WO2023026594A1 - 沸騰水型原子炉 - Google Patents

沸騰水型原子炉 Download PDF

Info

Publication number
WO2023026594A1
WO2023026594A1 PCT/JP2022/019720 JP2022019720W WO2023026594A1 WO 2023026594 A1 WO2023026594 A1 WO 2023026594A1 JP 2022019720 W JP2022019720 W JP 2022019720W WO 2023026594 A1 WO2023026594 A1 WO 2023026594A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral portion
boiling water
channel box
outer peripheral
support member
Prior art date
Application number
PCT/JP2022/019720
Other languages
English (en)
French (fr)
Inventor
慶太 吉田
義春 菊地
健斗 大滝
宏起 三浦
正則 赤池
武裕 瀬戸
好司 内山
翔 黒板
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2023026594A1 publication Critical patent/WO2023026594A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/33Supporting or hanging of elements in the bundle; Means forming part of the bundle for inserting it into, or removing it from, the core; Means for coupling adjacent bundles
    • G21C3/332Supports for spacer grids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to boiling water reactors.
  • Boiling water nuclear reactors have a configuration in which the side surfaces of multiple fuel assemblies arranged in a square grid are surrounded by rectangular tubular channel boxes, and the upper side surfaces of the fuel assemblies are supported by grid plates via the channel boxes. (See, for example, Patent Document 1).
  • new BWR reactors new boiling water reactors
  • conventional boiling water reactors hereinafter referred to as “conventional BWR reactors
  • a grid plate hereinafter referred to as a “thin grid plate” having a thinner plate thickness (width in the vertical direction) than that of the grid plate of the “thin grid plate” is used.
  • the top surface of the thin grid plate is placed at approximately the same position as the conventional one, and the bottom surface of the thin grid plate is placed at a higher position than before.
  • Self-supporting control rods have been adopted in overseas (outside of Japan) BWR5 reactors.
  • Self-supporting control rods are control rods with a structure in which the control rods are extended to reach the lattice plates, so that they stand on their own with the lattice plates as support when the control rods are fully inserted. This makes it possible to perform fuel exchange without using a double blade guide.
  • the plate thickness of the thin grid plate is thinner than that of the BWR5 reactor, so the upper surface of the thin grid plate should be positioned roughly at the same position as the BWR5 reactor.
  • the lower surface position of the grid plate is raised, so the overall length of the control rod must be increased in order to establish a self-supporting control rod.
  • the control rods are lengthened, the influence of irradiation on the fully withdrawn control rods during operation of the reactor increases. be. Therefore, it is conceivable to dispose the upper surface of the thin grid plate at a lower position than in the conventional case.
  • the support performance in the horizontal direction of the channel box (fuel assembly) is low in the outer periphery of the core due to the alignment.
  • the present invention has been made to solve the above-described problems, and the main object thereof is to provide a boiling water reactor with improved support performance for channel boxes (fuel assemblies). do.
  • the present invention provides a boiling water nuclear reactor comprising a rectangular tubular channel box arranged to surround the side surface of a fuel assembly, and a grid supporting the upper side surface of the channel box.
  • the grating plate has a structure in which the upper surface of the entire circumference or a part of the outer circumference is higher than the inner circumference having a plurality of holes into which the upper part of the channel box is inserted. .
  • Other means will be described later.
  • the support performance (support performance) of the channel box (fuel assembly) can be improved.
  • FIG. 1 is a partially cutaway perspective view showing the internal structure of a boiling water reactor according to Embodiment 1.
  • FIG. 1 is a perspective view showing a support structure for fuel assemblies arranged in a boiling water reactor according to Embodiment 1.
  • FIG. 4 is a top view of the grid plate according to Embodiment 1.
  • FIG. 4 is a partially enlarged view of the lattice plate according to Embodiment 1.
  • FIG. 2 is a side cross-sectional view of a lattice plate according to Embodiment 1.
  • FIG. FIG. 4 is a side cross-sectional view of a modification of the grid plate according to Embodiment 1;
  • FIG. 8 is a partially enlarged view of a grid plate according to Embodiment 2;
  • FIG. 11 is a partially enlarged view of a lattice plate according to Embodiment 3;
  • FIG. 11 is an explanatory diagram of a support member attached to a lattice plate according to Embodiment 3
  • FIG. 1 is a partially cut perspective view showing the internal structure of a boiling water reactor 11 according to the first embodiment.
  • a boiling water reactor 11 includes a reactor pressure vessel 12, a core 13, a core shroud 14, a control rod guide tube 15, and a control rod drive mechanism housing 16. , a grid plate 17 , and a core support plate 18 , so that the fuel assemblies 20 are loaded into the core 13 .
  • a core 13 loaded with a plurality of fuel assemblies 20, a core shroud 14 surrounding the core 13 (fuel assemblies 20), and control rods 25 (see FIG. 2).
  • a control rod guide tube 15 arranged above the core shroud 14 and having a role of supporting the fuel assemblies 20 in the lateral direction; and a core support plate 18 for supporting the .
  • a plurality of control rod drive mechanism housings 16 are provided at the bottom of the reactor pressure vessel 12 .
  • the upper portion of the control rod drive mechanism housing 16 penetrates through the bottom portion of the reactor pressure vessel 12 and is connected to the lower portion of the control rod guide tube 15 .
  • the upper portion of the control rod guide tube 15 is fitted into a core support plate 18 (fuel support fitting 19).
  • a control rod drive mechanism (not shown) is provided inside the control rod drive mechanism housing 16, and the control rods 25 (see FIG. 2) stored in the control rod guide tubes 15 are inserted into the core 13. is now possible.
  • FIG. 2 is a perspective view showing a support structure for fuel assemblies 20 arranged in the boiling water reactor 11. As shown in FIG. In FIG. 2, a part of the fuel assembly 20 and the lattice plate 17 on the near side is cut away.
  • the fuel assemblies 20 forming the core 13 have a plurality of fuel rods 21 arranged in a square lattice.
  • a side surface of the fuel assembly 20 is surrounded by a rectangular tubular channel box 22 .
  • An upper side surface of the channel box 22 is supported by a lattice plate 17.
  • a channel fastener 23 and a channel spacer 24 are attached to the upper portion of the channel box 22 (fuel assembly 20).
  • the channel fastener 23 has a leaf spring, and is a component that secures a water gap between the channel boxes 22 by pressing the adjacent channel boxes 22 (fuel assemblies 20) against each other with the leaf spring.
  • the channel spacer 24 is a component that maintains the water gap even when a lateral load is applied to the upper portion of the channel box 22 due to an earthquake or the like and the leaf spring of the channel fastener 23 contracts.
  • a plurality of fuel support fittings 19 are arranged on the core support plate 18 .
  • a set of four fuel assemblies 20 is supported by fuel support fittings 19 .
  • a water gap (not shown) is formed between the four fuel assemblies 20 supported as one set.
  • the upper portion of the control rod guide tube 15 is fitted under the fuel support fitting 19 .
  • the control rods 25 are driven by a control rod drive mechanism (not shown) provided inside the control rod drive mechanism housing 16 (see FIG. 1). By operating a control rod drive mechanism (not shown), the cross-section control rods 25 are passed from the control rod guide pipe 15 through the cross-section through holes 19a formed in the fuel support fittings 19, and through the four bodies. It is adapted to be inserted into a water gap (not shown) between fuel assemblies 20 supported as a set.
  • FIG. 3 is a top view of the grid plate 17.
  • FIG. 4 is a partially enlarged view of the lattice plate 17.
  • FIG. 5 is a side sectional view of the lattice plate 17.
  • FIG. 6 is a side cross-sectional view of a modification of the lattice plate 17. As shown in FIG.
  • the grid plate 17 has a disk-like shape.
  • the lattice plate 17 is arranged horizontally inside the reactor pressure vessel 12 (see FIG. 1).
  • the grid plate 17 is made of stainless steel.
  • the lattice plate 17 has an inner peripheral portion 30 provided with a plurality of holes 33 into which the upper portions of the channel boxes 22 (see FIG. 2) are inserted, and a plate-shaped outer peripheral portion 35 arranged on the outer periphery of the inner peripheral portion 30. ,have.
  • the lattice plate 17 is configured as a thin lattice plate having an inner peripheral portion 30 thinner in plate thickness (width in the vertical direction) than the lattice plate of a conventional BWR nuclear reactor.
  • the boiling water reactor 11 according to the present embodiment has a configuration in which the upper surface of the inner peripheral portion 30 of the lattice plate 17 is positioned lower than that of the conventional lattice plate in order to apply self-supporting control rods in the new BWR reactor. It has become. Therefore, the upper surface of the inner peripheral portion 30 is located at a position lower than the upper surface of the grid plate in existing improved boiling water reactors (existing nuclear reactors) in Japan.
  • the inner peripheral portion 30 has cells 31 in which a plurality of holes 33 are formed. Each hole 33 is formed by a plurality of grids 32 supporting the upper sides of the channel box.
  • the cells 31 include a 1-bundle cell 31a, a 2-bundle cell 31b, and a 4-bundle cell 31c.
  • the 1-bundle cell 31a is a region formed with a hole 33 into which the upper part of the integrated channel box 22 is inserted, and is formed in the outermost peripheral portion of the inner peripheral portion 30.
  • the 2-bundle cell 31b is a region formed with holes 33 into which the upper portions of the two channel boxes 22 are inserted, and is formed in the outermost peripheral portion of the inner peripheral portion 30 .
  • the 4-bundle cells 31c are areas formed with holes 33 into which the upper portions of the four channel boxes 22 are inserted, and are formed throughout the inner peripheral portion 30 .
  • the height of the upper surface of the outer peripheral portion 35 is higher than the height of the upper surface of the inner peripheral portion 30 in the entire circumference or part of the outer peripheral portion 35 .
  • the height of the upper surface of the outer peripheral portion 35 is higher than the height of the upper surface of the inner peripheral portion 30 in the entire circumference (the hatched portion) of the outer peripheral portion 35. .
  • the area of the portion facing the channel box 22 in the outer peripheral portion 35 of the grid plate 17 is enlarged.
  • the channel fasteners 23 and the channel spacers 24 provided in the channel box 22 can be easily brought into contact with the outer peripheral portion 35 of the grid plate 17, and the channel box 22 (fuel assembly 20 ) can improve the support performance (support performance).
  • the outer peripheral portion 35 has a raised range W35 in which the height is raised from the inner peripheral portion 30 over the entire area from the innermost peripheral portion to the outermost peripheral portion.
  • a plurality of holes 33 are formed by a grid 32 inside the inner peripheral portion 30 .
  • the plurality of holes 33 function as 1-bundle cells 31a, 2-bundle cells 31b, and 4-bundle cells 31c.
  • the grid plate 17 is configured as a thin grid plate having an inner peripheral portion 30 thinner than a conventional grid plate.
  • the plate thickness of the outer peripheral portion 35 is a thickness T35 that is thicker than the thickness T30 of the inner peripheral portion 30 .
  • the position of the upper surface of the outer peripheral portion 35 is preferably near the upper end of the channel box 22 .
  • the lattice plate 17 can be deformed as shown in FIG.
  • the lattice plate 17 has the upper surface of the outer peripheral portion 35 that is the same as the upper surface of the inner peripheral portion 30 , and the support member 41 is arranged on the upper surface of the outer peripheral portion 35 . configuration.
  • the support member 41 is a member that supports the support of the channel box 22 by the lattice plate 17 .
  • the support member 41 is fastened and fixed to the core shroud 14 with bolts 42 .
  • the support member 41 can also be fixed to the lattice plate 17 by welding.
  • the support member 41 is a plate-like member having an annular shape that is substantially the same as the outer peripheral portion 35 of the lattice plate 17 when viewed from above.
  • the position of the upper surface of the support member 41 is preferably near the upper end of the channel box 22 .
  • the lattice plate 17 can make the thickness T35 of the outer peripheral portion 35 thicker than the thickness T30 of the inner peripheral portion 30 .
  • the boiling water nuclear reactor 11 includes a rectangular tubular channel box 22 arranged to surround the side surface of the fuel assembly 20, and the side surface of the channel box 22. and a disk-shaped lattice plate 17 that supports the upper part.
  • the grid plate 17 has an inner peripheral portion 30 provided with a plurality of holes 33 into which the upper portions of the channel boxes 22 are inserted, and a plate-shaped outer peripheral portion 35 arranged on the outer periphery of the inner peripheral portion 30.
  • the height of the upper surface of the outer peripheral portion 35 is higher than the height of the upper surface of the inner peripheral portion 30 over the entire circumference or part of the outer peripheral portion 35 .
  • the position of the upper surface of the outer peripheral portion 35 is preferably near the upper end of the channel box 22 .
  • the area of the portion facing the channel box 22 in the outer peripheral portion 35 of the lattice plate 17 is enlarged. Therefore, in the boiling water reactor 11 according to this embodiment, the channel fasteners 23 and the channel spacers 24 provided in the channel box 22 can be easily brought into contact with the outer peripheral portion 35 of the grid plate 17 .
  • the boiling water reactor 11 according to this embodiment can improve the support performance (support performance) of the channel box 22 (fuel assembly 20).
  • the boiling water reactor 11 uses the position of the grid plate 17 (the position of the upper surface of the inner peripheral portion 30) as the conventional grid plate in order to apply the self-supporting control rods in the new BWR reactor.
  • the thickness of only the outer peripheral portion 35, which is the outermost peripheral portion of the grid plate 17, is increased so that the outer peripheral portion 35 has a support function.
  • the boiling water reactor 11 according to this embodiment can improve the support performance (support performance) of the channel box 22 (fuel assembly 20).
  • the boiling water reactor 11 may be configured to include a support member 41 that supports the support of the channel box 22 by the grid plate 17 .
  • the height of the upper surface of the outer peripheral portion 35 is the same as the height of the upper surface of the inner peripheral portion 30 , and the outer peripheral portion 35 is entirely or partially above the upper surface of the outer peripheral portion 35 .
  • a support member 41 is arranged in the . The position of the upper surface of the support member 41 is preferably near the upper end of the channel box 22 .
  • the area of the portion facing the channel box 22 in the outer peripheral portion 35 of the grid plate 17 is enlarged, as in the configuration shown in FIG. Therefore, in the boiling water reactor 11 according to this embodiment, the channel fasteners 23 and the channel spacers 24 provided in the channel box 22 can be easily brought into contact with the outer peripheral portion 35 of the grid plate 17 .
  • the boiling water reactor 11 according to this embodiment can improve the support performance (support performance) of the channel box 22 (fuel assembly 20).
  • the support performance (support performance) of the channel box 22 (fuel assembly 20) can be improved.
  • the height of the upper surface of the outer peripheral portion 35 is equal to is higher than the height of
  • the height of the upper surface of the outer peripheral portion 35 is equal to the upper surface of the inner peripheral portion 30 in a portion of the outer peripheral portion 35 (the hatched portion).
  • provide a grid plate 17A configured to be higher than the height of FIG. 7 is a partially enlarged view of the lattice plate 17A according to the second embodiment.
  • the height of the upper surface of the outer peripheral portion 35 is higher than the height of the upper surface of the inner peripheral portion 30 in the adjacent portion 35a that is a part of the outer peripheral portion 35. is also higher.
  • the adjacent portion 35a is a portion adjacent to the 1-bundle cell 31a and the 2-bundle cell 31b.
  • the grid plate 17A may have a configuration in which the plate thickness of the adjacent portion 35a is thicker than the plate thickness of the inner peripheral portion 30, as shown in FIG. Moreover, as shown in FIG. 6, the lattice plate 17A may have a configuration in which a plate-like support member 41 is arranged on the adjacent portion 35a.
  • the boiling water nuclear reactor 11 uses the lattice plate 17A according to the second embodiment, so that the channel fasteners 23 and the channel spacers 24 provided in the channel box 22 are attached to the lattice plate 17A in the same manner as in the first embodiment. It is possible to facilitate contact with the outer peripheral portion 35, and improve the support performance of the channel box 22 (fuel assembly 20).
  • the lattice plate 17A (see FIG. 7) according to the second embodiment has a portion higher than the upper surface of the inner peripheral portion 30 compared to the lattice plate 17 (see FIG. 4) according to the first embodiment. Since it is only a part (adjacent portion 35a), the material cost can be reduced.
  • FIGS. 8 and 9 As shown in FIGS. 8 and 9, in the third embodiment, a grid plate 17B having rod-like support members 46 arranged adjacent to the one-bundle cells 31a and the two-bundle cells 31b is provided.
  • FIG. 8 is a partially enlarged view of the lattice plate 17B according to the third embodiment.
  • FIG. 9 is an explanatory diagram of the support member 46 attached to the lattice plate 17B.
  • the lattice plate 17B has rod-shaped support members 46 arranged adjacent to the one-bundle cells 31a and the two-bundle cells 31b.
  • the support member 46 includes a support member 46a adjacent to both the 1-bundle cell 31a and the 2-bundle cell 31b, and a support member 46b adjacent only to the 1-bundle cell 31a.
  • the support member 46a has a triangular shape in a side view having a bottom surface 47a extending in the horizontal direction, a vertical surface 48a extending in the vertical direction, and an inclined surface 49a extending in the oblique direction.
  • the support member 46b has a triangular shape in a side view having a bottom surface 47b extending in the horizontal direction, a vertical surface 48b extending in the vertical direction, and an inclined surface 49b extending in the oblique direction.
  • the support members 46a and 46b are fixed to the upper surface of the lattice plate 17 by welding portions 51a and 51b, respectively.
  • the support member 46 is arranged so that its vertical plane is substantially flush with the wall surface of the hole 33 .
  • the support member 46 a is arranged so that the vertical surface 48 a is substantially flush with the wall surface 34 a of the hole 33 .
  • the support member 46b is arranged so that the vertical surface 48b is substantially flush with the wall surface 34b of the hole 33.
  • a wall surface 34a of the hole 33 is a wall surface facing the outer peripheral portion 35 of the grid plate 17B at a portion where the one-bundle cells 31a and the two-bundle cells 31b are arranged side by side.
  • the wall surface 34b of the hole 33 is a wall surface facing the outer peripheral portion 35 of the lattice plate 17B at a portion unrelated to the 2-bundle cell 31b of the 1-bundle cell 31a.
  • the boiling water nuclear reactor 11 uses the grid plate 17B according to the third embodiment, so that the channel fasteners 23 and the channel spacers 24 provided in the channel box 22 are replaced with the grid plate 17B, as in the other embodiments. , and the support performance of the channel box 22 (fuel assembly 20) can be improved.
  • the grid plate 17B (see FIGS. 8 and 9) according to the second embodiment has a smaller volume of the rod-shaped support member 46 than the grid plates 17 and 17A according to other embodiments, the material cost is reduced. can be reduced.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of the embodiment can be replaced with another configuration, and it is also possible to add another configuration to the configuration of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

沸騰水型原子炉(11)は、燃料集合体(20)の側面を囲むように配置された四角筒状のチャンネルボックス(22)と、チャンネルボックスの側面上部を支持する円板状の格子板(17)と、を備えている。格子板(17)は、チャンネルボックス(22)の上部が挿入される複数の孔(33)が設けられた内周部(30)に対し、外周部の全周又は一部の上面の高さが高い。

Description

沸騰水型原子炉
 本発明は、沸騰水型原子炉に関する。
 沸騰水型原子炉は、正方格子状に並べられた複数の燃料集合体の側面を四角筒状のチャンネルボックスで囲み、チャンネルボックスを介して燃料集合体の側面上部を格子板で支持する構成になっている(例えば、特許文献1参照)。
 ところで、改良型沸騰水型原子炉を含む今後の新設沸騰水型原子炉(以下、「新設BWR型原子炉」と称する)では、従来型沸騰水型原子炉(以下、「従来BWR型原子炉」と称する)の格子板よりも板厚(鉛直方向の幅)が薄い格子板(以下、「薄型格子板」と称する)を用いている。新設BWR型原子炉は、薄型格子板の上面を従来とおおよそ同じ位置に配置するとともに、薄型格子板の下面を従来よりも高い位置に配置している。
 近年、自立型制御棒が海外(日本国外)BWR5型原子炉において採用されている。自立型制御棒は、制御棒を格子板に届くように延長することで、制御棒全挿入時に格子板を支えとして自立する構造とした制御棒である。これにより、ダブルブレードガイドを用いずに燃料交換を実施することが可能となる。
 自立型制御棒を新設BWR型原子炉に用いる場合、薄型格子板の板厚がBWR5型原子炉の格子板の板厚よりも薄いため、薄型格子板の上面をBWR5型原子炉とおおよそ同じ位置に配置した構成では、格子板の下面位置が高くなるため、自立型制御棒を成立させるためには、制御棒の全長をより長くする必要がある。しかしながら、制御棒を長くすると、原子炉の運転中に全引き抜きされた制御棒が受ける照射の影響が大きくなる等の影響があるため、新設BWR型原子炉では自立型制御棒の成立が困難である。そこで、薄型格子板の上面を従来よりも低い位置に配置することが考えられる。
特開平8-278384号公報
 しかしながら、薄型格子板の上面を従来よりも低い位置に配置した場合、炉心外周部において、取り合い上、チャンネルボックス(燃料集合体)の水平方向の支持性能(サポート性能)が低い。
 本発明は、前記した課題を解決するためになされたものであり、チャンネルボックス(燃料集合体)の支持性能(サポート性能)を向上させた沸騰水型原子炉を提供することを主な目的とする。
 前記目的を達成するため、本発明は、沸騰水型原子炉であって、燃料集合体の側面を囲むように配置された四角筒状のチャンネルボックスと、前記チャンネルボックスの側面上部を支持する格子板とを備え、前記格子板は、前記チャンネルボックスの上部が挿入される複数の孔が設けられた内周部に対し、外周部の全周又は一部の上面の高さが高い構成とする。
 その他の手段は、後記する。
 本発明によれば、チャンネルボックス(燃料集合体)の支持性能(サポート性能)を向上させることができる。
実施形態1に係る沸騰水型原子炉の内部構造を示すために一部を切断して示した斜視図である。 実施形態1に係る沸騰水型原子炉に配置される燃料集合体の支持構造を示す斜視図である。 実施形態1に係る格子板の上面図である。 実施形態1に係る格子板の部分拡大図である。 実施形態1に係る格子板の側断面図である。 実施形態1に係る格子板の変形例の側断面図である。 実施形態2に係る格子板の部分拡大図である。 実施形態3に係る格子板の部分拡大図である。 実施形態3に係る格子板に取り付けられたサポート部材の説明図である。
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示しているに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
 [実施形態1]
 <沸騰水型原子炉の構成>
 以下、図1を参照して、本実施形態1に係る沸騰水型原子炉11の構成について説明する。図1は、本実施形態1に係る沸騰水型原子炉11の内部構造を示すために一部を切断して示した斜視図である。
 図1に示すように、本実施形態1に係る沸騰水型原子炉11は、原子炉圧力容器12と、炉心13と、炉心シュラウド14と、制御棒案内管15と、制御棒駆動機構ハウジング16と、格子板17と、炉心支持板18と、を備え、炉心13に燃料集合体20が装荷されるようになっている。
 原子炉圧力容器12の内部には、複数の燃料集合体20が装荷される炉心13と、炉心13(燃料集合体20)を取り囲む炉心シュラウド14と、制御棒25(図2参照)が格納される制御棒案内管15と、炉心シュラウド14の上部に配置され燃料集合体20の横方向の支持の役目を持つ格子形状をした格子板17と、炉心シュラウド14の下部に配置され燃料集合体20を支持する炉心支持板18と、が配置されている。
 原子炉圧力容器12の底部には、複数の制御棒駆動機構ハウジング16が設けられている。制御棒駆動機構ハウジング16の上部は、原子炉圧力容器12の底部を貫通して、制御棒案内管15の下部と接続されている。制御棒案内管15の上部は、炉心支持板18(燃料支持金具19)に嵌め込まれている。制御棒駆動機構ハウジング16の内部には、制御棒駆動機構(図示せず)が設けられており、制御棒案内管15に格納された制御棒25(図2参照)を炉心13に挿入することができるようになっている。
 <燃料集合体の支持構造>
 図2は、沸騰水型原子炉11に配置される燃料集合体20の支持構造を示す斜視図である。図2では、手前側の燃料集合体20と格子板17の一部を切断して示している。
 図2に示すように、炉心13を構成する燃料集合体20は、複数の燃料棒21が正方格子状に並べられている。燃料集合体20の側面は、四角筒状のチャンネルボックス22で囲まれている。チャンネルボックス22の上部側面は、格子板17によって支持されている。チャンネルボックス22(燃料集合体20)の上部には、チャンネルファスナ23とチャンネルスペーサ24が取り付けられている。チャンネルファスナ23は、板ばねを有しており、隣り合うチャンネルボックス22(燃料集合体20)を板ばねで押し合うことで、チャンネルボックス22間の水ギャップを確保する構成要素である。チャンネルスペーサ24は、地震等でチャンネルボックス22の上部に横方向の荷重が加わり、チャンネルファスナ23の板ばねが縮んだ場合でも水ギャップを維持する構成要素である。
 炉心支持板18には、複数の燃料支持金具19が配置されている。燃料集合体20は、4体を1組として、燃料支持金具19によって支持されるようになっている。これにより、4体を1組として支持される燃料集合体20の相互間には、水ギャップ(図示せず)が形成される。燃料支持金具19の下側には、制御棒案内管15の上部が嵌め込まれている。
 制御棒25は、制御棒駆動機構ハウジング16(図1参照)の内部に設けられた制御棒駆動機構(図示せず)により駆動されるようになっている。制御棒駆動機構(図示せず)を動作させることにより、十字断面の制御棒25は、制御棒案内管15から燃料支持金具19に形成される十字断面の貫通孔19aを通って、4体を1組として支持される燃料集合体20の間の水ギャップ(図示せず)に挿入されるようになっている。
 <格子板の構成>
 以下、図3乃至図6を参照して、格子板17の構成について説明する。図3は、格子板17の上面図である。図4、格子板17の部分拡大図である。図5は、格子板17の側断面図である。図6は、格子板17の変形例の側断面図である。
 図3に示すように、格子板17は、円板状の形状を呈している。格子板17は、原子炉圧力容器12(図1参照)の内部に水平に配置される。格子板17は、ステンレス鋼によって構成されている。格子板17は、チャンネルボックス22(図2参照)の上部が挿入される複数の孔33が設けられた内周部30と、内周部30の外周に配置された板状の外周部35と、を有している。
 本実施形態では、格子板17は、内周部30が従来BWR型原子炉の格子板よりも板厚(鉛直方向の幅)が薄い薄型格子板として構成されている。本実施形態に係る沸騰水型原子炉11は、新設BWR型原子炉で自立型制御棒を適用するために格子板17の内周部30の上面の位置を従来の格子板よりも下げた構成になっている。そのため、内周部30の上面は、日本国内の既設の改良型沸騰水型原子炉(既設原子炉)における格子板の上面よりも低い位置に配置されている。
 内周部30は、複数の孔33が形成されたセル31を有している。各孔33は、チャンネルボックスの側面上部を支持する複数の格子32によって形成されている。
 セル31は、1バンドルセル31aと、2バンドルセル31bと、4バンドルセル31cとを有している。1バンドルセル31aは、一体のチャンネルボックス22の上部が挿入される孔33が形成された領域であり、内周部30の最外周部分に形成される。2バンドルセル31bは、二体のチャンネルボックス22の上部が挿入される孔33が形成された領域であり、内周部30の最外周部分に形成される。4バンドルセル31cは、四体のチャンネルボックス22の上部が挿入される孔33が形成された領域であり、内周部30の全域に形成される。
 外周部35の全周又は一部において、外周部35の上面の高さは、内周部30の上面の高さよりも高い。例えば、図4に示す例では、外周部35の全周(ハッチングを付して示した部分)において、外周部35の上面の高さが内周部30の上面の高さよりも高くなっている。このような沸騰水型原子炉11では、格子板17の外周部35におけるチャンネルボックス22に対向する部位の面積が拡大されている。そのため、沸騰水型原子炉11は、チャンネルボックス22に設けられたチャンネルファスナ23とチャンネルスペーサ24を格子板17の外周部35に当接させ易くすることができ、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 図5に示す例では、外周部35は、最内周部分から最外周部分に亘って全域が内周部30よりも高さを嵩上げされた嵩上げ範囲W35になっている。内周部30の内部には、格子32によって複数の孔33が形成されている。複数の孔33は、1バンドルセル31a、2バンドルセル31b、4バンドルセル31cとして機能する。
 本実施形態では、格子板17は、内周部30が従来の格子板よりも板厚が薄い薄型格子板として構成されている。外周部35の板厚は、内周部30の厚さT30よりも厚い厚さT35になっている。外周部35の上面の位置は、好ましくは、チャンネルボックス22の上端付近であるとよい。
 格子板17は、図6に示すように変形することができる。図6に示す例では、格子板17は、外周部35の上面の高さが内周部30の上面の高さと同じになっており、外周部35の上面の上にサポート部材41が配置された構成になっている。サポート部材41は、格子板17によるチャンネルボックス22の支持をサポートする部材である。サポート部材41は、ボルト42で炉心シュラウド14に締結固定されている。ただし、サポート部材41は、溶接で格子板17に固定することもできる。
 サポート部材41は、上面視で格子板17の外周部35とほぼ同じような円環形状をした板状の部材である。サポート部材41の上面の位置は、好ましくは、チャンネルボックス22の上端付近であるとよい。これにより、格子板17は、外周部35の厚さT35を内周部30の厚さT30よりも厚くすることができる。
 <沸騰水型原子炉の主な特徴>
 (1)図5に示すように、本実施形態に係る沸騰水型原子炉11は、燃料集合体20の側面を囲むように配置された四角筒状のチャンネルボックス22と、チャンネルボックス22の側面上部を支持する円板状の格子板17と、を備えている。格子板17は、チャンネルボックス22の上部が挿入される複数の孔33が設けられた内周部30と、内周部30の外周に配置された板状の外周部35と、を有している。外周部35の全周又は一部において、外周部35の上面の高さは、内周部30の上面の高さよりも高い。外周部35の上面の位置は、好ましくは、チャンネルボックス22の上端付近であるとよい。
 このような本実施形態に係る沸騰水型原子炉11では、格子板17の外周部35におけるチャンネルボックス22に対向する部位の面積が拡大されている。そのため、本実施形態に係る沸騰水型原子炉11は、チャンネルボックス22に設けられたチャンネルファスナ23とチャンネルスペーサ24を格子板17の外周部35に当接させ易くすることができる。このような本実施形態に係る沸騰水型原子炉11は、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 つまり、本実施形態に係る沸騰水型原子炉11は、新設BWR型原子炉で自立型制御棒を適用するために格子板17の位置(内周部30の上面の位置)を従来の格子板よりも下げた構成において、格子板17の最外周部分である外周部35のみの厚さを厚くして、外周部35にサポート機能を持たせている。このような本実施形態に係る沸騰水型原子炉11は、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 (2)図6に示すように、本実施形態に係る沸騰水型原子炉11は、格子板17によるチャンネルボックス22の支持をサポートするサポート部材41を備える構成にしてもよい。図6に示す構成では、外周部35の上面の高さは、内周部30の上面の高さと同じになっており、外周部35の全周又は一部において、外周部35の上面の上には、サポート部材41が配置されている。サポート部材41の上面の位置は、好ましくは、チャンネルボックス22の上端付近であるとよい。
 このような本実施形態に係る沸騰水型原子炉11は、図5に示す構成と同様に、格子板17の外周部35におけるチャンネルボックス22に対向する部位の面積が拡大されている。そのため、本実施形態に係る沸騰水型原子炉11は、チャンネルボックス22に設けられたチャンネルファスナ23とチャンネルスペーサ24を格子板17の外周部35に当接させ易くすることができる。このような本実施形態に係る沸騰水型原子炉11は、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 以上の通り、本実施形態1に係る沸騰水型原子炉11によれば、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 [実施形態2]
 前記の実施形態1に係る格子板17(図4参照)は、外周部35の全周(ハッチングを付して示した部分)において、外周部35の上面の高さが内周部30の上面の高さよりも高くなっている。
 これに対し、図7に示すように、本実施形態2では、外周部35の一部(ハッチングを付して示した部分)において、外周部35の上面の高さが内周部30の上面の高さよりも高い構成の格子板17Aを提供する。図7は、本実施形態2に係る格子板17Aの部分拡大図である。
 図7に示すように、本実施形態2に係る格子板17Aは、外周部35の一部である、隣接部35aにおいて、外周部35の上面の高さが内周部30の上面の高さよりも高くなっている。隣接部35aは、1バンドルセル31aと2バンドルセル31bとに隣接する部位である。
 なお、格子板17Aは、図5に示すように、隣接部35aの板厚を内周部30の板厚よりも厚くした構成にしてもよい。また、格子板17Aは、図6に示すように、隣接部35aの上に、板状のサポート部材41を配置した構成にしてもよい。
 本実施形態2に係る格子板17A(図7参照)は、実施形態1に係る格子板17(図4参照)と同様に、外周部35におけるチャンネルボックス22に対向する部位の面積が拡大されている。そのため、沸騰水型原子炉11は、本実施形態2に係る格子板17Aを用いることにより、実施形態1と同様に、チャンネルボックス22に設けられたチャンネルファスナ23とチャンネルスペーサ24を格子板17Aの外周部35に当接させ易くすることができ、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 しかも、本実施形態2に係る格子板17A(図7参照)は、実施形態1に係る格子板17(図4参照)と比較して、内周部30の上面よりも高くなっている部位が一部(隣接部35a)だけであるため、材料費を低減することができる。
 [実施形態3]
 図8及び図9に示すように、本実施形態3では、1バンドルセル31aと2バンドルセル31bとに隣接する部位に、棒状のサポート部材46を配置した格子板17Bを提供する。図8は、本実施形態3に係る格子板17Bの部分拡大図である。図9は、格子板17Bに取り付けられたサポート部材46の説明図である。
 図8及び図9に示すように、本実施形態3に係る格子板17Bは、1バンドルセル31aと2バンドルセル31bとに隣接する部位に、棒状のサポート部材46が配置されている。サポート部材46としては、1バンドルセル31aと2バンドルセル31bとの両方に隣接するサポート部材46aと、1バンドルセル31aにのみ隣接するサポート部材46bと、がある。
 図9に示すように、サポート部材46aは、水平方向に延びる底面47aと垂直方向に延びる垂直面48aと斜め方向に延びる傾斜面49aとを有する側面視で三角形の形状を呈している。同様に、サポート部材46bは、水平方向に延びる底面47bと垂直方向に延びる垂直面48bと斜め方向に延びる傾斜面49bとを有する側面視で三角形の形状を呈している。サポート部材46a,46bは、それぞれ、格子板17の上面に溶接部51a,51bで固定されている。
 サポート部材46は、垂直面が孔33の壁面とほぼ同一な面になるように配置されている。具体的には、サポート部材46aは、垂直面48aが孔33の壁面34aとほぼ同一な面になるように配置されている。また、サポート部材46bは、垂直面48bが孔33の壁面34bとほぼ同一な面になるように配置されている。孔33の壁面34aは、1バンドルセル31aと2バンドルセル31bとが並んでいる部位において、格子板17Bの外周部35に臨む壁面である。孔33の壁面34bは、1バンドルセル31aの2バンドルセル31bとは無関係な部位において、格子板17Bの外周部35に臨む壁面である。
 本実施形態3に係る格子板17B(図8及び図9参照)は、他の実施形態に係る格子板17,17Aと同様に、外周部35におけるチャンネルボックス22に対向する部位の面積が拡大されている。そのため、沸騰水型原子炉11は、本実施形態3に係る格子板17Bを用いることにより、他の実施形態と同様に、チャンネルボックス22に設けられたチャンネルファスナ23とチャンネルスペーサ24を格子板17Bの外周部35に当接させ易くすることができ、チャンネルボックス22(燃料集合体20)の支持性能(サポート性能)を向上させることができる。
 しかも、本実施形態2に係る格子板17B(図8及び図9参照)は、他の実施形態に係る格子板17,17Aと比較して、棒状のサポート部材46の体積が少ないため、材料費を低減することができる。
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、実施形態の構成に他の構成を加えることも可能である。また、各構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 11  沸騰水型原子炉
 12  原子炉圧力容器
 13  炉心
 14  炉心シュラウド
 15  制御棒案内管
 16  制御棒駆動機構ハウジング
 17,17A,17B  格子板
 18  炉心支持板
 19  燃料支持金具
 19a  貫通孔
 20  燃料集合体
 21  燃料棒
 22  チャンネルボックス
 23  チャンネルファスナ
 24  チャンネルスペーサ
 25  制御棒
 30  内周部
 31  セル
 31a  1バンドルセル
 31b  2バンドルセル
 31c  4バンドルセル
 32  格子
 33  孔
 34a,34b  壁面
 35  外周部
 35a  隣接部
 41  サポート部材
 42  ボルト
 46(46a,46b)  サポート部材
 47a,47b  底面
 48a,48b  垂直面
 49a,49b  傾斜面
 51a,51b  溶接部
 T30,T35  厚さ
 T41  高さ
 W35  嵩上げ範囲

Claims (10)

  1.  燃料集合体の側面を囲むように配置された四角筒状のチャンネルボックスと、
     前記チャンネルボックスの側面上部を支持する格子板とを備え、
     前記格子板は、前記チャンネルボックスの上部が挿入される複数の孔が設けられた内周部に対し、外周部の全周又は一部の上面の高さが高い
    ことを特徴とする沸騰水型原子炉。
  2.  請求項1に記載の沸騰水型原子炉において、
     前記外周部の上面の位置は、チャンネルボックスの上端付近である
    ことを特徴とする沸騰水型原子炉。
  3.  請求項1に記載の沸騰水型原子炉において、
     前記内周部の最外周部分の領域で、かつ、一体の前記チャンネルボックスの上部が挿入される孔が形成された領域を1バンドルセルとし、前記内周部の最外周部分の領域で、かつ、二体の前記チャンネルボックスの上部が挿入される孔が形成された領域を2バンドルセルとし、
     前記1バンドルセルと前記2バンドルセルとに隣接する部位において、前記外周部の上面の高さは、前記内周部の上面の高さよりも高い
    ことを特徴とする沸騰水型原子炉。
  4.  燃料集合体の側面を囲むように配置された四角筒状のチャンネルボックスと、
     前記チャンネルボックスの側面上部を支持する格子板と、
     前記格子板による前記チャンネルボックスの支持をサポートするサポート部材と、を備え、
     前記格子板は、前記チャンネルボックスの上部が挿入される複数の孔が設けられた内周部と、当該内周部の外周に配置された外周部と、を有し、
     前記外周部の上面の高さは、前記内周部の上面の高さと同じになっており、
     前記外周部の全周又は一部において、前記外周部の上面の上には、前記サポート部材が配置されている
    ことを特徴とする沸騰水型原子炉。
  5.  請求項4に記載の沸騰水型原子炉において、
     前記サポート部材の上端の位置は、チャンネルボックスの上端付近である
    ことを特徴とする沸騰水型原子炉。
  6.  請求項4に記載の沸騰水型原子炉において、
     前記内周部の最外周部分の領域で、かつ、一体の前記チャンネルボックスの上部が挿入される孔が形成された領域を1バンドルセルとし、前記内周部の最外周部分の領域で、かつ、二体の前記チャンネルボックスの上部が挿入される孔が形成された領域を2バンドルセルとし、
     前記1バンドルセルと前記2バンドルセルとに隣接する部位において、前記外周部の上面の上には、前記サポート部材が配置されている
    ことを特徴とする沸騰水型原子炉。
  7.  請求項4に記載の沸騰水型原子炉において、
     前記サポート部材は、板状の形状を呈しており、前記格子板の下に配置された炉心シュラウドにボルトで締結されている
    ことを特徴とする沸騰水型原子炉。
  8.  請求項4に記載の沸騰水型原子炉において、
     前記サポート部材は、板状の形状を呈しており、前記格子板の上面に溶接で固定されている
    ことを特徴とする沸騰水型原子炉。
  9.  請求項4に記載の沸騰水型原子炉において、
     前記サポート部材は、水平方向に延びる底面と垂直方向に延びる垂直面と斜め方向に延びる傾斜面とを有する側面視で三角形の形状を呈する棒状の部材であって、前記格子板の上面に溶接で固定されている
    ことを特徴とする沸騰水型原子炉。
  10.  請求項9に記載の沸騰水型原子炉において、
     前記外周部には、前記チャンネルボックスを通すための四角形状の孔が鉛直方向に貫通して形成されており、
     前記サポート部材は、前記垂直面が前記孔の壁面とほぼ同一な面になるように配置されている
    ことを特徴とする沸騰水型原子炉。
PCT/JP2022/019720 2021-08-23 2022-05-09 沸騰水型原子炉 WO2023026594A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-135851 2021-08-23
JP2021135851A JP7504846B2 (ja) 2021-08-23 2021-08-23 沸騰水型原子炉

Publications (1)

Publication Number Publication Date
WO2023026594A1 true WO2023026594A1 (ja) 2023-03-02

Family

ID=85321716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019720 WO2023026594A1 (ja) 2021-08-23 2022-05-09 沸騰水型原子炉

Country Status (2)

Country Link
JP (1) JP7504846B2 (ja)
WO (1) WO2023026594A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337853A (ja) * 1995-06-09 1996-12-24 Hitachi Ltd 高耐食性高強度オーステナイト焼結鋼とその製造方法及びその用途
JP2010002246A (ja) * 2008-06-19 2010-01-07 Hitachi-Ge Nuclear Energy Ltd 自然循環式沸騰水型原子炉

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337853A (ja) * 1995-06-09 1996-12-24 Hitachi Ltd 高耐食性高強度オーステナイト焼結鋼とその製造方法及びその用途
JP2010002246A (ja) * 2008-06-19 2010-01-07 Hitachi-Ge Nuclear Energy Ltd 自然循環式沸騰水型原子炉

Also Published As

Publication number Publication date
JP2023030625A (ja) 2023-03-08
JP7504846B2 (ja) 2024-06-24

Similar Documents

Publication Publication Date Title
US5966419A (en) Spacing grid of a fuel assembly for a nuclear reactor and fuel assembly
JP5469074B2 (ja) 高温熱伝導ガスを備えたgfr型核反応炉の核分裂性バンドル用核燃料プレートの支持装置と、該支持装置を含む核分裂性バンドル、及び、該核分裂性バンドルを含む核燃料コアアセンブリ
JPS6348031B2 (ja)
WO2023026594A1 (ja) 沸騰水型原子炉
US20100020916A1 (en) Nuclear reactor fuel assembly grid
EP2081194B1 (en) Nuclear reactor fuel assembly
WO2023026595A1 (ja) 沸騰水型原子炉
JP4486685B2 (ja) 衝撃吸収構造、放射性物質保管容器及び衝撃吸収方法
JP4115250B2 (ja) 支持部材、支持部材を有する放射性物質保管容器、及び衝撃吸収方法
KR101071287B1 (ko) 와이어 스프링형 지지격자체 내부구조
WO2021150133A1 (ru) Тепловыделяющая сборка ядерного реактора (варианты)
RU2138861C1 (ru) Дистанционирующая решетка тепловыделяющей сборки ядерного реактора
US20140376681A1 (en) Nuclear fuel assembly having a spacer grid with one or more seamless corners
KR20240046680A (ko) 핵 반응기 중성자 반사체
RU2223557C2 (ru) Тепловыделяющая сборка ядерного реактора
JPH0634716Y2 (ja) 燃料集合体のスペーサ
JP6239475B2 (ja) 燃料チャンネルボックスの製造方法、燃料集合体及びそれを装荷する沸騰水型原子炉の炉心
US10714220B2 (en) Fuel channel for a nuclear boiling water reactor
Weiland et al. Nuclear reactor spacer grid
JPH06249987A (ja) 燃料スペーサおよび燃料集合体
JP3057479B2 (ja) 原子燃料集合体のスぺーサ
JPH04366793A (ja) 燃料集合体及び燃料チャンネルボックス
JPH03249594A (ja) 燃料集合体及び原子炉
Anderson NEUTRONIC REACTORS
JPH0452913B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860891

Country of ref document: EP

Kind code of ref document: A1