WO2018223741A1 - 电池冗余电路、无人飞行器及其电池供电的控制方法 - Google Patents

电池冗余电路、无人飞行器及其电池供电的控制方法 Download PDF

Info

Publication number
WO2018223741A1
WO2018223741A1 PCT/CN2018/078928 CN2018078928W WO2018223741A1 WO 2018223741 A1 WO2018223741 A1 WO 2018223741A1 CN 2018078928 W CN2018078928 W CN 2018078928W WO 2018223741 A1 WO2018223741 A1 WO 2018223741A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power supply
output end
fet
control
Prior art date
Application number
PCT/CN2018/078928
Other languages
English (en)
French (fr)
Inventor
秦威
赵世兴
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2018223741A1 publication Critical patent/WO2018223741A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/36Arrangements using end-cell switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the field of unmanned aerial vehicles, and particularly relates to a battery redundant circuit, an unmanned aerial vehicle and a battery power supply control method thereof.
  • the traditional way of battery redundancy is to connect multiple batteries in parallel and provide power through isolation and control circuits. In the event that one of the batteries fails, the other batteries can be replenished immediately, thereby ensuring the flight safety of the drone.
  • the easiest way to do redundant circuits is to connect a Schottky diode in series with each battery output. However, due to the large voltage drop of Schottky, when the load current is too large, the heat loss on the diode is large, and a large package diode is required and the energy conversion efficiency is low.
  • a battery redundancy circuit includes at least two parallel power supply branches and a power supply output, each of the power supply branches including:
  • control sub-circuit comprising a field effect transistor, a control chip, the FET input end and the output end are respectively connected to an output end of the battery and the power output end; the control chip and the field The control end of the effect tube is connected to continuously detect the voltage difference between the battery output end of the power supply branch and the power output end, and controls the FET to be turned on or off according to the voltage difference; wherein, when the pressure difference is The negative voltage difference is greater than the first threshold, and the control chip controls the FET in the power supply branch to be turned off, so that the other power supply branches do not charge the battery of the power supply branch; when the pressure difference is positive And the control chip controls the FET in the power supply branch to be turned on, so that the battery of the power supply branch is electrically connected to the power output end.
  • the field effect transistor includes a body diode, an anode of the body diode is connected to an input end of the field effect transistor, and a cathode of the body diode is connected to an output end of the field effect transistor.
  • control chip includes a control pin and a detection pin, the control pin is connected to the control end of the FET, and one end of the detection pin is connected to the output end of the battery, The output voltage of the battery is detected; the other end of the detection pin is connected to a power output for detecting the voltage of the power output.
  • each of the power supply branches further includes a first filter capacitor, and an output of the battery is grounded through the first filter capacitor.
  • control sub-circuit further includes a first resistor and a second filter capacitor
  • control chip includes a power supply pin
  • an output end of the FET passes through the first resistor and the The second filter capacitor is grounded, and a power supply pin of the control chip is connected between the first resistor and the second filter capacitor.
  • control chip is a hardware control chip.
  • control sub-circuit further includes a third filter capacitor, and an output of the FET is grounded through the third filter capacitor.
  • an output end of the battery in each of the power supply branches is connected to a positive pole of a body diode of the FET, and the power output end is connected to a negative pole of a body diode of the FET .
  • the FET is an nmos tube; the source of the nmos tube is an input end of the FET, and the drain of the nmos tube is an output end of the FET, The gate of the nmos tube is the control end of the FET.
  • An unmanned aerial vehicle comprising a host system and a battery redundancy circuit as described in any of the above, wherein the power output of the battery redundancy circuit is coupled to the host system.
  • a method for controlling battery power supply of an unmanned aerial vehicle comprising a host system and a battery redundancy circuit, wherein the battery redundancy circuit supplies power to the host system through a power output terminal, the battery redundancy circuit including at least Two parallel power supply branches, each of the power supply branches includes a control sub-circuit, each control sub-circuit includes a field effect tube and a control chip; and the control method includes:
  • the FET of the power supply branch When the battery is inserted into the power supply branch, the FET of the power supply branch is turned on, and the battery output end of the power supply branch is electrically connected to the power output end;
  • the control chip continuously detects a voltage difference between the output end of the battery and the power output end of the power supply branch, and controls the field effect of the power supply branch when the pressure difference is a negative pressure difference and is greater than a first threshold
  • the tube is cut off so that the other power supply branches do not charge the battery of the power supply branch; when the pressure difference changes from a negative pressure difference to a positive pressure difference, and the positive pressure difference is greater than a second threshold, the controller is controlled
  • the FET of the circuit is turned on to cause the battery output voltage in the power supply branch to the power output.
  • the battery redundancy circuit includes at least two parallel power supply branches and one power output terminal, and each power supply branch includes: a battery and a control a sub-circuit, wherein the control sub-circuit comprises a field effect transistor, a control chip, an input end and an output end of the FET are respectively connected to the output end of the battery and the power output end; the control chip and the control of the FET End connection, for continuously detecting the power supply branch to see the voltage difference between the output end of the battery and the power output end, and controlling the FET to be turned on or off according to the differential pressure: when the pressure difference is negative pressure If the difference is greater than the first threshold, the FET in the power supply branch is controlled to be turned off, so that the other power supply branches do not charge the battery of the power supply branch.
  • the control sub-circuit comprises a field effect transistor, a control chip, an input end and an output end of the FET are respectively connected to the output end of the battery and the power output end
  • the control chip and the control of the FET End connection
  • this turn-off time is very short, it is nS level, and the instantaneous impact damage to the battery can be ignored.
  • the pressure difference is a positive pressure difference, and the positive pressure difference is greater than the second threshold, the FET is controlled to be turned on, so that the battery of the power supply branch is electrically connected to the power output end.
  • the battery output is turned on to the power output, there is no delay, which ensures the safety of the power switch.
  • the technical solution of the invention realizes seamless switching of power supply and achieves the effect of battery redundancy design.
  • FIG. 1 is a circuit diagram of a battery redundancy circuit in an embodiment
  • FIG. 2 is a circuit diagram of a battery redundancy circuit in another embodiment
  • FIG. 3 is a circuit diagram of a battery redundancy circuit in still another embodiment
  • Figure 4 is a schematic view of an unmanned aerial vehicle in an embodiment
  • FIG. 5 is a flow chart of a method for controlling power supply of an unmanned aerial vehicle battery in an embodiment
  • FIG. 6 is a flow chart of a control method for battery power supply of an unmanned aerial vehicle in another embodiment.
  • the battery redundancy circuit includes two parallel power supply branches and a power supply output.
  • Each power supply branch includes a battery and a control sub-circuit.
  • the control sub-circuit includes a field effect transistor and a control chip. The input end of the FET is connected to the output end of the battery, and the output end of the FET is connected to the power output end; the control chip continuously detects the output end of the battery in the power supply branch and The differential pressure at the output end of the power supply.
  • the FET of the power supply branch When the differential pressure is negative and greater than the first threshold, the FET of the power supply branch is disconnected, so that the other power supply branches do not charge the battery of the power supply branch; When the positive pressure difference is greater than the second threshold, the FET is controlled to be turned on, so that the battery of the power supply branch is electrically connected to the power output end.
  • the power supply branch includes: a battery BAT1 and a control sub-circuit.
  • the control sub-circuit includes a field effect transistor Q1 and a control chip U1.
  • the field effect transistor Q1 is an nmos tube
  • the source S of the nmos tube is an input end of the field effect transistor Q1
  • the nmos tube The drain D is the output terminal of the field effect transistor Q1
  • the gate G of the nmos tube is the control terminal of the field effect transistor Q1.
  • the source (ie, the input terminal) of the FET Q1 is connected to the output terminal of the battery BAT1 (ie, the positive terminal of the battery BAT1), and the drain (ie, the output terminal) of the FET Q1 is connected to the power output terminal VOUT.
  • the control chip U1 is connected to the gate (ie, the control terminal) of the field effect transistor Q1 for continuously detecting the voltage difference between the output terminal of the battery BAT1 and the power supply output terminal VOUT in the power supply branch.
  • the voltage difference is a negative pressure difference, that is, the voltage of the battery of the other power supply branch is higher than the voltage of the battery BAT1 of the power supply branch, a current flowing to the battery BAT1 is generated.
  • the control chip U1 is The FET Q1 is turned off so that the other power supply branches do not charge the battery BAT1 of the power supply branch; since the turn-off time is short, the nS level, the instantaneous impact damage to the battery BAT1 can be ignored.
  • the control chip U1 controls the FET Q1 to be turned on, so that the battery BAT1 of the power supply branch is electrically connected to the power output terminal VOUT. The current then flows through FET Q1 to the power supply output VOUT.
  • the seamless switching of the power supply is realized, and the voltage drop of the diode is avoided, and the effect of the battery redundancy design is achieved.
  • the first threshold and/or the second threshold may be 25 mv, 50 mv, and the like.
  • the field effect transistor Q1 includes a body diode, the body diode positive electrode is connected to the source of the field effect transistor Q1, and the body diode negative electrode is connected to the drain of the field effect transistor Q1.
  • the voltage difference detected by the control chip of the power supply branch is a negative voltage difference
  • the system power supply is powered by a battery having a relatively high voltage among the other power supply branches. During this period, if the battery of other power supply branch cannot be output due to a fault or some reason.
  • the voltage of the battery BAT1 of the power supply branch is output to the power supply output terminal VOUT via the body diode in the field effect transistor Q1, and the control chip U1 detects a positive voltage difference, and after the certain threshold is reached, the control field effect transistor Q1 is turned on.
  • the current output from the battery BAT1 flows through the FET Q1 to the power supply output terminal VOUT. Due to the presence of body diodes in the FET Q1, seamless switching of the power supply is ensured.
  • the branch circuit uses the field effect transistor Q1 instead of the Schottky diode, which can greatly reduce the package volume and reduce heat loss. Due to the simple structure and the construction of a multi-battery redundant system, the development cycle can be greatly reduced, and the design and production costs can be reduced.
  • the control chip U1 includes a control pin and a detection pin.
  • the control pin is connected to the control terminal of the FET Q1.
  • One end of the detection pin is connected to the output end of the battery BAT1 for detecting the output voltage of the battery BATI; the other end of the detection pin is connected to the power supply.
  • the output terminal VOUT is used for detecting the voltage of the power output terminal VOUT. According to the voltage of the output terminal of the battery BATI and the voltage of the power output terminal VOUT in the power supply branch, the pressure difference between the two can be obtained, and according to the pressure difference Control the FET to turn on or off.
  • the FET Q1 can also be a pmos tube, wherein the drain of the pmos tube is connected to the output of the battery BATI, the source of the pmos tube. The pole is connected to the power output VOUT, and the gate of the pmos tube is connected to a corresponding type of control chip.
  • the output terminal of the FET Q1 is grounded through the first resistor R1 and the second filter capacitor C2 connected in series, and the power supply pin VDD of the control chip U1 is connected between the first resistor R1 and the second filter capacitor C2.
  • the control chip U1 is a hardware control chip. Due to the use of a pure hardware control chip, the control response time can be made very short, such as within 500nS. It guarantees the safety of power supply at the same time using batteries of different voltages.
  • the hardware control chip means that there is no need to write a program, and there is no need to modify internal setting parameters. It is a software chip that needs to write a program.
  • the hardware control chip can use the LTC4353 chip or the like. Due to the presence of the body diode of the FET Q1, the seamless switching of the power supply is ensured, and since the hardware control chip is used, the interference caused by the program running and the like is avoided.
  • the output of the battery BAT1 in the power supply branch is grounded through the first filter capacitor C1.
  • the output of field effect transistor Q1 is grounded through a third filter capacitor C3.
  • the capacitance value of the third filter capacitor C3 is as large as possible, which can ensure the stability of the voltage when the battery is switched.
  • the output of the battery BAT1 in the power supply branch is connected to the positive terminal of the body diode of the FET, and the power supply output terminal VOUT is connected to the negative terminal of the body diode of the FET Q1.
  • the circuit includes two power supply branches, and the two power supply branches respectively include a battery BAT1 and a battery BAT2, wherein the battery BAT1 of one power supply branch is connected to the power output terminal VOUT through the first control sub-circuit. .
  • the output end of the battery BAT1 is grounded through the first diode D1 and the first capacitor C1 connected in parallel, and the output end of the battery BAT1 is also respectively connected to the input end of the FET Q1 and the input pin IN of the control chip U1 (ie, the above detection One end of the pin), the output end of the FET Q1 is grounded through the third capacitor C3, and the output end of the FET Q1 is also grounded through the first resistor R1 and the second capacitor C2 connected in parallel, and the output terminal of the FET Q1 is also connected.
  • the power output terminal VOUT, the control pin of the control chip U1 is connected to the control terminal of the FET Q1, and the output pin OUT of the control chip U1 (that is, the other end of the above detection pin) is connected to the output terminal of the FET Q1.
  • the power supply pin VDD of the control chip U1 is connected between the first resistor R1 and the second capacitor C2.
  • the power output terminal VOUT is connected to the host system behind.
  • the second control subcircuit of the battery BAT2 connection has a similar circuit to the first control subcircuit.
  • the other power supply branch is similar to the circuit of the power supply branch.
  • the first diode D1 may be a TVS (Transient Voltage Suppressor) diode.
  • the batteries BAT1 and BAT2 in this embodiment are power supply batteries, and capacitors C1, C2, C3, C4, C5, and C6 are filter capacitors, and diodes D1 and D2 are transient suppression diodes for absorbing peak voltage fluctuations of the battery, and resistor R1. R2 supplies power to the control chips U1 and U2, respectively.
  • the capacitance values of the capacitors C3 and C6 are as large as possible, for example, 100 uf, which can ensure the stability of the voltage when the battery is switched.
  • the FETs Q1 and Q2 of the two power supply branches are turned on. If the voltage of the battery BAT1 is higher than the voltage of the battery BAT2, the current flows from the battery BAT1 to the battery. BAT2.
  • a negative voltage difference is detected between the output pin OUT pin of the control chip U2 and the input pin IN pin, and after reaching a certain threshold value, that is, greater than the first threshold value, the control chip U2 pulls down the driving voltage of the control pin GATE pin, and then breaks The open field effect transistor Q2 (ie, cut off), the voltage of the battery BAT2 can not be output to the host system through the power output terminal VOUT.
  • this turn-off time is very short, it is nS level, and the instantaneous impact damage to the battery can be neglected.
  • the high-voltage battery BAT1 is powered.
  • the voltage of the battery BAT2 will flow to the power output terminal VOUT through the body diode of the FET Q2.
  • a positive voltage difference is detected between the detection pin OUT pin of the control chip U2 and the detection pin IN pin, and the control chip U2 pulls up the drive pin GATE pin after reaching a certain threshold value, that is, greater than the second threshold value.
  • the voltage turns on the FET Q2.
  • the current then flows through the FET Q2 to the host system.
  • the control chip U1 will immediately turn off the FET Q1 to block the flow of current into BAT1.
  • the entire circuit realizes seamless switching of power supply and achieves the effect of battery redundancy design.
  • the battery BAT2 voltage is higher than the battery BAT1 voltage, the same effect is obtained.
  • the battery BAT1 and the battery BAT2 can be simultaneously powered, and the magnitude of the battery supply current is automatically adjusted according to the size of the load and the magnitude of the battery differential.
  • the seamless switching power supply can be realized immediately according to the above principle.
  • FIG. 2 is a circuit diagram of a battery redundancy circuit in another embodiment.
  • the main difference between the embodiment and the above embodiment is that some components in the battery redundancy circuit may be omitted, and some of the components that may be omitted include the above embodiments.
  • FIG. 3 is a circuit diagram of a battery redundancy circuit in still another embodiment.
  • the battery redundancy circuit includes three parallel power supply branches.
  • the seamless switching power supply of the three batteries can be realized, and the effect of the battery redundancy design is achieved.
  • This embodiment is a redundant design of three batteries. For the same reason, the battery redundancy circuit can be extended to applications of multiple power supply branches.
  • one or more of the power supply branches may be directly connected to the power output of the battery output.
  • an anti-backflow circuit or component such as a diode, a controllable switch, etc., can be placed between the battery output and the power supply output.
  • the unmanned aerial vehicle 100 includes a host system and a battery redundancy circuit according to any of the above embodiments.
  • the power output terminal of the battery redundancy circuit is connected to the host system.
  • the UAV 100 includes at least two batteries 200.
  • the UAV may further include a housing, and the battery redundancy circuit is disposed in the housing, and the housing is further provided with a motor connected to the redundant circuit of the battery, a rotating wing or a propeller connected to the motor.
  • FIG. 5 is a flow chart of a method for controlling battery power supply of an unmanned aerial vehicle according to an embodiment, wherein the unmanned aerial vehicle includes a host system and a battery redundancy circuit, and the battery redundancy circuit supplies power to the host system through the power output terminal, and the battery redundancy circuit
  • the utility model comprises at least two parallel power supply branches, wherein the power supply branches are connected with the power output end, each power supply branch comprises a control sub-circuit, each control sub-circuit comprises a field effect tube and a control chip; the control method comprises the steps S110-S130. among them:
  • the control chip continuously detects a voltage difference between the output end of the battery and the power output end of the power supply branch.
  • the pressure difference is a negative pressure difference and is greater than a first threshold, controlling a field effect of the power supply branch
  • the tube is cut off so that the other power supply branches do not charge the battery of the power supply branch;
  • the pressure difference changes from a negative pressure difference to a positive pressure difference, and the positive pressure difference is greater than the second threshold then the control sub-circuit is controlled.
  • the FET is turned on to turn on the battery of the power supply branch and the power output.
  • the control method of this embodiment can be implemented by the battery redundancy circuit of any of the above embodiments.
  • the control chip continuously detects the voltage difference between the output end of the power supply branch battery and the power output end.
  • the pressure difference is a negative pressure difference, that is, the voltage of the battery of the other power supply branch is higher than the battery voltage of the power supply branch, a current flowing backward in the battery is generated, and when the negative pressure difference is greater than the first threshold, the control chip disconnects the power supply.
  • the FET of the branch circuit so that other power supply branches do not charge the battery of the power supply branch; since this turn-off time is very short, it is nS level, and the instantaneous impact damage to the battery can be neglected.
  • the first threshold and/or the second threshold may be 25 mv, 50 mv, and the like.
  • FIG. 6 is a flow chart of a control method for battery power supply of an unmanned aerial vehicle in another embodiment, wherein the unmanned aerial vehicle includes a host system and a battery redundancy circuit, and the battery redundancy circuit supplies power to the host system through the power output terminal, and the battery redundancy
  • the circuit includes at least two parallel power supply branches, the power supply branches are connected to the power output end, each power supply branch includes a control sub-circuit, and each control sub-circuit includes a field effect transistor and a control chip; the control method Steps S210-S230 are included. among them:
  • S220 The control chip continuously detects a voltage difference between the output end of the battery and the power output end in the power supply branch, and if the pressure difference is a negative pressure difference and is greater than a first threshold, controlling a field effect of the power supply branch The tube is turned off so that other batteries do not charge the battery corresponding to the control sub-circuit.
  • the control method of this embodiment can be implemented by the battery redundancy circuit of any of the above embodiments.
  • the first time period is the initial stage, in which the FET of the control sub-circuit of one power supply branch is turned on, so that the corresponding battery and the power output end are turned on, and the battery of the other power supply branch is electrically connected to the power output end. .
  • the battery is powered; if the FET corresponds
  • the two detection pins of the control chip of the control sub-circuit detect a negative voltage difference, and after the negative voltage difference is greater than the first threshold, the control chip pulls down the driving voltage of the control terminal of the FET Then, the FET is disconnected, so that the voltage of the battery cannot be output to the host system through the power output terminal. Since the turn-off time is short, the nS level, the instantaneous impact damage to the battery can be neglected.
  • Disconnecting the FET of the sub-circuit can prevent the high voltage battery from charging the low voltage battery.
  • the voltage difference between the high voltage and low voltage batteries is avoided, and the charging current is large, which leads to overcurrent protection of the battery and ultimately affects the power supply to the host system.
  • the host system is powered by the power output.
  • the body diode of the FET of the control sub-circuit outputs the corresponding battery voltage to the host system, and simultaneously controls the two detection pins of the chip.
  • a positive pressure difference is detected, and after the positive pressure difference reaches the second threshold, the control chip pulls up the driving voltage of the FET control terminal, thereby opening the FET.
  • the current then flows through the FET to the host system.
  • the seamless switching of power supply is realized, and the effect of battery redundancy design is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池冗余电路、无人飞行器及其电池供电的控制方法,该电路包括至少两个并联的供电支路和一电源输出端,每一供电支路包括:电池;控制子电路,控制子电路包括一场效应管(Q1)、控制芯片(U1),场效应管的输入端和输出端分别连接电池的输出端和电源输出端(VOUT);控制芯片与场效应管的控制端连接,用于持续检测本供电支路中电池的输出端和电源输出端的压差,并根据压差控制场效应管导通或截止。实现了供电的无缝切换,达到了电池冗余设计的效果。

Description

电池冗余电路、无人飞行器及其电池供电的控制方法
申请要求于2017年6月5日申请的、申请号为201710415285.9、发明名称为“电池冗余电路、无人飞行器及其电池供电的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无人飞行器领域,特别是涉及一种电池冗余电路、无人飞行器及其电池供电的控制方法。
背景技术
目前随着无人机在各个领域中的深入应用。人们对无人机的安全性提出了越来越高的要求。而能够为无人机提供稳定可靠的电源无疑是无人机安全最重要的保障。
因此,电池的冗余设计有时候成了一种必要的手段,电池冗余传统的方式是,将多个电池并联,通过隔离、控制电路实现供电。其中一个电池失效的情况下,其它电池能立即补充进来,进而保障无人机的飞行安全。其中冗余电路最简单的办法是在每一个电池输出端串接一个肖特基二极管。然而由于肖特基的压降较大,当负载电流过大时,二极管上的热损耗较大,需要使用很大封装的二极管而且能量转换效率较低。
发明内容
基于此,有必要提供一种能量转换效率更高的电池冗余电路、无人飞行器及其电池供电的控制方法。
一种电池冗余电路,所述电池冗余电路包括至少两个并联的供电支路和一电源输出端,每一所述供电支路包括:
电池;
控制子电路,所述控制子电路包括场效应管、控制芯片,所述场效应管输 入端和输出端分别连接所述电池的输出端和所述电源输出端;所述控制芯片与所述场效应管的控制端连接,用于持续检测本供电支路电池输出端和电源输出端的压差,并根据所述压差控制所述场效应管导通或截止;其中,当所述压差为负压差且大于第一阈值,则所述控制芯片控制本供电支路中的所述场效应管截止,以使其它供电支路不对本供电支路的电池充电;当所述压差为正压差,且所述正压差大于第二阈值,则所述控制芯片控制本供电支路中的所述场效应管导通,以使本供电支路的电池与电源输出端导通。
在其中一个实施例中,所述场效应管内包括体二极管,所述体二极管的正极连接所述场效应管的输入端,所述体二极管的负极连接所述场效应管的输出端。
在其中一个实施例中,所述控制芯片包括控制引脚和检测引脚,所述控制引脚连接所述场效应管的控制端,所述检测引脚一端连接所述电池的输出端,用于检测所述电池的输出电压;所述检测引脚另一端连接让你述电源输出端,用于检测所述电源输出端的电压。
在其中一个实施例中,每一所述供电支路还包括第一滤波电容,所述电池的输出端通过所述第一滤波电容接地。
在其中一个实施例中,所述控制子电路还包括第一电阻和第二滤波电容,所述控制芯片包括供电引脚;所述场效应管的输出端通过串联的所述第一电阻和所述第二滤波电容接地,所述控制芯片的供电引脚连接在所述第一电阻和所述第二滤波电容之间。
在其中一个实施例中,所述控制芯片为硬件控制芯片。
在其中一个实施例中,所述控制子电路还包括第三滤波电容,所述场效应管的输出端通过所述第三滤波电容接地。
在其中一个实施例中,每一所述供电支路中所述电池的输出端连接所述场效应管的体二极管的正极,所述电源输出端与所述场效应管的体二极管的负极相连。
在其中一个实施例中,所述场效应管为nmos管;所述nmos管的源极为所述场效应管的输入端,所述nmos管的漏极为所述场效应管的输出端,所述nmos 管的栅极为所述场效应管的控制端。
一种无人飞行器,包括主机系统和如上述任一所述所述的电池冗余电路,所述电池冗余电路的所述电源输出端与所述主机系统连接。
一种无人飞行器电池供电的控制方法,所述无人飞行器包括主机系统和电池冗余电路,所述电池冗余电路通过电源输出端给所述主机系统供电,所述电池冗余电路包括至少两个并联的供电支路,每一供电支路包括一控制子电路,每一控制子电路包括一场效应管、控制芯片;所述控制方法包括:
当电池插入供电支路时,将该供电支路的场效应管导通,将该供电支路的电池输出端与电源输出端导通;
所述控制芯片持续检测本供电支路中所述电池的输出端和所述电源输出端的压差,当所述压差为负压差且大于第一阈值,则控制本供电支路的场效应管截止,以使其它供电支路不对本供电支路的电池充电;当所述压差由负压差变为正压差,且所述正压差大于第二阈值,则控制所述控制子电路的场效应管导通,以使本供电支路中的所述电池输出电压至所述电源输出端。
上述电池冗余电路、无人飞行器及无人飞行器电池供电的控制方法中,电池冗余电路包括至少两个并联的供电支路和一电源输出端,每一供电支路都包括:电池和控制子电路,其中控制子电路包括场效应管、控制芯片,场效应管输入端和输出端分别连接所述电池的输出端和所述电源输出端;所述控制芯片与所述场效应管的控制端连接,用于持续检测本供电支路看所述电池的输出端和所述电源输出端的压差,并根据所述压差控制所述场效应管导通或截止:当压差为负压差且大于第一阈值,则控制本供电支路中的所述场效应管截止,以使其它供电支路不对本供电支路的电池充电。由于这个关断时间很短,为nS级,对电池的瞬间冲击伤害可以忽略。当所述压差为正压差,且正压差大于第二阈值,则控制所述场效应管导通,以使本供电支路的电池与电源输出端导通。当电池输出端向电源输出端导通时无延时,确保了电源切换的安全。本发明的技术方案实现了供电的无缝切换,达到了电池冗余设计的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它实施例的附图。
图1为一实施例中电池冗余电路的电路图;
图2为另一实施例中电池冗余电路的电路图;
图3为再一实施例中电池冗余电路的电路图;
图4为一实施例中无人飞行器的示意图;
图5为一实施例中无人飞行器电池供电的控制方法的流程图;
图6为另一实施例中无人飞行器电池供电的控制方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或至少两个相关的所列项目的任意的和所有的组合。
图1为一实施例中电池冗余电路的电路图,该电池冗余电路包括2个并联的供电支路和一电源输出端,每一供电支路包括:电池和控制子电路。该控制子电路包括场效应管和控制芯片,该场效应管的输入端连接电池的输出端,场 效应管的输出端连接电源输出端;控制芯片持续检测本供电支路中电池的输出端和电源输出端的压差,当压差为负压差且大于第一阈值,则断开本供电支路的场效应管,以使其它供电支路不对本供电支路的电池充电;当压差为正压差,且正压差大于第二阈值,则控制场效应管导通,以使本供电支路的电池与电源输出端导通。
具体的,以其中一个供电支路为例,该供电支路包括:电池BAT1和控制子电路。所述控制子电路包括场效应管Q1和控制芯片U1,在本实施例中,场效应管Q1为nmos管,所述nmos管的源极S为场效应管Q1的输入端,所述nmos管的漏极D为场效应管Q1的输出端,所述nmos管的栅极G为场效应管Q1的控制端。
场效应管Q1的源极(即输入端)连接电池BAT1的输出端(即电池BAT1的正极),场效应管Q1的漏极(即输出端)连接电源输出端VOUT。
控制芯片U1与场效应管Q1的栅极(即控制端)连接,用于持续检测本供电支路中电池BAT1的输出端和电源输出端VOUT之间的压差。当所述压差为负压差,即其它供电支路电池电压高于本供电支路的电池BAT1电压,会产生流向电池BAT1的电流,当该负压差大于第一阈值,控制芯片U1则会控制场效应管Q1截止,以使其它供电支路不对本供电支路的电池BAT1充电;由于这个关断时间很短,为nS级,对电池BAT1的瞬间冲击伤害可以忽略。当所述压差由负压差变为正压差,即其它供电支路中电池电压低于本供电支路中的电池BAT1电压,会产生从电池BAT1流到电源输出端VOUT的电流。当所述正压差大于第二阈值,控制芯片U1则会控制场效应管Q1导通,以使本供电支路的电池BAT1与电源输出端VOUT导通。而后电流会经过场效应管Q1流到电源输出端VOUT。实现了供电的无缝切换,同时避免了二极管的压降,达到了电池冗余设计的效果。其中第一阈值和/或第二阈值可以为25mv、50mv等。
进一步地,场效应管Q1内包括体二极管,该体二极管正极连接场效应管Q1的源极,体二极管负极连接场效应管Q1的漏极。当该供电支路的控制芯片检测到的压差为负压差,断开本供电支路的场效应管Q1后,系统电源由其它供电支路中的具有相对较高电压的电池供电,在此期间如果由于故障或某种原因 突然导致其它供电支路的电池不能输出时。本供电支路的电池BAT1的电压会经由场效应管Q1内的体二极管输出到电源输出端VOUT,同时控制芯片U1检测到一个正压差,并且达到一定阈值之后控制场效应管Q1导通。使电池BAT1输出的电流会经过场效应管Q1流到电源输出端VOUT。由于场效应管Q1内体二极管的存在,保证了电源的无缝切换。而且持续供电后,支路采用场效应管Q1替代肖特基二极管,可以大幅减小封装的体积,减少发热损耗等。由于架构简洁,利于多电池供电冗余系统的构建,可大幅减少开发周期,降低设计、生产成本等。
控制芯片U1包括控制引脚和检测引脚,控制引脚连接场效应管Q1控制端,检测引脚一端连接电池BAT1的输出端,用于检测电池BATI的输出电压;检测引脚另一端连接电源输出端VOUT,用于检测电源输出端VOUT的电压,根据本供电支路中电池BATI的输出端电压和电源输出端VOUT的电压,就可以得到两者之间压差,并根据所述压差控制场效应管导通或截止。
可以理解,在其他实施例中,将控制芯片U1更换为其他相应类型的控制芯片时,场效应管Q1还可以为pmos管,其中pmos管的漏极连接电池BATI的输出端,pmos管的源极连接电源输出端VOUT,pmos管的栅极与相应类型的控制芯片连接。
在一个实施例中,场效应管Q1的输出端通过串联的第一电阻R1和第二滤波电容C2接地,控制芯片U1的供电引脚VDD连接第一电阻R1和第二滤波电容C2之间。
在一个实施例中,控制芯片U1为硬件控制芯片。由于采用了纯硬件控制芯片,所以控制的反应时间可以做的很短,如500nS以内。保证了使用不同电压的电池同时供电的安全。该硬件控制芯片是指不需要写程序,不需修改内部设置参数。是相对需要写程序的软件芯片而说的。硬件控制芯片可以采用LTC4353芯片等。由于场效应管Q1的体二极管的存在,保证了电源的无缝切换,同时由于使用的是硬件控制芯片,避免了由程序跑飞等问题带来的干扰。
在一个实施例中,供电支路中电池BAT1的输出端通过第一滤波电容C1接地。
在一个实施例中,场效应管Q1输出端通过第三滤波电容C3接地。其中第三滤波电容C3的容值尽量的大,可以保证电池切换的时候电压的稳定。
在一个实施例中,供电支路中电池BAT1的输出端连接场效应管的体二极管的正极,电源输出端VOUT与场效应管Q1的体二极管的负极相连。
具体的,如图1所示,其中电路包括两个供电支路,两个供电支路分别包括电池BAT1、电池BAT2,其中一个供电支路的电池BAT1通过第一控制子电路连接电源输出端VOUT。电池BAT1的输出端通过并联的第一二极管D1和第一电容C1接地,电池BAT1的输出端还分别连接场效应管Q1的输入端和控制芯片U1的输入引脚IN(即上述的检测引脚一端),场效应管Q1的输出端通过第三电容C3接地,场效应管Q1的输出端还通过并联的第一电阻R1和第二电容C2接地,场效应管Q1的输出端还连接电源输出端VOUT,控制芯片U1的控制引脚GATE脚连接场效应管Q1的控制端,控制芯片U1的输出引脚OUT(即上述的检测引脚另一端)连接场效应管Q1的输出端,控制芯片U1的供电引脚VDD连接第一电阻R1和第二电容C2之间。电源输出端VOUT连接后面的主机系统。电池BAT2连接的第二控制子电路具有与第一控制子电路类似的电路。另一个供电支路与本供电支路的电路相似。其中第一二极管D1可以是瞬态抑制(TVS,Transient Voltage Suppressor)二极管。
本实施例中的电池BAT1、BAT2是供电电池,电容C1、C2、C3、C4、C5、C6是滤波电容,二极管D1、D2是瞬态抑制二极管用以吸收电池波动的尖峰电压,电阻R1、R2分别为控制芯片U1、U2供电。其中电容C3、C6的容值尽量的大,例如100uf,可以保证电池切换的时候电压的稳定。
当电池BAT1、BAT2分别接入二个供电支路时,二个供电支路的场效应管Q1、Q2是导通的,如果电池BAT1电压比电池BAT2电压高,电流会由电池BAT1流到电池BAT2。控制芯片U2的输出引脚OUT脚和输入引脚IN脚之间检测到一个负压差,并到达一定阈值即大于第一阈值之后控制芯片U2拉低控制引脚GATE脚的驱动电压,进而断开场效应管Q2(即截止),使电池BAT2的电压不能经电源输出端VOUT输出到主机系统,由于这个关断时间很短,为nS级,对电池的瞬间冲击伤害可以忽略。此时,只有高电压的电池BAT1供电,在此期间 如果由于故障或某种原因突然导致电池BAT1不能输出时,电池BAT2的电压会经由场效应管Q2的体二极管流到电源输出端VOUT输出给主机系统,同时控制芯片U2的检测引脚OUT脚和检测引脚IN脚之间检测到一个正压差,并且达到一定阈值即大于第二阈值之后控制芯片U2拉高控制引脚GATE脚的驱动电压,进而打开场效应管Q2。而后电流会经过场效应管Q2流到主机系统。如上面所讲,控制芯片U1会立刻关掉场效应管Q1进而阻断电流流入BAT1。整个电路实现了供电的无缝切换,达到了电池冗余设计的效果。同样的道理,如果电池BAT2电压比电池BAT1电压高也是一样的效果。如果电池BAT1和电池BAT2的电压接近时,电池BAT1和电池BAT2可以同时供电,电池供电电流的大小根据负载的大小和电池压差的大小自动调整。其中一个电池故障或某种原因突然不能输出时,根据上面的原理可以立刻实现无缝切换供电。
图2为另一实施例中电池冗余电路的电路图,本实施例与上述实施例的主要区别在于,该电池冗余电路中的部分元件可以省略,可以省略的部分元件具体包括上述实施例中的滤波电容C1、C2、C3、C4、C5、C6,二极管D1、D2,电阻R1、R2中的部分或全部。
图3为再一实施例中电池冗余电路的电路图,本实施例与上述实施例的主要区别在于,该电池冗余电路包括三个并联的供电支路。可以实现三个电池的无缝切换供电,达到了电池冗余设计的效果。本实施例为三个电池的冗余设计,同样的道理,该电池冗余电路可以扩展到多个供电支路的应用中。
在一个实施例中,其中一个或两个以上供电支路可以是电池输出端直接连接电源输出端。为了防止电流倒流,可以在电池输出端和电源输出端之间设置一个防倒流的电路或元件,如二极管、可控开关等。
图4为一实施例中无人飞行器的示意图,该无人飞行器100包括主机系统和上述实施方式中任一所述的电池冗余电路,电池冗余电路的电源输出端与主机系统连接。该无人飞行器100包括至少两个电池200。无人飞行器还可以包括壳体,电池冗余电路设置在壳体内,壳体内还设有与电池冗余电路连接的电机、与电机连接的旋转机翼或螺旋桨。
图5为一实施例中无人飞行器电池供电的控制方法的流程图,其中该无人 飞行器包括主机系统和电池冗余电路,电池冗余电路通过电源输出端给主机系统供电,电池冗余电路包括至少两个并联的供电支路,供电支路均与电源输出端连接,每一供电支路包括一控制子电路,每一控制子电路包括一场效应管,控制芯片;该控制方法包括步骤S110-S130。其中:
S110:当电池插入供电支路时,将该供电支路的场效应管导通,将该供电支路的电池输出端与电源输出端导通。
S120:控制芯片持续检测本供电支路中所述电池的输出端和所述电源输出端的压差,当所述压差为负压差且大于第一阈值,则控制本供电支路的场效应管截止,以使其它供电支路不对本供电支路的电池充电;当所述压差由负压差变为正压差,且正压差大于第二阈值,则控制所述控制子电路的场效应管导通,以使本供电支路的电池与电源输出端导通。
本实施例的控制方法可以用上述任一实施方式的电池冗余电路实现。控制芯片持续检测本供电支路电池输出端和电源输出端的压差。当压差为负压差,即其它供电支路电池电压高于本供电支路的电池电压,会产生逆向流入电池的电流,当该负压差大于第一阈值,则控制芯片断开本供电支路的场效应管,以使其它供电支路不对本供电支路的电池充电;由于这个关断时间很短,为nS级,对电池的瞬间冲击伤害可以忽略。断开该控制子电路的场效应管可以避免高电压电池对低电压电池充电。避免了高电压和低电压电池的压差过大,造成充电的电流很大,进而导致电池过流保护,最终影响对主机系统的供电。当压差由负压差变为正压差,即其它供电支路电池电压低于本供电支路的电池电压,会经由场效应管的体二极管产生从电池流出到电源端的电流。当该正压差大于第二阈值,则控制子电路将场效应管导通,以使本供电支路的电池与电源输出端导通。而后电流会经过场效应管流到电源输出端。实现了供电的无缝切换,达到了电池冗余设计的效果。其中第一阈值和/或第二阈值可以为25mv、50mv等。
图6为另一实施例中无人飞行器电池供电的控制方法的流程图,其中该无人飞行器包括主机系统和电池冗余电路,电池冗余电路通过电源输出端给主机系统供电,电池冗余电路包括至少两个并联的供电支路,供电支路均与电源输出端连接,每一供电支路包括一控制子电路,每一控制子电路包括一场效应管 和一控制芯片;该控制方法包括步骤S210-S230。其中:
S210:当电池接入供电支路时,将该供电支路的场效应管导通,将该供电支路的电池输出端与电源输出端导通。
S220:控制芯片持续检测本供电支路中所述电池的输出端和所述电源输出端的压差,如果所述压差为负压差且大于第一阈值,则控制本供电支路的场效应管截止,以使其它电池不对所述控制子电路对应的电池充电。
S230:当有与电源输出端导通的供电支路的电池不输出时,其它电池输出端的电压经场效应管内的体二极管输出至电源输出端;如果控制子电路对应的压差由负压差变为正压差,且正压差大于第二阈值,则将控制子电路的场效应管导通,以使控制子电路对应的电池与电源输出端端导通。
本实施例的控制方法可以用上述任一实施方式的电池冗余电路实现。第一时间段即初始阶段,其中一个供电支路的控制子电路的场效应管导通,使对应的电池与电源输出端导通,同时还有其它供电支路的电池与电源输出端导通。第二时间段,当该场效应管对应的电池与其它电池的电压不相等时,如果该场效应管对应的电池的电压大于其它电池的电压时,该电池供电;如果该场效应管对应的电池的电压小于其它电池的电压时,该控制子电路的控制芯片的两个检测引脚检测到一个负压差,该负压差大于第一阈值之后控制芯片拉低场效应管控制端的驱动电压,进而断开该场效应管,使该电池的电压不能经电源输出端输出到主机系统,由于这个关断时间很短,为nS级,对电池的瞬间冲击伤害可以忽略。断开该子电路的场效应管可以避免高电压电池对低电压电池充电。避免了高电压和低电压电池的压差过大,造成充电的电流很大,进而导致电池过流保护,最终影响对主机系统的供电。多个电池电压差不多时,同时经电源输出端给主机系统供电。第三时间段,当其它电池由于故障或某种原因突然导致不能输出时,该控制子电路的场效应管的体二极管将对应的电池电压输出给主机系统,同时控制芯片的两个检测引脚之间检测到一个正压差,该正压差达到第二阈值之后控制芯片拉高场效应管控制端的驱动电压,进而打开该场效应管。而后电流会经过场效应管流到主机系统。实现了供电的无缝切换,达到了电池冗余设计的效果。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种电池冗余电路,所述电池冗余电路包括至少两个并联的供电支路和一电源输出端,其特征在于:每一所述供电支路包括:
    电池;
    控制子电路,所述控制子电路包括场效应管、控制芯片,所述场效应管的输入端和输出端分别连接所述电池的输出端和所述电源输出端;所述控制芯片与所述场效应管的控制端连接,用于持续检测本供电支路中所述电池的输出端和所述电源输出端的压差,并根据所述压差控制所述场效应管导通或截止;
    其中,当所述压差为负压差且大于第一阈值,则所述控制芯片控制本供电支路中的所述场效应管截止,以使其它供电支路不对本供电支路的电池充电;
    当所述压差为正压差,且所述正压差大于第二阈值,则所述控制芯片控制本供电支路中的所述场效应管导通,以使本供电支路的电池与电源输出端导通。
  2. 根据权利要求1所述的电池冗余电路,其特征在于,所述场效应管内包括体二极管,所述体二极管的正极连接所述场效应管的输入端,所述体二极管的负极连接所述场效应管的输出端。
  3. 根据权利要求1或2所述的电池冗余电路,其特征在于,所述
    控制芯片包括控制引脚和检测引脚,所述控制引脚连接所述场效应管的控制端,所述检测引脚一端连接所述电池的输出端,用于检测所述电池的输出电压;所述检测引脚另一端连接所述电源输出端,用于检测所述电源输出端的电压。
  4. 根据权利要求1所述的电池冗余电路,其特征在于,每一所述供电支路还包括第一滤波电容,所述电池的输出端通过所述第一滤波电容接地。
  5. 根据权利要求1所述的电池冗余电路,其特征在于,所述控制子电路还包括第一电阻和第二滤波电容,所述控制芯片包括供电引脚;
    所述场效应管的输出端通过串联的所述第一电阻和所述第二滤波电容接地,所述控制芯片的供电引脚连接在所述第一电阻和所述第二滤波电容之间。
  6. 根据权利要求1所述的电池冗余电路,其特征在于,所述控制芯片为硬件控制芯片。
  7. 根据权利要求1所述的电池冗余电路,其特征在于,所述控制子电路还包括第三滤波电容,所述场效应管的输出端通过所述第三滤波电容接地。
  8. 根据权利要求2所述的电池冗余电路,其特征在于,每一所述供电支路中所述电池的输出端连接所述场效应管的体二极管的正极,所述电源输出端与所述场效应管的体二极管的负极相连。
  9. 根据权利要求1所述的电池冗余电路,其特征在于,所述场效应管为nmos管;
    所述nmos管的源极为所述场效应管的输入端,所述nmos管的漏极为所述场效应管的输出端,所述nmos管的栅极为所述场效应管的控制端。
  10. 一种无人飞行器,其特征在于,包括主机系统和如权利要求1-9任一所述的电池冗余电路,所述电池冗余电路的所述电源输出端与所述主机系统连接。
  11. 一种无人飞行器电池供电的控制方法,所述无人飞行器包括主机系统和电池冗余电路,所述电池冗余电路通过电源输出端给所述主机系统供电,其特征在于:所述电池冗余电路包括至少两个并联的供电支路,每一供电支路包括一控制子电路,每一控制子电路包括一场效应管、控制芯片;所述控制方法包括:
    当电池插入供电支路时,将该供电支路的场效应管导通,将该供电支路的电池输出端与电源输出端导通;
    所述控制芯片持续检测本供电支路中所述电池的输出端和所述电源输出端的压差,当所述压差为负压差且大于第一阈值,则控制本供电支路的场效应管截止,以使其它供电支路不对本供电支路的电池充电;当所述压差由负压差变为正压差,且所述正压差大于第二阈值,则控制所述控制子电路的场效应管导通,以使本供电支路的电池与电源输出端导通。
PCT/CN2018/078928 2017-06-05 2018-03-14 电池冗余电路、无人飞行器及其电池供电的控制方法 WO2018223741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710415285.9A CN108988470A (zh) 2017-06-05 2017-06-05 电池冗余电路、无人飞行器及其电池供电的控制方法
CN201710415285.9 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018223741A1 true WO2018223741A1 (zh) 2018-12-13

Family

ID=64502267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078928 WO2018223741A1 (zh) 2017-06-05 2018-03-14 电池冗余电路、无人飞行器及其电池供电的控制方法

Country Status (2)

Country Link
CN (1) CN108988470A (zh)
WO (1) WO2018223741A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755928A (zh) * 2019-02-19 2019-05-14 深圳市科比特航空科技有限公司 防反向电动势电路和无人机
CN110481468A (zh) * 2019-08-16 2019-11-22 重庆长安汽车股份有限公司 用于l3级自动驾驶的汽车双电源系统及车辆
US10790739B1 (en) 2019-05-29 2020-09-29 Hamilton Sundstrand Corporation Redundant power supply having diverse dual controllers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103354385A (zh) * 2013-06-26 2013-10-16 北京理工大学 移动机器人多电池组无缝切换电路
CN204290464U (zh) * 2014-12-17 2015-04-22 西安Tcl软件开发有限公司 供电电路及电子设备
US20150162101A1 (en) * 2012-11-06 2015-06-11 Rambus Inc. Memory repair using external tags
CN207200362U (zh) * 2017-06-05 2018-04-06 深圳市道通智能航空技术有限公司 电池冗余电路及无人飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670487A (ja) * 1992-08-12 1994-03-11 Taiyo Yuden Co Ltd 電源切替回路
CN101958576B (zh) * 2010-05-20 2013-03-13 福建星网锐捷网络有限公司 电源冗余并联电路和工作方法
CN103825346A (zh) * 2012-11-19 2014-05-28 鸿富锦精密工业(深圳)有限公司 供电电路
CN102981482B (zh) * 2012-11-29 2015-01-21 华为技术有限公司 一种供电电路及方法
CN205248837U (zh) * 2015-11-25 2016-05-18 深圳光启空间技术有限公司 电源装置及无人机
CN206135414U (zh) * 2016-10-25 2017-04-26 宁德时代新能源科技股份有限公司 电池管理系统的冗余备份控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150162101A1 (en) * 2012-11-06 2015-06-11 Rambus Inc. Memory repair using external tags
CN103354385A (zh) * 2013-06-26 2013-10-16 北京理工大学 移动机器人多电池组无缝切换电路
CN204290464U (zh) * 2014-12-17 2015-04-22 西安Tcl软件开发有限公司 供电电路及电子设备
CN207200362U (zh) * 2017-06-05 2018-04-06 深圳市道通智能航空技术有限公司 电池冗余电路及无人飞行器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755928A (zh) * 2019-02-19 2019-05-14 深圳市科比特航空科技有限公司 防反向电动势电路和无人机
US10790739B1 (en) 2019-05-29 2020-09-29 Hamilton Sundstrand Corporation Redundant power supply having diverse dual controllers
CN110481468A (zh) * 2019-08-16 2019-11-22 重庆长安汽车股份有限公司 用于l3级自动驾驶的汽车双电源系统及车辆

Also Published As

Publication number Publication date
CN108988470A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN107834826B (zh) 电源控制模块
CN110380474B (zh) 电池保护控制器及电池充放电保护电路
CN205355935U (zh) 一种双电源自动切换供电及防止电源反接的电路
WO2018223741A1 (zh) 电池冗余电路、无人飞行器及其电池供电的控制方法
CN209786868U (zh) 后备电池硬件切换电路
WO2018076794A1 (zh) 电池管理系统的冗余备份控制电路
WO2023025293A1 (zh) 一种上下电控制电路及信号输出装置
CN105811747A (zh) 具有使能控制的高压电源系统
CN102761161B (zh) 移动电源
CN214755708U (zh) 一种定电压切换的双输入电源控制电路
CN207200362U (zh) 电池冗余电路及无人飞行器
CN112895924A (zh) 一种充电检测与唤醒电路及电池管理系统
EP2911271B1 (en) Power-supply switching circuit and artificial heart system
CN109194126B (zh) 一种电源切换电路
CN111490705A (zh) 一种h桥驱动和闭环调速控制电路设计
CN103488225B (zh) 电源负载电压调整监控电路
CN104426127B (zh) 一种负载启动电路
CN207965806U (zh) 供电重启系统及电子设备
JP2012156718A (ja) 出力回路、温度スイッチic、及び、電池パック
CN107465257B (zh) 一种主电源与备用电源自动切换电路
US20190312444A1 (en) Balance circuits for battery cells
CN113949127B (zh) 一种用于系统供电的供电管理电路及控制方法
CN113497551B (zh) 直流电源多路输出保护电路单元、保护电路及水下机器人
US8416013B1 (en) Core circuit leakage control
CN202906495U (zh) 移动电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813522

Country of ref document: EP

Kind code of ref document: A1