 is supported from below by the second support portion 22. Thereafter, the next lowest container 41 can be dropped by repeating the operations described in FIGS. 7C and 7D.
  • the control device 14 sequentially drops the lowest container 41 from the assembly 40 so that the dropped containers 41 are arranged at predetermined intervals on the conveyance path 51 of the conveyance device 50.
  • the operations of the left robot arm 13, the first support portion 21, the second support portion 22, and the push-down portion 24 are controlled (see FIG. 1).
  • the filling device 60 fills the container 41 on the transport path 51 with ingredients such as soup.
  • the control device 14 controls the operation of the right robot arm 13 according to the detection signal from the passage sensor 90 and holds the container 41 filled with soup by the end effector 19.
  • the container 41 held by the end effector 19 is placed on the weighing table of the weighing instrument 70.
  • the operator measures the container 41 and ships the container 41 that satisfies the standard.
  • the container supply apparatus 1 of this embodiment was comprised so that the lowest container (1st from the bottom) container 41 might be isolate
  • n 2nd support part 22
  • control device 14 supports the second support portion 22 after dropping the n containers from the assembly 40 by pressing the edge 41a of the nth container 41 downward from above by the push-down portion 24.
  • the control device 14 also includes the robot arm 13, the first support unit 21, the second support unit 22, and the push-down unit so that the n containers 41 dropped on the transfer route 51 are arranged on the transfer route 51 at predetermined intervals. You may make it control 24 operation
  • the conveyance path 51 of the conveyance apparatus 50 was formed in linear form, the conveyance path 51 may be a circulation type conveyance path which has a folding
  • the weighing operation of the container 41 is performed by an operator (see FIG. 1), but the weighing operation may be automated by the robot 11.
  • the robot 11 may be configured to include a weighing unit at the tip of the right arm 13 and to measure the weight of the container 41 by the weighing unit in a state where the container 41 is gripped by the end effector 19.
  • the present invention is useful in the field of food production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • De-Stacking Of Articles (AREA)

Abstract

The present invention is a container feeding device for, while holding an aggregate of a plurality of containers that have edges and that are vertically stacked on multiple stages, separating n (n is natural number of 1 or higher) containers from the aggregate so as to feed the containers to prescribed positions. This container feeding device is provided with: a base; a first support part; a second support part; and a control unit. The control unit controls operations of the first support, the second support, and a press-down part so that the first support supports the edge of the (n+1)th container from the bottom by taking a first attitude, the second support changes the attitude thereof to a second attitude from a state where the second support supports the edge of the lowest container by taking the first attitude, and the press-down part presses down the edge of the n-th container so as to cause the n containers to drop from the aggregate.

Description

容器供給装置Container supply device
 本発明は、容器供給装置に関する。 The present invention relates to a container supply device.
 従来、上下に堆積された複数個の容器のうち、最下位の容器から順に1つずつ容器を供給する容器供給装置が知られている(例えば特許文献1及び特許文献2参照)。特許文献1に記載のカップ式自動販売機では、回動体の上面に当接して支えられる最下位のカップの縁が、回動体の回動に伴い、当該回動体に形成された溝に嵌まり込んで下降する。これにより、最下位のカップがカップの集合体から分離される。 2. Description of the Related Art Conventionally, a container supply apparatus that supplies containers one by one from the lowest container among a plurality of containers stacked up and down is known (see, for example, Patent Document 1 and Patent Document 2). In the cup-type vending machine described in Patent Document 1, the edge of the lowermost cup supported by being in contact with the upper surface of the rotating body fits into a groove formed in the rotating body as the rotating body rotates. And descend. This separates the lowest cup from the cup assembly.
 また、特許文献2に記載のカップ送出装置は、側面にテーパが形成されたカップ送出カムを有し、当該テーパによって最下位カップの縁が支持され、モータの駆動によって、カップ送出カムが軸を支点として回転する。これにより、テーパによる支持が解除され、最下位のカップがカップの集合体から分離される。 In addition, the cup delivery device described in Patent Document 2 has a cup delivery cam having a taper formed on the side surface, and the edge of the lowest cup is supported by the taper. Rotates as a fulcrum Thereby, the support by the taper is released, and the lowest cup is separated from the cup assembly.
特開平6-28573号公報JP-A-6-28573 実開平6-27771号公報Japanese Utility Model Publication No. 6-27771
 しかし、上記従来技術では、回転体によって当接して支えられた最下位の容器の縁が当該回動体の回転によって回動体に形成された溝やテーパに沿って下降し、最下位の容器が容器の集合体から分離される。このため、最下位の容器の縁が回転体の上に載らない場合は、回動体が動作しても、最下部の容器が分離されないケースが起こり得る。その結果、例えば食品の製造現場において、搬送装置に空の容器を順番に供給しながらスープなどの具材を容器に充填する作業を行う場合、作業効率が低下してしまうという課題があった。このことは最下位の容器だけでなく、下から2以上の容器を分離する場合に共通する課題である。 However, in the above prior art, the edge of the lowest container supported and supported by the rotating body descends along the groove or taper formed in the rotating body by the rotation of the rotating body, and the lowest container is the container. Separated from the collection of For this reason, when the edge of the lowest container does not rest on the rotating body, there may occur a case where the lowermost container is not separated even if the rotating body operates. As a result, for example, when an operation is performed to fill containers with ingredients such as soup while sequentially supplying empty containers to the transport apparatus at a food manufacturing site, there is a problem that work efficiency is reduced. This is a common problem when not only the lowest container but also two or more containers are separated from the bottom.
 本発明は上記のような課題を解決するためになされたもので、上下に多段に堆積された複数個の縁付きの容器の集合体から、容器を下から順に確実に取り出すことを目的とする。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to reliably take out containers sequentially from the bottom from an assembly of a plurality of rimmed containers stacked in multiple stages in the vertical direction.
 上記目的を達成するために、本発明のある形態に係る容器供給装置は、上下に多段に堆積された複数個の縁付きの容器の集合体を保持しながら、当該集合体からn個(nは1以上の自然数)の容器を分離させて所定の位置に供給する容器供給装置であって、基部と、前記基部に設けられ、前記最下位の容器の縁と下からn+1番目の容器の縁の間に挿入可能な形状を有し、下から前記n+1番目の容器の縁を下から支持可能な第1姿勢と、その支持を解放する第2姿勢との間で動作するように構成された第1支持部と、前記基部に設けられ、前記最下位の容器の縁を下から支持可能な第1姿勢と、その支持を解放する第2姿勢との間で動作するように構成された第2支持部と、前記基部に設けられ、前記最下位の容器の縁と下からn+1番目の容器の縁の間に挿入可能な形状を有し、下から前記n番目の容器の縁を上から押し下げ可能に構成された押し下げ部と、前記第1支持部、前記第2支持部、及び、前記押し下げ部の動作を制御する制御部と、を備え、前記制御部は、前記第1支持部が第1姿勢をとって前記下からn+1番目の容器の縁を支持し、かつ、前記第2支持部が第1姿勢をとって前記最下位の容器の縁の支持した状態から、前記第2支持部を第2姿勢に姿勢変化させ、かつ、前記押し下げ部により前記n番目の容器の縁を上方から下方に押下げることにより、前記集合体からn個の容器を落下させるように前記第1支持部、前記第2支持部、及び、前記押し下げ部の動作を制御する。 In order to achieve the above object, a container supply device according to an aspect of the present invention holds n aggregates (n is A container supply device that separates and supplies a predetermined number of containers to a predetermined position, and includes a base, an edge of the lowest container, and an edge of the n + 1th container from the bottom A first position having a shape that can be inserted between the first position and a second position that can support the edge of the (n + 1) th container from below, and a second position that releases the support; A first support portion and a second posture provided on the base portion and configured to operate between a first posture capable of supporting an edge of the lowest container from below and a second posture releasing the support. N + 1 from the bottom and the bottom edge of the lowermost container provided on the support and the base A push-down portion having a shape that can be inserted between the edges of the container, and configured to be able to push down the edge of the nth container from below, the first support portion, the second support portion, and A controller for controlling the operation of the push-down unit, wherein the control unit supports the edge of the n + 1th container from the bottom with the first support unit taking the first posture, and the first unit 2 The support portion takes the first posture and changes the posture of the second support portion to the second posture from the state where the edge of the lowest container is supported, and the push-down portion causes the edge of the nth container By pushing down from above, the operations of the first support part, the second support part, and the push-down part are controlled so as to drop n containers from the assembly.
 上記構成によれば、第1支持部により例えば下から2番目の容器の縁を支持し、かつ、第2支持部により最下位の容器の縁の支持した状態から、第2支持部による支持を解放させ、かつ、最下位(下から1番目)の容器の縁を上方から下方に押下げる。これにより、上下に多段に堆積された複数個の縁付きの容器の集合体から、最下位の容器が落下するので、容器を下から順に確実に取り出すことができる。 According to the above configuration, for example, from the state in which the edge of the second container from the bottom is supported by the first support part and the edge of the lowest container is supported by the second support part, the support by the second support part is performed. Release and push the edge of the lowest (first from the bottom) container down from above. Thereby, since the lowest container falls from the aggregate | assembly of the several edged container accumulated in multiple steps up and down, a container can be reliably taken out in order from the bottom.
 前記制御部は、前記押し下げ部により前記n番目の容器の縁を上方から下方に押下げることにより、前記集合体から前記n個の容器を落下させた後、前記第2支持部を第1姿勢に姿勢変化させ、かつ、前記第1支持部を第2姿勢に姿勢変化させることにより、前記集合体をn段分だけ落下させるように前記第1支持部、及び、前記第2支持部の動作を制御するようにしてもよい。 The control unit drops the n containers from the assembly by pushing down the edge of the nth container from above by the push-down unit, and then moves the second support unit to the first posture. The first support portion and the second support portion operate so as to drop the aggregate by n steps by changing the posture to the second posture and changing the posture of the first support portion to the second posture. May be controlled.
 また、前記所定の位置は、搬送経路に沿った搬送方向に容器を搬送する搬送装置の前記搬送経路上であって、上記容器供給装置が、手首部に前記基部が取り付けられ、前記基部を、前記搬送装置の搬送方向に移動させることができるロボットアームを更に備え、 前記ロボットアームの動作は前記制御部によって制御され、前記制御部は、前記搬送経路上に落下した前記n個の容器が所定間隔で前記搬送経路上に並ぶように、前記ロボットアーム、前記第1支持部、前記第2支持部及び前記押し下げ部の動作を制御するようにしてもよい。 Further, the predetermined position is on the transport path of a transport device that transports a container in a transport direction along the transport path, and the container supply device has the base attached to a wrist, and the base is The robot further includes a robot arm that can be moved in the transport direction of the transport device. The operation of the robot arm is controlled by the control unit, and the control unit determines whether the n containers that have dropped on the transport path are predetermined. You may make it control operation | movement of the said robot arm, the said 1st support part, the said 2nd support part, and the said pushing-down part so that it may rank on the said conveyance path | route at intervals.
 本発明は、以上に説明した構成を有し、上下に多段に堆積された複数個の縁付きの容器の集合体から、容器を下から順に確実に取り出すことができる。 The present invention has the above-described configuration, and can reliably take out the containers in order from the bottom from the assembly of a plurality of edged containers stacked in multiple stages in the vertical direction.
図1は、本発明の一実施形態に係る容器供給装置の全体の構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a container supply device according to an embodiment of the present invention. 図2は、図1のロボットの全体的な構成の一例を概略的に示す正面図である。FIG. 2 is a front view schematically showing an example of the overall configuration of the robot shown in FIG. 図3は、図1の左アームのエンドエフェクタの構成を示した図である。FIG. 3 is a diagram showing the configuration of the end effector of the left arm of FIG. 図4は、図1の右アームのエンドエフェクタの構成を示した斜視図である。FIG. 4 is a perspective view showing the configuration of the end effector of the right arm of FIG. 図5は、制御装置の構成を概略的に示す機能ブロック図である。FIG. 5 is a functional block diagram schematically showing the configuration of the control device. 図6は、容器供給装置の動作の一例を示した第1の説明図である。FIG. 6 is a first explanatory diagram showing an example of the operation of the container supply device. 図7は、容器供給装置の動作の一例を示した第2の説明図である。FIG. 7 is a second explanatory diagram showing an example of the operation of the container supply device.
 以下、好ましい実施形態を、図面を参照しながら説明する。なお、以下では全ての図面を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したものである。 Hereinafter, preferred embodiments will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted. Further, the drawings schematically show each component for easy understanding.
 図1は、本発明の一実施形態に係る容器供給装置1の全体の構成を示す図である。図1に示すように、容器供給装置1は、例えば食品の製造現場等に導入される。本実施形態ではロボット11により本発明に係る容器供給装置1を構成した場合について説明する。ロボット11は、ベース12に支持された一対のロボットアーム(以下、単に「アーム」ともいう)13,13を備えた双腕ロボットである。ただし、容器供給装置1はロボット11により構成される場合に限定されない。なお、このロボット11について、水平多関節型の双腕ロボットを説明するが、垂直多関節型の双腕ロボットを採用することができる。ロボット11は、人一人分に相当する限られたスペース(例えば610mm×620mm)に設置することができる。以下では、一対のアームを広げた方向を左右方向と称し、基軸の軸心に平行な方向を上下方向と称し、左右方向および上下方向に直交する方向を前後方向と称する。 FIG. 1 is a diagram showing an overall configuration of a container supply device 1 according to an embodiment of the present invention. As shown in FIG. 1, the container supply apparatus 1 is introduced into a food production site or the like, for example. In this embodiment, the case where the container 11 is configured by the robot 11 will be described. The robot 11 is a double-arm robot including a pair of robot arms (hereinafter also simply referred to as “arms”) 13 and 13 supported by a base 12. However, the container supply apparatus 1 is not limited to the case where it is configured by the robot 11. As the robot 11, a horizontal articulated double-arm robot will be described, but a vertical articulated double-arm robot can be used. The robot 11 can be installed in a limited space (for example, 610 mm × 620 mm) corresponding to one person. Hereinafter, the direction in which the pair of arms are spread is referred to as the left-right direction, the direction parallel to the axis of the base shaft is referred to as the up-down direction, and the direction orthogonal to the left-right direction and the up-down direction is referred to as the front-rear direction.
 ロボット11の左側方にはテーブル80が配置されている。テーブル80上には容器41を載置するための容器置台82が配置されている。容器41は例えば逆截頭円錐型のカップ容器である。容器41は薄い紙又は合成樹脂等で形成される。容器41は上下に多段に堆積された状態(以下、単に「集合体40」ともいう)で容器置台82に載置される。 A table 80 is arranged on the left side of the robot 11. On the table 80, a container placing table 82 for placing the container 41 is disposed. The container 41 is, for example, a reverse frustoconical cup container. The container 41 is made of thin paper or synthetic resin. The container 41 is placed on the container mounting table 82 in a state where it is stacked in multiple stages in the vertical direction (hereinafter also simply referred to as “aggregate 40”).
 ロボット11の正面には搬送装置50が配置される。搬送装置50は、ロボット11によって供給された容器41を搬送経路51に沿った搬送方向(図では左側から右側)に搬送するベルトコンベアである。本実施形態の搬送経路51は直線状に形成されている。搬送経路51には通過センサ90が設けられている。通過センサ90は、搬送経路51上の検出位置を容器41が通過したことを検出し、検出信号をロボット11のロボットコントローラに出力するように構成されている。本実施形態では、通過センサ90は搬送経路51の一方の側壁に設けられた投光部と、他方の側壁に設けられた受光部を備える光電センサである。搬送装置50の前側には充填装置60が配置される。充填装置60は、搬送経路51上を搬送される容器41内に充填ノズル61から液体状の食材(例えばスープ)を充填するように構成されている。充填ノズル61は液だれを防止するために、充填後に容器41の動きに沿って搬送方向(図では右方向)に回動可能に構成されている。ロボット11の右側方にはテーブル81が配置されている。テーブル81上には計量器70が配置されている。計量器70はスープが充填された容器41の重量を測るために使用される。 A transfer device 50 is disposed in front of the robot 11. The transport device 50 is a belt conveyor that transports the containers 41 supplied by the robot 11 in the transport direction along the transport path 51 (from left to right in the figure). The conveyance path 51 of this embodiment is formed in a straight line. A passage sensor 90 is provided in the transport path 51. The passage sensor 90 is configured to detect that the container 41 has passed the detection position on the transport path 51 and output a detection signal to the robot controller of the robot 11. In the present embodiment, the passage sensor 90 is a photoelectric sensor including a light projecting unit provided on one side wall of the conveyance path 51 and a light receiving unit provided on the other side wall. A filling device 60 is disposed on the front side of the transport device 50. The filling device 60 is configured to fill a liquid food material (for example, soup) from a filling nozzle 61 into a container 41 conveyed on the conveyance path 51. The filling nozzle 61 is configured to be rotatable in the transport direction (right direction in the drawing) along the movement of the container 41 after filling in order to prevent dripping. A table 81 is arranged on the right side of the robot 11. A measuring instrument 70 is disposed on the table 81. The scale 70 is used for measuring the weight of the container 41 filled with soup.
 本実施形態の食品の製造現場では、ロボット11によって、テーブル80上の容器置台82に載置された容器41の集合体40を保持し、集合体40を保持しながら最下位の容器41を搬送装置50の搬送経路51上に順次供給し、充填装置60によって搬送経路51上の容器41にスープなどの具材が充填される。その後、ロボット11によって、スープが充填された容器41を計量器70の計量台の上に載置する。本実施形態では容器41の計量作業は、作業者が計量器70の値を目視で読み取ることにより行われる。従って、ロボット11の作業領域は、容器置台82が配置されたテーブル80、計量器70が配置されたテーブル81及び搬送装置50の搬送経路51の一部を覆う領域である。 In the food manufacturing site of this embodiment, the robot 11 holds the assembly 40 of the containers 41 placed on the container mounting table 82 on the table 80, and conveys the lowest container 41 while holding the assembly 40. The materials are sequentially supplied onto the conveyance path 51 of the apparatus 50, and the container 41 on the conveyance path 51 is filled with ingredients such as soup by the filling apparatus 60. Thereafter, the robot 11 places the container 41 filled with soup on the weighing table of the weighing instrument 70. In the present embodiment, the weighing operation of the container 41 is performed by the operator visually reading the value of the weighing instrument 70. Accordingly, the work area of the robot 11 is an area that covers a part of the table 80 on which the container table 82 is arranged, the table 81 on which the weighing instrument 70 is arranged, and a conveyance path 51 of the conveyance device 50.
 図2は、ロボット11の一例の全体的な構成を概略的に示す正面図である。図2に示すように、ロボット11は、台車に固定されたベース12と、ベース12に支持された一対のロボットアーム13、13と、ベース12内に収納された制御装置14とを備えている。各アーム13は、ベース12に対して移動可能に構成された水平多関節型ロボットアームであって、アーム部15とリスト部17とエンドエフェクタ18、19とを備えている。なお、右のアーム13および左のアーム13は、実質的に同じ構造であってもよい。また、右のアーム13および左のアーム13は、独立して動作したり、互いに関連して動作したりすることができる。 FIG. 2 is a front view schematically showing the overall configuration of an example of the robot 11. As shown in FIG. 2, the robot 11 includes a base 12 fixed to the carriage, a pair of robot arms 13 and 13 supported by the base 12, and a control device 14 housed in the base 12. . Each arm 13 is a horizontal articulated robot arm configured to be movable with respect to the base 12, and includes an arm unit 15, a wrist unit 17, and end effectors 18 and 19. The right arm 13 and the left arm 13 may have substantially the same structure. Further, the right arm 13 and the left arm 13 can operate independently or operate in association with each other.
 アーム部15は、本例では、第1リンク15aおよび第2リンク15bとで構成されている。第1リンク15aは、ベース12の上面に固定された基軸16と回転関節J1により連結され、基軸16の軸心を通る回転軸線L1まわりに回動可能である。第2リンク15bは、第1リンク15aの先端と回転関節J2により連結され、第1リンク15aの先端に規定された回転軸線L2まわりに回動可能である。 In this example, the arm portion 15 is composed of a first link 15a and a second link 15b. The first link 15 a is connected to a base shaft 16 fixed to the upper surface of the base 12 by a rotary joint J <b> 1 and is rotatable around a rotation axis L <b> 1 passing through the axis of the base shaft 16. The second link 15b is connected to the distal end of the first link 15a by the rotary joint J2, and is rotatable around the rotation axis L2 defined at the distal end of the first link 15a.
 リスト部17は、昇降部17aおよび回動部17bにより構成されている。昇降部17aは、第2リンク15bの先端と直動関節J3により連結され、第2リンク15bに対し昇降移動可能である。回動部17bは、昇降部17aの下端と回転関節J4により連結され、昇降部17aの下端に規定された回転軸線L3まわりに回動可能である。 The list unit 17 includes an elevating unit 17a and a rotating unit 17b. The raising / lowering part 17a is connected with the front-end | tip of the 2nd link 15b by the linear motion joint J3, and is movable up / down with respect to the 2nd link 15b. The rotating part 17b is connected to the lower end of the elevating part 17a by the rotary joint J4, and can be rotated around the rotation axis L3 defined at the lower end of the elevating part 17a.
 エンドエフェクタ18、19は、リスト部17の回動部17bにそれぞれ連結されている。エンドエフェクタ18は右のアーム13の先端に設けられ、エンドエフェクタ19は左のアーム13の先端に設けられている。 The end effectors 18 and 19 are connected to the rotating part 17b of the wrist part 17, respectively. The end effector 18 is provided at the tip of the right arm 13, and the end effector 19 is provided at the tip of the left arm 13.
 上記構成の各アーム13は、各関節J1~J4を有する。そして、アーム13には、各関節J1~J4に対応付けられるように、駆動用のサーボモータ(図示せず)、および、そのサーボモータの回転角を検出するエンコーダ(図示せず)等が設けられている。また、2本のアーム13、13の第1リンク15a、15aの回転軸線L1は同一直線上にあり、一方のアーム13の第1リンク15aと他方のアーム13の第1リンク15aとは上下に高低差を設けて配置されている。 Each arm 13 having the above configuration has each joint J1 to J4. The arm 13 is provided with a drive servomotor (not shown) and an encoder (not shown) for detecting the rotation angle of the servomotor so as to be associated with each joint J1 to J4. It has been. The rotation axes L1 of the first links 15a and 15a of the two arms 13 and 13 are on the same straight line, and the first link 15a of one arm 13 and the first link 15a of the other arm 13 are up and down. It is arranged with a height difference.
 次に、左側のアーム13のエンドエフェクタ18の構成について図3を用いて説明する。図3(A)は、エンドエフェクタ18の構成を示した斜視図である。図3(B)は、容器41の集合体40を保持したエンドエフェクタ18を示した正面図である。図3(C)は、図3(B)の矢印方向から見た平面図である。エンドエフェクタ18は、リスト部(手首部)17の回動部17bを含む基部20と、基部20に上下に設けられた第1支持部21及び第2支持部22と、第1支持部21に設けられた第3支持部23と、第1支持部21に設けられた押し下げ部24とを備える(図3(A)参照)。 Next, the configuration of the end effector 18 of the left arm 13 will be described with reference to FIG. FIG. 3A is a perspective view showing the configuration of the end effector 18. FIG. 3B is a front view showing the end effector 18 holding the assembly 40 of the containers 41. FIG. 3C is a plan view seen from the direction of the arrow in FIG. The end effector 18 includes a base portion 20 including a rotating portion 17 b of the wrist portion (wrist portion) 17, a first support portion 21 and a second support portion 22 provided above and below the base portion 20, and a first support portion 21. A third support portion 23 provided and a push-down portion 24 provided on the first support portion 21 are provided (see FIG. 3A).
 第1支持部21は、最下位(下から1番目)の容器41の縁40aと下から2番目の容器41の縁40aの間に挿入可能な形状を有する一対の爪を有する。第1支持部21の上下方向の厚みは、上下に堆積された容器41の縁41aの間に形成される隙間の大きさよりも小さい。各爪は容器41の上部の外周に沿って内側に湾曲している(図3(A)参照)。これらの爪(21)は基部20に設けられた一のアクチュエータ(例えばエアシリンダ)によって駆動されて、平行を維持しながら互いに近接・離反するように並進移動(図では左右方向)する。これにより、第1支持部21は、下から2番目の容器41の縁41aを下から支持可能な支持姿勢(第1姿勢)と、その支持を解放する解放姿勢(第2姿勢)との間で動作することができる(図3(B)参照)。第1支持部21及び第2支持部22は、互いに上下方向に隙間を保って設けられている。第1支持部21及び第2支持部22の上下方向の隙間は上下に堆積された容器41の縁41aよりも大きい。 The first support portion 21 has a pair of claws having a shape that can be inserted between the edge 40a of the lowest-order (first from the bottom) container 41 and the edge 40a of the second-most container 41 from the bottom. The thickness of the first support portion 21 in the vertical direction is smaller than the size of the gap formed between the edges 41a of the containers 41 stacked vertically. Each nail is curved inward along the outer periphery of the upper portion of the container 41 (see FIG. 3A). These claws (21) are driven by a single actuator (for example, an air cylinder) provided on the base 20, and translate (left and right in the figure) so as to approach and separate from each other while maintaining parallelism. Thereby, the first support portion 21 is between a support posture (first posture) capable of supporting the edge 41a of the second container 41 from the bottom (first posture) and a release posture (second posture) for releasing the support. (See FIG. 3B). The first support portion 21 and the second support portion 22 are provided with a gap in the vertical direction. The vertical gap between the first support portion 21 and the second support portion 22 is larger than the edge 41a of the container 41 deposited vertically.
 第2支持部22は、第1支持部21の一対の爪と同様な形状を有する一対の爪である。これらの爪(22)は基部20に設けられた一のアクチュエータ(例えばエアシリンダ)によって駆動されて、平行を維持しながら互いに近接・離反するように並進移動(図では左右方向)する。これにより、第2支持部22は、最下位の容器41の縁41aを下から支持可能な支持姿勢(第1姿勢)と、その支持を解放する解放姿勢(第2姿勢)との間で動作することができる。 The second support part 22 is a pair of claws having the same shape as the pair of claws of the first support part 21. These claws (22) are driven by a single actuator (for example, an air cylinder) provided on the base 20, and translate (left and right in the figure) so as to approach and separate from each other while maintaining parallelism. Thereby, the 2nd support part 22 operate | moves between the support attitude | position (1st attitude | position) which can support the edge 41a of the lowest container 41 from the bottom, and the releasing attitude | position (2nd attitude | position) which releases the support. can do.
 第3支持部23は、第1支持部21の上面に上方に突出して設けられ、容器41の集合体40の側部を支持する。ここでは第3支持部23は、四カ所に設けられた4本の支柱である(図3(C)参照)。 The third support portion 23 is provided on the upper surface of the first support portion 21 so as to protrude upward, and supports the side portion of the assembly 40 of the containers 41. Here, the 3rd support part 23 is four support | pillars provided in four places (refer FIG.3 (C)).
 押し下げ部24は、第1支持部21に設けられ、先端部24aと、先端部24aを駆動する駆動部24bとを有する(図3(C)参照)。 The push-down portion 24 is provided in the first support portion 21 and includes a tip portion 24a and a drive portion 24b that drives the tip portion 24a (see FIG. 3C).
 先端部24aは、第1支持部21と同じ高さにおいて、最下位の容器41の縁41aと下から2番目の容器41の縁41aの間に挿入可能な形状を有する。先端部24aの上下方向の厚みは、上下に堆積された容器41の縁41aの間に形成される隙間の大きさよりも小さい。 The front end portion 24 a has a shape that can be inserted between the edge 41 a of the lowest container 41 and the edge 41 a of the second container 41 from the bottom at the same height as the first support portion 21. The thickness in the vertical direction of the distal end portion 24a is smaller than the size of the gap formed between the edges 41a of the containers 41 deposited vertically.
 駆動部24bは、内部にアクチュエータ(例えばエアシリンダ)を有し、先端部24aを上下に駆動するように構成される。これにより、先端部24aは、第1支持部21と同じ高さの基準位置から第1支持部21に対して下方に移動することができる。これにより、最下位の容器41の縁41aを上から押し下げることができる。エンドエフェクタ18は、容器41の集合体40を保持しながら、集合体40から最下位の容器41を分離させることができるように構成されている。 The driving unit 24b has an actuator (for example, an air cylinder) inside, and is configured to drive the tip 24a up and down. Thereby, the front end portion 24 a can move downward with respect to the first support portion 21 from the reference position having the same height as the first support portion 21. Thereby, the edge 41a of the lowest container 41 can be pushed down from the top. The end effector 18 is configured to be able to separate the lowest container 41 from the assembly 40 while holding the assembly 40 of containers 41.
 図4は、右側のアーム13のエンドエフェクタ19の構成を示した斜視図である。図4に示すように、エンドエフェクタ19は、リスト部(手首部)17の回動部17bを含む基部30と、基部30に設けられた把持部31を備える。把持部31は一対の爪を有する。各爪は容器41の上部の外周に沿うように内側に湾曲している。これらの爪(31)は基部30に設けられた一のアクチュエータ(例えばエアシリンダ)によって駆動されて、平行を維持しながら互いに近接・離反するように並進移動(図では左右方向)する。これにより、把持部31は、所定位置(搬送装置50の搬送経路51上)に配置された容器41の縁41aを下から支持可能な支持姿勢(第1姿勢)と、その支持を解放する解放姿勢(第2姿勢)との間で動作することができる。エンドエフェクタ19は、容器41を保持して、所定の位置(図1の計量器70の計量台の上)に移動させることができるように構成されている。 FIG. 4 is a perspective view showing the configuration of the end effector 19 of the right arm 13. As shown in FIG. 4, the end effector 19 includes a base portion 30 including a rotating portion 17 b of a wrist portion (wrist portion) 17, and a grip portion 31 provided on the base portion 30. The grip part 31 has a pair of claws. Each claw is curved inward along the outer periphery of the upper portion of the container 41. These claws (31) are driven by a single actuator (for example, an air cylinder) provided on the base 30 and translate (left and right in the figure) so as to approach and separate from each other while maintaining parallelism. As a result, the gripping unit 31 can support the edge 41a of the container 41 arranged at a predetermined position (on the transport path 51 of the transport device 50) from below, and a release to release the support. It can operate between postures (second postures). The end effector 19 is configured to hold the container 41 and move it to a predetermined position (on the weighing table of the weighing instrument 70 in FIG. 1).
 図5は、ロボット11の制御装置14の構成を概略的に示す機能ブロック図である。図5に示すように、制御装置14は、CPU等の演算部14aと、ROM、RAM等の記憶部14bと、サーボ制御部14cと、を備える。制御装置14は、例えばマイクロコントローラ等のコンピュータを備えたロボットコントローラである。なお、制御装置14は、集中制御する単独の制御装置14によって構成されていてもよいし、互いに協働して分散制御する複数の制御装置14によって構成されていてもよい。 FIG. 5 is a functional block diagram schematically showing the configuration of the control device 14 of the robot 11. As shown in FIG. 5, the control device 14 includes a calculation unit 14a such as a CPU, a storage unit 14b such as a ROM and a RAM, and a servo control unit 14c. The control device 14 is a robot controller including a computer such as a microcontroller. The control device 14 may be configured by a single control device 14 that performs centralized control, or may be configured by a plurality of control devices 14 that perform distributed control in cooperation with each other.
 記憶部14bには、ロボットコントローラとしての基本プログラム、各種固定データ等の情報が記憶されている。演算部14aは、記憶部14bに記憶された基本プログラム等のソフトウェアを読み出して実行することにより、ロボット11の各種動作を制御する。すなわち、演算部14aは、ロボット11の制御指令を生成し、これをサーボ制御部14cに出力する。サーボ制御部14cは、演算部14aにより生成された制御指令に基づいて、ロボット11の各アーム13の関節J1~J4に対応するサーボモータ等のアクチュエータの駆動を制御するように構成されている。 The storage unit 14b stores information such as a basic program as a robot controller and various fixed data. The calculation unit 14a controls various operations of the robot 11 by reading and executing software such as a basic program stored in the storage unit 14b. That is, the arithmetic unit 14a generates a control command for the robot 11 and outputs it to the servo control unit 14c. The servo control unit 14c is configured to control the driving of actuators such as servo motors corresponding to the joints J1 to J4 of each arm 13 of the robot 11 based on the control command generated by the calculation unit 14a.
 次に、容器供給装置1の動作について図6,7を参照しながら説明する。まず、制御装置14は、左のロボットアーム13の動作を制御して、エンドエフェクタ18により、左のテーブル80上の容器置台82に載置された容器の集合体40を保持する。そして、左のロボットアーム13の動作を制御して、エンドエフェクタ18により保持された容器41の集合体40を、搬送装置50の搬送経路51上に移動させる(図6参照)。 Next, the operation of the container supply device 1 will be described with reference to FIGS. First, the control device 14 controls the operation of the left robot arm 13 so that the end effector 18 holds the container assembly 40 placed on the container mounting table 82 on the left table 80. Then, the operation of the left robot arm 13 is controlled to move the assembly 40 of the containers 41 held by the end effector 18 onto the transport path 51 of the transport device 50 (see FIG. 6).
 このとき、図7(A)に示すように、制御装置14は、エンドエフェクタ18の第1支持部21及び第2支持部22を、支持姿勢に維持するように第1支持部21、及び、第2支持部22の動作を制御する。これにより、最下位の容器41の縁41aは第1支持部21により下から支持される。また、第3支持部23により、容器41の集合体40の側部が四方から支持されている。 At this time, as shown in FIG. 7A, the control device 14 includes the first support portion 21 and the first support portion 21 so as to maintain the first support portion 21 and the second support portion 22 of the end effector 18 in the support posture. The operation of the second support portion 22 is controlled. Thereby, the edge 41 a of the lowest container 41 is supported from below by the first support portion 21. Further, the side portions of the assembly 40 of the containers 41 are supported from four directions by the third support portion 23.
 次に、制御装置14は、図7(B)に示すように、最下位の容器41の縁41aを下から支持している第1支持部21を解放姿勢に姿勢変化させ、第2支持部22を、支持姿勢に維持するように第1支持部21、及び、第2支持部22の動作を制御する。これにより、エンドエフェクタ18において、集合体40が1段分だけ落下し、最下位の容器41の縁41aは第2支持部22により下から支持される。 Next, as shown in FIG. 7B, the control device 14 changes the posture of the first support portion 21 that supports the edge 41a of the lowermost container 41 from the bottom to the release posture, and the second support portion. The operation of the first support portion 21 and the second support portion 22 is controlled so as to maintain 22 in the support posture. Thereby, in the end effector 18, the assembly 40 falls by one step, and the edge 41 a of the lowest container 41 is supported from below by the second support portion 22.
 次に、制御装置14は、図7(C)に示すように、エンドエフェクタ18において、第1支持部21が解放姿勢から支持姿勢に姿勢変化するように第1支持部21の動作を制御する。最下位の容器41の縁41aを支持している第2支持部22は支持姿勢に維持される。これにより、第1支持部21により下から2番目の容器41の縁41aが支持され、かつ、第2支持部22により最下位の容器41の縁41aが支持された状態になる。 Next, as shown in FIG. 7C, the control device 14 controls the operation of the first support portion 21 in the end effector 18 so that the first support portion 21 changes its posture from the release posture to the support posture. . The 2nd support part 22 which supports the edge 41a of the lowest container 41 is maintained in a support posture. As a result, the first support portion 21 supports the edge 41a of the second container 41 from the bottom, and the second support portion 22 supports the edge 41a of the lowest container 41.
 次に、制御装置14は、図7(D)に示すように、エンドエフェクタ18において、第1支持部21が支持姿勢をとって下から2番目の容器41の縁41aを支持し、かつ、第2支持部22が支持姿勢をとって最下位の容器41の縁41aの支持した状態から、第2支持部22を解放姿勢に姿勢変化させ、かつ、押し下げ部24により最下位の容器41の縁41aを上方から下方に押下げるように第1支持部21、第2支持部22、及び、押し下げ部24の動作を制御する。これにより、集合体40から最下位の容器41を搬送装置50の搬送経路51上に落下させることができる。 Next, as shown in FIG. 7D, the control device 14 supports the edge 41 a of the second container 41 from the bottom in the first effector 18 in the end effector 18, and From the state in which the second support portion 22 takes the support posture and the edge 41a of the lowest container 41 is supported, the second support portion 22 is changed to the release posture, and the push-down portion 24 causes the lowermost container 41 to The operations of the first support portion 21, the second support portion 22, and the push-down portion 24 are controlled so as to push the edge 41a downward from above. Thereby, the lowest container 41 can be dropped from the assembly 40 onto the transport path 51 of the transport device 50.
 このようにして集合体40から最下位の容器41を落下させた後は、最下位から2番目の容器41が次の最下位になり、集合体40は、再び図7(A)の状態に戻る。 After dropping the lowest container 41 from the assembly 40 in this way, the second container 41 from the lowest is the next lowest, and the assembly 40 is again in the state of FIG. Return.
 制御装置14は、図7(B)に示すように、次の最下位の容器41の縁41aを下から支持している第1支持部21を解放姿勢に姿勢変化させ、第2支持部22を、支持姿勢に維持するように第1支持部21、及び、第2支持部22の動作を制御する。これにより、集合体40が1段分だけ落下し、次の最下位の容器41の縁41aは第2支持部22により下から支持される。その後、図7(C)及び図7(D)で説明した動作を繰り返すことにより次の最下位の容器41を落下させることができる。 As shown in FIG. 7B, the control device 14 changes the posture of the first support portion 21 that supports the edge 41 a of the next lowest container 41 from below to the release posture, and the second support portion 22. Are controlled in the support posture, and the operations of the first support portion 21 and the second support portion 22 are controlled. As a result, the aggregate 40 drops by one stage, and the edge 41a of the next lowest container 41 is supported from below by the second support portion 22. Thereafter, the next lowest container 41 can be dropped by repeating the operations described in FIGS. 7C and 7D.
 本実施形態の食品の製造現場においては、制御装置14は、集合体40から最下位の容器41を順次落下させながら、落下した容器41が搬送装置50の搬送経路51上において所定間隔で並ぶように、左のロボットアーム13、第1支持部21、第2支持部22及び押し下げ部24の動作を制御する(図1参照)。充填装置60によって搬送経路51上の容器41にスープなどの具材が充填される。その後、制御装置14は、通過センサ90からの検出信号に従って、右のロボットアーム13の動作を制御して、エンドエフェクタ19によりスープが充填された容器41を保持する。そして、エンドエフェクタ19により保持された容器41を計量器70の計量台の上に載置する。最後に作業者は容器41の計量を行い、基準を満たした容器41を出荷する。 In the food manufacturing site of the present embodiment, the control device 14 sequentially drops the lowest container 41 from the assembly 40 so that the dropped containers 41 are arranged at predetermined intervals on the conveyance path 51 of the conveyance device 50. Next, the operations of the left robot arm 13, the first support portion 21, the second support portion 22, and the push-down portion 24 are controlled (see FIG. 1). The filling device 60 fills the container 41 on the transport path 51 with ingredients such as soup. Thereafter, the control device 14 controls the operation of the right robot arm 13 according to the detection signal from the passage sensor 90 and holds the container 41 filled with soup by the end effector 19. Then, the container 41 held by the end effector 19 is placed on the weighing table of the weighing instrument 70. Finally, the operator measures the container 41 and ships the container 41 that satisfies the standard.
 尚、本実施形態の容器供給装置1は、容器41の集合体40から最下位(下から1番目)の容器41を分離させるように構成されたが、2以上の容器41をまとめて分離させるように構成されてもよい。つまり、制御装置14は、第1支持部21が支持姿勢をとって下からn+1(nは2以上の自然数)番目の容器41の縁41aを支持し、かつ、第2支持部22が支持姿勢をとって最下位の容器41の縁41aの支持した状態から、第2支持部22を解放姿勢に姿勢変化させ、かつ、押し下げ部24によりn番目の容器41の縁41aを上方から下方に押下げることにより、集合体40からn個の容器を落下させるように第1支持部21、第2支持部22、及び、押し下げ部24の動作を制御するようにしてもよい。これにより、例えばnが2の場合は2個の容器41をまとめて分離させることができる。 In addition, although the container supply apparatus 1 of this embodiment was comprised so that the lowest container (1st from the bottom) container 41 might be isolate | separated from the assembly 40 of the container 41, two or more containers 41 are isolate | separated collectively. It may be configured as follows. That is, the control device 14 supports the edge 41a of the n + 1 (n is a natural number of 2 or more) container 41 from the bottom with the first support portion 21 in the support posture, and the second support portion 22 supports the support posture. From the state where the edge 41a of the lowest container 41 is supported, the second support part 22 is changed to the released posture, and the push-down part 24 pushes the edge 41a of the nth container 41 downward from above. You may make it control operation | movement of the 1st support part 21, the 2nd support part 22, and the push-down part 24 so that n containers may be dropped from the aggregate | assembly 40 by lowering. Thereby, for example, when n is 2, two containers 41 can be separated together.
 また、制御装置14は、押し下げ部24によりn番目の容器41の縁41aを上方から下方に押下げることにより、集合体40からn個の容器を落下させた後、第2支持部22を支持姿勢に姿勢変化させ、かつ、第1支持部21を解放姿勢に姿勢変化させることにより、集合体40をn段分だけ落下させるように第1支持部21、及び、第2支持部22の動作を制御するようにしてもよい。 In addition, the control device 14 supports the second support portion 22 after dropping the n containers from the assembly 40 by pressing the edge 41a of the nth container 41 downward from above by the push-down portion 24. The operation of the first support part 21 and the second support part 22 so that the aggregate 40 is dropped by n stages by changing the attitude to the attitude and changing the attitude of the first support part 21 to the released attitude. May be controlled.
 また、制御装置14は、搬送経路51上に落下したn個の容器41が所定間隔で搬送経路51上に並ぶように、ロボットアーム13、第1支持部21、第2支持部22及び押し下げ部24の動作を制御するようにしてもよい。 The control device 14 also includes the robot arm 13, the first support unit 21, the second support unit 22, and the push-down unit so that the n containers 41 dropped on the transfer route 51 are arranged on the transfer route 51 at predetermined intervals. You may make it control 24 operation | movement.
 尚、本実施形態の食品製造現場では、搬送装置50の搬送経路51は直線状に形成されていたが、搬送経路51は、折り返し部を有する循環型の搬送経路であってもよい。 In addition, in the foodstuff manufacturing site of this embodiment, although the conveyance path 51 of the conveyance apparatus 50 was formed in linear form, the conveyance path 51 may be a circulation type conveyance path which has a folding | turning part.
 尚、本実施形態の食品製造現場では、容器41の計量作業は、作業者により行われていたが(図1参照)、ロボット11により計量作業を自動化してもよい。例えばロボット11が右のアーム13の先端に計量ユニットを備え、エンドエフェクタ19によって容器41を把持した状態で、計量ユニットにより容器41の重量を計量可能に構成されていてもよい。 In the food manufacturing site of this embodiment, the weighing operation of the container 41 is performed by an operator (see FIG. 1), but the weighing operation may be automated by the robot 11. For example, the robot 11 may be configured to include a weighing unit at the tip of the right arm 13 and to measure the weight of the container 41 by the weighing unit in a state where the container 41 is gripped by the end effector 19.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、食品の製造現場において有用である。 The present invention is useful in the field of food production.
1 容器供給装置
11 ロボット
12 ベース
13 ロボットアーム
14 制御装置
17 リスト部
18,19 エンドエフェクタ
20 基部
21 第1支持部
22 第2支持部
23 第3支持部
24 押し下げ部
30 基部
31 把持部
40 集合体
41 容器
41a 縁部
50 搬送装置
51 搬送経路
60 充填装置
70 計量器
80,81 テーブル
82 容器置台
90 通過センサ
DESCRIPTION OF SYMBOLS 1 Container supply apparatus 11 Robot 12 Base 13 Robot arm 14 Control apparatus 17 Wrist part 18, 19 End effector 20 Base part 21 First support part 22 Second support part 23 Third support part 24 Push-down part 30 Base part 31 Grasping part 40 Assembly 41 Container 41a Edge 50 Transfer device 51 Transfer path 60 Filling device 70 Weighing device 80, 81 Table 82 Container stand 90 Passing sensor

Claims (3)

  1.  上下に多段に堆積された複数個の縁付きの容器の集合体を保持しながら、当該集合体からn個(nは1以上の自然数)の容器を分離させて所定の位置に供給する容器供給装置であって、
     基部と、
     前記基部に設けられ、前記最下位の容器の縁と下からn+1番目の容器の縁の間に挿入可能な形状を有し、下から前記n+1番目の容器の縁を下から支持可能な第1姿勢と、その支持を解放する第2姿勢との間で動作するように構成された第1支持部と、
     前記基部に設けられ、前記最下位の容器の縁を下から支持可能な第1姿勢と、その支持を解放する第2姿勢との間で動作するように構成された第2支持部と、
     前記基部に設けられ、前記最下位の容器の縁と下からn+1番目の容器の縁の間に挿入可能な形状を有し、下から前記n番目の容器の縁を上から押し下げ可能に構成された押し下げ部と、
     前記第1支持部、前記第2支持部、及び、前記押し下げ部の動作を制御する制御部と、を備え、
     前記制御部は、
     前記第1支持部が第1姿勢をとって前記下からn+1番目の容器の縁を支持し、かつ、前記第2支持部が第1姿勢をとって前記最下位の容器の縁の支持した状態から、前記第2支持部を第2姿勢に姿勢変化させ、かつ、前記押し下げ部により前記n番目の容器の縁を上方から下方に押下げることにより、前記集合体からn個の容器を落下させるように前記第1支持部、前記第2支持部、及び、前記押し下げ部の動作を制御する、容器供給装置。
    A container supply device for separating n containers (n is a natural number of 1 or more) from the aggregate and supplying the container to a predetermined position while holding an aggregate of a plurality of edged containers stacked in multiple stages in the vertical direction Because
    The base,
    A first portion which is provided at the base and can be inserted between an edge of the lowest container and an edge of the (n + 1) th container from below, and which can support the edge of the (n + 1) th container from below from below. A first support configured to operate between a posture and a second posture releasing its support;
    A second support portion provided on the base and configured to operate between a first posture capable of supporting an edge of the lowest container from below and a second posture for releasing the support;
    The base is provided with a shape that can be inserted between the edge of the lowest container and the edge of the (n + 1) th container from the bottom, and is configured to be able to push down the edge of the nth container from the bottom. The pressing part,
    A control unit that controls operations of the first support unit, the second support unit, and the push-down unit,
    The controller is
    The first support portion takes the first posture to support the edge of the n + 1th container from the bottom, and the second support portion takes the first posture to support the edge of the lowest container. The n containers are dropped from the assembly by changing the posture of the second support portion to the second posture and pressing the edge of the nth vessel downward from above by the push-down portion. The container supply device controls the operations of the first support unit, the second support unit, and the push-down unit.
  2.  前記制御部は、
    前記押し下げ部により前記n番目の容器の縁を上方から下方に押下げることにより、前記集合体から前記n個の容器を落下させた後、前記第2支持部を第1姿勢に姿勢変化させ、かつ、前記第1支持部を第2姿勢に姿勢変化させることにより、前記集合体をn段分だけ落下させるように前記第1支持部、及び、前記第2支持部の動作を制御する、請求項1に記載の容器供給装置。
    The controller is
    After the n containers are dropped from the assembly by pushing down the edge of the nth container from above by the push-down part, the second support part is changed in posture to the first posture, And controlling the operations of the first support part and the second support part so as to drop the aggregate by n stages by changing the posture of the first support part to the second posture. Item 2. The container supply device according to Item 1.
  3.  前記所定の位置は、搬送経路に沿った搬送方向に容器を搬送する搬送装置の前記搬送経路上であって、
     手首部に前記基部が取り付けられ、前記基部を、前記搬送装置の搬送方向に移動させることができるロボットアームを更に備え、
     前記ロボットアームの動作は前記制御部によって制御され、
     前記制御部は、
     前記搬送経路上に落下した前記n個の容器が所定間隔で前記搬送経路上に並ぶように、前記ロボットアーム、前記第1支持部、前記第2支持部及び前記押し下げ部の動作を制御する、請求項1又は2に記載の容器供給装置。
    The predetermined position is on the transport path of the transport device that transports the container in the transport direction along the transport path,
    The base is attached to the wrist, and further includes a robot arm that can move the base in the transport direction of the transport device,
    The operation of the robot arm is controlled by the controller,
    The controller is
    Controlling the operations of the robot arm, the first support unit, the second support unit, and the push-down unit so that the n containers dropped on the transfer route are arranged on the transfer route at predetermined intervals. The container supply apparatus according to claim 1 or 2.
PCT/JP2019/007211 2018-02-27 2019-02-26 Container feeding device WO2019167921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018033033A JP7057155B2 (en) 2018-02-27 2018-02-27 Container supply device
JP2018-033033 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167921A1 true WO2019167921A1 (en) 2019-09-06

Family

ID=67808854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007211 WO2019167921A1 (en) 2018-02-27 2019-02-26 Container feeding device

Country Status (3)

Country Link
JP (1) JP7057155B2 (en)
TW (1) TW201937454A (en)
WO (1) WO2019167921A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110614803A (en) * 2019-09-22 2019-12-27 温州市科泓机器人科技有限公司 Full-automatic medicine box discharging device
JP7004251B2 (en) * 2019-11-13 2022-01-21 株式会社安川電機 Container supply device and container supply method
TWI777341B (en) * 2020-12-29 2022-09-11 皇丞創新科技股份有限公司 Automatic heating vending machine
CN115489810B (en) * 2022-09-28 2023-11-28 苏州鼎纳自动化技术有限公司 Automatic feeding mechanism

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283952A (en) * 1964-06-05 1966-11-08 Keyes Fibre Co Dispensing apparatus
US3601282A (en) * 1969-06-23 1971-08-24 Leo G Vogel Apparatus for dispensing flanged elements from a stack thereof
JPS4918984U (en) * 1972-05-22 1974-02-18
JPS5119693A (en) * 1974-08-10 1976-02-17 Hatsuo Sakurazawa SHOKUHINYOKIKYOKYUSOCHI
JPS5176378U (en) * 1974-11-21 1976-06-16
EP1275604A2 (en) * 2001-07-13 2003-01-15 Zellwag AG Apparatus and method for destacking blister packs
JP2013136404A (en) * 2011-12-28 2013-07-11 San Plant Kogyo Kk Separating apparatus for stacked objects
JP2014198571A (en) * 2013-03-29 2014-10-23 古川機工株式会社 Article gripping device and bottling device
JP2017088193A (en) * 2015-11-05 2017-05-25 澁谷工業株式会社 Container supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079987B2 (en) * 2012-06-08 2017-02-15 株式会社ファブリカトヤマ Container supply device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283952A (en) * 1964-06-05 1966-11-08 Keyes Fibre Co Dispensing apparatus
US3601282A (en) * 1969-06-23 1971-08-24 Leo G Vogel Apparatus for dispensing flanged elements from a stack thereof
JPS4918984U (en) * 1972-05-22 1974-02-18
JPS5119693A (en) * 1974-08-10 1976-02-17 Hatsuo Sakurazawa SHOKUHINYOKIKYOKYUSOCHI
JPS5176378U (en) * 1974-11-21 1976-06-16
EP1275604A2 (en) * 2001-07-13 2003-01-15 Zellwag AG Apparatus and method for destacking blister packs
JP2013136404A (en) * 2011-12-28 2013-07-11 San Plant Kogyo Kk Separating apparatus for stacked objects
JP2014198571A (en) * 2013-03-29 2014-10-23 古川機工株式会社 Article gripping device and bottling device
JP2017088193A (en) * 2015-11-05 2017-05-25 澁谷工業株式会社 Container supply device

Also Published As

Publication number Publication date
TW201937454A (en) 2019-09-16
JP7057155B2 (en) 2022-04-19
JP2019147585A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2019167921A1 (en) Container feeding device
TWI672250B (en) Food holding device and operating method thereof
WO2018169043A1 (en) Robot and robot operation method
EP3466847A1 (en) Foodstuff packing device
WO2018186291A1 (en) Robot and method for operating same
WO2018066642A1 (en) Food item holding device
JP2018176313A (en) Object transfer device
JP5429117B2 (en) Hand and robot
TWI672205B (en) Robot and its action method
JP2013103779A (en) Article carrying method and article carrier device
WO2019208794A1 (en) Food boxing device
JP6738302B2 (en) Food holding device
WO2018105690A1 (en) Food item holding device
WO2018186332A1 (en) Food product holding device and operation method for same
WO2020040284A1 (en) Food supply device and method for operating food supply device
JP6796121B2 (en) Food transport mechanism and robot
WO2020040055A1 (en) Food packaging device and operation method therefor
JP7033201B2 (en) Robots and robot control methods
JP7351658B2 (en) Container feeding device
JPH0732284A (en) Food carrying robot device
JP2000016592A (en) Stacking method and device, packaging method by it and device
JPWO2018116612A1 (en) Container filling system and container filling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19759896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19759896

Country of ref document: EP

Kind code of ref document: A1