WO2024013451A1 - Procédé d'obtention de fibres solubles par voie enzymatique - Google Patents

Procédé d'obtention de fibres solubles par voie enzymatique Download PDF

Info

Publication number
WO2024013451A1
WO2024013451A1 PCT/FR2023/051068 FR2023051068W WO2024013451A1 WO 2024013451 A1 WO2024013451 A1 WO 2024013451A1 FR 2023051068 W FR2023051068 W FR 2023051068W WO 2024013451 A1 WO2024013451 A1 WO 2024013451A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonds
protein
mixture
glucans
glucosidic bonds
Prior art date
Application number
PCT/FR2023/051068
Other languages
English (en)
Inventor
Pierre Lanos
Matthieu RAMETTE
Magali Remaud-Simeon
Claire Moulis
Sandra PIZZUT-SERIN
Etienne Severac
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Publication of WO2024013451A1 publication Critical patent/WO2024013451A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010254-Alpha-glucanotransferase (2.4.1.25)
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class

Definitions

  • the present invention relates to a process for preparing a mixture of poorly digestible ⁇ -glucans from a substrate rich in oligosaccharides having a degree of polymerization (DP) of 4.
  • this substrate means a syrup containing oligosaccharides with an oligosaccharide content having a degree of polymerization (DP) of 4 of at least 40%, preferably at least 45%, even more preferably at least 50%.
  • the invention also relates to a mixture of poorly digestible a-glucans.
  • the present invention also relates to the use of an a-glucanotransferase capable of creating a(1-6) glucosidic bonds to reduce the digestibility of a mixture of a-glucans.
  • Dietary fibers have an important role in human nutrition. Among dietary fibers, we distinguish between soluble fibers, which are soluble in water and have a gelling capacity, and insoluble fibers. Soluble fibers, including branched maltodextrins, are particularly interesting because they are poorly digestible. As a result, their incorporation into the diet makes it possible to reduce the glycemic index of a food and prolong the feeling of satiety. They also have prebiotic properties on the intestinal flora, that is to say they are capable of selectively promoting the growth of certain probiotic type bacteria or the activity of the microbiota, providing a benefit to the health.
  • alpha 1 —> 6 or alpha 1 —> 3 bonds By increasing the percentage of alpha 1 —> 6 or alpha 1 —> 3 bonds, the degree of branching of the maltodextrins is increased, which makes them more resistant to digestion.
  • the Applicant company found that it was possible, from a syrup rich in oligosaccharides having a degree of polymerization (DP) of 4, to obtain fibers of interest in human and animal food, by enzymatic pathway.
  • the Applicant company has thus developed a process which uses a particular enzyme, capable of creating a(1-6) bonds from syrup rich in DP4 oligosaccharides.
  • the present invention relates to a process for preparing a mixture of a-glucans, preferably a mixture of branched maltodextrins, comprising a step of bringing a substrate and an enzyme, said substrate being a syrup rich in oligosaccharides having a degree of polymerization (DP) of 4 and said enzyme being an a-glucanotransferase capable of cleaving a(1-4) glucosidic bonds and creating a(1) glucosidic bonds -6).
  • DP degree of polymerization
  • a-glucan soluble fiber
  • soluble dietary fiber oligosaccharides composed of at least 3 glucose units linked together by a-glycosidic (or a-glucosidic) bonds.
  • a-glucans The classification of a-glucans is mainly based on the measurement of their reducing power, classically expressed by the notion of “dextrose equivalent” (“Dextrose Equivalent” or DE).
  • DE Dextrose Equivalent
  • maltodextrins included in the Monograph Specifications of the Food Chemical Codex specifies that the DE value for a maltodextrin must not exceed 20. Above 20, these are glucose syrups.
  • Such a measurement of the DE is, however, insufficient to precisely represent the molecular distribution of ⁇ -glucans. Indeed, the acid hydrolysis of starch, completely random, or its enzymatic hydrolysis, a little more ordered, provide mixtures of glucose and glucose polymers that the sole measurement of the DE does not make it possible to define with precision, and which include molecules of short size, low DP, as well as molecules of very long size, DP. pupil.
  • the measurement of the DE in fact only gives an approximate idea of the average DP of the mixture of glucose and the glucose polymers constituting the a-glucans and therefore of their number average molecular mass (Mn). To complete the characterization of the molecular mass distribution of a-glucans, the determination of another parameter is important, that of the weight average molecular mass (Mp).
  • (Mn) and (Mp) are determined experimentally by different analysis techniques, such as for example a measurement method adapted to glucose polymers, which is based on gel permeation chromatography on columns. chromatography calibrated with pullulans of known molecular masses.
  • the Mp/Mn ratio is called the polymolecularity index (PI) and makes it possible to globally characterize the distribution of molecular masses of a polymer mixture.
  • PI polymolecularity index
  • the process according to the present invention makes it possible to reduce the percentage of a(1-4) bonds in favor of a(1-6) bonds, which has the advantage of reducing the digestibility of the a-glucan mixture. obtained by the process.
  • the mixture of ⁇ -glucans prepared according to the process of the invention is preferably a mixture of branched maltodextrins.
  • branched maltodextrins means maltodextrins whose content of ⁇ (1-6) glucosidic bonds is greater than that of standard maltodextrins.
  • Standard maltodextrins are defined as purified and concentrated mixtures of glucose and glucose polymers essentially linked in a(1-4) with only 4 to 5% of a(1-6) glucosidic bonds, molecular weight extremely varied, completely soluble in water and with low reducing power.
  • the syrup rich in oligosaccharides having a DP of 4 comprises at least 40%, preferably at least 45%, even more preferably at least 50% of oligosaccharides having a DP of 4.
  • the syrup rich in oligosaccharides having a DP of 4 has a dextrose equivalent (DE) greater than 20.
  • the syrup rich in DP4 is a syrup having the characteristics described in Table 1 below.
  • the substrate is present at a concentration of between 50 g/L and 500 g/L, preferably between 100 g/L and 200 g/L in the reaction medium.
  • the ⁇ -glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and creating ⁇ (1-6) glucosidic bonds is the protein having the sequence SEQ ID No: 1 or a protein having at least 90% identity with the protein having the sequence SEQ ID No: 1 (hereinafter referred to as GT#19).
  • it is a protein having at least 91%, even more preferably, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 96%.
  • sequence SEQ ID No: 1 corresponds to the Genbank accession number WP_053069107.1.
  • the inventors have shown that the GT#19 enzyme is capable of modifying a syrup rich in DP4 so as to make it poorly digestible, with a % hydrolysis according to the AQAC2002 method. 02 less than or equal to 45%).
  • the enzyme is added at a concentration of between 0.01 and 1 mg/mL of reaction medium, preferably between 0.05 and 0.5 mg/mL, even more preferably approximately 0.1 mg/mL of reaction medium.
  • the bringing together of the substrate and the enzyme is carried out for a period of between 12 and 48 hours, preferably approximately 24 hours.
  • the bringing together of the substrate and the enzyme is carried out at a temperature between 20 and 40°C, preferably around 37°C.
  • the bringing together of the substrate and the enzyme is carried out at a pH between 5 and 6.5, preferably between 5.5 and 6, even more so. preferred about 5.75.
  • the method further comprises an enzymatic treatment step with an a-glucanotransferase capable of cleaving the a(1 -4) glucosidic bonds and creating a(1 -) glucosidic bonds.
  • an a-glucanotransferase capable of cleaving the a(1 -4) glucosidic bonds and creating a(1 -) glucosidic bonds.
  • It may for example be a protein having the sequence SEQ ID No:2 or a protein having at least 90% identity with the protein having the sequence SEQ ID No:2 (hereinafter referred to as GT#11) .
  • GT#11 protein having at least 91%, even more preferably, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 96%.
  • sequence SEQ ID No: 2 corresponds to the Genbank accession number AOR73699.1.
  • the present invention also relates to a mixture of aglucans, preferably a mixture of branched maltodextrins, capable of being obtained by the process described above.
  • This mixture of a-glucans is characterized by its low digestibility according to the AOAC 2002.02 method.
  • the process according to the invention makes it possible to reduce by a factor of at least 2, preferably at least 2.5, even more preferably by at least 3, the hydrolyzable fraction, measured according to the AOAC 2002.02 method, compared to the starting substrate.
  • the AOAC 2002.02 method can in particular be implemented using the “HPAEC-PAD assay” part of the “resistant Starch, K-RSTAR 06/18” kit marketed by the company Megazyme® as described in the Example 1, part 5 below.
  • the method according to the present invention makes it possible to increase the percentage of ⁇ (1-6) bonds by a factor of at least 3, preferably at least 3.5, even more preferably at least 4. , relative to the starting substrate.
  • the percentage of a(1 -6) bonds can be measured by the Hakomori method (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) as described in Example 1, part 8 below or by proton NMR as described in Example 1, part 7 below.
  • the present invention relates to a mixture of a-glucans, preferably a mixture of branched maltodextrins, characterized in that it presents:
  • a rate of hydrolyzable fibers less than 55%, preferably less than 50%, even more preferably less than 45%,
  • a(1-6) bonds in which the fiber content corresponds to the hydrolyzable fraction (i.e. non-resistant) according to the AOAC 2002.02 method and the percentage of a bonds (1 -6) represents the molar percentage of a(1 -6) bonds relative to the total number of glycosidic bonds, measured by the Hakomori method.
  • the rate of hydrolyzable fibers is less than 44%, preferably less than 43%, even more preferably less than 42%, 41%, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30%.
  • the rate of hydrolyzable fibers is greater than 5%, preferably greater than 10%, 11%, 12%, 13%, 14%, 15%, 18%, 19%, 20%, 21 %, 22%, 23%, 24%, 25%.
  • the rate of hydrolyzable fibers is between 5% and 45%, preferably between 10% and 45%, preferably between 20% and 44%, more preferably between 30% and 45%. % and 45%.
  • the percentage of a(1-6) bonds is at least 21%, preferably at least 22%, even more preferably at least 23%, at least 24%, at least 25%, at least 26%, at least 27%, at least 28%, at least 29%, at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%.
  • the percentage of a(1 -6) bonds is at most 40%, preferably at most 36%, at most 35%, at most 34%, d 'at most 33%, at most 32%, at most 31%.
  • the percentage of a(1-6) bonds is between 20% and 40%, preferably between 20% and 35%, preferably between 25% and 35%.
  • the percentage of a(1-3) bonds is at least 2%, preferably at least 3%.
  • the percentage of a(1-3) bonds is at most 6%, preferably at most 5%.
  • the percentage of ⁇ (1-3) bonds is between 2% and 8%, preferably between 3% and 5%.
  • the percentage of a(1-2) bonds is at least 1%, preferably at least 2%.
  • the percentage of a(1-2) bonds is at most 8%, preferably at most 6%, at most 5%, at most 4%. at most 3%.
  • the percentage of a(1 -4) bonds is at most 80%, preferably at most 70%, at most 65%.
  • the percentage of a(1 -4) bonds is at least 50%, preferably at least 55%, at least 60%.
  • the percentage of ⁇ (1-4) bonds is between 50% and 80%, preferably between 55% and 70%, preferably between 55% and 65%.
  • the mixture of ⁇ -glucans which is preferably a mixture of branched maltodextrins, is characterized in that it presents:
  • a rate of hydrolyzable fibers less than 55%, preferably less than 50%, even more preferably less than 45%,
  • a(1 -4) bonds in which the rate of fibers corresponds to the hydrolyzable fraction (i.e. non-resistant) according to the AOAC 2002.02 method and the percentage of a( 1-6), a(1 -3), a(1-2), or a(1 -4) represents the molar percentage of said type of bonds relative to the total number of glycosidic bonds, measured by the Hakomori method.
  • said bond ratios a(1-6), a(1-3), a(1-2), or a(1-4) are such that the sum of their molar percentage is equal to 100%.
  • the present invention also relates to the use of a mixture of ⁇ -glucans obtained according to the process described above and of a mixture of ⁇ -glucans having the properties described above for the preparation of food for human or animal consumption.
  • the a-glucan mixture according to the invention can be used to promote intestinal health, blood sugar management, satiety and weight management, and sustained energy release.
  • the present invention relates to the use of a glucanotransferase capable of cleaving ⁇ (1-4) glucosidic bonds and creating ⁇ (1-6) glucosidic bonds to reduce the digestibility of 'a mixture of ⁇ -glucans, said glucanotransferase having the sequence SEQ ID No: 1 or a protein having at least 90% identity with the protein having the sequence SEQ ID No: 1.
  • the mixture of ⁇ -glucans is preferably a syrup rich in oligosaccharides, in particular a syrup rich in oligosaccharides having DP of 4 as described in the first aspect of the invention.
  • the reduction in digestibility is a reduction by a factor of at least 2, preferably at least 2.5, even more preferably at least 3 of the hydrolyzable fraction, measured according to the AOAC 2002.02 method, relative to the starting substrate.
  • the invention will be better understood with the aid of the examples which follow, which are intended to be illustrative and not limiting.
  • Example 1 preparation of branched maltodextrins from syrup rich in DP4: materials and methods
  • E. coli BL21 star cells containing the plasmid pET-21 a-enzyme no. % glycerol and 1% lactose.
  • Cellular debris was separated from solubilized proteins by centrifugation for 30 min at 10,000 g.
  • the determination of the different protein solutions was carried out by measuring their absorbance at 280 nm using a nanodrop 2000 spectrophotometer (Thermofisher). The molecular extinction coefficients were determined using the ProtParam tool application from the ExPASy bioinformatics resource portal site.
  • the transfer reactions were lyophilized after freezing at -80° C. for 24 hours. 25 mg of lyophilized products were taken up in 1 mL of 100mM sodium maleate buffer containing 30 U of pancreatic a-amylase and 3 U of amyloglucosidase (Starch resistant kit, Megazyme K-STAR 06/18, which uses the AOAC 2002.02 method). The reactions were incubated for 16 hours at 37°C. The products were diluted in water before HPAEC PAD analysis.
  • the products obtained were analyzed by anion exchange chromatography coupled with a pulsed amperometric detector (HPAEC PAD - High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection).
  • HPAEC PAD High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection
  • the analyzes were carried out on a Thermo ICS6000 system equipped with a CarboPacTM PA100 analytical column (2 mm x 250 mm) coupled with a CarboPacTM PA100 guard pre-column (2 mm x 50 mm).
  • a gradient of sodium acetate in 150 mM sodium hydroxide was applied at a flow rate of 0.250 ml.min-1 according to the following profile: 0-5 min, 0 mM; 5-35 min, 0-300 mM; 35-40 min, 300-450 mM; 40-42 min, 450mM.
  • Detection was carried out using a gold working electrode and an Ag/AgCI pH reference cell. The samples were diluted to a total dry mass of 1 g.L-1 before injection.
  • the Hakomori method (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) makes it possible to chemically characterize the saccharide bonds by differentiating the free OH groups and the bound groups. It is a destructive method including the steps of methylation, hydrolysis, reduction with NaBD4, acetylation and analysis by mass spectrometry
  • Example 2 preparation of branched maltodextrins from syrup rich in DP4: results
  • the product obtained by this enzymatic treatment with the enzyme GT#19 contains significantly fewer ⁇ -1,4 bonds and more ⁇ -1,6 bonds than the starting point. The number of a-1,2 and a-1,3 bonds is not modified.
  • the GT#19 enzyme is therefore an a-4,6 glucanotransferase.
  • the GT#11 enzyme leads to a reduction in the percentage of ⁇ -1,4 bonds and the appearance of ⁇ -1,3 bonds.
  • the digestibility of the product obtained by treatment with the GT#11 enzyme is also reduced (53 and 55%, for respective initial concentrations of 100 and 200 mg/mL, compared to 84 and 88% for untreated substrates).
  • the mixture of a-glucans according to the present invention also presents an interesting in vitro digestibility profile according to the Englyst method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nutrition Science (AREA)
  • Animal Husbandry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

L'invention est relative à un procédé de préparation d'un mélange d'α-glucanes faiblement digestibles à partir d'un substrat riche en oligosaccharides ayant un degré de polymérisation (DP) de 4.

Description

Titre : Procédé d’obtention de fibres solubles par voie enzymatique
Domaine technique
[0001] La présente invention est relative à un procédé de préparation d’un mélange d’a-glucanes faiblement digestibles à partir d’un substrat riche en oligosaccharides ayant un degré de polymérisation (DP) de 4. Dans la présente demande, ce substrat désigne un sirop contenant des oligosaccharides avec une teneur en oligosaccharides ayant un degré de polymérisation (DP) de 4 d’au moins 40%, de préférence d’au moins 45%, de manière encore plus préférée d’au moins 50%.
[0002] L’invention concerne également un mélange d’a-glucanes faiblement digestibles.
[0003] La présente invention est également relative à l’utilisation d’une a- glucanotransférase capable de créer des liaisons glucosidiques a(1 -6) pour diminuer la digestibilité d’un mélange d’a-glucanes.
Etat de l’art antérieur
[0004] Les fibres alimentaires ont un rôle important dans l’alimentation humaine. Parmi les fibres alimentaires, on distingue les fibres solubles, qui sont solubles dans l’eau et ont une capacité gélifiante, et les fibres insolubles. Les fibres solubles, dont les maltodextrines branchées, sont particulièrement intéressantes car elles sont faiblement digestibles. De ce fait, leur incorporation dans l’alimentation permet de diminuer l’indice glycémique d’un aliment et de prolonger la sensation de satiété. Elles sont également dotées de propriétés prébiotiques sur la flore intestinale, c’est- à-dire qu’elles sont capables de promouvoir de façon sélective la croissance de certaines bactéries de type probiotique ou l'activité du microbiote, en apportant un bénéfice à la santé.
[0005] Jusqu’à présent, les fibres solubles, dont les maltodextrines branchées, étaient principalement obtenues par voie physico-chimique.
[0006] C’est le cas notamment de la maltodextrine commercialisée par la société Demanderesse sous le nom de marque NUTRIOSE® FM10 en tant que fibre soluble dans l’eau. [0007] Il existe d’autres fibres solubles obtenues par voie physico-chimique, telles que le PROMITOR® commercialisé par la société Tate and Lyle, le FIBERSOL® ou le LITESSE® commercialisé par la société Dupont Nutrition and Biosciences.
[0008] De nombreuses études ont démontré que les propriétés de digestibilité étaient directement liées aux pourcentages des différents types de liaisons osidiques au sein des fibres solubles.
[0009] En effet, les maltodextrines standards sont rapidement digestibles et se définissent comme des mélanges purifiés et concentrés de glucose et de polymères de glucose essentiellement lié en alpha 1 4 (ci-après 1 — > 4 ou a(1 -4)) avec seulement de 4 à 5 % de liaisons glucosidiques alpha 1 6 (ci-après 1 - 6 ou a(1-
6)), de poids moléculaires extrêmement variés, complètement solubles dans l'eau et à faible pouvoir réducteur.
[0010] En augmentant le pourcentage de liaisons alpha 1 — > 6 ou alpha 1 — > 3, on augmente le degré de branchement des maltodextrines, ce qui les rend plus résistants à la digestion.
[0011] L’approche enzymatique, qui utilise des enzymes capables de favoriser la création des liaisons de type « branchées » présente de nombreux avantages, en termes de sécurité, de préservation de l’environnement, et offre également une meilleure spécificité.
[0012] A l’origine, la plupart des procédés enzymatiques de production de fibres solubles sont réalisées en utilisant du saccharose comme substrat de l’enzyme, afin de créer de nouvelles liaisons. Par exemple, la demande WO2015183714 décrit une réaction enzymatique à partir d’un mélange de saccharose et de substrat de type a-glucane.
[0013] Aujourd’hui, la plupart des procédés enzymatiques utilisent des amylomaltases, pour produire des fibres solubles à partir d’amidon.
[0014] Il est souhaitable d’obtenir des fibres solubles par voie enzymatique à partir de substrat, en l’absence de saccharose. Description détaillée de l’invention
[0015] La société Demanderesse a alors trouvé qu’il était possible, à partir d’un sirop riche en oligosaccharides ayant un degré de polymérisation (DP) de 4, d’obtenir des fibres d’intérêt en alimentation humaine et animale, par voie enzymatique. La société Demanderesse a ainsi développé un procédé qui utilise une enzyme particulière, capable de créer des liaisons a(1 -6) à partir de sirop riche en oligosaccharides DP4.
[0016] Dans un premier aspect, la présente invention concerne un procédé de préparation d’un mélange d’a-glucanes, de préférence d’un mélange de maltodextrines branchées, comprenant une étape de mise en présence d’un substrat et d’une enzyme, ledit substrat étant un sirop riche en oligosaccharides ayant un degré de polymérisation (DP) de 4 et ladite enzyme étant une a- glucanotransférase capable de cliver les liaisons glucosidiques a(1-4) et de créer des liaisons glucosidiques a(1 -6).
[0017] Selon la présente invention, les termes «a-glucane », « fibre soluble », « fibre soluble alimentaire » sont utilisés de manière interchangeable. Ils définissent des oligosaccharides composés d’au moins 3 unités de glucose reliées entre elles par des liaisons a-glycosidiques (ou a-glucosidiques).
[0018] La classification des a-glucanes repose principalement sur la mesure de leur pouvoir réducteur, exprimé classiquement par la notion de « équivalent dextrose » (« Dextrose Equivalent » ou DE). Sur ce point particulier, la définition des maltodextrines reprise dans les Monograph Spécifications du Food Chemical Codex précise que la valeur de DE pour une maltodextrine ne doit pas excéder 20. Au-dessus de 20, il s’agit de sirops de glucose.
[0019] Une telle mesure du DE est cependant insuffisante pour représenter précisément la distribution moléculaire des a-glucanes. En effet, l'hydrolyse acide de l'amidon, totalement aléatoire, ou son hydrolyse enzymatique, un peu plus ordonnée, fournissent des mélanges de glucose et de polymères de glucose que la seule mesure du DE ne permet pas de définir avec précision, et qui comportent des molécules de courte taille, de faible DP, aussi bien que des molécules de taille très longue, de DP. élevé. [0020] La mesure du DE ne donne en fait qu'une idée approximative du DP moyen du mélange du glucose et des polymères de glucose constitutifs des a-glucanes et donc de leur masse moléculaire moyenne en nombre (Mn). Pour compléter la caractérisation de la distribution des masses moléculaires des a-glucanes, la détermination d'un autre paramètre est importante, celui de la masse moléculaire moyenne en poids (Mp).
[0021] En pratique, (Mn) et (Mp) sont déterminées de manière expérimentale par différentes techniques d’analyse, comme par exemple une méthode de mesure adaptée aux polymères de glucose, qui repose sur la chromatographie de perméation de gel sur des colonnes de chromatographie étalonnées avec des pullulanes de masses moléculaires connues.
[0022] Le rapport Mp/Mn est appelé indice de polymolécularité (IP) et permet de caractériser globalement la distribution des masses moléculaires d'un mélange polymérique. En règle générale, la répartition en masses moléculaires des maltodextrines standards conduit à des IP compris entre 5 et 10.
[0023] Ces différents paramètres sont également le reflet du profil de liaisons a- glycosidiques des a-glucanes. En effet, un mélange d’a-glucanes standard possède un pourcentage très élevé de liaisons « linéaires » a(1 -4) (supérieur à 90%) et un pourcentage faible de liaisons dites « branchées (a(1-2), a(1 -3) et a(1-6)).
[0024] Le procédé selon la présente invention permet de diminuer le pourcentage de liaisons a(1 -4) au profit de liaisons a(1-6), ce qui a l’avantage de diminuer la digestibilité du mélange d’a-glucanes obtenus par le procédé.
[0025] Le mélange d’a-glucanes préparé selon le procédé de l’invention est de préférence un mélange de maltodextrines branchées.
[0026] Au sens de l'invention, on entend par maltodextrines branchées des maltodextrines dont la teneur en liaisons glucosidiques a(1 -6) est supérieure à celle des maltodextrines standards.
[0027] Les maltodextrines standards se définissent comme des mélanges purifiés et concentrés de glucose et de polymères de glucose essentiellement lié en a(1 -4) avec seulement de 4 à 5 % de liaisons glucosidiques a(1-6), de poids moléculaires extrêmement variés, complètement solubles dans l'eau et à faible pouvoir réducteur.
[0028] Selon un mode réalisation de l’invention, le sirop riche en oligosaccharides ayant DP de 4 comprend au moins 40%, de préférence au moins 45%, de manière encore plus préférée au moins 50% d’oligosaccharides ayant un DP de 4.
[0029] Selon un mode de réalisation de l’invention, le sirop riche en oligosaccharides ayant un DP de 4 a un équivalent dextrose (DE) supérieur à 20.
[0030] Selon un mode de réalisation préférée de l’invention, le sirop riche en DP4 est un sirop présentant les caractéristiques décrites dans le Tableau 1 ci-dessous.
[0031] Dans un mode de réalisation préféré de l’invention, le substrat est présent à une concentration comprise entre 50 g/L et 500 g/L, de préférence entre 100g/L et 200 g/L dans le milieu réactionnel.
[0032] Dans un mode de réalisation préféré de l’invention, l’a-glucanotransférase capable de cliver les liaisons glucosidiques a(1-4) et de créer des liaisons glucosidiques a(1 -6) est la protéine ayant pour séquence SEQ ID No :1 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1 (dénommée ci-après GT#19). De manière préférée, il s’agit d’une protéine ayant au moins 91 %, de manière encore plus préférée, au moins 92%, au moins 93%, au moins 94%, au moins 95%, au moins 96%, au moins 97%, au moins 98%, au moins 99%, au moins 99,5%, au moins 99,6%, au moins 99,7%, au moins 99,8%, au moins 99,9% d’identité avec la protéine ayant pour séquence SEQ ID No :1 . La séquence SEQ ID No :1 correspond au numéro d’accession Genbank WP_053069107.1.
[0033] Comme cela est montré dans les exemples, les inventeurs ont montré que l’enzyme GT#19 est capable de modifier un sirop riche en DP4 de sorte à le rendre faiblement digestible, avec un % d’hydrolyse selon la méthode AQAC2002.02 inférieur ou égal à 45%).
[0034] Selon un mode de réalisation de l’invention, l’enzyme est ajoutée à une concentration comprise entre 0.01 et 1 mg/mL de milieu réactionnel, de préférence entre 0.05 et 0.5 mg/mL, de manière encore plus préférée environ 0.1 mg/mL de milieu réactionnel.
[0035] Selon un mode de réalisation de l’invention, la mise en présence du substrat et de l’enzyme est réalisée pendant une durée comprise entre 12 et 48 heures, de préférence environ 24 heures
[0036] Selon un mode de réalisation de l’invention, la mise en présence du substrat et de l’enzyme est réalisée à une température comprise entre 20 et 40°C, de préférence environ 37°C.
[0037] Selon un mode de réalisation de l’invention, la mise en présence du substrat et de l’enzyme est réalisée à un pH compris entre 5 et 6,5, de préférence entre 5,5 et 6, de manière encore plus préférée environ 5,75.
[0038] Dans un mode de réalisation de l’invention, le procédé comprend en outre une étape de traitement enzymatique par une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3). Il peut s’agir par exemple d’une protéine ayant pour séquence SEQ ID No :2 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :2 (dénommée ci-après GT#11 ). De manière préférée, il s’agit d’une protéine ayant au moins 91 %, de manière encore plus préférée, au moins 92%, au moins 93%, au moins 94%, au moins 95%, au moins 96%, au moins 97%, au moins 98%, au moins 99%, au moins 99,5%, au moins 99,6%, au moins 99,7%, au moins 99,8%, au moins 99,9% d’identité avec la protéine ayant pour séquence SEQ ID No :2. La séquence SEQ ID No :2 correspond au numéro d’accession Genbank AOR73699.1 .
[0039] Selon un aspect, la présente invention porte également sur un mélange d’a- glucanes, de préférence un mélange de maltodextrines branchées, susceptible d’être obtenu par le procédé décrit ci-dessus.
[0040] Ce mélange d’a-glucanes est caractérisé par sa faible digestibilité selon la méthode AOAC 2002.02. De manière avantageuse, le procédé selon l’invention permet réduire d’un facteur d’au moins 2, de préférence d’au moins 2,5, de manière encore plus préférée d’au moins 3, la fraction hydrolysable, mesurée selon la méthode AOAC 2002.02, par rapport au substrat de départ. [0041] La méthode AOAC 2002.02 peut notamment être mise en œuvre à l’aide de la partie « dosage HPAEC-PAD » du kit « resistant Starch, K-RSTAR 06/18 » commercialisé par la société Megazyme® tel que décrit dans l’Exemple 1 , partie 5 ci-dessous.
[0042] Le procédé selon la présente invention permet d’augmenter la pourcentage de liaisons a(1-6) par un facteur d’au moins 3, de préférence au moins 3,5, de manière encore plus préférée d’au moins 4, par rapport au substrat de départ.
[0043] Le pourcentage de liaisons a(1 -6) peut être mesuré par la méthode Hakomori (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) tel que décrit dans l’exemple 1 , partie 8 ci-dessous ou par RMN du proton tel que décrit dans l’exemple 1 , partie 7 ci-dessous.
[0044] Selon un aspect, la présente invention concerne un mélange d’a-glucanes, de préférence un mélange de maltodextrines branchées, caractérisé en ce qu’il présente :
- un taux de fibres hydrolysables, inférieur à 55%, de préférence inférieur à 50%, de manière encore plus préférée inférieur à 45%,
- et/ou au moins 20% de liaisons a(1-6), dans lequel le taux de fibres correspond à la fraction hydrolysable (c’est-à-dire non résistante) selon la méthode AOAC 2002.02 et le pourcentage de liaisons a(1 -6) représente le pourcentage molaire de liaisons a(1 -6) par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[0045] De manière préférée, le taux de fibres hydrolysables est inférieur à 44%, de préférence inférieur à 43%, de manière encore plus préférée inférieur à 42%, 41 %, 40%, 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31 %, 30%.
[0046] De manière préférée, le taux de fibres hydrolysables est supérieur à 5%, de préférence supérieur à 10%, 11 %, 12%, 13%, 14%, 15%, 18%, 19%, 20%, 21 %, 22%, 23%, 24%, 25%. [0047] De manière préférée, le taux de fibres hydrolysables est compris entre 5% et 45%, de préférence est compris entre 10% et 45%, de préférence est compris entre 20% et 44%, de préférence encore est compris entre 30% et 45%.
[0048] De manière préférée, le pourcentage de liaisons a(1-6), est d’au moins 21 %, de préférence au moins 22%, de manière encore plus préférée au moins 23%, au moins 24%, au moins 25%, au moins 26%, au moins 27%, au moins 28%, au moins 29%, au moins 30%, au moins 31 %, au moins 32%, au moins 33%, au moins 34%, au moins 35%.
[0049] De manière préférée, le pourcentage de liaisons a(1 -6), est d’au plus 40%, de préférence d’au plus 36%, d’au plus 35%, d’au plus 34%, d’au plus 33%, d’au plus 32%, d’au plus 31 %.
[0050] De manière préférée, le pourcentage de liaisons a(1-6), est compris entre 20% et 40%, de préférence est compris entre 20% et 35%, de préférence est compris entre 25% et 35%.
[0051] De manière préférée, le pourcentage de liaisons a(1 -3), est d’au moins 2%, de préférence d’au moins 3%.
[0052] De manière préférée, le pourcentage de liaisons a(1-3), est d’au plus 6%, de préférence d’au plus 5%.
[0053] De manière préférée, le pourcentage de liaisons a(1-3), est compris entre 2% et 8%, de préférence entre 3% et 5%.
[0054] De manière préférée, le pourcentage de liaisons a(1 -2), est d’au moins 1 %, de préférence d’au moins 2%.
[0055] De manière préférée, le pourcentage de liaisons a(1-2), est d’au plus 8%, de préférence d’au plus 6%, d’au plus 5%, d’au plus 4% d’au plus 3%.
[0056] De manière préférée, le pourcentage de liaisons a(1 -4), est d’au plus 80%, de préférence d’au plus 70%, d’au plus 65%.
[0057] De manière préférée, le pourcentage de liaisons a(1 -4), est d’au moins 50%, de préférence d’au moins 55%, d’au moins 60%. [0058] De manière préférée, le pourcentage de liaisons a(1-4), est compris entre 50% et 80%, de préférence entre 55% et 70%, de préférence entre 55% et 65%.
[0059] De préférence, le mélange d’a-glucanes, qui est de préférence un mélange de maltodextrines branchées, est caractérisé en ce qu’il présente :
- un taux de fibres hydrolysables, inférieur à 55%, de préférence inférieur à 50%, de manière encore plus préférée inférieur à 45%,
- et présente une ou plusieurs des caractéristique suivantes :
- entre 20% et 40% de liaisons a(1 -6),
- entre 20% et 40% de liaisons a(1 -3),
- entre 2% et 8% de liaisons a(1-2),
- entre 50% et 80% de liaisons a(1 -4), dans lequel le taux de fibres correspond à la fraction hydrolysable (c’est-à-dire non résistante) selon la méthode AOAC 2002.02 et le pourcentage de liaisons a(1-6), a(1 -3), a(1-2), ou a(1 -4) représente le pourcentage molaire dudit type de liaisons par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[0060] De préférence, lesdits taux de liaisons a(1-6), a(1 -3), a(1 -2), ou a(1 -4) sont tels que la somme de leur pourcentage molaire est égale à 100%.
[0061] La présente invention porte également sur l’utilisation d’un mélange d’a- glucanes obtenu selon le procédé décrit ci-dessus et d’un mélange d’a-glucanes ayant les propriétés décrits ci-dessus pour la préparation d’aliments pour l’alimentation humaine ou animale.
[0062] Typiquement, le mélange d’a-glucanes selon l’invention peut être utilisé pour favoriser la santé intestinale, la gestion de la glycémie, la satiété et la gestion du poids, et la libération d'énergie soutenue.
[0063] Enfin, dans un autre aspect, la présente invention concerne l’utilisation d’une glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1-6) pour diminuer la digestibilité d’un mélange d’a-glucanes, ladite glucanotransférase ayant pour séquence SEQ ID No :1 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1.
[0064] Dans cet aspect de l’invention, le mélange d’a-glucanes est de préférence un sirop riche en oligosaccharides, en particulier un sirop riche en oligosaccharides ayant DP de 4 tel que décrit dans le premier aspect de l’invention.
[0065] De manière préférée, la diminution de la digestibilité est une diminution d’un facteur d’au moins 2, de préférence d’au moins 2,5, de manière encore plus préférée d’au moins 3 de la fraction hydrolysable, mesurée selon la méthode AOAC 2002.02, par rapport au substrat de départ. [0066] L'invention sera mieux comprise à l'aide des exemples qui suivent, lesquels se veulent illustratifs et non limitatifs.
[0067] Exemple 1. : préparation de maltodextrines branchées à partir de sirop riche en DP4 : matériel et méthodes
[0068] 1 . Préparation d’une solution de substrat DP4 [0069] Le substrat de départ utilisé était un sirop riche en DP4, présentant les caractéristiques décrites dans la Tableau 1 :
[0070] [Tableau 1]
Figure imgf000011_0001
Figure imgf000012_0001
[0071] Différentes solutions de substrat (sirop riche en DP4) dans du tampon sodium acétate 50mM, pH 5.75 ont été préparées, à des concentrations de 100g/L, 200g/L ou 400g/L.
[0072] 2. Production des enzymes recombinantes.
[0073] Les enzymes suivantes ont été produites de manière recombinante :
- Enzyme GT#11 : a-4,3 glucanotransférase de Lactobacillus fermentum NC2970 ayant pour séquence en acides aminés la séquence répertoriée dans Genbank sous la référence AOR73699.1 (SEQ ID N°2)
- Enzyme GT#19 : glycosyl hydrolase GH70 de Lactobacillus mucosae ayant pour séquence en acide aminés la séquence répertoriée dans Genbank sous la référence WP_053069107.1 . (SEQ ID N°1 )
[0074] Des cellules de E. coli BL21 star contenant le plasmide pET-21 a-enzyme n°X (afin de produire différentes enzymes, dont GT#11 et GT#19) ont été cultivées dans un milieu ZYM-5052 contenant 1 % de glycérol et 1 % de lactose. En fin de culture, les cellules ont été centrifugées à 6 500g pendant 10 min, les culots cellulaires remis en suspension à une DQ600 nm de 80 dans un tampon phosphate 20mM pH=7,4 contenant 300 mM de NaCI et 20 mM d’imidazole, et les cellules lysées par sonication à froid grâce à 4 cycles de 20 secondes à 30 % d’amplitude suivi de 4 minutes de repos. Les débris cellulaires ont été séparés des protéines solubilisées par centrifugation pendant 30 minutes à 10 000 g.
[0075] 3. Purification des enzymes [0076] La purification des protéines d’intérêt a été réalisée sur résine Cobalt (Invitrogen) chargée en ions cobalt divalent (CO 2+), pour lesquels l’étiquette polyhistidine présente une affinité. L’élution a été réalisée en créant une compétition entre l’étiquette polyhistidine et des concentrations croissantes d’imidazole. Brièvement, 10 à 35 mL d’extrait cellulaire d’E. coli ont été mis en contact pendant 1 heure avec 1 mL de résine de Cobalt préalablement équilibrée avec 25mL tampon Phosphate 20 mM pH=7,4 contenant 300 mM de NaCI et 20 mM d’imidazole. La filtration de la résine sur fritté permet l’élimination de l’ensemble des protéines non fixées. La résine a ensuite été lavée 5 fois avec 40 mL de tampon Phosphate 20mM pH=7,4 contenant 300 mM de NaCI et 20 mM d’imidazole. Enfin, l’élution a été réalisée avec 3 mL de tampon Phosphate 20 mM pH=7,4 contenant 300 mM de NaCI et 250 mM d’imidazole pendant 5 minutes afin de décrocher les enzymes d’intérêt. Les solutions enzymatiques ont alors été dialysées (membrane de seuil de coupurelO kDa) contre 5 L de tampon acétate de sodium 50 mM, pH=5,75 (overnight, 4°C sous agitation) afin d’éliminer le NaCI et l’imidazole. Le dosage des différentes solutions protéiques a été réalisé en mesurant leur absorbance à 280 nm grâce à un nanodrop 2000 spectrophotometer (Thermofisher). Les coefficients d’extinction moléculaire s ont été déterminés grâce à l’application ProtParam tool du site ExPASy bioinformatics resource portal.
[0077] 4. Réactions enzymatiques
[0078] Les réactions ont été réalisées avec 0,1 mg/mL d’enzyme purifiée et dialysée en présence de 10%, 20% ou 40% de substrat dans du tampon sodium acétate 50 mM, pH=5,75. Les réactions ont été incubées sous agitation pendant 24 h à 37°C. Les réactions ont été arrêtées par chauffage (95°C pendant 5 minutes). Des prélèvements aux temps initiaux et finaux ont été réalisés pour analyser la spécificité des enzymes en utilisant différentes techniques analytiques (HPAEC- PAD, RMN).
[0079] 5. Test de digestibilité
[0080] Les réactions de transfert ont été lyophilisées après congélation à -80°C pendant 24 heures. 25 mg de produits lyophilisés ont été repris dans 1 mL de tampon de maléate de sodium 100mM contenant 30 U d’a-amylase pancréatique et 3 U d’amyloglucosidase (kit resistant Starch, Megazyme K-STAR 06/18, qui met en œuvre la méthode AOAC 2002.02). Les réactions ont été incubées pendant 16 heures à 37°C. Les produits ont été dilués dans l’eau avant analyse HPAEC PAD.
[0081] 6. Analyses chromatoqraphiques
[0082] Les produits obtenus ont été analysés par chromatographie d’échange d’anions couplée à un détecteur ampérométrique pulsé (HPAEC PAD - High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). Les analyses ont été réalisées sur un système Thermo ICS6000 équipé d’une colonne CarboPac™ PA100 analytical column (2 mm x 250 mm) couplée avec une pré-colonne CarboPac™ PA100 guard (2 mm x 50 mm). Un gradient d’acétate de sodium dans 150 mM de soude a été appliqué à un débit de 0,250 ml.min-1 selon le profil suivant : 0-5 min, 0 mM ; 5-35 min, 0-300 mM ; 35-40 min, 300-450 mM ; 40-42 min, 450 mM. La détection a été réalisée grâce à une électrode de travail en or et une cellule de référence pH Ag/AgCI. Les échantillons ont été dilués à une masse sèche totale de 1 g.L-1 avant injection.
[0083] 7. RMN.
[0084] Les spectres 1H, 13C et HSQC ont été enregistrés sur un équipement Bruker Avance 500MHz à 298K avec une sonde BBI 5 mm z-gradient H-BB-D. Les données ont été acquises et traitées grâce au logiciel TopSpin 3.
[0085] 8. Méthode Hakomori
[0086] La méthode Hakomori (1964 HAKOMORI A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide) permet de caractériser chimiquement les liaisons osidiques en différenciant les groupements OH libres et les groupements liés. Il s’agit d’une méthode destructrice comprenant les étapes de méthylation, hydrolyse, réduction avec NaBD4, acétylation et analyse par spectrométrie de masse
[0087] Exemple 2. : préparation de maltodextrines branchées à partir de sirop riche en DP4 : résultats
[0088] Les résultats des différentes réactions enzymatiques sont présentés dans le Tableau 2 ci-dessous, qui présente les pourcentages de liaisons a-1 ,6 ; a-1 ,3 et a-1 ,4 mesurés par RMN du proton ou par la méthode Hakomori et % d’hydrolyse (AOAC 2002.02) dans les produits de réaction obtenus.
[0089] [Tableau 2]
Figure imgf000015_0001
[0090] MP : Matière Première, = Sirop DP4 [0091] Les inventeurs ont démontré que l’enzyme GT#19 est capable de modifier le sirop riche en DP4 de sorte à le rendre faiblement digestible (% d’hydrolyse selon la méthode AOAC2002.02 inférieur ou égal à 45%).
[0092] Le produit obtenu par ce traitement enzymatique par l’enzyme GT#19 contient significativement moins de liaisons a-1 ,4 et plus de liaisons a-1 ,6 que le point de départ. Le nombre de liaisons a-1 ,2 et a-1 ,3 n’est pas modifié. L’enzyme GT#19 est donc une a-4,6 glucanotransférase.
[0093] A l’inverse, un traitement par une autre GT, l’enzyme GT#11 , conduit à une diminution du pourcentage de liaisons a-1 ,4 et à l’apparition de liaisons a-1 ,3. La digestibilité de produit obtenu par traitement avec l’enzyme GT#11 est également diminuée (53 et 55%, pour des concentrations initiales respectives de 100 et 200 mg/mL, à comparer à 84 et 88% pour les substrats non traitées).
[0094] Avantageusement, le mélange d’a-glucanes selon la présente invention présente également un profil de digestibilité in vitro selon la méthode Englyst intéressant.

Claims

Revendications
[Revendication 1] Procédé de préparation d’un mélange d’a-glucans comprenant une étape de mise en présence d’un substrat et d’une enzyme, ledit substrat étant un sirop riche en oligosaccharides ayant un degré de polymérisation (DP) de 4 et ladite enzyme étant une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6).
[Revendication 2] Procédé selon la revendication 1 , dans lequel le sirop riche en oligosaccharides ayant un DP de 4 comprend au moins 40%, de préférence au moins 45%, de manière encore plus préférée au moins 50% d’oligosaccharides ayant un DP de 4.
[Revendication 3] Procédé selon la revendication 1 ou 2, dans lequel le sirop riche en oligosaccharides ayant un DP de 4 a un équivalent dextrose (DE) supérieur à 20.
[Revendication 4] Procédé selon l’une quelconque des revendications précédentes, dans lequel le substrat est à une concentration comprise entre 50 g/L et 500 g/L, de préférence entre 100g/L et 200 g/L de milieu réactionnel.
[Revendication 5] Procédé selon l’une quelconque des revendications précédentes, dans lequel l’a-glucanotransférase capable de cliver les liaisons glucosidiques a(1-4) et de créer des liaisons glucosidiques a(1-6) est la protéine ayant pour séquence SEQ ID No :1 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1 .
[Revendication 6] Procédé selon l’une quelconque des revendications précédentes, dans lequel l’enzyme est à une concentration comprise entre 0,01 et 1 mg/mL de milieu réactionnel, de préférence entre 0,05 et 0,5 mg/mL, de manière encore plus préférée environ 0,1 mg/mL de milieu réactionnel.
[Revendication 7] Procédé selon l’une quelconque des revendications précédentes caractérisé en ce que la mise en présence du substrat et de l’enzyme est réalisé pendant une durée comprise entre 12 et 48 heures, de préférence environ 24 heures et/ou à une température comprise entre 20 et 40°C, de préférence environ 37°C et/ou à un pH compris entre 5 et 6,5, de préférence environ 5,75.
[Revendication 8] Procédé selon l’une quelconque des revendications précédentes caractérisé en ce qu’il comprend en outre une étape de traitement enzymatique par une a-glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -3).
[Revendication 9] Procédé selon la revendication précédente, dans lequel l’a- glucanotransférase capable de cliver les liaisons glucosidiques a(1-4) et de créer des liaisons glucosidiques a(1 -3) est la protéine ayant pour séquence SEQ ID No :2 ou une protéine ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :2.
[Revendication 10] Mélange d’a-glucanes susceptible d’être obtenu par le procédé selon l’une quelconque des revendications précédentes.
[Revendication 11] Mélange d’a-glucanes caractérisé en ce qu’il présente :
- un taux de fibres hydrolysables inférieur à 55%, de préférence inférieur à 50%, de manière encore plus préférée inférieur à 45%,
- et/ou au moins 20% de liaisons a(1-6), dans lequel le taux de fibres correspond à la fraction hydrolysable selon la méthode AOAC 2002.02 et le pourcentage de liaisons a(1 -6) représente le pourcentage molaire de liaisons a(1 -6) par rapport au nombre total de liaisons glycosidiques, mesuré par la méthode Hakomori.
[Revendication 12] Utilisation d’un mélange d’a-glucanes selon l’une quelconque des revendications 10 à 11 pour la préparation d’aliments pour l’alimentation humaine ou animale.
[Revendication 13] Utilisation d’une glucanotransférase capable de cliver les liaisons glucosidiques a(1 -4) et de créer des liaisons glucosidiques a(1 -6) pour diminuer la digestibilité d’un mélange d’a-glucanes, ladite glucanotransférase ayant pour séquence SEQ ID No :1 ou une séquence ayant au moins 90% d’identité avec la protéine ayant pour séquence SEQ ID No :1 .
PCT/FR2023/051068 2022-07-11 2023-07-10 Procédé d'obtention de fibres solubles par voie enzymatique WO2024013451A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2207071A FR3137686A1 (fr) 2022-07-11 2022-07-11 Procédé d’obtention de fibres solubles par voie enzymatique
FRFR2207071 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024013451A1 true WO2024013451A1 (fr) 2024-01-18

Family

ID=84569720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051068 WO2024013451A1 (fr) 2022-07-11 2023-07-10 Procédé d'obtention de fibres solubles par voie enzymatique

Country Status (2)

Country Link
FR (1) FR3137686A1 (fr)
WO (1) WO2024013451A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183729A1 (fr) * 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique de fibres de glucane soluble
WO2015183724A1 (fr) * 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique d'une fibre de glucane soluble
WO2015183714A1 (fr) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique de fibre de glucane soluble
WO2015183726A1 (fr) * 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique d'une fibre de glucane soluble
WO2018167032A1 (fr) * 2017-03-15 2018-09-20 Nestec S.A. Alpha-glucanes ramifiés
CN113186238A (zh) * 2021-03-19 2021-07-30 江南大学 4,6-α-葡萄糖基转移酶及其在改善馒头品质中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183729A1 (fr) * 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique de fibres de glucane soluble
WO2015183724A1 (fr) * 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique d'une fibre de glucane soluble
WO2015183714A1 (fr) 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique de fibre de glucane soluble
WO2015183726A1 (fr) * 2014-05-29 2015-12-03 E. I. Du Pont De Nemours And Company Synthèse enzymatique d'une fibre de glucane soluble
WO2018167032A1 (fr) * 2017-03-15 2018-09-20 Nestec S.A. Alpha-glucanes ramifiés
CN113186238A (zh) * 2021-03-19 2021-07-30 江南大学 4,6-α-葡萄糖基转移酶及其在改善馒头品质中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GANGOITI JOANA ET AL: "4,3-[alpha]-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H", vol. 7, no. 1, 6 January 2017 (2017-01-06), XP093027136, Retrieved from the Internet <URL:https://www.nature.com/articles/srep39761> DOI: 10.1038/srep39761 *
HANS LEEMHUIS ET AL: "4,6-[alpha]-Glucanotransferase activity occurs more widespread instrains and constitutes a separate GH70 subfa", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER, BERLIN, DE, vol. 97, no. 1, 25 February 2012 (2012-02-25), pages 181 - 193, XP035158276, ISSN: 1432-0614, DOI: 10.1007/S00253-012-3943-1 *
KRALJ SLAVKO ET AL: "4,6-[alpha]-Glucanotransferase, a Novel Enzyme That Structurally and Functionally Provides an Evolutionary Link between Glycoside Hydrolase Enzyme Families 13 and 70", vol. 77, no. 22, 15 November 2011 (2011-11-15), US, pages 8154 - 8163, XP093026818, ISSN: 0099-2240, Retrieved from the Internet <URL:https://journals.asm.org/doi/pdf/10.1128/AEM.05735-11> DOI: 10.1128/AEM.05735-11 *
MENG XIANGFENG ET AL: "Biochemical characterization of two GH70 family 4,6-[alpha]-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655", FOOD CHEMISTRY, vol. 253, 1 July 2018 (2018-07-01), NL, pages 236 - 246, XP093026642, ISSN: 0308-8146, DOI: 10.1016/j.foodchem.2018.01.154 *
MONCHOIS V ET AL: "Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only alpha(1-6) and alpha(1-3) linkages", GENE, ELSEVIER AMSTERDAM, NL, vol. 182, no. 1-2, 5 December 1996 (1996-12-05), pages 23 - 32, XP004071926, ISSN: 0378-1119, DOI: 10.1016/S0378-1119(96)00443-X *

Also Published As

Publication number Publication date
FR3137686A1 (fr) 2024-01-12

Similar Documents

Publication Publication Date Title
EP2007817B1 (fr) Compositions de beta-glucanes hydrosolubles
EP1943908A1 (fr) Nouveau glucide de stockage à digestion lente
JPH08134104A (ja) 環状構造を有するグルカンおよびその製造方法
FR2897069A1 (fr) Construction de nouveaux variants de l&#39;enzyme dextrane-saccharase dsr-s par ingienerie moleculaire.
JP2001294601A (ja) 高度分岐澱粉と該高度分岐澱粉の製造方法
EP3011019B1 (fr) Polypeptide ayant la capacite de former des branchements d&#39;unites glucosyle en alpha-1,3 sur un accepteur
WO2012077322A1 (fr) Procédé destiné à produire industriellement une structure cyclique contenant du glucane ramifié
EP3462888B1 (fr) Glucanes alpha
JP3150266B2 (ja) 環状構造を有するグルカンおよびその製造方法
Spagna et al. Immobilization of α-L-arabinofuranosidase on chitin and chitosan
EP3158062B1 (fr) Dextranes presentant une tres haute masse molaire
EP1316614B1 (fr) Procédé continu de modification de l&#39;amidon et de ses dérivés par enzymes de branchement
WO2024013451A1 (fr) Procédé d&#39;obtention de fibres solubles par voie enzymatique
WO2023026010A1 (fr) Procédé d&#39;obtention de fibres solubles par voie enzymatique
Khasanova et al. Hydrolysis of chitozan with an enzyme complex from Myceliophthora sp.
EP3097199B1 (fr) Procede de production in vivo de glycosaminoglycane
CN108026185A (zh) 支化α葡聚糖
JP2002034587A (ja) 可溶性分岐α−グルカンの製造方法、可溶性分岐α−グルカンおよびα−グルカンの老化抑制処理剤
EP2627778B1 (fr) Procede de transformation du iota-carraghenane en alpha-carraghenane a l&#39;aide d&#39;une nouvelle classe de 4s-iota-carraghenane sulfatase
EP2421961B1 (fr) 4s-iota-carraghénane sulfatase et son utilisation pour l&#39;obtention de l&#39;alpha-carraghénane
WO2003035886A2 (fr) Preparation d&#39;heparine a partir de cultures de mastocytes
EP1835025A1 (fr) Nouvelle enzyme permettant d&#39;obtenir des oligosaccharides prebiotiques
EP2730651A1 (fr) Kappa carraghénane sulfatase, procédé de fabrication et utilisation
Bechtner Molecular mechanisms of water kefir lactobacilli to persist in and shape their environment
WO2018091836A1 (fr) Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23748827

Country of ref document: EP

Kind code of ref document: A1