WO2023025293A1 - 一种上下电控制电路及信号输出装置 - Google Patents

一种上下电控制电路及信号输出装置 Download PDF

Info

Publication number
WO2023025293A1
WO2023025293A1 PCT/CN2022/115186 CN2022115186W WO2023025293A1 WO 2023025293 A1 WO2023025293 A1 WO 2023025293A1 CN 2022115186 W CN2022115186 W CN 2022115186W WO 2023025293 A1 WO2023025293 A1 WO 2023025293A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
energy storage
power
electrically connected
Prior art date
Application number
PCT/CN2022/115186
Other languages
English (en)
French (fr)
Inventor
邓晶晶
王悦
Original Assignee
普源精电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普源精电科技股份有限公司 filed Critical 普源精电科技股份有限公司
Publication of WO2023025293A1 publication Critical patent/WO2023025293A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Definitions

  • the embodiments of the present application relate to the technical field of power supply control, and in particular to a power-on/off control circuit and a signal output device.
  • the embodiments of the present application provide a power-on/off control circuit and a signal output device to solve at least one problem existing in the background art.
  • the embodiment of the present application provides a power on and off control circuit, including: an output power supply module, an energy storage module, and a constant current control module;
  • the output power supply module includes a positive pole of a power supply and a negative pole of a power supply;
  • Both ends of the energy storage module are respectively electrically connected to the positive pole of the power supply and the negative pole of the power supply, and the energy storage module is configured to store the electrical signal output by the output power supply module when the output power supply module is powered on, and releasing the stored electrical signal when the output power module is powered off;
  • the constant current control module is electrically connected to both ends of the energy storage module and configured to control the discharge current of the energy storage module when the output power supply module is powered off.
  • the constant current control module includes a voltage control unit, a load unit, and a control switch connected in series in sequence;
  • the voltage control unit is configured to provide a fixed voltage signal to the first end of the load unit
  • the load unit is configured to convert the fixed voltage signal into the discharge current
  • the control switch is configured to be turned on when the output power module is powered off, and turned off when the output power module is powered on.
  • the constant current control module further includes a switch unit
  • the control end of the switch unit is electrically connected to the first end of the energy storage module, the input end of the switch unit is electrically connected to the second end of the load unit, and the output end of the switch unit is electrically connected to the energy storage module.
  • the second end of the energy module is electrically connected;
  • the switch unit is configured to be turned on or off under the control of a voltage difference between the first terminal of the energy storage module and the second terminal of the load unit.
  • the switch unit includes a first MOS transistor and a first resistor
  • the gate of the first MOS transistor is electrically connected to the first end of the energy storage module through the first resistor, and the source of the first MOS transistor is electrically connected to the second end of the load unit, so The drain of the first MOS transistor is electrically connected to the second end of the energy storage module.
  • the voltage control unit includes a voltage source and a diode
  • Both the cathode of the voltage source and the anode of the diode are electrically connected to the first end of the energy storage module; the anode of the voltage source and the cathode of the diode are both connected to the load unit through the control switch The first end is electrically connected.
  • the first end of the energy storage module is electrically connected to the positive pole of the power supply, and the second end of the energy storage module is electrically connected to the negative pole of the power supply;
  • the first MOS transistor is a P-type MOS transistor.
  • the load unit includes a load resistor with a fixed resistance.
  • the energy storage module includes a capacitor and/or an energy storage battery.
  • the power on and off control circuit further includes: a signal output terminal;
  • the signal output terminal includes a positive output terminal and a negative output terminal; the positive output terminal is electrically connected to the positive pole of the power supply, and the negative output terminal is electrically connected to the negative pole of the power supply.
  • the embodiment of the present application further provides a signal output device, which includes any power-on/off control circuit described in the embodiment of the present application.
  • the embodiment of the present application provides a power on and off control circuit.
  • the ripple output by the module improves the power-on stability; at the same time, by setting a constant current control module at both ends of the energy storage module, when the output power module is powered off, it is ensured that the energy storage module has a constant discharge current, and the discharge current will not As the electricity stored in the energy storage module decreases, the discharge time can be shortened and the power-off speed can be increased.
  • FIG. 1 is a schematic diagram of a power-on and power-on control circuit in the prior art
  • FIG. 2 is a schematic diagram of a power-on and power-on control circuit provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of another power-on and power-on control circuit provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of another power-on and power-on control circuit provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of another power-on and power-on control circuit provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another power-on/off control circuit provided by the embodiment of the present application.
  • first, second etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one from the other. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present application. When a second element, component, region, layer or section is discussed, it does not necessarily indicate that the present application must have a first element, component, region, layer or section.
  • FIG. 1 is a schematic diagram of a power-on/off control circuit in the prior art.
  • a power-on/off control circuit is usually provided in an existing power supply circuit to enable power-on and power-off of the power supply circuit.
  • the power on and off control circuit in the prior art includes a power supply 1, a capacitor C, a load resistor R and a switch K; when the power supply is powered on, the switch K is in an off state, and the capacitor C can filter the electrical signal output by the power supply 1; When the power is turned off, the switch K is in the conduction state, and the energy stored in the capacitor C is consumed by connecting the load resistor R at this time; at the initial stage of the discharge of the capacitor C, due to the existence of the load resistor R, the capacitor C can have a large discharge current , but the reduction of the energy stored in the capacitor causes the voltage across the load resistor R to drop, thereby reducing the discharge current and correspondingly the discharge speed of the capacitor C, which cannot achieve fast discharge and cannot be applied to applications with high up and down current. In the required power supply circuit, the application scenarios of the power-on/off control circuit are limited.
  • FIG. 2 is a schematic diagram of the power-on and power-off control circuit provided in the embodiment of the present application.
  • the power on and off control circuit includes an output power supply module 10 , an energy storage module 20 , and a constant current control module 30 .
  • the output power supply module 10 includes a power supply positive pole and a power supply negative pole.
  • the two ends of the energy storage module 20 are electrically connected to the positive pole of the power supply and the negative pole of the power supply respectively. , the stored electrical signal is released.
  • the constant current control module 30 is electrically connected to both ends of the energy storage module 20 and is configured to control the discharge current of the energy storage module 20 when the output power supply module 10 is powered off.
  • the output power supply module 10 can be a power supply device with adjustable electrical signals, which can be used as a power source for the electric load; when the electric load is working, the output power supply module 10 can provide different power supplies according to the working state of the electric load. At this time, the output power supply module 10 is powered on; and when the electric load does not need to work, the output power supply module 10 can stop providing electrical signals, and at this time, the output power supply module 10 is powered off.
  • the output power supply module 10 includes a power supply positive pole and a power supply negative pole. The voltage difference between the power supply positive pole and the power supply negative pole is the voltage of the electrical signal output by the output power supply module. Usually, the power supply negative pole is electrically connected to the ground terminal.
  • the energy storage module 20 can store or release corresponding energy between the positive pole of the power supply and the negative pole of the power supply of the output power supply module 10, which can include a capacitor and/or an energy storage battery; when the energy storage module 20 includes an energy storage battery, the energy storage module 20 can store the electrical signal output by the output power supply module 10 when the output power supply module 10 is powered on; and when the output power supply module 10 is powered off, release the stored electrical signal to supply power to the electrical load, or When the load does not need to work, it is no longer necessary to supply power to the load, and the electric energy stored in the energy storage module 20 also needs to be released.
  • the energy storage module 20 includes a capacitor, on the one hand it is the same as when the energy storage module 20 includes an energy storage battery, and will not be described in detail here; , the energy storage module 20 can be charged and discharged along with the change of the electrical signal output by the output power module 10, so that the electrical signal output by the output power module 10 to the electric load remains stable; and when the output power module 10 is powered off , it is also necessary to release the electricity stored in the capacitor to ensure that the output power module 10 is powered off accurately.
  • a constant current control module 30 is also provided at both ends of the energy storage module 20.
  • the constant current control module 30 will not consume the electrical signal output by the output power module 10, ensuring that the output power module 10 The output electrical signal outputs a corresponding electrical signal quickly and stably, that is, to ensure that the output power module 10 can be powered on stably and quickly;
  • the constant current control module 30 can control the discharge current of the storage module 20, namely The discharge current does not change with the energy stored in the storage module 20, but is directly controlled by the constant current control module 30, so that the discharge current of the energy storage module 20 remains in a stable state to prevent Discharging reduces the discharge current of the energy storage module 20 and affects the discharge speed of the energy storage module 20 .
  • the electrical signal when the output power module is powered on can be stored, and at the same time, the ripple output by the output power module can be reduced, and the power-on stability can be improved; by setting the constant The current control module can ensure that the energy storage module has a constant discharge current when the output power module is powered off, and the discharge current will not decrease as the discharge voltage drops, shortening the discharge time and increasing the power-off speed.
  • FIG. 3 is a schematic diagram of another power-on/off control circuit provided in the embodiment of the present application.
  • the constant current control module 30 includes a voltage control unit 31 , a load unit 32 , and a control switch 33 connected in series.
  • the voltage control unit 31 is configured to provide a fixed voltage signal to the first end of the load unit 32
  • the load unit 32 is configured to convert the fixed voltage signal into a discharge current
  • the control switch 33 is configured to be turned on when the output power module 10 is powered off, and It is disconnected when the output power supply module 10 is powered on.
  • control switch 33 may include a relay K1, an optocoupler, a triode, a MOS tube, etc., which can control its conduction or disconnection with a corresponding control signal; Devices that consume power.
  • the series circuit composed of the voltage control unit 31, the load unit 32 and the control switch 33 is in the disconnected state when the control switch 33 is in the disconnected state, therefore, when the output power supply module 10 is powered on, disconnecting the control switch 33, can reduce the consumption in the circuit, and ensure that the output power module 10 outputs the corresponding electrical signal quickly and stably; and when the output power module 10 is powered off, the control switch 33 is in the conduction state, so that the voltage control unit 31, the load unit 32 And the series circuit composed of the control switch 33 is connected to both ends of the energy storage module 20, which is equivalent to the energy storage module 20 being connected in series in the circuit of the voltage control unit 31, the load unit 32 and the control switch 33, so that the voltage flowing through the control switch 33
  • the current of the series circuit composed of the unit 31, the load unit 32 and the control switch 33 is the discharge current of the energy storage module 20; at this time, a fixed voltage signal is provided to one end of the load unit 32 through the voltage control unit 31 to ensure the One end is kept at a fixed voltage, so that
  • FIG. 4 is a schematic diagram of another power-on/off control circuit provided in the embodiment of the present application.
  • the voltage control unit 31 includes a voltage source 301 and a diode D1. Both the cathode of the voltage source 301 and the anode of the diode D1 are electrically connected to the first end of the energy storage module 20 ; the anode of the voltage source 301 and the cathode of the diode D1 are both electrically connected to the first end of the load unit 32 through the control switch 33 .
  • the electrical signal provided by the voltage source 301 to the load unit 32 will not change with the change of the electricity stored in the energy storage module 20, that is, when the output power module 10 is powered off, Ensure that the voltage source 301 provides a fixed voltage signal to the load unit 32, so that the current flowing through the load unit 32 remains constant, that is, the discharge current of the storage module 20 remains constant.
  • voltage control unit 31 and its connection method shown in FIG. 4 are only exemplary drawings of the embodiment of the present application.
  • the voltage control unit 31 and its connection manner are not specifically limited.
  • FIG. 5 is a schematic diagram of another power-on/off control circuit provided in the embodiment of the present application.
  • the constant current control module 30 further includes a switch unit 34 .
  • the control end of the switch unit 34 is electrically connected to the first end of the energy storage module 20, the input end of the switch unit 34 is electrically connected to the second end of the load unit 32, and the output end of the switch unit 34 is electrically connected to the second end of the energy storage module 20. electrical connection.
  • the switch unit 34 is configured to be turned on or off under the control of the voltage difference between the first terminal of the energy storage module 20 and the second terminal of the load unit 32 .
  • the switch unit 34 can include a MOS tube, for example; the conduction or disconnection of the MOS tube is determined by its gate-source voltage difference.
  • the control terminal of the switch unit 34 As the control terminal of the switch unit 34; if and only when the gate-source voltage of the MOS tube satisfies its conduction condition, the MOS tube will be in the conduction state; thus, by setting the switch unit 34, it is possible to prevent the energy storage module 20 from The sudden change of voltage at one end makes the current flowing through the load unit 32 unable to keep constant, thereby ensuring the steady discharge process of the energy storage module 20 , and the constant current control module 30 controls the discharge current of the energy storage module 20 to keep constant.
  • the switch unit 34 has a certain internal resistance, increasing the switch unit can further increase the overall load of the constant current control module 30, thereby accelerating the consumption of the energy stored in the energy storage module 20, and further speeding up the power-off speed.
  • the switch unit 34 when the switch unit 34 includes a MOS tube, can be a first MOS tube, and in order to ensure the stability of the electrical signal received by the first MOS tube, the switch unit 34 can also include The first resistor R2.
  • the gate of the first MOS transistor Q1 is electrically connected to the first end of the energy storage module 20 through the first resistor R2
  • the source of the first MOS transistor Q1 is electrically connected to the second end of the load unit 32
  • the first MOS transistor Q1 The drain of Q1 is electrically connected to the second terminal of the energy storage module 20 .
  • the gate voltage provided to the first MOS transistor Q1 can be regulated through the first resistor R2, so that the first MOS transistor Q1 can meet its conduction condition during the power-off process of the output power module 10 .
  • the cathode of the voltage source 301 and the anode of the diode D1 are electrically connected to the first end of the energy storage module 20; the anode of the voltage source 301 and the cathode of the diode D1 are both connected to the load through the control switch 33
  • the first end of the unit 32 is electrically connected, and the first end of the energy storage module 20 is electrically connected to the positive pole of the power supply, and when the second end of the energy storage module 20 is electrically connected to the negative pole of the power supply, the first MOS transistor Q1 can be a P-type MOS transistor .
  • the gate of the first MOS transistor Q1 is the voltage at the positive pole of the power supply, so that the gate of the first MOS transistor Q1 is at a high level, and the source and drain of the first MOS transistor Q1 are off.
  • the constant current control module 30 is in an open circuit state; when the output power module 10 is powered off, the output power module 10 no longer provides electrical signals, and the negative pole voltage of the voltage source 301 is the gate voltage of the first MOS transistor Q1, so that the first MOS transistor Q1
  • the gate of a MOS transistor Q1 is kept at a low level, and the anode of the voltage source 301 is electrically connected to the first end of the load unit 32 through the control switch 33, so that the voltage provided by the voltage source 301 to the first end of the load unit 32 is passed through
  • the load unit 32 can still maintain a high level, that is, the source of the first MOS transistor Q1 is at a high level, its gate is at a low level, and the voltage difference between the gate of the first MOS transistor Q1 and its source is smaller than its threshold voltage, so that the first MOS transistor, which is a P-type MOS transistor, is turned on to provide a constant discharge current to the energy storage module 20 .
  • FIG. 6 is a schematic diagram of another power-on/off control circuit provided in the embodiment of the present application.
  • the power on and off control circuit also includes a signal output terminal.
  • the signal output terminal includes a positive output terminal and a negative output terminal, the positive output terminal is electrically connected to the positive pole of the power supply, and the negative output terminal is electrically connected to the negative pole of the power supply.
  • the signal output terminal can be connected with the electric load, and output the electric signal output from the power supply module 10 to the electric load.
  • the embodiment of the present application also provides a signal output device, the signal output device includes the power on and off control circuit provided in any embodiment of the present application, has the corresponding functional modules and beneficial effects for executing the power on and off control circuit.
  • the power-on/off control circuit provided in any embodiment of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种上下电控制电路及信号输出装置。电路包括:输出电源模块(10)、储能模块(20)、以及恒流控制模块(30);输出电源模块(10)包括电源正极和电源负极;储能模块(20)的两端分别与电源正极和电源负极电连接,配置为在输出电源模块(10)上电时,存储输出电源模块(10)输出的电信号,以及在输出电源模块(10)下电时,释放所存储的电信号;恒流控制模块(30)电连接于储能模块(20)的两端,配置为在输出电源模块(10)下电时,控制储能模块(20)的放电电流。

Description

一种上下电控制电路及信号输出装置
相关申请
本申请要求于2021年08月27日申请的,申请号为202110992770.9,名称为“一种上下电控制电路及信号输出装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请实施例涉及电源控制技术领域,尤其涉及一种上下电控制电路及信号输出装置。
背景技术
随着科技的发展,LED、5G、手机测试、半导体、电池和可穿戴设备测试领域对电源产品的有着极大的需求,电源产品可通过上下电控制电路实现电压变换。
电源产品在从一个电压跃迁到另一个电压,或者连续输出多个电压的时候纹波较高,现有电源产品为了降低输出的纹波需要比较大的输出滤波电容,但是输出电容越大,会导致电源关闭的时候放电比较慢。通过简单地在放电线路加负载电阻R,会导致上电速度较慢,即便是使用开关K控制负载电阻R,如图1所示,电源1关闭的时候放电时间依旧比较长。
发明内容
有鉴于此,本申请实施例为解决背景技术中存在的至少一个问题而提供一种上下电控制电路及信号输出装置。
第一方面,本申请实施例提供了一种上下电控制电路,包括:输出电源模块、储能模块、以及恒流控制模块;
所述输出电源模块包括电源正极和电源负极;
所述储能模块的两端分别与所述电源正极和所述电源负极电连接,所述储能模块配置为在所述输出电源模块上电时,存储所述输出电源模块输出的电信号,以及在所述输出电源模块下电时,释放所存储的电信号;
所述恒流控制模块电连接于所述储能模块的两端,配置为在所述输出电源模块下电时,控制所述储能模块的放电电流。
可选的,所述恒流控制模块包括依次串联的电压控制单元、负载单元、以及控制 开关;
所述电压控制单元配置为向所述负载单元的第一端提供固定电压信号;
所述负载单元配置为将所述固定电压信号转换为所述放电电流;
所述控制开关配置为在所述输出电源模块下电时导通,以及在所述输出电源模块上电时断开。
可选的,所述恒流控制模块还包括开关单元;
所述开关单元的控制端与所述储能模块的第一端电连接,所述开关单元的输入端与所述负载单元的第二端电连接,所述开关单元的输出端与所述储能模块的第二端电连接;
所述开关单元配置为在所述储能模块的第一端与所述负载单元的第二端之间的电压差的控制下导通或断开。
可选的,所述开关单元包括第一MOS管和第一电阻;
所述第一MOS管的栅极通过所述第一电阻与所述储能模块的第一端电连接,所述第一MOS管的源极与所述负载单元的第二端电连接,所述第一MOS管的漏极与所述储能模块的第二端电连接。
可选的,所述电压控制单元包括电压源和二极管;
所述电压源的负极和所述二极管的阳极均与所述储能模块的第一端电连接;所述电压源的正极和所述二极管的阴极均通过所述控制开关与所述负载单元的第一端电连接。
可选的,所述储能模块的第一端与所述电源正极电连接,所述储能模块的第二端与所述电源负极电连接;
其中,所述第一MOS管为P型MOS管。
可选的,所述负载单元包括阻值为固定值的负载电阻。
可选的,所述储能模块包括电容和/或储能电池。
可选的,所述上下电控制电路还包括:信号输出端;
所述信号输出端包括正极输出端和负极输出端;所述正极输出端与所述电源正极电连接,所述负极输出端与所述电源负极电连接。
第二方面,本申请实施例还提供了一种信号输出装置,该装置包括本申请实施例所述的任意上下电控制电路。
本申请实施例提供一种上下电控制电路,通过在输出电源模块两端连接储能模 块,以存储输出电源模块上电时的电信号,确保输出电源模块稳定输出相应的电信号,降低输出电源模块输出的纹波,提高上电稳定性;同时,通过在储能模块两端设置恒流控制模块,在输出电源模块下电时,确保储能模块具有恒定的放电电流,该放电电流不会随着储能模块中所存储电量的减小而减小,从而能够缩短放电时间,提升下电速度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为现有技术中的一种上下电控制电路的示意图;
图2为本申请实施例提供的一种上下电控制电路的示意图;
图3为本申请实施例提供的又一种上下电控制电路的示意图;
图4为本申请实施例提供的又一种上下电控制电路的示意图;
图5为本申请实施例提供的又一种上下电控制电路的示意图;
图6为本申请实施例提供的又一种上下电控制电路的示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也可能意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包 括相关所列项目的任何及所有组合。
应当明白,尽管可使用术语第一、第二等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分其中的一个与另一个。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。而当讨论的第二元件、部件、区、层或部分时,并不表明本申请必然存在第一元件、部件、区、层或部分。
图1为现有技术的一种上下电控制电路的示意图,参考图1,现有的电源电路中通常设置有上下电控制电路,以能够实现电源电路的上电和下电。现有技术的上下电控制电路包括电源1、电容C、负载电阻R和开关K;在电源上电时,开关K处于断开状态,电容C能够对电源1输出的电信号进行滤波;而在电源下电时,开关K处于导通状态,此时接入负载电阻R消耗电容C中所存储的能量;在电容C的放电初期,由于负载电阻R的存在能够使电容C具有较大放电电流,但是电容中所存储的能量的降低,使得负载电阻R两端的电压下降,从而使得放电电流减小,相应的电容C的放电速度减小,无法实现快速放电,无法应用于具有较高上下电要求的电源电路中,从而限制了该上下电控制电路的应用场景。
为解决上述技术问题,本申请实施例提供一种上下电控制电路,图2为本申请实施例提供的一种上下电控制电路的示意图。如图2所示,该上下电控制电路包括输出电源模块10、储能模块20、以及恒流控制模块30,输出电源模块10包括电源正极和电源负极。储能模块20的两端分别与电源正极和电源负极电连接,储能模块20配置为在输出电源模块10上电时,存储输出电源模块10输出的电信号,以及在输出电源模块10下电时,释放所存储的电信号。恒流控制模块30电连接于储能模块20的两端,配置为在输出电源模块10下电时,控制储能模块20的放电电流。
其中,输出电源模块10可以是电信号可调节的电源供应装置,其可作为用电负载的动力源;在用电负载工作时,输出电源模块10能够根据用电负载的工作状态提供不同的电信号,此时即为输出电源模块10上电;而在用电负载无需工作时,输出电源模块10能够停止提供电信号,此时即为输出电源模块10下电。输出电源模块10包括电源正极和电源负极,电源正极与电源负极之间的压差即为输出电源模块所输出的电信号的电压,通常电源负极与接地端电连接。输出电源模块10的电源正极和电源负极之间储能模块20可以存储或释放相应的能量,其可以包括电容和/或储能电池;当储能模块20包括储能电池时,该储能模块20能够在输出电源模块10上电时,存储该输 出电源模块10输出的电信号;而当输出电源模块10下电时,释放其所存储的电信号,以为用电负载供电,或者在用电负载无需工作时,无需再为用电负载供电,同样需要将储能模块20中存储的电能释放掉。当储能模块20包括电容时,一方面其与储能模块20包括储能电池时的情况相同,在此不再赘述;另一方面,由于电容具有滤波功能,使得在输出电源模块10上电时,储能模块20可随着输出电源模块10输出的电信号的变化,而进行充放电,使得输出电源模块10输出至用电负载的电信号保持稳定;而在输出电源模块10下电时,同样需要将电容中所存储的电量释放掉,以确保输出电源模块10准确下电。
此外,在储能模块20的两端还设置有恒流控制模块30,该恒流控制模块30在输出电源模块10上电时,不会消耗输出电源模块10输出的电信号,确保输出电源模块10输出的电信号快速稳定地输出相应的电信号,即确保输出电源模块10能够稳定快速地上电;在输出电源模块10下电时,该恒流控制模块30能够控制存储模块20的放电电流,即该放电电流不随着存储模块20所存储能量的变化而变化,而是由恒流控制模块30直接进行控制,使得储能模块20的放电电流保持在稳定状态,以防因随储能模块20的放电使得储能模块20的放电电流减小,而影响储能模块20的放电速度。
本申请实施例通过在输出电源模块两端连接储能模块,能够对输出电源模块上电时的电信号进行存储,同时能够降低输出电源模块输出的纹波,提高上电稳定性;通过设置恒流控制模块,在输出电源模块下电时,可以确保储能模块具有恒定的放电电流,该放电电流不会随着放电电压的下降而减小,缩短放电时间,提升下电速度。
可选的,图3为本申请实施例提供的又一种上下电控制电路的示意图。如图3所示,恒流控制模块30包括依次串联的电压控制单元31、负载单元32、以及控制开关33。电压控制单元31配置为向负载单元32的第一端提供固定电压信号,负载单元32配置为将固定电压信号转换为放电电流,控制开关33配置为在输出电源模块10下电时导通,以及在输出电源模块10上电时断开。
其中,控制开关33可以包括继电器K1、光耦、三极管、MOS管等能够以相应的控制信号控制其导通或断开的电子元件;负载单元32可以包括固定阻值的电阻或者其它具有能够稳定消耗电量的器件。
具体的,由于在控制开关33处于断开状态时,由电压控制单元31、负载单元32以及控制开关33组成的串联电路处于断路状态,因此通过在输出电源模块10上电时,断开控制开关33,能够降低电路中的消耗,确保输出电源模块10快速稳定地输出相 应的电信号;而在输出电源模块10下电时,控制开关33处于导通状态,使得电压控制单元31、负载单元32以及控制开关33组成的串联电路接入至储能模块20的两端,此时相当于储能模块20串联于电压控制单元31、负载单元32以及控制开关33的电路中,使得流经电压控制单元31、负载单元32以及控制开关33组成的串联电路的电流即为储能模块20的放电电流;此时,通过电压控制单元31向负载单元32的一端提供固定电压信号,确保负载单元32的一端保持为固定电压,使得流经负载单元32的电流保持固定,即确保流经电压控制单元31、负载单元32以及控制开关33组成的串联电路的电流保持不变,从而使得储能模块20具有恒定的放电电流,进而有利于提高输出电源模块的下电速度。
可选的,图4为本申请实施例提供的又一种上下电控制电路的示意图。如图4所示,电压控制单元31包括电压源301和二极管D1。电压源301的负极和二极管D1的阳极均与储能模块20的第一端电连接;电压源301的正极和二极管D1的阴极均通过控制开关33与负载单元32的第一端电连接。如此,由二极管D1的箝位作用,能够使得电压源301提供负载单元32的电信号不会随着储能模块20中所存储电量的变化而变化,即能够在输出电源模块10下电时,确保电压源301向负载单元32提供固定电压信号,从而使得流经负载单元32的电流保持恒定,即存储模块20的放电电流保持恒定。
需要说明的是,图4中示出的电压控制单元31及其连接方式仅为本申请实施例示例性的附图,在能够向负载单元32提供固定电压信号的前提下,本申请实施例对电压控制单元31及其连接方式不做具体限定。
可选的,图5为本申请实施例提供的又一种上下电控制电路的示意图。如图5所示,恒流控制模块30还包括开关单元34。开关单元34的控制端与储能模块20的第一端电连接,开关单元34的输入端与负载单元32的第二端电连接,开关单元34的输出端与储能模块20的第二端电连接。开关单元34配置为在储能模块20的第一端与负载单元32的第二端之间的电压差的控制下导通或断开。
其中,开关单元34例如可以包括MOS管;MOS管的导通或断开由其栅源电压差决定,此时MOS管的源极可以作为开关单元34的输入端,而MOS管的栅极可以作为开关单元34的控制端;当且仅当MOS管的栅源电压满足其导通条件时,MOS管才会处于导通状态;如此,通过设置开关单元34可以防止因储能模块20的第一端的电压突变,使得流经负载单元32的电流无法保持恒定的情况出现,从而能够确保储能 模块20的放电过程稳步进行,恒流控制模块30控制储能模块20的放电电流保持恒定。同时,开关单元34具有一定的内阻,增加开关单元能够进一步增加恒流控制模块30的整体负载量,从而能够加快对储能模块20所存储电量的消耗,可进一步加快下电速度。
可选的,继续参考图5,当开关单元34包括MOS管时,该MOS管可以为第一MOS管,为确保第一MOS管所接收到的电信号的稳定性,开关单元34还可以包括第一电阻R2。其中,第一MOS管Q1的栅极通过第一电阻R2与储能模块20的第一端电连接,第一MOS管Q1的源极与负载单元32的第二端电连接,第一MOS管Q1的漏极与储能模块20的第二端电连接。如此,通过第一电阻R2可以调控提供至第一MOS管Q1的栅极电压,从而使得在输出电源模块10下电过程中,第一MOS管Q1能够满足其导通条件。
可选的,继续参考图5,当电压源301的负极和二极管D1的阳极均与储能模块20的第一端电连接;电压源301的正极和二极管D1的阴极均通过控制开关33与负载单元32的第一端电连接,并且储能模块20的第一端与电源正极电连接,储能模块20的第二端与电源负极电连接时,第一MOS管Q1可以为P型MOS管。
如此,在输出电源模块10上电时,第一MOS管Q1的栅极为电源正极处的电压,使得第一MOS管Q1的栅极为高电平,第一MOS管Q1的源极和漏极断开,恒流控制模块30处于断路状态;当输出电源模块10下电时,输出电源模块10不再提供电信号,电压源301的负极电压即为第一MOS管Q1的栅极电压,使得第一MOS管Q1的栅极保持为低电平,电压源301的正极通过控制开关33与负载单元32的第一端电连接,使得该电压源301提供至负载单元32的第一端的电压经负载单元32仍能保持为高电平,即第一MOS管Q1的源极为高电平,其栅极为低电平,第一MOS管Q1的栅极与其源极之间的压差小于其阈值电压,从而使得为P型MOS管的第一MOS管导通,向储能模块20提供恒定的放电电流。
可选的,图6为本申请实施例提供的又一种上下电控制电路的示意图。如图6所示,上下电控制电路还包括信号输出端。信号输出端包括正极输出端和负极输出端,正极输出端与电源正极电连接,负极输出端与电源负极电连接。信号输出端可与用电负载连接,将输出电源模块10的电信号输出至用电负载。
基于同一发明构思,本申请实施例还提供一种信号输出装置,该信号输出装置包括本申请任意实施例所提供的上下电控制电路,具备执行该上下电控制电路相应的功 能模块和有益效果。未在上述实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的上下电控制电路。
需要说明的是,本申请提供的各实施例属于同一构思;各实施例所记载的技术方案中各技术特征之间,在不冲突的情况下,可以任意组合。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种上下电控制电路,包括:输出电源模块、储能模块、以及恒流控制模块;
    所述输出电源模块包括电源正极和电源负极;
    所述储能模块的两端分别与所述电源正极和所述电源负极电连接,所述储能模块配置为在所述输出电源模块上电时,存储所述输出电源模块输出的电信号,以及在所述输出电源模块下电时,释放所存储的电信号;
    所述恒流控制模块电连接于所述储能模块的两端,配置为在所述输出电源模块下电时,控制所述储能模块的放电电流。
  2. 根据权利要求1所述的上下电控制电路,其中,所述恒流控制模块包括依次串联的电压控制单元、负载单元、以及控制开关;
    所述电压控制单元配置为向所述负载单元的第一端提供固定电压信号;
    所述负载单元配置为将所述固定电压信号转换为所述放电电流;
    所述控制开关配置为在所述输出电源模块下电时导通,以及在所述输出电源模块上电时断开。
  3. 根据权利要求2所述的上下电控制电路,其中,所述恒流控制模块还包括开关单元;
    所述开关单元的控制端与所述储能模块的第一端电连接,所述开关单元的输入端与所述负载单元的第二端电连接,所述开关单元的输出端与所述储能模块的第二端电连接;
    所述开关单元配置为在所述储能模块的第一端与所述负载单元的第二端之间的电压差的控制下导通或断开。
  4. 根据权利要求3所述的上下电控制电路,其中,所述开关单元包括第一MOS管和第一电阻;
    所述第一MOS管的栅极通过所述第一电阻与所述储能模块的第一端电连接,所述第一MOS管的源极与所述负载单元的第二端电连接,所述第一MOS管的漏极与所述储能模块的第二端电连接。
  5. 根据权利要求4所述的上下电控制电路,其中,所述电压控制单元包括电压源和二极管;
    所述电压源的负极和所述二极管的阳极均与所述储能模块的第一端电连接;所述电压源的正极和所述二极管的阴极均通过所述控制开关与所述负载单元的第一端电连接。
  6. 根据权利要求5所述的上下电控制电路,其中,所述储能模块的第一端与所述电源正极电连接,所述储能模块的第二端与所述电源负极电连接;
    其中,所述第一MOS管为P型MOS管。
  7. 根据权利要求2所述的上下电控制电路,其中,所述负载单元包括阻值为固定值的负载电阻。
  8. 根据权利要求1所述的上下电控制电路,其中,所述储能模块包括电容和/或储能电池。
  9. 根据权利要求1所述的上下电控制电路,其中,还包括:信号输出端;
    所述信号输出端包括正极输出端和负极输出端;所述正极输出端与所述电源正极电连接,所述负极输出端与所述电源负极电连接。
  10. 一种信号输出装置,包括:权利要求1~9任一项所述的上下电控制电路。
PCT/CN2022/115186 2021-08-27 2022-08-26 一种上下电控制电路及信号输出装置 WO2023025293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110992770.9 2021-08-27
CN202110992770.9A CN113741261B (zh) 2021-08-27 2021-08-27 一种上下电控制电路及信号输出装置

Publications (1)

Publication Number Publication Date
WO2023025293A1 true WO2023025293A1 (zh) 2023-03-02

Family

ID=78733279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115186 WO2023025293A1 (zh) 2021-08-27 2022-08-26 一种上下电控制电路及信号输出装置

Country Status (2)

Country Link
CN (1) CN113741261B (zh)
WO (1) WO2023025293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115967385A (zh) * 2023-03-16 2023-04-14 荣湃半导体(上海)有限公司 一种开关控制电路及控制开关

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741261B (zh) * 2021-08-27 2023-06-06 普源精电科技股份有限公司 一种上下电控制电路及信号输出装置
CN114362511B (zh) * 2021-12-20 2024-04-09 普源精电科技股份有限公司 可调电容电路和延时调节电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261955A (ja) * 1999-03-11 2000-09-22 Nec Yonezawa Ltd 急速電源断回路
CN202735490U (zh) * 2012-06-27 2013-02-13 安徽省临泉县嘉柏列科技有限公司 降低电池测试设备残压保持时间的装置
CN105939007A (zh) * 2016-06-23 2016-09-14 国网江苏省电力公司泰州供电公司 一种变压器直阻测量快速放电电路
KR20170060338A (ko) * 2015-11-24 2017-06-01 엘아이지넥스원 주식회사 대용량 전원 공급 장치를 위한 전원차단 감지 방전회로
CN209878833U (zh) * 2019-01-11 2019-12-31 青岛艾测智能仪器有限公司 一种高压测试被测物快速放电电路
CN110739836A (zh) * 2019-09-11 2020-01-31 浙江凯耀照明有限责任公司 输出端极低功耗的快速放电线路
CN113054635A (zh) * 2019-12-27 2021-06-29 太阳能安吉科技有限公司 放电方法及装置
CN113741261A (zh) * 2021-08-27 2021-12-03 普源精电科技股份有限公司 一种上下电控制电路及信号输出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374910A (zh) * 2016-09-30 2017-02-01 深圳市新国都支付技术有限公司 一种功能模块的上、下电和放电控制电路和方法
CN109905619B (zh) * 2019-02-19 2020-10-23 海信视像科技股份有限公司 显示装置
CN210822113U (zh) * 2019-08-20 2020-06-23 上海金脉电子科技有限公司 一种上电缓冲电路
CN111490762B (zh) * 2020-06-23 2020-09-29 深圳市芯天下技术有限公司 一种新型的上电下电复位电路
CN213960369U (zh) * 2020-12-28 2021-08-13 深圳市裕富照明有限公司 供电电路和灯具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261955A (ja) * 1999-03-11 2000-09-22 Nec Yonezawa Ltd 急速電源断回路
CN202735490U (zh) * 2012-06-27 2013-02-13 安徽省临泉县嘉柏列科技有限公司 降低电池测试设备残压保持时间的装置
KR20170060338A (ko) * 2015-11-24 2017-06-01 엘아이지넥스원 주식회사 대용량 전원 공급 장치를 위한 전원차단 감지 방전회로
CN105939007A (zh) * 2016-06-23 2016-09-14 国网江苏省电力公司泰州供电公司 一种变压器直阻测量快速放电电路
CN209878833U (zh) * 2019-01-11 2019-12-31 青岛艾测智能仪器有限公司 一种高压测试被测物快速放电电路
CN110739836A (zh) * 2019-09-11 2020-01-31 浙江凯耀照明有限责任公司 输出端极低功耗的快速放电线路
CN113054635A (zh) * 2019-12-27 2021-06-29 太阳能安吉科技有限公司 放电方法及装置
CN113741261A (zh) * 2021-08-27 2021-12-03 普源精电科技股份有限公司 一种上下电控制电路及信号输出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115967385A (zh) * 2023-03-16 2023-04-14 荣湃半导体(上海)有限公司 一种开关控制电路及控制开关
CN115967385B (zh) * 2023-03-16 2023-05-23 荣湃半导体(上海)有限公司 一种开关控制电路及控制开关

Also Published As

Publication number Publication date
CN113741261B (zh) 2023-06-06
CN113741261A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023025293A1 (zh) 一种上下电控制电路及信号输出装置
US10804738B2 (en) Multipath charger and charging method thereof
US11791721B2 (en) Multi-mode DC-to-DC power converter
US11545846B2 (en) Power supplying system and method
CN104092277A (zh) 包含双向直流变换器的电源电路及其控制方法
CN201589807U (zh) 一种复位电路的电压检测电路
CN103066690A (zh) 低功耗待机电路
US20170025878A1 (en) Power supply module and power supply method using the same
US20230275442A1 (en) Shoot-through current limiting circuit
WO2018133484A1 (zh) 一种兼容电池和外部电源供电的控制电路
CN109194126B (zh) 一种电源切换电路
WO2018223741A1 (zh) 电池冗余电路、无人飞行器及其电池供电的控制方法
CN104426127A (zh) 一种负载启动电路
JP5767302B2 (ja) バッテリー管理装置のバッテリー管理回路
CN209948734U (zh) 自动负载检测电路
CN107465257B (zh) 一种主电源与备用电源自动切换电路
CN116937775A (zh) 多电源选择电路和充电设备
CN113949127B (zh) 一种用于系统供电的供电管理电路及控制方法
CN202094845U (zh) 一种电源管理装置
US8416013B1 (en) Core circuit leakage control
CN214412327U (zh) 一种多路放电回路的通断控制电路以及储能设备
CN211606183U (zh) 一种互为备份的双电源供电冗余热备份电路及电源
CN209134132U (zh) 双电源切换电路以及装置
US11509304B2 (en) Power supply circuits
CN102570789A (zh) 一种高压启动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860639

Country of ref document: EP

Kind code of ref document: A1