WO2023026010A1 - Procédé d'obtention de fibres solubles par voie enzymatique - Google Patents

Procédé d'obtention de fibres solubles par voie enzymatique Download PDF

Info

Publication number
WO2023026010A1
WO2023026010A1 PCT/FR2022/051595 FR2022051595W WO2023026010A1 WO 2023026010 A1 WO2023026010 A1 WO 2023026010A1 FR 2022051595 W FR2022051595 W FR 2022051595W WO 2023026010 A1 WO2023026010 A1 WO 2023026010A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonds
glucosidic bonds
glucanotransferase
protein
cleaving
Prior art date
Application number
PCT/FR2022/051595
Other languages
English (en)
Inventor
Pierre Lanos
Matthieu RAMETTE
Magali Remaud-Simeon
Claire Moulis
Sandra PIZZUT-SERIN
Etienne Severac
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to AU2022332653A priority Critical patent/AU2022332653A1/en
Priority to CA3229608A priority patent/CA3229608A1/fr
Priority to KR1020247008944A priority patent/KR20240046572A/ko
Priority to CN202280062305.8A priority patent/CN117940574A/zh
Publication of WO2023026010A1 publication Critical patent/WO2023026010A1/fr
Priority to CONC2024/0003549A priority patent/CO2024003549A2/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01005Dextransucrase (2.4.1.5)

Definitions

  • the present invention relates to a method for preparing a mixture of poorly digestible ⁇ -glucans from a mixture of oligosaccharides and polysaccharides.
  • the invention also relates to a mixture of poorly digestible ⁇ -glucans.
  • the present invention also relates to the sequential use of a glucanotransferase capable of creating ⁇ (1-3) glucosidic bonds and of a glucanotransferase capable of creating ⁇ (1-6) glucosidic bonds to reduce the digestibility of a mixture of ⁇ -glucans.
  • Dietary fibers play an important role in the human diet.
  • soluble fibers which are soluble in water and have a gelling capacity
  • insoluble fibers insoluble fibers.
  • Soluble fibers, including branched maltodextrins, are particularly interesting because they are poorly digestible. As a result, their incorporation into the diet can reduce the glycemic index of a food and prolong the feeling of satiety. They also have prebiotic properties on the intestinal flora, i.e. they are capable of selectively promoting the growth of certain probiotic-type bacteria or the activity of the microbiota, providing a benefit to the health.
  • the applicant company found that it was possible, from a mixture of oligosaccharides and polysaccharides, to obtain fibers of interest in human and animal nutrition, by enzymatic means.
  • the applicant company has thus developed a process which uses two particular enzymes, one capable of creating a(1-3) bonds and the other capable of creating a(1-6) bonds, sequentially, and vice versa. .
  • the present invention relates to a method for preparing a mixture of ⁇ -glucans comprising the following steps:
  • a substrate said substrate being a mixture of oligosaccharides and polysaccharides having a polydispersion index of between 5 and 10, preferably between 6 and 9.5, even more preferably between 7 and 9, between 8 and 8.5, most preferably about 8.4,
  • first and second enzymes being an ⁇ -glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and of creating ⁇ (1-3) glucosidic bonds and/or an ⁇ -glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and creating ⁇ (1-6) glucosidic bonds.
  • ⁇ -glucan soluble fibre
  • dietary soluble fibre oligosaccharides composed of at least 3 glucose units linked together by a-glycosidic (or a-glucosidic) bonds.
  • ⁇ -glucans The classification of ⁇ -glucans is mainly based on the measurement of their reducing power, conventionally expressed by the notion of “dextrose equivalent” (“Dextrose Equivalent” or DE).
  • DE Dextrose Equivalent
  • maltodextrins included in the Monograph Specifications of the Food Chemical Codex specifies that the DE value for a maltodextrin must not exceed 20. Above 20, it is glucose syrups.
  • the substrate used in the method according to the present invention has a DE of between 15 and 20, preferably between 17 and 20, preferably between 18 and 19, even more preferably about 18, 4.
  • a measurement of the DE is however insufficient to accurately represent the molecular distribution of the ⁇ -glucans.
  • the acid hydrolysis of starch, totally random, or its enzymatic hydrolysis a little more orderly, provide mixtures of glucose and glucose polymers that the only measurement of the DE does not make it possible to define with precision, and which comprise molecules of short size, low Degree of Polymerization (DP), as well as molecules of very long size, of high DP.
  • DP Degree of Polymerization
  • Mn and Mp are not calculated, but are measured by different techniques.
  • a measurement method adapted to glucose polymers is used, which is based on gel permeation chromatography on chromatography columns calibrated with pullulans of known molecular masses.
  • the Mp/Mn ratio is called polydispersion index or polydispersion index (PI) and makes it possible to globally characterize the distribution of the molecular masses of a polymer mixture.
  • PI polydispersion index
  • the molecular mass distribution of standard maltodextrins leads to PIs of between 5 and 10.
  • the substrate comprises:
  • the substrate comprises:
  • a(1 -6) bonds between 3 and 7%, preferably between 4 and 6%, of a(1 -6) bonds, between 0 and 3%, preferably between 1 and 2%, of a(1 -3) bonds, the percentage of a(1 -6) bonds being the molar percentage of a(1 -6) bonds respectively relative to the total number of glycosidic bonds, measured by the Hakomori method.
  • the substrate has a dextrose equivalent (DE) of between 17 and 20, preferably between 18 and 19, even more preferably around 18.4.
  • DE dextrose equivalent
  • the substrate has the characteristics described in Table 1 below. It may be, for example, Glucidex 19D® marketed by the applicant company.
  • the substrate is present at a concentration of between 50 g/L and 500 g/L, preferably between 100 g/L and 200 g/L in the reaction medium.
  • the two enzymes are used sequentially.
  • the first enzyme is an ⁇ -glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds, but also of cleaving ⁇ (1-4) glucosidic bonds and of creating ⁇ -glucosidic bonds.
  • the second enzyme is an ⁇ -glucanotransferase capable of cleaving glucosidic a(1 -4) bonds and creating glucosidic a(1 -
  • the first enzyme is an ⁇ -glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and creating ⁇ (1-6) glucosidic bonds
  • the second enzyme is an ⁇ -glucosidic bond.
  • glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and creating ⁇ (1-3) glucosidic bonds.
  • the ⁇ -glucanotransferase capable of hydrolyzing ⁇ (1-4) glucosidic bonds and of creating ⁇ (1-6) glucosidic bonds is the protein having the sequence SEQ ID No:1 or a protein having at least 90% identity with the protein having the sequence SEQ ID No:1.
  • it is a protein having at least 91%, even more preferably, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least at least 97%, at least 98%, at least 99%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9% identity with the protein having the sequence SEQ ID No: 1.
  • the sequence SEQ ID No: 1 corresponds to the Genbank accession number WP_053069107.1.
  • the ⁇ -glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and of creating ⁇ (1-3) glucosidic bonds is the protein having the sequence SEQ ID No:2 or a protein having at least 90% identity with the protein having the sequence SEQ ID No:2.
  • it is a protein having at least 91%, even more preferably, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least at least 97%, at least 98%, at least 99%, at least 99.5%, at least 99.6%, at least 99.7%, at least 99.8%, at least 99.9% identity with the protein having the sequence SEQ ID No: 2.
  • the sequence SEQ ID No: 2 corresponds to the Genbank accession number AOR73699.1.
  • each enzyme is added at a concentration of between 0.01 and 1 mg/mL of reaction medium, preferably between 0.05 and 0.5 mg/mL, even more preferably approximately 0.1 mg / mL of reaction medium, during sequential incubations.
  • the bringing together of the substrate and each enzyme is carried out for a period of between 12 and 48 hours, preferably about 24 hours.
  • the bringing together of the substrate and of each enzyme is carried out at a temperature of between 20 and 40° C., preferably about 37° C.
  • the bringing together of the substrate and each enzyme is carried out at a pH of between 5 and 6.5, preferably between 5.5 and 6, even more preferably about 5.75.
  • the present invention also relates to a mixture of aglucans which can be obtained by the process described above.
  • This mixture of ⁇ -glucans is characterized by its low digestibility according to the AOAC 2002.02 method.
  • the method according to the invention makes it possible to reduce by a factor of at least 2, preferably by at least 2.5, even more preferably by at least 3, the hydrolyzable fraction, measured according to the AOAC 2002.02 method, relative to the starting substrate.
  • the AOAC 2002.02 method can in particular be implemented using the “HPAEC-PAD assay” part of the “resistant Starch, K-RSTAR 06/18” kit marketed by the company Megazyme® as described in the 'Example 1, part 6 below.
  • the method according to the present invention makes it possible to increase the percentage of a(1 -6) bonds by a factor of at least 3, preferably at least 4, even more preferably by at least 5, 6 , 7 or 8, with respect to the starting substrate.
  • the method according to the present invention also makes it possible to create a(1-3) bonds which were absent in the starting substrate.
  • the present invention relates to a mixture of ⁇ -glucans characterized in that it has:
  • a(1 -3) bonds in which the fiber content corresponds to the hydrolyzable (i.e. non-resistant) fraction according to the AOAC 2002.02 method and the percentage of a (1 -6) and a(1 -3) represent the molar percentage of a(1 -6) and a(1 -3) bonds respectively relative to the total number of glycosidic bonds, measured by the Hakomori method.
  • the rate of hydrolysable fibers is less than 44%, preferably less than 43% by weight relative to the total weight of dry matter, even more preferably less than 42%, 41%, 40% , 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%.
  • the percentage of a(1-6) bonds is at least 21%, preferably at least 22%, even more preferably at least 23%, at least 24%, at least 25%, at least 26%, at least 27%, at least 28%, at least 29%, at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, the percentage of ⁇ (1-6) bonds being the molar percentage of ⁇ (1-6) bonds respectively relative to the total number of glycosidic bonds, measured by the Hakomori method.
  • the percentage of a(1-3) bonds is at least 4%, preferably at least 4%, at least 5%, at least 6%, at least 7%, at least 8% the percentage of a(1-3) bonds being the molar percentage of a(1-3) bonds respectively relative to the total number of glycosidic bonds, measured by the Hakomori method.
  • the present invention also relates to the use of a mixture of a-glucans obtained according to the process described above and of a mixture of a-glucans having the properties described above for the preparation of food for human or animal consumption.
  • the mixture of ⁇ -glucans according to the invention can be used to promote gut health, blood sugar management, satiety and weight management, and sustained energy release.
  • the present invention relates to the sequential use of a glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and of creating ⁇ (1-6) glucosidic bonds and of a glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and creating ⁇ (1-3) glucosidic bonds to reduce the digestibility of a mixture of ⁇ -glucans.
  • said glucanotransferase has sequence SEQ ID No: 1 or at least 90% identity with the protein having sequence SEQ ID No: 1.
  • said glucanotransferase capable of cleaving a(1-4) glucosidic bonds and of creating a(1-6) glucosidic bonds has sequence SEQ ID No: 1 or at least 90% identity with the protein having for sequence SEQ ID No:1.
  • said glucanotransferase capable of cleaving a(1-4) glucosidic bonds and of creating a(1-3) glucosidic bonds has sequence SEQ ID No: 2 or at least 90% identity with the protein having for sequence SEQ ID No:2.
  • the decrease in digestibility is a decrease by a factor of at least 2, preferably of at least 2.5, even more preferably of at least 3 of the hydrolysable fraction, measured according to the AOAC 2002.02 method.
  • Example 1 preparation of branched maltodextrins from a mixture of oligosaccharides and polysaccharides: equipment and methods
  • the starting substrate used was a mixture of oligosaccharides and polysaccharides, having the characteristics described in Table 1:
  • Enzyme GT#11 a-4,3 glucanotransferase from Lactobacillus fermentum NC2970, from the family of glycoside hydrolases GH70 having as amino acid sequence the sequence listed in Genbank under the reference AOR73699.1
  • the purification of the proteins of interest was carried out on cobalt resin (Invitrogen) loaded with divalent cobalt ions (CO 2+ ), for which the polyhistidine tag has an affinity. Elution was achieved by creating competition between the polyhistidine tag and increasing concentrations of imidazole. Briefly, 10 to 35 mL of cell extract from E. coli were brought into contact for 1 hour with 1 mL of Cobalt resin previously equilibrated with 25 mL of 20 mM Phosphate buffer pH7.4 containing 300 mM of NaCl and 20 mM of imidazole. Filtration of the resin on sinter allows the elimination of all the non-fixed proteins.
  • cobalt resin Invitrogen
  • CO 2+ divalent cobalt ions
  • the resin was then washed 5 times with 40 mL of 20 mM Phosphate buffer pH 7.4 containing 300 mM NaCl and 20 mM imidazole. Finally, the elution was carried out with 3 mL of 20 mM Phosphate buffer pH7.4 containing 300 mM of NaCl and 250 mM of imidazole for 5 minutes in order to pick up the enzymes of interest.
  • the enzyme solutions were then dialysed (10 kDa sigma membrane) against 5 L of 50 mM sodium acetate buffer, pH 5.75 containing 150 Mm of NaCl (overnight, 4°C with stirring) in order to eliminate the NaCl and the imidazole. .
  • the dosage of the different protein solutions was carried out by measuring their absorbance at 280 nm using a nanodrop 2000 spectrophotometer (Thermofisher).
  • THE Molecular extinction coefficients e were determined using the ProtParam tool application from the ExPASy bioinformatics resource portal site.
  • Electrophoresis under denaturing conditions made it possible to control the quality of the purified enzymatic extracts.
  • samples containing 30 ⁇ L of protein extract and 10 ⁇ L of loading buffer (NuPage LDS Sample buffer 4x, Invitrogen) were denatured for 5 minutes at 95°C then loaded onto pre-cast acrylamide gels.
  • Mini-Protean Tris-Glycine eXtented (Biorad) Migration was carried out for 30 min in 1 x Tris/Glycine/SDS buffer under a voltage of 150 V.
  • the proteins were then revealed by incubating the gels for 1 hour in a staining solution (PageBlue Protein Staining Solution, Fermentas ) then by rinsing for 30 min in three consecutive baths of water.
  • the enzymatic activity of branching enzymes can be determined by measuring the initial rate of production of reducing sugars using the dinitrosalicilic acid (DNS) method.
  • DNS dinitrosalicilic acid
  • An enzyme unit represents the quantity of enzyme which releases one pmol of fructose per minute, at 30°C, for an initial sucrose concentration of 100 g.L-1 under the conditions of buffer of adequate activity.
  • 100 pL of reaction medium were taken and the reaction stopped by adding an equivalent volume of DNS.
  • the samples were then heated for 5 min at 95°C, cooled in ice, diluted halfway in water, and the absorbance was read at 540 nm.
  • a standard range of 0 to 2 g.L-1 of fructose makes it possible to establish the link between the absorbance value and the concentration of reducing sugars.
  • the reactions were carried out with 0.1 mg/mL of purified enzyme either GT#11 or GT#19 and dialysed in the presence of 10%, 20% or 40% of substrate in 50 mM sodium acetate buffer, pH 5.75.
  • the reactions were incubated with shaking for 24 h at 20°C or 37°C.
  • the reactions were stopped by heating (95°C for 5 minutes). Samples at the initial and final times were carried out to analyze the specificity of enzymes using different analytical techniques (HPAEC-PAD, NMR and HPSEC).
  • the transfer reactions were lyophilized after freezing at -80° C. for 24 hours. 25 mg of freeze-dried products were taken up in 1 mL of 100 mM sodium maleate buffer containing 30 U of pancreatic ⁇ -amylase and 3 U of amyloglucosidase (Starch resistant kit, Megazyme K-STAR 06/18, which uses AOAC 2002.02 method). The reactions were incubated for 16 hours at 37°C. The products were diluted in water before HPAEC PAD analysis.
  • the products obtained were analyzed by anion exchange chromatography coupled with a pulsed amperometric detector (HPAEC PAD - High Performance Anion Exchange Chromatography with Pulsed Ampero-metric Detection).
  • HPAEC PAD High Performance Anion Exchange Chromatography with Pulsed Ampero-metric Detection
  • the analyzes were performed on a Thermo ICS6000 system equipped with a CarboPacTM PA100 analytical column (2 mm x 250 mm) coupled with a CarboPacTM PA100 guard guard (2 mm x 50 mm).
  • a gradient of sodium acetate in 150 mM sodium hydroxide was applied at a flow rate of 0.250 ml.min-1 according to the following profile: 0-5 min, 0 mM; 5-35min, 0-300mM; 35-40min, 300-450mM; 40-42 mins, 450mM.
  • Detection was performed using a gold working electrode and a pH Ag/AgCI reference cell. The samples were diluted to a total dry mass of 1 g.L-1 before injection.
  • the size of the reaction products was also sometimes determined by size exclusion chromatography (high performance size exclusion chromatography) on a Fisher Ultimate 3000 system equipped with a Shodex OH-Pak SB-802.5 column protected by a Shodex pre-column OH-Pak SB-G guard column, placed at 70°C in the system oven.
  • the mobile phase was water at a flow rate of 0.3 mL.min-1.
  • the detection was carried out by refractometry. The samples were diluted to a total dry mass of 20 g.L-1 before injection.
  • Hakomori Method (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) makes it possible to chemically characterize osidic bonds by differentiating between free OH groups and bound groups. It is a destructive method comprising the steps of methylation, hydrolysis, reduction with NaBD4, acetylation and analysis by mass spectrometry.
  • the GT#19 enzyme was itself capable of reducing the percentage of linear ⁇ -1.4 bonds and of markedly increasing the percentage of so-called “branched” ⁇ -1.6 bonds.
  • the inventors have observed that the simultaneous action of the GT#1 and GT#19 enzymes resulted in a reduction in the percentage of linear a-1,4 bonds and an increase in the percentage of so-called “branched” a-1 bonds, 3 and a-1.6. The results obtained are equivalent, or even a little worse than the use of GT19 alone on 200 g/l of substrate.
  • the enzymatic cascade represents a good strategy for increasing the resistance of products to hydrolytic enzymes and achieving a level of digestibility of less than 40%.
  • the Glucidex 19D is placed in solution at 200 g.L-1, the first ⁇ -GT is reacted at a concentration of 0.05 mg.mL-1 for 24 hours. The reaction is stopped by heating for 5 minutes at 95°C. the second enzyme is then reacted at the same concentration of 0.05 mg.ml-1. The reaction is again stopped by heating for 5 minutes at 95°C after 24 h of incubation.
  • - Glucidex 19D is reacted at 100 gL -1 , first a-GT is reacted at a concentration of 0.05 gL -1 for 24 hours. The reaction is stopped by heating for 5 minutes at 95°C. The reaction medium is supplemented with 100 g.L' 1 of Glucidex 19D and the second enzyme is then reacted at the same concentration of 0.05 g.L' 1 . The reaction is again stopped by heating for 5 minutes at 95° C. after 24 h of incubation.
  • a-1,4 bond levels of less than or equal to 50% are obtained under these conditions and that the three types of osidic bonds (a-1,6; a-1,3 and a -1 ,4) are represented in the final product
  • the inventors have demonstrated that the sequential use of the two enzymes, whatever the order of this sequence, and with or without addition of substrate between the two reactions, made it possible to obtain products having a hydrolysis less than 40%.
  • the sequential use of a- glucanotransferase GT#1 1 and GT#19 made it possible to obtain soluble fibers from a mixture of oligosaccharides and polysaccharides with a DE of 19.
  • Example 5 sequential use of the enzymes GT#11 and GT#19 on a large scale
  • the inventors carried out an increase in scale in order to produce 1 g of fibers instead of the 50 mg produced in the preceding examples): 15 ml of Glucidex 19D at 200 g.L-1 underwent a cascade reaction involving first a-GT n°1 1 for 24 hours followed by a-GT n°19 for 24 hours. Each enzyme was used at 0.1 g.L-1. The same distribution in type of connections is obtained compared to the equivalent test in smaller volume of example 4 (Table 5):

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

L'invention est relative à un procédé de préparation d'un mélange d'a-glucanes faiblement digestibles à partir d'un substrat riche en oligosaccharides ayant un degré de polymérisation (DP) de 4.

Description

Description
Titre : Procédé d’obtention de fibres solubles par voie enzymatique Domaine technique
[0001 ] La présente invention est relative à un procédé de préparation d’un mélange d’a-glucanes faiblement digestibles à partir d’un mélange d’oligosaccharides et de polysaccharides.
[0002] L’invention concerne également un mélange d’a-glucanes faiblement digestibles.
[0003] La présente invention est également relative à l’utilisation séquentielle d’une glucanotransférase capable de créer des liaisons glucosidiques a(1 -3) et d’une glucanotransférase capable de créer des liaisons glucosidiques a(1 -6) pour diminuer la digestibilité d’un mélange d’a-glucanes.
Etat de l’art antérieur
[0004] Les fibres alimentaires ont un rôle important dans l’alimentation humaine. Parmi les fibres alimentaires, on distingue les fibres solubles, qui sont solubles dans l’eau et ont une capacité gélifiante, et les fibres insolubles. Les fibres solubles, dont les maltodextrines branchées, sont particulièrement intéressantes car elles sont faiblement digestibles. De ce fait, leur incorporation dans l’alimentation permet de diminuer l’indice glycémique d’un aliment et de prolonger la sensation de satiété. Elles sont également dotées de propriétés prébiotiques sur la flore intestinale, c’est- à-dire qu’elles sont capables de promouvoir de façon sélective la croissance de certaines bactéries de type probiotique ou l'activité du microbiote, en apportant un bénéfice à la santé.
[0005] Jusqu’à présent, les fibres solubles, dont les maltodextrines branchées, étaient principalement obtenues par voie physico-chimique.
[0006] C’est le cas notamment de la maltodextrine commercialisée par la société Demanderesse sous le nom de marque NUTRIOSE® FM10 en tant que fibre soluble dans l’eau. [0007] Il existe d’autres fibres solubles obtenues par voie physico-chimique, telles que le PROMITOR® commercialisé par la société Tate and Lyle, le FIBERSOL® ou le LITESSE® commercialisé par la société Dupont Nutrition and Biosciences.
[0008] De nombreuses études ont démontré que les propriétés de digestibilité étaient directement liées aux pourcentages des différents types de liaisons osidiques au sein des fibres solubles.
[0009] En effet, les maltodextrines standards sont rapidement digestibles et se définissent comme des mélanges purifiés et concentrés de glucose et de polymères de glucose essentiellement lié en alpha 1 4 (ci-après 1 4 ou a(1 -4)) avec seulement de 4 à 5 % de liaisons glucosidiques alpha 1 6 (ci-après 1 -> 6 ou a(1 -
6)), de poids moléculaires extrêmement variés, complètement solubles dans l'eau et à faible pouvoir réducteur.
[0010] En augmentant le pourcentage de liaisons alpha 1 6 ou alpha 1 -> 3, on augmente le degré de branchement des maltodextrines, ce qui les rend plus résistants à la digestion.
[0011] L’approche enzymatique, qui utilise des enzymes capables de favoriser la création des liaisons de type « "branchées » présente de nombreux avantages, en termes de sécurité, de préservation de l’environnement, et offre également une meilleure spécificité.
[0012] A l’origine, la plupart des procédés enzymatiques de production de fibres solubles sont réalisées en utilisant du saccharose comme substrat de l’enzyme, afin de créer de nouvelles liaisons. Par exemple, la demande WO2015183714 décrit une réaction enzymatique à partir d’un mélange de saccharose et de substrat de type a-glucane.
[0013] Aujourd’hui, la plupart des procédés enzymatiques utilisent des amylomaltases, pour produire des fibres solubles à partir d’amidon.
[0014] Il est souhaitable d’obtenir des fibres solubles par voie enzymatique à partir de substrat, en l’absence de saccharose.
Description détaillée de l’invention [0015] La société Demanderesse a alors trouvé qu’il était possible, à partir d’un mélange d’oligosaccharides et de polysaccharides, d’obtenir des fibres d’intérêt en alimentation humaine et animale, par voie enzymatique. La société Demanderesse a ainsi développé un procédé qui utilise deux enzymes particulières, l’une capable de créer des liaisons a(1 -3) et l’autre capable de créer des liaisons a(1 -6), de façon séquentielle, et inversement.
[0016] Dans un premier aspect, la présente invention concerne un procédé de préparation d’un mélange d’a-glucanes comprenant les étapes suivantes :
- la fourniture d’un substrat, ledit substrat étant un mélange d’oligosaccharides et de polysaccharides ayant un indice de polydispersion compris entre 5 et 10, de préférence entre 6 et 9,5, de manière encore plus préférée entre 7 et 9, entre 8 et 8, 5, de manière préférée entre toutes environ 8,4,
- une première incubation en présence d’une première enzyme,
- une deuxième incubation avec une deuxième enzyme, lesdites première et deuxième enzymes étant une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) et/ou une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6).
[0017] Selon la présente invention, les termes «a-glucane », « fibre soluble >>, « fibre soluble alimentaire >> sont utilisées de manière interchangeable. Ils définissent des oligosaccharides composés d’au moins 3 unités de glucose reliées entre elles par des liaisons a-glycosidiques (ou a-glucosidiques).
[0018] La classification des a-glucanes repose principalement sur la mesure de leur pouvoir réducteur, exprimé classiquement par la notion de « équivalent dextrose » (« Dextrose Equivalent » ou DE). Sur ce point particulier, la définition des maltodextrines reprise dans les Monograph Spécifications du Food Chemical Codex précise que la valeur de DE pour une maltodextrine ne doit pas excéder 20. Au-dessus de 20, il s’agit de sirops de glucose.
[0019] De manière préférée, le substrat utilisé dans le procédé selon la présente invention a un DE compris entre 15 et 20, de manière préférée entre 17 et 20, de manière préférée entre 18 et 19, de manière plus préférée encore environ 18,4. [0020] Une telle mesure du D.E. est cependant insuffisante pour représenter précisément la distribution moléculaire des a-glucanes. En effet, l'hydrolyse acide de l'amidon, totalement aléatoire, ou son hydrolyse enzymatique, un peu plus ordonnée, fournissent des mélanges de glucose et de polymères de glucose que la seule mesure du D.E. ne permet pas de définir avec précision, et qui comportent des molécules de courte taille, de faible Degré de Polymérisation (D.P.), aussi bien que des molécules de taille très longue, de D.P. élevé.
[0021] La mesure du D.E. ne donne en fait qu'une idée approximative du D.P. moyen du mélange du glucose et des polymères de glucose constitutifs des a- glucanes et donc de leur masse moléculaire moyenne en nombre (Mn). Pour compléter la caractérisation de la distribution des masses moléculaires des a- glucanes, la détermination d'un autre paramètre est importante, celui de la masse moléculaire moyenne en poids (Mp).
[0022] Dans la pratique, les valeurs de Mn et de Mp ne se calculent pas, mais se mesurent par différentes techniques. On utilise par exemple une méthode de mesure adaptée aux polymères de glucose, qui repose sur la chromatographie de perméation de gel sur des colonnes de chromatographie étalonnées avec des pullulans de masses moléculaires connues.
[0023] Le rapport Mp/Mn est appelé indice de polymolécularité ou indice de polydispersion (IP) et permet de caractériser globalement la distribution des masses moléculaires d'un mélange polymérique. En règle générale, la répartition en masses moléculaires des maltodextrines standards conduit à des IP compris entre 5 et 10.
[0024] Ces différents paramètres sont également le reflet du profil de liaisons a- glycosidiques des a-glucanes. En effet, un mélange d’a-glucanes standard possède un pourcentage très élevé de liaisons « linéaires » a(1 -4) (supérieur à 90%) et un pourcentage faible de liaisons dites « branchées (a(1 -2), a(1 -3) et a(1 -6)).
[0025] Le procédé selon la présente invention permet de diminuer le pourcentage de liaisons a(1 -4) au profit de liaisons a(1 -3) et a(1 -6), ce qui a l’avantage de diminuer la digestibilité du mélange d’a-glucanes obtenus par le procédé. [0026] Selon un mode réalisation de l’invention, le substrat comprend : :
- entre 40 et 50% d’oligosaccharides ayant un degré de polymérisation (DP) entre 1 et 9 ,
- entre 15 et 20% de polysaccharides ayant un DP entre 10 et 20,
- entre 35 et 40% de polysaccharides ayant un DP supérieur à 20, les pourcentages étant exprimés en pourcentages relatifs en moles, et le total faisant 100%.
[0027] De manière préférée, le substrat comprend :
- entre 90 et 97%, de préférence entre 92 et 95%, de liaisons a(1 -4),
- entre 3 et 7%, de préférence entre 4 et 6%, de liaisons a(1 -6), entre 0 et 3 %, de préférence entre 1 et 2%, de liaisons a(1 -3), le pourcentage de liaisons a(1 -6) étant le pourcentage molaire de liaisons a(1 -6) respectivement par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[0028] Selon un mode de réalisation préféré de l’invention, le substrat a un equivalent dextrose (DE) compris entre 17 et 20, de préférence entre 18 et 19, de manière encore plus préférée environ 18,4.
[0029] Selon un mode de réalisation préféré de l’invention, le substrat présente les caractéristiques décrites dans le Tableau 1 ci-dessous. Il peut s’agir, par exemple, du Glucidex 19D® commercialisé par la société Demanderesse.
[0030] Dans un mode de réalisation préféré de l’invention, le substrat est présent à une concentration comprise entre 50 g/L et 500 g/L, de préférence entre 100g/L et 200 g/L dans le milieu réactionnel.
[0031] Les deux enzymes sont utilisées de manière séquentielle.
[0032] Dans un mode de réalisation, la première enzyme est une a- glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4), mais également de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) et la deuxième enzyme est une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 - [0033] Dans un autre mode de réalisation, la première enzyme est une a- glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) et la deuxième enzyme est une a- glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3).
[0034] Dans un mode de réalisation préféré de l’invention, l’a-glucanotransférase capable d’hydrolyser les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) est la protéine ayant pour séquence SEQ ID No :1 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1. De manière préférée, il s’agit d’une protéine ayant au moins 91 %, de manière encore plus préférée, au moins 92%, au moins 93%, au moins 94%, au moins 95%, au moins 96%, au moins 97%, au moins 98%, au moins 99%, au moins 99,5%, au moins 99,6%, au moins 99,7%, au moins 99,8%, au moins 99,9% d’identité avec la protéine ayant pour séquence SEQ ID No :1. La séquence SEQ ID No :1 correspond au numéro d’accession Genbank WP_053069107.1 .
[0035] Dans un mode de réalisation préféré de l’invention, l’a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) est la protéine ayant pour séquence SEQ ID No :2 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :2. De manière préférée, il s’agit d’une protéine ayant au moins 91 %, de manière encore plus préférée, au moins 92%, au moins 93%, au moins 94%, au moins 95%, au moins 96%, au moins 97%, au moins 98%, au moins 99%, au moins 99,5%, au moins 99,6%, au moins 99,7%, au moins 99,8%, au moins 99,9% d’identité avec la protéine ayant pour séquence SEQ ID No :2. La séquence SEQ ID No :2 correspond au numéro d’accession Genbank AOR73699.1 .
[0036] Selon un mode de réalisation de l’invention, chaque enzyme est ajoutée à une concentration comprise entre 0.01 et 1 mg/mL de milieu réactionnel, de préférence entre 0.05 et 0.5 mg/mL, de manière encore plus préférée environ 0.1 mg/mL de milieu réactionnel, lors des incubations séquentielles. [0037] Selon un mode de réalisation de l’invention, la mise en présence du substrat et de chaque enzyme est réalisée pendant une durée comprise entre 12 et 48 heures, de préférence environ 24 heures
[0038] Selon un mode de réalisation de l’invention, la mise en présence du substrat et de chaque enzyme est réalisée à une température comprise entre 20 et 40°C, de préférence environ 37°C.
[0039] Selon un mode de réalisation de l’invention, la mise en présence du substrat et de chaque enzyme est réalisée à un pH compris entre 5 et 6,5, de préférence entre 5,5 et 6, de manière encore plus préférée environ 5,75.
[0040] Selon un aspect, la présente invention porte également sur un mélange d’a- glucanes susceptible d’être obtenu par le procédé décrit ci-dessus.
[0041] Ce mélange d’a-glucanes est caractérisé par sa faible digestibilité selon la méthode AOAC 2002.02. De manière avantageuse, le procédé selon l’invention permet réduire d’un facteur d’au moins 2, de préférence d’au moins 2,5, de manière encore plus préférée d’au moins 3, la fraction hydrolysable, mesurée selon la méthode AOAC 2002.02, par rapport au substrat de départ.
[0042] La méthode AOAC 2002.02 peut notamment être mise en oeuvre à l’aide de la partie « dosage HPAEC-PAD » du kit « resistant Starch, K-RSTAR 06/18 » commercialisé par la société Megazyme® tel que décrit dans l’Exemple 1 , partie 6 ci-dessous.
[0043] Le procédé selon la présente invention permet d’augmenter la pourcentage de liaisons a(1 -6) par un facteur d’au moins 3, de préférence au moins 4, de manière encore plus préférée d’au moins 5, 6, 7 ou 8, par rapport au substrat de départ.
[0044] Le procédé selon la présente invention permet également de créer des liaisons a(1 -3) qui étaient absentes dans le substrat de départ.
[0045] Le pourcentage de liaisons a(1 -4), a(1 -6), a(1 -2) et a(1 -3) est mesuré par la méthode Hakomori (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) tel que décrit dans l’exemple 1 , partie 9 ci-dessous. [0046] Selon un aspect, la présente invention concerne un mélange d’a-glucanes caractérisé en ce qu’il présente :
- un taux de fibres hydrolysables, inférieur à 45%,
- et/ou au moins 20% de liaisons a(1 -6),
- et/ou au moins 3% de liaisons a(1 -3), dans lequel le taux de fibres correspond à la fraction hydrolysable (c’est-à-dire non résistante) selon la méthode AOAC 2002.02 et le pourcentage de liaisons a(1 -6) et a(1 -3) représente le pourcentage molaire de liaisons a(1 -6) et a(1 -3) respectivement par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[0047] De manière préférée, le taux de fibres hydrolysables est inférieur à 44%, de préférence inférieur à 43% en poids par rapport au poids total de matière sèche, de manière encore plus préférée inférieur à 42%, 41 %, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31 %, 30%.
[0048] De manière préférée, le pourcentage de liaisons a(1 -6), est d’au moins 21 %, de préférence au moins 22%, de manière encore plus préférée au moins 23%, au moins 24%, au moins 25%, au moins 26%, au moins 27%, au moins 28%, au moins 29%, au moins 30%, au moins 31 %, au moins 32%, au moins 33%, au moins 34%, au moins 35%, le pourcentage de liaisons a(1 -6) étant le pourcentage molaire de liaisons a(1 -6) respectivement par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[0049] De manière préférée, le pourcentage de liaisons a(1 -3), est d’au moins 4%, de préférence au moins 4%, au moins 5%, au moins 6%, au moins 7%, au moins 8% le pourcentage de liaisons a(1 -3) étant le pourcentage molaire de liaisons a(1 - 3) respectivement par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[0050] La présente invention porte également sur l’utilisation d’un mélange d’a- glucanes obtenu selon le procédé décrit ci-dessus et d’un mélange d’a-glucanes ayant les propriétés décrites ci-dessus pour la préparation d’aliments pour l’alimentation humaine ou animale. [0051] Typiquement, le mélange d’a-glucanes selon l’invention peut être utilisé pour favoriser la santé intestinale, la gestion de la glycémie, la satiété et la gestion du poids, et la libération d'énergie soutenue.
[0052] Enfin, dans un autre aspect, la présente invention concerne l’utilisation séquentielle d’une glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) et d’une glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) pour diminuer la digestibilité d’un mélange d’a-glucanes. De manière préférée, ladite glucanotransférase a pour séquence SEQ ID No :1 ou au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1. De manière préférée, ladite glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) a pour séquence SEQ ID No :1 ou au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1 . De manière préférée, ladite glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) a pour séquence SEQ ID No :2 ou au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :2.
[0053] De manière préférée, la diminution de la digestibilité est une diminution d’un facteur d’au moins 2, de préférence d’au moins 2,5, de manière encore plus préférée d’au moins 3 de la fraction hydrolysable, mesurée selon la méthode AOAC 2002.02.
[0054] L'invention sera mieux comprise à l'aide des exemples qui suivent, lesquels se veulent illustratifs et non limitatifs.
[0055] Exemple 1. : préparation de maltodextrines branchées à partir d’un mélange d’oligosaccharides et de polysaccharides: matériel et méthodes
[0056] 1. Préparation d’une solution de substrat comprenant un mélange d’oligosaccharides et de polysaccharides
[0057] Le substrat de départ utilisé était un mélange d’oligosaccharides et de polysaccharides, présentant les caractéristiques décrites dans le Tableau 1 :
[0058] [Tableau 1 ]
Figure imgf000011_0001
[0059] Différentes solutions de substrat dans du tampon sodium acétate 50mM, pH 5.75 ont été préparées, à des concentrations de 100g/L, 200g/L ou 400g/L.
[0060] 2. Production des enzymes recombinantes. [0061] Les enzymes suivantes ont été produites de manière recombinante :
Enzyme GT#11 : a-4,3 glucanotransférase de Lactobacillus fermentum NC2970, de la famille des glycoside hydrolases GH70 ayant pour séquence en acide aminés la séquence répertoriée dans Genbank sous la référence AOR73699.1 Enzyme GT#19 : a-4,6 glucanotransférase de Lactobacillus mucosae, de la famille des glycoside hydrolases GH70 ayant pour séquence en acide aminés la séquence répertoriée dans Genbank sous la référence WP_053069107.1 .
[0062] Des cellules de E. coli BL21 star (DE3) contenant le plasmide pET-21 a- enzyme (afin de produire différentes enzymes, dont GT#1 1 et GT#19) ont été cultivées dans un milieu ZYM-50524 contenant 1 % de glycérol et 1 % de lactose. En fin de culture, les cellules ont été centrifugées à 6500g pendant 10 min, les culots cellulaires remis en suspension à une DO600 nm de 80 dans un tampon phosphate 20mM pH7.4 contenant 300 mM de NaCI et 20 mM d’imidazole, et les cellules lysées par sonication à froid grâce à 4 cycles de 20 secondes à 30 % d’amplitude suivi de 4 minutes de repos. Les débris cellulaires ont été séparés des protéines solubilisées par centrifugation pendant 30 minutes à 10000 g.
[0063] 3 Purification des enzymes
[0064] La purification des protéines d’intérêt a été réalisée sur résine Cobalt (Invitrogen) chargée en ions cobalt divalent (CO2+), pour lesquels l’étiquette polyhistidine présente une affinité. L’élution a été réalisée en créant une compétition entre l’étiquette polyhistidine et des concentrations croissantes d’imidazole. Brièvement, 10 à 35 mL d’extrait cellulaire d’E. coli ont été mis en contact pendant 1 heure avec 1 mL de résine de Cobalt préalablement équilibrée avec 25mL tampon Phosphate 20mM pH7.4 contenant 300 mM de NaCI et 20 mM d’imidazole. La filtration de la résine sur fritté permet l’élimination de l’ensemble des protéines non fixées. La résine a ensuite été lavée 5 fois avec 40 mL de tampon Phosphate 20mM pH7,4 contenant 300 mM de NaCI et 20 mM d’imidazole. Enfin, l’élution a été réalisée avec 3 mL de tampon Phosphate 20mM pH7,4 contenant 300 mM de NaCI et 250 mM d’imidazole pendant 5 minutes afin de décrocher les enzymes d’intérêt. Les solutions enzymatiques ont alors été dialysées (membrane sigma 10 kDa) contre 5 L de tampon acétate de sodium 50 mM, pH 5.75 contenant 150 Mm de NaCI (overnight, 4°C sous agitation) afin d’éliminer le NaCI et l’imidazole. Le dosage des différentes solutions protéiques a été réalisé en mesurant leur absorbance à 280 nm grâce à un nanodrop 2000 spectrophotometer (Thermofisher). Les coefficients d’extinction moléculaire e ont été déterminés grâce à l’application ProtParam tool du site ExPASy bioinformatics resource portal.
[0065] Une électrophorèse en conditions dénaturantes a permis de contrôler la qualité des extraits enzymatiques purifiés. Pour cela, des échantillons contenant 30|iL d’extrait protéique et 10 piL du tampon de charge (NuPage LDS Sample buffer 4x, Invitrogen) ont été dénaturés pendant 5 minutes à 95°C puis déposés sur des gels d’acrylamide pré-coulés (Mini-Protean Tris-Glycine eXtented (Biorad)). La migration a été réalisée pendant 30 min dans du tampon Tris/Glycine/SDS 1 x sous une tension de 150 V. Les protéines ont ensuite été révélées par incubation des gels pendant 1 heure dans une solution de coloration (PageBlue Protein Staining Solution, Fermentas) puis par rinçage pendant 30 min dans trois bains consécutifs d’eau.
[0066] 4. Mesures de l’activité des enzymes de branchement
[0067] L’activité enzymatique des enzymes de branchement peut être déterminée en mesurant la vitesse initiale de production des sucres réducteurs à l’aide de la méthode à l’acide dinitrosalicilique (DNS). Une unité enzymatique représente la quantité d’enzyme qui libère une pmole de fructose par minute, à 30 °C, pour une concentration initiale de saccharose de 100 g.L-1 dans les conditions de tampon d’activité adéquate. Au cours d’une cinétique d’1 mL de volume, 100 pL de milieu réactionnel ont été prélevés et la réaction stoppée par ajout d’un volume équivalent de DNS. Les échantillons ont ensuite été chauffés 5 min à 95 °C, refroidis dans la glace, dilués au demi dans de l’eau, et l’absorbance a été lue à 540 nm. Une gamme étalon de 0 à 2 g.L-1 de fructose permet d’établir le lien entre la valeur d’absorbance et la concentration en sucres réducteurs.
[0068] 5. Réactions enzymatiques
[0069] Les réactions ont été réalisées avec 0.1 mg/mL d’enzyme purifiée soit GT#1 1 soit GT#19 et dialysée en présence de 10%, 20% ou 40% de substrat dans du tampon sodium acétate 50 mM, pH 5.75. Les réactions ont été incubées sous agitation pendant 24 h à 20°C ou 37°C. Les réactions ont été arrêtées par chauffage (95°C pendant 5 minutes). Des prélèvements aux temps initiaux et finaux ont été réalisés pour analyser la spécificité des enzymes en utilisant différentes techniques analytiques (HPAEC-PAD, RMN et HPSEC).
[0070] 6. Test de digestibilité
[0071] Les réactions de transfert ont été lyophilisées après congélation à -80°C pendant 24 heures. 25 mg de produits lyophilisés ont été repris dans 1 mL de tampon de maléate de sodium 100mM contenant 30 U d’oc-amylase pancréatique et 3 U d’amyloglucosidase (kit resistant Starch, Megazyme K-STAR 06/18, qui met en oeuvre la méthode AOAC 2002.02). Les réactions ont été incubées pendant 16 heures à 37°C. Les produits ont été dilués dans l’eau avant analyse HPAEC PAD.
[0072] 7. Analyses chromatographigues
[0073] Les produits obtenus ont été analysés par chromatographie d’exchange d’anions couplée à un détecteur ampérométrique pulsé (HPAEC PAD - High Performance Anion Exchange Chromatography with Pulsed Ampero-metric Detection). Les analyses ont été réalisées sur un système Thermo ICS6000 équipé d’une colonne CarboPacTM PA100 analytical column (2 mm x 250 mm) couplée avec une pré-colonne CarboPacTM PA100 guard (2 mm x 50 mm). Un gradient d’acétate de sodium dans 150 mM de soude a été appliqué à un débit de 0,250 ml.min-1 selon le profil suivant : 0-5 min, 0 mM ; 5-35 min, 0-300 mM ; 35-40 min, 300-450 mM ; 40-42 min, 450 mM. La détection a été réalisée grâce à une électrode de travail en or et une cellule de référence pH Ag/AgCI. Les échantillons ont été dilués à une masse sèche totale de 1 g.L-1 avant injection. La taille des produits de réaction a également été parfois déterminée par Chromatographie d’exclusion de taille (high performance size exclusion chromatography) sur un système Fisher Ultimate 3000 équipé d’une colonne Shodex OH-Pak SB-802.5 protégée par une pré-colonne Shodex OH-Pak SB-G guard column, placée à 70°C dans le four du système. La phase mobile était de l’eau à un débit de 0.3 mL.min-1 . La détection a été réalisée par réfractométrie. Les échantillons ont été dilués à une masse sèche totale de 20 g.L-1 avant injection.
[0074] 8. RMN. [0075] Les spectres 1 H, 13C et HSQC ont été enregistrés sur un équipement Bruker Avance 500MHz à 298K avec une sonde BBI 5 mm z-gradient H-BB-D. Les données ont été acquises et traitées grâce au logiciel TopSpin 3.
[0076] 9. Méthode Hakomori [0077] La méthode Hakomori (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) permet de caractériser chimiquement les liaisons osidiques en différenciant les groupements OH libres et les groupements liés. Il s’agit d’une méthode destructrice comprenant les étapes de méthylation, hydrolyse, réduction avec NaBD4, acétylation et analyse par spectrométrie de masse.
[0078] Exemple 2. : utilisation séparée des enzymes GT#11 et GT#19
[0079] Dans cet exemple, l’action des enzymes GT#11 et GT#19 a été testée séparément.
[0080] Les résultats des différentes réactions enzymatiques sont présentés dans le Tableau 2 ci-dessous, qui présente les pourcentages de liaisons a-1 ,6 ; a-1 ,3 et a-1 ,4 mesurés par RMN du proton ou par la méthode Hakomori et % d’hydrolyse (AOAC 2002.02) dans les produits de réaction obtenus.
[0081] [Tableau 2]
Figure imgf000015_0001
[0082] Les inventeurs ont constaté que l’enzyme GT#1 1 était capable de diminuer le pourcentage de liaisons linéaires a-1 ,4 et d’augmenter le pourcentage de liaisons dites « branchées » a-1 ,3 et a-1 ,6.
[0083] L’enzyme GT#19 était quant à elle capable de diminuer le pourcentage de liaisons linéaires a-1 ,4 et d’augmenter nettement le pourcentage de liaisons dites « branchées » a-1 ,6.
[0084] Dans les deux cas, une augmentation de la résistance à la digestion (reflétée par une diminution du taux d’hydrolyse) a été observée. Toutefois, les produits obtenus ne sont pas suffisamment résistants pour être considérés comme des fibres.
[0085] Exemple 3. : utilisation simultanée des enzymes GT#11 et GT#19
[0086] Dans cet exemple, les inventeurs ont étudié l’action combinée des deux enzymes GT#1 1 et GT#19.
[0087] Les deux enzymes ont donc été ajoutées simultanément au mélange réactionnel, dans les différentes proportions mentionnées dans la colonne de gauche du Tableau 3.
[0088] Les résultats des différentes réactions enzymatiques sont présentés dans le Tableau 3 ci-dessous, qui présente les pourcentages de liaisons a-1 ,6 ; a-1 ,3 et a-1 ,4 mesurés par RMN du proton ou par la méthode Hakomori et % d’hydrolyse (AOAC 2002.02) dans les produits de réaction obtenus.
[0089] [Tableau s]
Figure imgf000016_0001
Figure imgf000017_0001
[0090] Les inventeurs ont constaté que l’action simultanée des enzymes GT#1 et GT#19 résultait en une diminution du pourcentage de liaisons linéaires a-1 ,4 et une augmentation du pourcentage de liaisons dites « branchées » a-1 ,3 et a-1 ,6. Les résultats obtenus sont équivalents, voire un peu moins bons que l’utilisation de GT19 seule sur 200 g/l de substrat.
[0091] Cette modification du profil de liaisons résulte en une augmentation de la résistance à la digestion (reflétée par une diminution du taux d’hydrolyse) a été observée. Toutefois, les produits obtenus ne sont pas suffisamment résistants (<40% d’hydrolyse selon la méthode AGAC2002.02) pour être considérés comme des fibres.
[0092] Exemple 4. : utilisation séquentielle des enzymes GT#11 et GT#19
[0093] Dans cet exemple, les inventeurs ont étudié l’action séquentielle des deux enzymes GT#1 1 et GT#19.
[0094] La cascade enzymatique représente une bonne stratégie pour augmenter la résistance des produits aux enzymes hydrolytiques et atteindre un niveau de digestibilité inférieur à 40%.
[0095] Dans le cadre de la cascade enzymatique, les enzymes sont utilisées l’une après l’autre. Deux configurations différentes alternant les deux a-GT ont été étudiées :
[0096] - Le Glucidex 19D est mis en solution à 200 g.L-1 , la première a-GT est mise en réaction à une concentration de 0,05 mg.mL-1 pendant 24h. La réaction est arrêtée par chauffage pendant 5 minutes à 95°C. la seconde enzyme est alors mise en réaction à la même concentration de 0,05 mg.ml-1 . La réaction est de nouveau stoppée par chauffage pendant 5 minutes à 95°C après 24 h d’incubation.
[0097] - Le Glucidex 19D est mis en réaction à 100 g.L-1, première a-GT est mise en réaction à une concentration de 0,05 g.L-1 pendant 24h. La réaction est arrêtée par chauffage pendant 5 minutes à 95°C. Le milieu réactionnel est supplémenté de 100 g.L’1 de Glucidex 19D et la seconde enzyme est alors mise en réaction à la même concentration de 0,05 g.L’1. La réaction est de nouveau stoppée par chauffage pendant 5 minutes à 95°C après 24 h d’incubation.
[0098] Ces différentes stratégies permettent de mettre à profit la spécificité a-4,3 glucanotransférase de l’a-GT n°1 1 et favorisent son action par rapport à celle de l’a- GT n°19. En effet, un taux de liaisons a-1 ,3 non négligeable peut être atteint en sus du taux de liaisons a-1 ,6 (Tableau 4).
[0099] Les inventeurs ont observé que des taux de liaisons a-1 ,4 inférieurs ou égaux à 50 % sont obtenus dans ces conditions et que les trois types de liaisons osidiques (a-1 ,6 ; a-1 ,3 et a-1 ,4) sont représentés dans le produit final
[0100] Les résultats des différentes réactions enzymatiques sont présentés dans le Tableau 4 ci-dessous, qui présente les pourcentages de liaisons a-1 ,6 ; a-1 ,3 et a-1 ,4 mesurés par RMN du proton ou par la méthode Hakomori et % d’hydrolyse (AOAC 2002.02) dans les produits de réaction obtenus. [0101] [Tableau 4]
Figure imgf000018_0001
[0102] Ainsi, les inventeurs ont mis en évidence que l’utilisation séquentielle des deux enzymes, quel que soit l’ordre de cette séquence, et avec ou sans ajout de substrat entre les deux réactions, permettait d’obtenir des produits présentant une hydrolyse inférieure à 40%. En d’autres termes, l’utilisation séquentielle des a- glucanotransférase GT#1 1 et GT#19 a permis d’obtenir des fibres solubles à partir d’un mélange d’oligosaccharides et de polysaccharides présentant un DE de 19.
[0103] Exemple 5. : utilisation séquentielle des enzymes GT#11 et GT#19 à grande échelle [0104] Dans cet exemple, les inventeurs ont réalisé une augmentation d’échelle afin de produite 1 g de fibres au lieu des 50mg produits dans les exemples précédents) : 15 ml de Glucidex 19D à 200 g.L-1 ont subi une réaction en cascade mettant en jeu en premier temps l’a-GT n°1 1 pendant 24 heures suivi de l’a-GT n°19 pendant 24 heures. Chaque enzyme a été utilisée à 0,1 g.L-1 . La même répartition en type de liaisons est obtenue par rapport à l’essai équivalent en plus petit volume de l’exemple 4 (Tableau 5):
[0105] [Tableau 5]
Figure imgf000019_0001

Claims

Revendications
[Revendication 1] Procédé de préparation d’un mélange d’a-glucanes comprenant les étapes suivantes :
- la fourniture d’un substrat, ledit substrat étant un mélange d’oligosaccharides et de polysaccharides ayant un indice de polydispersion compris entre 5 et 10, de préférence entre 6 et 9,5, de manière encore plus préférée entre 7 et 9, entre 8 et 8, 5, de manière préférée entre toutes environ 8,4,
- une première incubation en présence d’une première enzyme,
- une deuxième incubation avec une deuxième enzyme, lesdites première et deuxième enzymes étant une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) et une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6).
[Revendication 2] Procédé selon la revendication 1 , dans lequel le substrat comprend :
- entre 40 et 50% d’oligosaccharides ayant un degré de polymérisation (DP) entre 1 et 9 ,
- entre 15 et 20% de polysaccharides ayant un DP entre 10 et 20,
- entre 35 et 40% de polysaccharides ayant un DP supérieur à 20, les pourcentages étant exprimés en pourcentages relatifs en moles, et le total faisant 100%
[Revendication 3] Procédé selon la revendication 1 ou 2, dans lequel le substrat a un équivalent dextrose (DE) compris entre 18 et 20, de préférence entre 18 et 19, de manière encore plus préférée environ 18,4.
[Revendication 4] Procédé selon l’une quelconque des revendications précédentes, dans lequel le substrat est introduit à une concentration comprise entre 50 g/L et 500 g/L, de préférence entre 10Og/L et 200 g/L de milieu réactionnel.
[Revendication 5] Procédé selon l’une quelconque des revendications précédentes, dans lequel du substrat est ajouté entre les première et deuxième incubations.
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, dans lequel la première enzyme est une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) et la deuxième enzyme est une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 - 6).
[Revendication 7] Procédé selon l’une quelconque des revendications 1 à 5, dans lequel la première enzyme est une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) et la deuxième enzyme est une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3).
[Revendication 8] Procédé selon l’une quelconque des revendications précédentes, dans lequel l’a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) est la protéine ayant pour séquence SEQ ID No :1 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1 .
[Revendication 9] Procédé selon l’une quelconque des revendications précédentes, dans lequel l’a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) est la protéine ayant pour séquence SEQ ID No :2 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :2.
[Revendication 10] Procédé selon l’une quelconque des revendications précédentes, dans lequel chaque enzyme est à une concentration comprise entre 0.01 et 1 mg/mL de milieu réactionnel, de préférence entre 0.05 et 0.5 mg/mL, de manière encore plus préférée environ 0.1 mg/mL de milieu réactionnel.
[Revendication 11] Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que chaque incubation est réalisée pendant une durée comprise entre 12 et 48 heures, de préférence environ 24 heures et/ou à une température comprise entre 20 et 40°C, de préférence environ 37°C et/ou à un pH compris entre 5 et 6,5, de préférence environ 5,75.
[Revendication 12] Mélange d’a-glucanes susceptible d’être obtenu par le procédé selon l’une quelconque des revendications précédentes.
[Revendication 13] Mélange d’a-glucanes caractérisé en ce qu’il présente :
- un taux de fibres hydrolysables inférieur à 45%, en poids par rapport au poids total de matière sèche,
- et/ou au moins 20% de liaisons a(1 -6), et/ou au moins 3% de liaisons a(1 -3), dans lequel le taux de fibres correspond à la fraction hydrolysable (c’est-à-dire non résistante) selon la méthode AOAC 2002.02 et le pourcentage de liaisons a(1 -6) et a(1 -3) représente le pourcentage molaire de liaisons a(1 -6) et a(1 -3) respectivement par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[Revendication 14] Utilisation d’un mélange d’a-glucanes selon l’une quelconque des revendications 12 ou 13 pour la préparation d’aliments pour l’alimentation humaine ou animale.
[Revendication 15] Utilisation séquentielle d’une glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) et d’une glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3) pour diminuer la digestibilité d’un mélange d’a-glucanes, lesdites glucanotransférases ayant respectivement pour séquence SEQ ID No :1 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1 et SEQ ID No :2 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :2.
PCT/FR2022/051595 2021-08-23 2022-08-22 Procédé d'obtention de fibres solubles par voie enzymatique WO2023026010A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2022332653A AU2022332653A1 (en) 2021-08-23 2022-08-22 Method for obtaining soluble fibres enzymatically
CA3229608A CA3229608A1 (fr) 2021-08-23 2022-08-22 Procede d'obtention de fibres solubles par voie enzymatique
KR1020247008944A KR20240046572A (ko) 2021-08-23 2022-08-22 효소적으로 가용성 섬유를 얻는 방법
CN202280062305.8A CN117940574A (zh) 2021-08-23 2022-08-22 酶促获得可溶性纤维的方法
CONC2024/0003549A CO2024003549A2 (es) 2021-08-23 2024-03-21 Método para obtener fibras enzimáticamente solubles.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2108822 2021-08-23
FR2108822A FR3126229A1 (fr) 2021-08-23 2021-08-23 Procédé d’obtention de fibres solubles par voie enzymatique

Publications (1)

Publication Number Publication Date
WO2023026010A1 true WO2023026010A1 (fr) 2023-03-02

Family

ID=80448976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051595 WO2023026010A1 (fr) 2021-08-23 2022-08-22 Procédé d'obtention de fibres solubles par voie enzymatique

Country Status (7)

Country Link
KR (1) KR20240046572A (fr)
CN (1) CN117940574A (fr)
AU (1) AU2022332653A1 (fr)
CA (1) CA3229608A1 (fr)
CO (1) CO2024003549A2 (fr)
FR (1) FR3126229A1 (fr)
WO (1) WO2023026010A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008618A2 (fr) * 2001-07-20 2003-01-30 Nederlandse Organisatie Voor Toegepast-Natuur-Wetenschappelijk Onderzoek Tno Nouveaux glucanes et nouvelles glucane-sucrases derives de bacteries d'acide lactique
US8673608B2 (en) * 2007-04-26 2014-03-18 Hayashibara Co., Ltd. Branched α-glucan, α-glucosyltransferase which forms the glucan, their preparation and uses
WO2015123327A1 (fr) * 2014-02-14 2015-08-20 E. I. Du Pont De Nemours And Company Enzymes glucosyltransférases pour la production de polymères de glucane
WO2015183714A1 (fr) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique de fibre de glucane soluble

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008618A2 (fr) * 2001-07-20 2003-01-30 Nederlandse Organisatie Voor Toegepast-Natuur-Wetenschappelijk Onderzoek Tno Nouveaux glucanes et nouvelles glucane-sucrases derives de bacteries d'acide lactique
US8673608B2 (en) * 2007-04-26 2014-03-18 Hayashibara Co., Ltd. Branched α-glucan, α-glucosyltransferase which forms the glucan, their preparation and uses
WO2015123327A1 (fr) * 2014-02-14 2015-08-20 E. I. Du Pont De Nemours And Company Enzymes glucosyltransférases pour la production de polymères de glucane
WO2015183714A1 (fr) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique de fibre de glucane soluble

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Genbank", Database accession no. WP_053069107.1
AGA H ET AL: "Improved yields of cyclic nigerosylnigerose from starch by pretreatment with a thermostable branching enzyme", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 109, no. 4, 1 April 2010 (2010-04-01), pages 381 - 387, XP026949556, ISSN: 1389-1723, [retrieved on 20091021], DOI: 10.1016/J.JBIOSC.2009.09.047 *
E. M. TE POELE ET AL: "Development of Slowly Digestible Starch Derived alpha-Glucans with 4,6-alpha-Glucanotransferase and Branching Sucrase Enzymes", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 68, no. 24, 21 May 2020 (2020-05-21), US, pages 6664 - 6671, XP055746093, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.0c01465 *
GANGOITI JOANA ET AL: "Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing alpha-glucans from starch and sucrose", BIOTECHNOLOGY ADVANCES, vol. 36, no. 1, 1 January 2018 (2018-01-01), GB, pages 196 - 207, XP055822691, ISSN: 0734-9750, DOI: 10.1016/j.biotechadv.2017.11.001 *

Also Published As

Publication number Publication date
CA3229608A1 (fr) 2023-03-02
AU2022332653A1 (en) 2024-03-14
KR20240046572A (ko) 2024-04-09
FR3126229A1 (fr) 2023-02-24
CN117940574A (zh) 2024-04-26
CO2024003549A2 (es) 2024-04-18

Similar Documents

Publication Publication Date Title
Harada et al. Curdlan and succinoglycan
EP1548033A2 (fr) Polymères solubles de Glucose hautement branchés
EP3011019B1 (fr) Polypeptide ayant la capacite de former des branchements d&#39;unites glucosyle en alpha-1,3 sur un accepteur
FR2792941A1 (fr) Polymeres solubles de glucose branches et leur procede d&#39;obtention
CA2588039C (fr) Biomateriau capable d&#39;effectuer successivement une transition solution/gel puis une transition gel/solution
EP3158062B1 (fr) Dextranes presentant une tres haute masse molaire
EP1316614B1 (fr) Procédé continu de modification de l&#39;amidon et de ses dérivés par enzymes de branchement
EP3174978B1 (fr) Proteine a activite dextrane-saccharase et applications
WO2023026010A1 (fr) Procédé d&#39;obtention de fibres solubles par voie enzymatique
CA1213232A (fr) Procede de purification de la dextrane-saccharase
WO2024013451A1 (fr) Procédé d&#39;obtention de fibres solubles par voie enzymatique
CN108026185A (zh) 支化α葡聚糖
Khasanova et al. Hydrolysis of chitozan with an enzyme complex from Myceliophthora sp.
EP2421961B1 (fr) 4s-iota-carraghénane sulfatase et son utilisation pour l&#39;obtention de l&#39;alpha-carraghénane
JP2002034587A (ja) 可溶性分岐α−グルカンの製造方法、可溶性分岐α−グルカンおよびα−グルカンの老化抑制処理剤
EP2627778B1 (fr) Procede de transformation du iota-carraghenane en alpha-carraghenane a l&#39;aide d&#39;une nouvelle classe de 4s-iota-carraghenane sulfatase
Kawabata et al. Preparation of highly branched starch by glycogen branching enzyme from Neurospora crassa N2-44 and its characterization
EP2730651A1 (fr) Kappa carraghénane sulfatase, procédé de fabrication et utilisation
FR2948382A1 (fr) Porphyranases et leur utilisation pour hydrolyser des polysaccharides
FR2916447A1 (fr) Procede de production et utilisation de familles d&#39;oligomeres d&#39;acide galacturonique.
WO2018091836A1 (fr) Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES
FR2529569A1 (fr) Microorganismes, notamment e. coli, transformes par une sequence d&#39;adn originaire de c. thermocellum, compositions a activite cellulolytique issues de ces micro-organismes et procede pour les obtenir
Pittrof et al. Products Released from Structurally Different Dextrans by Bacterial and Fungal Dextranases. Foods 2021, 10, 244
FR3045667A1 (fr) Procede de bioproduction de dextrane en milieu tensioactif
Eriksson Biocatalysis in different polymer solutions-Biotransformations with trypsin in solutions of polymers with different charges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22776967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3229608

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022332653

Country of ref document: AU

Ref document number: AU2022332653

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022332653

Country of ref document: AU

Date of ref document: 20220822

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280062305.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247008944

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022776967

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022776967

Country of ref document: EP

Effective date: 20240325