WO2018133484A1 - 一种兼容电池和外部电源供电的控制电路 - Google Patents

一种兼容电池和外部电源供电的控制电路 Download PDF

Info

Publication number
WO2018133484A1
WO2018133484A1 PCT/CN2017/108161 CN2017108161W WO2018133484A1 WO 2018133484 A1 WO2018133484 A1 WO 2018133484A1 CN 2017108161 W CN2017108161 W CN 2017108161W WO 2018133484 A1 WO2018133484 A1 WO 2018133484A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
external power
boosting
battery
power supply
Prior art date
Application number
PCT/CN2017/108161
Other languages
English (en)
French (fr)
Inventor
赵战克
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17893331.3A priority Critical patent/EP3573209A4/en
Priority to JP2019537173A priority patent/JP6818153B2/ja
Priority to US16/476,869 priority patent/US11025087B2/en
Publication of WO2018133484A1 publication Critical patent/WO2018133484A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of terminal technologies, and in particular, to a control circuit that is compatible with a battery and an external power supply.
  • the general built-in battery uses a lithium-ion battery, and its life will decrease as the number of times of charging increases. Each charge cycle will shorten its life to some extent. Due to the lack of other power supply methods, the built-in battery has a short service life. If the built-in battery of the wireless terminal is not used, the user has to replace the entire mobile phone or return the mobile phone to the manufacturer for replacement of the back cover (including the built-in battery), which increases the cost of the user using the mobile phone.
  • the technical problem to be solved by the present disclosure is to provide a control circuit compatible with a battery and an external power supply, which can externally supply power to the electronic device without taking out the battery, thereby prolonging the service life of the battery.
  • Embodiments of the present disclosure provide a control circuit for a compatible battery and an external power supply, including:
  • a switch module a switch control module, a battery connector module, and an external power connector module
  • the first end of the switch module is connected to the battery connector module
  • the second end of the switch module is opposite to the switch control module
  • the second end is connected
  • the third end of the switch module is connected to the external power connector module as a power supply output end
  • the switch module is configured to: when receiving the first control signal output by the switch control module, disconnect the power supply circuit between the battery connector module and the power supply output terminal, and receive the second output of the switch control module Turning on the power supply circuit between the battery connector module and the power supply output terminal when the signal is controlled;
  • the switch control module is configured to output a first control signal when receiving an external power signal output by the external power connector module, and output a second control signal when not receiving an external power signal output by the external power connector module ;
  • the battery connector module is configured to output a battery power signal to the switch module when the battery is connected;
  • the external power connector module is configured to output an external power signal to the switch module and the switch control module when the external power source is connected.
  • the battery connector module includes two ports, and the external power connector module includes three ports;
  • the first end of the battery connector module is a battery positive connection end and is connected to the first end of the switch module, and the second end of the battery connector module is a battery negative connection end and is grounded;
  • the first end of the external power connector module is an external power supply positive connection end and is connected to the third end of the switch module
  • the second end of the external power connector module is an external power supply positive connection end and The first end of the switch control module is connected
  • the third end of the external power connector module is an external power supply negative connection terminal and is grounded.
  • the switch module includes: a P-channel metal oxide semiconductor field effect transistor P1; a drain of the P-channel metal oxide semiconductor field effect transistor P1 as a first end of the switch module a gate of the P-channel MOSFET P1 as a second end of the switching module, and a source of the P-channel MOSFET P1 as a Three ends
  • the switch control module includes: a first resistor R1, a second resistor R2, and a first capacitor C1; a first end of the first resistor R1 serves as a first end of the switch control module, and the first resistor R1 a second end is connected to the second end of the switch control module, and is connected to the first end of the second resistor R2, the first end of the first capacitor C1, the second end of the second resistor R2, the The second end of the first capacitor C1 is grounded;
  • V ss2 is the voltage of the external power source
  • U TH is the lower limit of the absolute value of the gate-source voltage between the gate and the source capable of turning on the P-channel MOSFET P1.
  • the switch module includes: an N-channel metal oxide semiconductor field effect transistor N1; a source of the N-channel metal oxide semiconductor field effect transistor N1 as a first end of the switch module a gate of the N-channel MOSFET N1 as a second end of the switching module, and a drain of the N-channel MOSFET N1 as a Three ends
  • the switch control module includes: a boosting module U1, a first end of the boosting module serves as a first end of the switch control module, and a second end of the boosting module serves as a second end of the switch control module The third end of the boosting module serves as a third end of the switch control module;
  • the boosting module is configured to prohibit the boosting module from performing a boosting process when the voltage of the third terminal of the boosting module is a high level; and when the voltage of the third terminal of the boosting module is a low level
  • the boosting module is configured to perform a boosting process, wherein the boosting process is to perform a boosting process on the input voltage of the first end of the boosting module to obtain a boosting signal and in the boosting module The second end outputs the boost signal;
  • the second end of the boosting module is grounded by connecting a first resistor R1, and the third end of the boosting module is grounded by connecting a second resistor R2;
  • the boosting process of the boost module satisfies the following conditions:
  • V H is the voltage of the boost signal
  • V SS1 is the voltage of the battery power source
  • U TH is the absolute gate-source voltage between the gate and the source capable of turning on the N-channel MOSFET N1. The lower limit of the value.
  • the boosting module includes a boosting chip, and a power supply terminal of the boosting chip is connected to the battery connector module.
  • the embodiment of the present disclosure provides a compatible battery and an external power supply circuit, and a switch module and a switch control module are added between the battery power source and the external power source, and the switch control module detects whether the connection is connected.
  • the external power source outputs a different control signal to the switch module, which disconnects the battery power supply circuit when receiving a control signal corresponding to the detection of the external power source, and is powered by the external power source.
  • Embodiments of the present disclosure are capable of externally powering an electronic device without removing the battery, extending the life of the battery.
  • FIG. 1 is a schematic diagram of a control circuit for a compatible battery and an external power supply according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a control circuit (with an external power socket module and a battery connector module) for a compatible battery and an external power supply according to Embodiment 1 of the present disclosure
  • the switch module includes a P-channel MOSFET
  • the switch module includes an N-channel MOSFET.
  • an embodiment of the present disclosure provides a control circuit for a compatible battery and an external power supply, including: a switch module 101, a switch control module 102, a battery connector module 103, and an external power connector module 104;
  • the first end of the switch module 101 is connected to the battery connector module 103, the second end of the switch module 101 is connected to the second end of the switch control module 102, and the third end of the switch module 101 is used as a power supply.
  • the output end is connected to the external power connector module 104;
  • the switch module 101 is configured to: when receiving the first control signal output by the switch control module 102, disconnect the power supply circuit between the battery connector module 103 and the power supply output terminal, and receive the switch control module 102. When the second control signal is output, the power supply circuit between the battery connector module 103 and the power supply output terminal is turned on;
  • the switch control module 102 is configured to output a first control signal when receiving an external power signal output by the external power connector module 104, and output an output when the external power signal output by the external power connector module 104 is not received. Two control signals;
  • the battery connector module 103 is configured to output a battery power signal to the switch module 101 when the battery is connected;
  • the external power connector module 104 is configured to output an external power signal to the switch module 101 and the switch control module 102 when the external power source is connected;
  • the control circuit can also include the following features:
  • the battery connector module includes two ports, and the external power connector module includes three ports;
  • the first end of the battery connector module is a battery positive connection end and is connected to the first end of the switch module, and the second end of the battery connector module is a battery negative connection end and is grounded;
  • the first end of the external power connector module is an external power supply positive connection end and is connected to the third end of the switch module, the second end of the external power connector module is an external power supply positive connection end and The first end of the switch control module is connected, and the third end of the external power connector module is an external power supply negative connection end and grounded;
  • the switch module includes: a P-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) P1; the P-channel MOSFET a drain of the transistor P1 as a first end of the switch module, a gate of the P-channel MOSFET P1 serving as a second end of the switch module, and a source of the P-channel MOSFET P1 as the The third end of the switch module;
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the switch control module includes: a first resistor R1, a second resistor R2, and a first capacitor C1; a first end of the first resistor R1 serves as a first end of the switch control module, and the first resistor R1 a second end is connected to the second end of the switch control module, and is connected to the first end of the second resistor R2, the first end of the first capacitor C1, the second end of the second resistor R2, the The second end of the first capacitor C1 is grounded;
  • the P-channel MOSFET P1 when the P-channel MOSFET P1 satisfies the ON condition, it is turned on, and when the P-channel MOSFET P1 is turned on, the circuit between the drain and the source is turned on. When the channel MOSFET P1 is turned off, the circuit between the drain and the source is turned off;
  • the P-channel MOSFET (referred to as PMOS transistor) P1 has a source voltage of U S , a gate voltage of U G , a drain voltage of U D , and a battery power supply voltage of V SS1 .
  • the voltage is V SS2
  • the turn-on voltage of the PMOS transistor P1 is U TH
  • the U TH is capable of making the PMOS transistor
  • the opening condition of the P-channel MOSFET P1 is: the source voltage U S is greater than the gate voltage U G and the absolute value of the gate-source voltage U GS is greater than or equal to the turn-on voltage U TH of the P-channel MOSFET P1;
  • the battery connector module is connected to the battery, and the external power connector module is not connected to the external power source;
  • the battery connector module is not connected to the battery, and the external power connector module is connected to the external power source;
  • the source of the PMOS transistor P1 is connected to the anode of the external power source, the source voltage U S is the external power supply voltage V SS2 , the drain of the PMOS transistor P1 is suspended, and the drain and the source are The parasitic diode D1 is turned off;
  • the gate voltage U G of the PMOS transistor P1 is:
  • r1 is the resistance of the first resistor R1 and r2 is the resistance of the second resistor R2;
  • the gate source voltage U GS is:
  • the absolute value of the gate-source voltage U GS is required to be smaller than the turn-on voltage U TH of the PMOS transistor P1, that is,
  • r2:r1 when the external supply voltage V SS2 is equal to the maximum output voltage of the battery V SS1-max (4.35v), the absolute value of the gate-source voltage U GS
  • the battery connector module is connected to the battery, and the external power connector module is connected to the external power source;
  • the source of the PMOS transistor P1 is connected to the anode of the external power supply
  • the source voltage U S is the external power supply voltage V SS2
  • the drain of the PMOS transistor P1 is connected to the positive battery
  • the drain voltage U D is The battery power supply voltage V SS1 , when the external power supply voltage V SS2 is equal to the maximum output voltage V SS1-max of the battery, the parasitic diode D1 between the drain and the source is turned off;
  • the gate voltage U G of the PMOS transistor P1 is:
  • r1 is the resistance of the first resistor R1 and r2 is the resistance of the second resistor R2;
  • the gate source voltage U GS is:
  • the absolute value of the gate-source voltage U GS is required to be smaller than the turn-on voltage U TH of the PMOS transistor P1, that is,
  • r2:r1 when the external supply voltage V SS2 is equal to the maximum output voltage of the battery V SS1-max (4.35v), the absolute value of the gate-source voltage U GS
  • the switch module includes: an N-channel MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) N1;
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a source of the N-channel MOSFET N1 serves as a first end of the switch module, a gate of the N-channel MOSFET N1 serves as a second end of the switch module, and the N-channel MOSFET N1 a drain as a third end of the switch module;
  • the switch control module includes: a boosting module U1, a first end of the boosting module serves as a first end of the switch control module, and a second end of the boosting module serves as a second end of the switch control module The third end of the boosting module serves as a third end of the switch control module;
  • the boosting module is configured to prohibit the boosting module from performing a boosting process when the voltage of the third terminal of the boosting module is a high level; and when the voltage of the third terminal of the boosting module is a low level
  • the boosting module is configured to perform a boosting process, wherein the boosting process is to perform a boosting process on the input voltage of the first end of the boosting module to obtain a boosting signal and in the boosting module The second end outputs the boost signal;
  • the second end of the boosting module is grounded by connecting a first resistor R1, and the third end of the boosting module is grounded by connecting a second resistor R2;
  • the N-channel MOSFET N1 when the N-channel MOSFET N1 satisfies the ON condition, it is turned on, and when the N-channel MOSFET N1 is turned on, the circuit between the drain and the source is turned on.
  • Channel MOSFET N1 is turned off when it is turned off a loop between the drain and the source;
  • the N-channel MOSFET (abbreviated as NMOS transistor) N1 has a source voltage of U S , a gate voltage of U G , a drain voltage of U D , and a battery power supply voltage of V SS1 .
  • the voltage is V SS2
  • the turn-on voltage of the NMOS transistor N1 is U TH ;
  • the opening condition of the N-channel MOSFET N1 is that the gate voltage U G is greater than the source voltage U S and the absolute value of the gate-source voltage U GS is greater than or equal to the turn-on voltage U TH of the N-channel MOSFET N1;
  • a power terminal of the boosting chip is connected to the battery connector module, that is, a power supply voltage of the boosting chip is taken from a battery, when the battery connector module When the battery is connected, the boosting chip is in an operating state, and when the battery connector module is not connected to the battery, the boosting chip is in an inoperative state due to lack of power supply.
  • the NMOS transistor is turned on and off in three cases:
  • the battery connector module is connected to the battery, and the external power connector module is not connected to the external power source;
  • the boosting module performs a boosting process of boosting the input voltage (V SS1 ) of the first terminal of the boosting module to obtain a boosting signal V H and
  • the second end of the boosting module outputs the boosting signal V H
  • the gate of the NMOS transistor N1 is connected to the second end of the boosting module
  • the gate voltage U G is V H
  • the N-channel MOSFET N1 When the absolute value of the gate-source voltage U GS
  • the N-channel MOSFET N1 is turned on:
  • the output voltage of the lithium battery is between 2.3v and 4.35v, and the turn-on voltage U TH of the N-channel MOSFET N1 does not exceed 1v. Therefore, if the boosting process is to linearly amplify the input voltage, select the appropriate amplification factor. (For example, greater than or equal to 1.5 times) can meet the condition that the difference between the output voltage of the boost module and the input voltage is greater than or equal to the turn-on voltage of the NMOS transistor;
  • the battery power supply circuit After the NMOS transistor N1 is turned on, current flows from the drain of the NMOS transistor N1 to the source, and the battery power supply circuit is in a connected state, and is powered by the battery;
  • the battery connector module is not connected to the battery, and the external power connector module is connected to the external power source;
  • the boosting chip When the battery connector module is not connected to the battery, the boosting chip is in an inactive state due to lack of a power supply, the second end of the boosting module is grounded through a resistor R1, and the gate of the NMOS transistor N1 is The second end of the boosting module is connected to the voltage of 0v; the source of the NMOS transistor N1 is connected to the first end of the battery connector module (the first end is suspended when the battery connector module is not connected to the battery), therefore, The gate-source voltage U GS between the gate and the source of the NMOS transistor N1 is smaller than the turn-on voltage U TH , the NMOS transistor N1 is turned off; the external power supply circuit is in a connected state, the battery power supply circuit is in an off state, and the external power source is Power is supplied.
  • the battery connector module is connected to the battery, and the external power connector module is connected to the external power source;
  • the voltage of the third end of the boosting module is at a high level (the external power supply voltage V SS2 ), and the boosting module is prohibited from performing the boosting process, and the second end of the boosting module is No boost signal output, the second end of the boost module is grounded through a resistor R1, the gate of the NMOS transistor N1 is connected to the second end of the boost module, the gate voltage is 0v;
  • the source voltage U S (V SS1 ) of the NMOS transistor N1 is greater than the gate voltage U G (0v)
  • the ON condition of the NMOS transistor N1 is not satisfied, the NMOS transistor N1 is turned off, and the external power supply circuit is in a connected state, the battery The power supply circuit is disconnected and powered by an external power source.
  • a switch module and a switch control module are added between the battery power source and the external power source, and the switch control module outputs a different control signal to the switch module by detecting whether the external power source is connected, the switch The module disconnects the battery power supply circuit when receiving a control signal corresponding to the detection of the external power source, and is powered by the external power source.
  • Embodiments of the present disclosure are capable of externally powering an electronic device without removing the battery, extending the life of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种兼容电池和外部电源供电的控制电路,包括:开关模块(101)、开关控制模块(102)、电池连接器模块(103)和外部电源连接器模块(104);开关模块的第一端与电池连接器模块相连,第二端与开关控制模块的第二端相连,第三端作为供电输出端与外部电源连接器模块相连;开关模块,用于接收到开第一控制信号时断开电池连接器模块到供电输出端之间的供电回路,接收到第二控制信号时接通电池连接器模块到供电输出端之间的供电回路;开关控制模块,用于根据是否接收到外部电源信号输出第一或第二控制信号;电池连接器模块,用于连接电池;所述外部电源连接器模块,用于连接外部电源。

Description

一种兼容电池和外部电源供电的控制电路 技术领域
本公开涉及终端技术领域,尤其涉及的是一种兼容电池和外部电源供电的控制电路。
背景技术
现在移动智能终端的应用已经非常广泛,普及程度非常高,设计厂家为了外观时尚,结构上越做越薄,因此这些移动智能终端大多采用了内置电池(即不可拆卸电池),相对于可拆卸电池,相同容量的内置电池所占用空间更小,让手机在保持性能的同时更加轻薄,美观。
但是,一般内置电池都采用锂离子电池,其寿命会随充电次数增加而减少,每一次充电循环,就会若干程度上缩短其寿命。手机由于缺乏其他供电方式,因此内置电池的使用寿命较短。如果无线终端的内置电池老化不能使用,则用户不得不更换整个手机或将手机返回给厂家进行后盖(包含内置电池)的更换,增加了用户使用手机的成本。
发明内容
本公开所要解决的技术问题是提供一种兼容电池和外部电源供电的控制电路,能够在不取出电池的情况下对电子设备进行外部电源供电,延长电池的使用寿命。
本公开实施例提供了一种兼容电池和外部电源供电的控制电路,包括:
开关模块、开关控制模块、电池连接器模块和外部电源连接器模块;所述开关模块的第一端与所述电池连接器模块相连,所述开关模块的第二端与所述开关控制模块的第二端相连,所述开关模块的第三端作为供电输出端与所述外部电源连接器模块相连;
所述开关模块,用于接收到所述开关控制模块输出的第一控制信号时断开电池连接器模块到所述供电输出端之间的供电回路,接收到所述开关控制模块输出的第二控制信号时接通电池连接器模块到所述供电输出端之间的供电回路;
所述开关控制模块,用于接收到所述外部电源连接器模块输出的外部电源信号时输出第一控制信号,没有接收到所述外部电源连接器模块输出的外部电源信号时输出第二控制信号;
所述电池连接器模块,用于连接电池时输出电池电源信号给开关模块;
所述外部电源连接器模块,用于连接外部电源时输出外部电源信号给开关模块和开关控制模块。
根据一个示例性实施例,所述电池连接器模块包括两个端口,所述外部电源连接器模块包括三个端口;
所述电池连接器模块的第一端是电池正极连接端并且与所述开关模块的第一端相连,所述电池连接器模块的第二端是电池负极连接端并且接地;
所述外部电源连接器模块的第一端是外部电源正极连接端并且与所述开关模块的第三端相连,所述外部电源连接器模块的第二端是外部电源正极连接端并且与所述开关控制模块的第一端相连,所述外部电源连接器模块的第三端是外部电源负极连接端并且接地。
根据一个示例性实施例,所述开关模块包括:P沟道金属氧化物半导体场效应晶体管P1;所述P沟道金属氧化物半导体场效应晶体管P1的漏极作为所述开关模块的第一端,所述P沟道金属氧化物半导体场效应晶体管P1的栅极作为所述开关模块的第二端,所述P沟道金属氧化物半导体场效应晶体管P1的源极作为所述开关模块的第三端;
所述开关控制模块包括:第一电阻R1、第二电阻R2和第一电容C1;所述第一电阻R1的第一端作为所述开关控制模块的第一端,所述第一电阻R1的第二端作为所述开关控制模块的第二端并且与所述第二电阻R2的第一端、第一电容C1的第一端均相连,所述第二电阻R2的第二端、所述第一电容C1的第二端均接地;
其中,所述第一电阻R1的阻值r1与第二电阻R2的阻值r2之间满足以下条件:
Figure PCTCN2017108161-appb-000001
Vss2是外部电源的电压,UTH是能够使P沟道金属氧化物半导体场效应晶体管P1导通的栅极与源极之间的栅源电压绝对值下限。
根据一个示例性实施例,所述开关模块包括:N沟道金属氧化物半导体场效应晶体管N1;所述N沟道金属氧化物半导体场效应晶体管N1的源极作为所述开关模块的第一端,所述N沟道金属氧化物半导体场效应晶体管N1的栅极作为所述开关模块的第二端,所述N沟道金属氧化物半导体场效应晶体管N1的漏极作为所述开关模块的第三端;
所述开关控制模块包括:升压模块U1,所述升压模块的第一端作为所述开关控制模块的第一端,所述升压模块的第二端作为所述开关控制模块的第二端,所述升压模块的第三端作为所述开关控制模块的第三端;
所述升压模块,用于在所述升压模块的第三端的电压为高电平时,禁止所述升压模块进行升压处理;在所述升压模块的第三端的电压为低电平时,使能所述升压模块进行升压处理;其中,所述升压处理是对所述升压模块的第一端的输入电压进行升压处理得到升压信号并在所述升压模块的第二端输出所述升压信号;
所述升压模块的第二端通过连接第一电阻R1接地,所述升压模块的第三端通过连接第二电阻R2接地;
其中,升压模块的升压处理满足下述条件:
|VH-VSS1|≥UTH
其中,VH是升压信号的电压,VSS1是电池电源的电压,UTH是能够使N沟道金属氧化物半导体场效应晶体管N1导通的栅极与源极之间的栅源电压绝对值下限。
根据一个示例性实施例,所述升压模块包括升压芯片,所述升压芯片的供电电源端与所述电池连接器模块相连。
与现有技术相比,本公开实施例提供的一种兼容电池和外部电源供电的电路,在电池电源与外部电源之间增加开关模块和开关控制模块,所述开关控制模块通过检测是否连接上外部电源输出不同的控制信号给开关模块,所述开关模块在接收到对应于检测到外部电源的控制信号时断开电池供电回路,由外部电源供电。本公开实施例能够在不取出电池的情况下对电子设备进行外部电源供电,延长电池的使用寿命。
附图说明
图1为本公开实施例1的一种兼容电池和外部电源供电的控制电路示意图;
图2为本公开实施例1中一种兼容电池和外部电源供电的控制电路示意图(带外部电源插座模块和电池连接器模块);
图3为本公开实施例1中的一种兼容电池和外部电源供电的控制电路示意图(开关模块包括P沟道MOSFET);
图4为本公开实施例1中的一种兼容电池和外部电源供电的控制电路示意图(开关模块包括N沟道MOSFET)。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1
如图1所示,本公开实施例提供了一种兼容电池和外部电源供电的控制电路,包括:开关模块101、开关控制模块102、电池连接器模块103和外部电源连接器模块104;所述开关模块101的第一端与所述电池连接器模块103相连,所述开关模块101的第二端与所述开关控制模块102的第二端相连,所述开关模块101的第三端作为供电输出端与所述外部电源连接器模块104相连;
所述开关模块101,用于接收到所述开关控制模块102输出的第一控制信号时断开电池连接器模块103到所述供电输出端之间的供电回路,接收到所述开关控制模块102输出的第二控制信号时接通电池连接器模块103到所述供电输出端之间的供电回路;
所述开关控制模块102,用于接收到所述外部电源连接器模块104输出的外部电源信号时输出第一控制信号,没有接收到所述外部电源连接器模块104输出的外部电源信号时输出第二控制信号;
所述电池连接器模块103,用于连接电池时输出电池电源信号给开关模块101;
所述外部电源连接器模块104,用于连接外部电源时输出外部电源信号给开关模块101和开关控制模块102;
所述控制电路还可以包括下述特点:
如图2所示,在一种实施方式中,所述电池连接器模块包括两个端口,所述外部电源连接器模块包括三个端口;
所述电池连接器模块的第一端是电池正极连接端并且与所述开关模块的第一端相连,所述电池连接器模块的第二端是电池负极连接端并且接地;
所述外部电源连接器模块的第一端是外部电源正极连接端并且与所述开关模块的第三端相连,所述外部电源连接器模块的第二端是外部电源正极连接端并且与所述开关控制模块的第一端相连,所述外部电源连接器模块的第三端是外部电源负极连接端并且接地;
如图3所示,在一种实施方式中,所述开关模块包括:P沟道MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)P1;所述P沟道MOSFET管P1的漏极作为所述开关模块的第一端,所述P沟道MOSFET管P1的栅极作为所述开关模块的第二端,所述P沟道MOSFET管P1的源极作为所述开关模块的第三端;
所述开关控制模块包括:第一电阻R1、第二电阻R2和第一电容C1;所述第一电阻R1的第一端作为所述开关控制模块的第一端,所述第一电阻R1的第二端作为所述开关控制模块的第二端并且与所述第二电阻R2的第一端、第一电容C1的第一端均相连,所述第二电阻R2的第二端、所述第一电容C1的第二端均接地;
在本实施例中,当P沟道MOSFET管P1满足开启条件时导通,不满足开启条件时关断,P沟道MOSFET管P1导通时接通漏极和源极之间的回路,P沟道MOSFET管P1关断时断开漏极和源极之间的回路;
在本实施例中,所述P沟道MOSFET管(简称PMOS管)P1的源极电压为US,栅极电压为UG,漏极电压为UD;电池电源电压为VSS1,外部电源电压为VSS2,PMOS管P1的栅极和源极之间的栅源电压UGS为:UGS=UG-US,PMOS管P1的开启电压为UTH,UTH是能够使PMOS管P1导通的栅极与源极之间的栅源电压绝对值下限;
其中,所述P沟道MOSFET管P1的开启条件是:源极电压US大于栅极电压UG且栅源电压UGS的绝对值大于或等于P沟道MOSFET管P1的开启电压UTH
为了达到接通外部电源时断开电池供电回路的目的,所述第一电阻R1的阻值r1与第二电阻R2的阻值r2之间满足以下条件:
Figure PCTCN2017108161-appb-000002
为了达到接通外部电源时断开电池供电回路的目的,下面分三种情况分析PMOS管的导通和关断:
(一)电池连接器模块连接电池,外部电源连接器模块未连接外部电源;
外部电源连接器模块未连接外部电源时,PMOS管P1的栅极通过电阻R2接地,栅极电压UG为0v;电池连接器模块连接电池时,PMOS管P1的漏极连接电池的正极,漏极电压UD=VSS1;由于PMOS管P1的漏极和源极之间存在寄生二极管效应(寄生二极管的阳极接漏极,寄生二极管的阴极接源极),PMOS管P1的源极电压US=UD-VDT=VSS1-VDT,其 中,VDT是寄生二极管D1的正向导通压降;由于锂电池的输出电压一般都大于2.3v,最大输出电压一般为4.35v,而二极管的正向导通压降VDT一般都小于0.7v,所以源极电压US一般都大于1.6v,可以选择开启电压UTH小于或等于1v的PMOS管P1,则此时源极电压US大于栅极电压UG且栅源电压UGS的绝对值(|UGS|≥1.6v)大于P沟道MOSFET管P1的开启电压UTH(0<UTH≤1v),PMOS管P1导通,电流从PMOS管P1的漏极流向源极,电池供电回路处于连通状态,由电池进行供电;
(二)电池连接器模块未连接电池,外部电源连接器模块连接外部电源;
外部电源连接器模块连接外部电源时,PMOS管P1的源极连接外部电源的正极,源极电压US为外部电源电压VSS2,PMOS管P1的漏极悬空,漏极与源极之间的寄生二极管D1截止;
PMOS管P1的栅极电压UG为:
Figure PCTCN2017108161-appb-000003
其中,r1是第一电阻R1的阻值,r2是第二电阻R2的阻值;
栅源电压UGS为:
Figure PCTCN2017108161-appb-000004
为了保证此时PMOS管P1是关断的,需要栅源电压UGS的绝对值小于PMOS管P1的开启电压UTH,也即:
Figure PCTCN2017108161-appb-000005
也即,
Figure PCTCN2017108161-appb-000006
第一电阻R1的阻值r1和第二电阻R2的阻值r2之间满足上述公式(1-4)后,能够保证外部电源连接器模块连接外部电源后PMOS管P1是关断的;
比如,将r2:r1设计为100:1,当外部电源电压VSS2等于电池的最大输出电压VSS1-max(4.35v)时,栅源电压UGS的绝对值|UGS|大约为0.043v,远远小于开启电压UTH,所以PMOS管P1截止;外部电源供电回路处于连通状态,电池供电回路处于断开状态,由外部电源进行供电。
(三)电池连接器模块连接电池,外部电源连接器模块连接外部电源;
外部电源连接器模块连接外部电源时,PMOS管P1的源极连接外部电源的正极,源极电压US为外部电源电压VSS2,PMOS管P1的漏极连接电池正极,漏极电压UD为电池电源电压VSS1,当外部电源电压VSS2等于电池的最大输出电压VSS1-max时,漏极与源极之间的寄生二极管D1截止;
PMOS管P1的栅极电压UG为:
Figure PCTCN2017108161-appb-000007
其中,r1是第一电阻R1的阻值,r2是第二电阻R2的阻值;
栅源电压UGS为:
Figure PCTCN2017108161-appb-000008
为了保证此时PMOS管P1是关断的,需要栅源电压UGS的绝对值小于PMOS管P1的开启电压UTH,也即:
Figure PCTCN2017108161-appb-000009
也即,
Figure PCTCN2017108161-appb-000010
第一电阻R1的阻值r1和第二电阻R2的阻值r2之间满足上述公式(2-4)后,能够保证外部电源连接器模块连接外部电源后PMOS管P1是关断的;
比如,将r2:r1设计为100:1,当外部电源电压VSS2等于电池的最大输出电压VSS1-max(4.35v)时,栅源电压UGS的绝对值|UGS|大约为0.043v,远远小于开启电压UTH,所以PMOS管P1截止;外部电源供电回路处于连通状态,电池供电回路处于断开状态,由外部电源进行供电。
如图4所示,在一种实施方式中,所述开关模块包括:N沟道MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)N1;
所述N沟道MOSFET管N1的源极作为所述开关模块的第一端,所述N沟道MOSFET管N1的栅极作为所述开关模块的第二端,所述N沟道MOSFET管N1的漏极作为所述开关模块的第三端;
所述开关控制模块包括:升压模块U1,所述升压模块的第一端作为所述开关控制模块的第一端,所述升压模块的第二端作为所述开关控制模块的第二端,所述升压模块的第三端作为所述开关控制模块的第三端;
所述升压模块,用于在所述升压模块的第三端的电压为高电平时,禁止所述升压模块进行升压处理;在所述升压模块的第三端的电压为低电平时,使能所述升压模块进行升压处理;其中,所述升压处理是对所述升压模块的第一端的输入电压进行升压处理得到升压信号并在所述升压模块的第二端输出所述升压信号;
所述升压模块的第二端通过连接第一电阻R1接地,所述升压模块的第三端通过连接第二电阻R2接地;
在本实施例中,当N沟道MOSFET管N1满足开启条件时导通,不满足开启条件时关断,N沟道MOSFET管N1导通时接通漏极和源极之间的回路,N沟道MOSFET管N1关断时断开 漏极和源极之间的回路;
在本实施例中,所述N沟道MOSFET管(简称NMOS管)N1的源极电压为US,栅极电压为UG,漏极电压为UD;电池电源电压为VSS1,外部电源电压为VSS2,NMOS管N1的栅极和源极之间的栅源电压UGS为:UGS=UG-US,NMOS管N1的开启电压为UTH
其中,所述N沟道MOSFET管N1的开启条件是栅极电压UG大于源极电压US且栅源电压UGS的绝对值大于或等于N沟道MOSFET管N1的开启电压UTH
所述升压模块采用升压芯片时,所述升压芯片的电源端与所述电池连接器模块相连,也即,所述升压芯片的供电电压取自电池,当所述电池连接器模块连接电池时,所述升压芯片处于工作状态,当所述电池连接器模块未连接电池时,所述升压芯片由于缺少供电电源而处于非工作状态。为了达到接通外部电源时断开电池供电回路的目的,当下面分三种情况分析NMOS管的导通和关断:
(一)电池连接器模块连接电池,外部电源连接器模块未连接外部电源;
电池连接器模块连接电池时,NMOS管N1的源极连接电池的正极,源极电压US=VSS1;外部电源连接器模块未连接外部电源时,升压模块的第三端的电压为低电平(0v),所述升压模块进行升压处理,所述升压处理是对所述升压模块的第一端的输入电压(VSS1)进行升压处理得到升压信号VH并在所述升压模块的第二端输出所述升压信号VH,NMOS管N1的栅极连接所述升压模块的第二端,所述栅极电压UG为VH,NMOS管N1的栅极和源极之间的栅源电压UGS为:UGS=UG-US=VH-VSS1
当栅源电压UGS的绝对值|UGS|大于或等于N沟道MOSFET管N1的开启电压UTH时,N沟道MOSFET管N1导通;其中,UTH是能够使N沟道MOSFET管N1导通的栅极与源极之间的栅源电压绝对值下限;
也即:升压模块的升压处理满足下述条件时,N沟道MOSFET管N1导通:
|VH-VSS1|≥UTH    (3-1)
一般,锂电池输出电压在2.3v到4.35v之间,N沟道MOSFET管N1的开启电压UTH不超过1v,因此,如果升压处理是对输入电压进行线性放大,则选取合适的放大倍数(比如,大于或等于1.5倍)即可满足升压模块输出电压与输入电压的差值大于或等于NMOS管开启电压的条件;
NMOS管N1导通后,电流从NMOS管N1的漏极流向源极,电池供电回路处于连通状态,由电池进行供电;
(二)电池连接器模块未连接电池,外部电源连接器模块连接外部电源;
当所述电池连接器模块未连接电池时,所述升压芯片由于缺少供电电源而处于非工作状态,所述升压模块的第二端通过电阻R1接地,NMOS管N1的栅极与所述升压模块的第二端相连,电压为0v;NMOS管N1的源极与所述电池连接器模块的第一端相连(电池连接器模块未连接电池时所述第一端悬空),因此,NMOS管N1的栅极和源极之间的栅源电压UGS 小于开启电压UTH,所述NMOS管N1关断;外部电源供电回路处于连通状态,电池供电回路处于断开状态,由外部电源进行供电。
(三)电池连接器模块连接电池,外部电源连接器模块连接外部电源;
电池连接器模块连接电池时,NMOS管N1的源极连接电池的正极,源极电压US=VSS1
外部电源连接器模块连接外部电源时,升压模块的第三端的电压为高电平(外部电源电压VSS2),禁止所述升压模块进行升压处理,所述升压模块的第二端没有升压信号输出,所述升压模块的第二端通过电阻R1接地,NMOS管N1的栅极与所述升压模块的第二端相连,栅极电压为0v;
由于NMOS管N1的源极电压US(VSS1)大于栅极电压UG(0v),所以不满足NMOS管N1的导通条件,NMOS管N1关断,外部电源供电回路处于连通状态,电池供电回路处于断开状态,由外部电源进行供电。
需要说明的是,本公开还可有其他多种实施例,在不背离本公开精神及其实质的情况下,熟悉本领域的技术人员可根据本公开作出各种相应的改变和变形,但这些相应的改变和变形都应属于本公开所附的权利要求的保护范围。
工业实用性
本发明实施例提供的技术方案可以应用于终端技术领域。采用本发明实施例提供的技术方案,在电池电源与外部电源之间增加开关模块和开关控制模块,所述开关控制模块通过检测是否连接上外部电源输出不同的控制信号给开关模块,所述开关模块在接收到对应于检测到外部电源的控制信号时断开电池供电回路,由外部电源供电。本公开实施例能够在不取出电池的情况下对电子设备进行外部电源供电,延长电池的使用寿命。

Claims (5)

  1. 一种兼容电池和外部电源供电的控制电路,包括:
    开关模块、开关控制模块、电池连接器模块和外部电源连接器模块;所述开关模块的第一端与所述电池连接器模块相连,所述开关模块的第二端与所述开关控制模块的第二端相连,所述开关模块的第三端作为供电输出端与所述外部电源连接器模块相连;
    所述开关模块,设置为接收到所述开关控制模块输出的第一控制信号时断开电池连接器模块到所述供电输出端之间的供电回路,接收到所述开关控制模块输出的第二控制信号时接通电池连接器模块到所述供电输出端之间的供电回路;
    所述开关控制模块,设置为接收到所述外部电源连接器模块输出的外部电源信号时输出第一控制信号,没有接收到所述外部电源连接器模块输出的外部电源信号时输出第二控制信号;
    所述电池连接器模块,设置为连接电池时输出电池电源信号给开关模块;
    所述外部电源连接器模块,设置为连接外部电源时输出外部电源信号给开关模块和开关控制模块。
  2. 如权利要求1所述的控制电路,其中:
    所述电池连接器模块包括两个端口,所述外部电源连接器模块包括三个端口;
    所述电池连接器模块的第一端是电池正极连接端并且与所述开关模块的第一端相连,所述电池连接器模块的第二端是电池负极连接端并且接地;
    所述外部电源连接器模块的第一端是外部电源正极连接端并且与所述开关模块的第三端相连,所述外部电源连接器模块的第二端是外部电源正极连接端并且与所述开关控制模块的第一端相连,所述外部电源连接器模块的第三端是外部电源负极连接端并且接地。
  3. 如权利要求1所述的控制电路,其中:
    所述开关模块包括:P沟道金属氧化物半导体场效应晶体管P1;所述P沟道金属氧化物半导体场效应晶体管P1的漏极作为所述开关模块的第一端,所述P沟道金属氧化物半导体场效应晶体管P1的栅极作为所述开关模块的第二端,所述P沟道金属氧化物半导体场效应晶体管P1的源极作为所述开关模块的第三端;
    所述开关控制模块包括:第一电阻R1、第二电阻R2和第一电容C1;所述第一电阻R1的第一端作为所述开关控制模块的第一端,所述第一电阻R1的第二端作为所述开关控制模块的第二端并且与所述第二电阻R2的第一端、第一电容C1的第一端均相连,所述第二电阻R2的第二端、所述第一电容C1的第二端均接地;
    其中,所述第一电阻R1的阻值r1与第二电阻R2的阻值r2之间满足以下条件:
    Figure PCTCN2017108161-appb-100001
    Vss2是外部电源的电压,UTH是能够使P沟道金属氧化物半导体场效应晶体管P1导通的栅极与源极之间的栅源电压绝对值下限。
  4. 如权利要求1所述的控制电路,其中:
    所述开关模块包括:N沟道金属氧化物半导体场效应晶体管N1;所述N沟道金属氧化物半导体场效应晶体管N1的源极作为所述开关模块的第一端,所述N沟道金属氧化物半导体场效应晶体管N1的栅极作为所述开关模块的第二端,所述N沟道金属氧化物半导体场效应晶体管N1的漏极作为所述开关模块的第三端;
    所述开关控制模块包括:升压模块U1,所述升压模块的第一端作为所述开关控制模块的第一端,所述升压模块的第二端作为所述开关控制模块的第二端,所述升压模块的第三端作为所述开关控制模块的第三端;
    所述升压模块,设置为在所述升压模块的第三端的电压为高电平时,禁止所述升压模块进行升压处理;在所述升压模块的第三端的电压为低电平时,使能所述升压模块进行升压处理;其中,所述升压处理是对所述升压模块的第一端的输入电压进行升压处理得到升压信号并在所述升压模块的第二端输出所述升压信号;
    所述升压模块的第二端通过连接第一电阻R1接地,所述升压模块的第三端通过连接第二电阻R2接地;
    其中,升压模块的升压处理满足下述条件:
    |VH-VSS1|≥UTH
    其中,VH是升压信号的电压,VSS1是电池电源的电压,UTH是能够使N沟道金属氧化物半导体场效应晶体管N1导通的栅极与源极之间的栅源电压绝对值下限。
  5. 如权利要求4所述的控制电路,其中:
    所述升压模块包括升压芯片,所述升压芯片的供电电源端与所述电池连接器模块相连。
PCT/CN2017/108161 2017-01-20 2017-10-28 一种兼容电池和外部电源供电的控制电路 WO2018133484A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17893331.3A EP3573209A4 (en) 2017-01-20 2017-10-28 CONTROL CIRCUIT COMPATIBLE WITH BATTERY POWER SUPPLY AND EXTERNAL POWER SUPPLY
JP2019537173A JP6818153B2 (ja) 2017-01-20 2017-10-28 電池と外部電源の給電を互換可能な制御回路
US16/476,869 US11025087B2 (en) 2017-01-20 2017-10-28 Control circuit compatible with battery power supply and external power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710045045.4A CN108336810B (zh) 2017-01-20 2017-01-20 一种兼容电池和外部电源供电的控制电路
CN201710045045.4 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018133484A1 true WO2018133484A1 (zh) 2018-07-26

Family

ID=62907868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108161 WO2018133484A1 (zh) 2017-01-20 2017-10-28 一种兼容电池和外部电源供电的控制电路

Country Status (5)

Country Link
US (1) US11025087B2 (zh)
EP (1) EP3573209A4 (zh)
JP (1) JP6818153B2 (zh)
CN (1) CN108336810B (zh)
WO (1) WO2018133484A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556914A (zh) * 2019-09-21 2019-12-10 温岭爱特制冷设备有限公司 一种真空泵的电源控制系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240476B (zh) * 2018-09-18 2024-04-19 合肥联宝信息技术有限公司 一种电池供电的方法、电路及电子设备
CN111092478B (zh) * 2020-03-23 2023-06-23 腾色智能科技(南京)有限公司 一种电源扩容装置及方法
CN111625076B (zh) * 2020-04-14 2022-03-18 深圳微步信息股份有限公司 外设断电重启控制电路和电脑

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005795A (zh) * 2010-11-29 2011-04-06 鸿富锦精密工业(深圳)有限公司 可充电电池电量检测装置
CN104348202A (zh) * 2013-08-01 2015-02-11 快捷半导体(苏州)有限公司 充电控制电路、方法及电子设备
CN204720978U (zh) * 2015-02-06 2015-10-21 深圳一电科技有限公司 电源切换电路及电子设备
KR101665097B1 (ko) * 2015-09-01 2016-10-13 희성전자 주식회사 배터리 관리 시스템에서의 전원 제어 회로
CN106230077A (zh) * 2016-09-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种移动终端的供电控制电路、供电控制方法及电源管理模块

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925942A (en) * 1997-07-16 1999-07-20 Motorola, Inc. Power supply control apparatus and method suitable for use in an electronic device
JP2001190034A (ja) * 1999-12-28 2001-07-10 Canon Inc 電源切換え回路
JP2002320333A (ja) * 2001-04-19 2002-10-31 Matsushita Electric Ind Co Ltd 充電機能付き電子機器
US6765370B2 (en) * 2002-05-17 2004-07-20 Kyocera Wireless Corp. System and method for bi-directional power conversion in a portable device
CN102044906A (zh) * 2009-10-23 2011-05-04 鸿富锦精密工业(深圳)有限公司 电源切换电路及可自动切换供电电源的电子装置
JP2013046563A (ja) * 2011-08-26 2013-03-04 Denshi System Design Kk 携帯電子機器の充電器
WO2014024337A1 (ja) * 2012-08-10 2014-02-13 パナソニック株式会社 バッテリー装置およびバッテリー制御装置
JP6399442B2 (ja) * 2014-08-07 2018-10-03 パナソニックIpマネジメント株式会社 給電制御装置
EP3226379B1 (en) * 2014-11-27 2019-11-27 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005795A (zh) * 2010-11-29 2011-04-06 鸿富锦精密工业(深圳)有限公司 可充电电池电量检测装置
CN104348202A (zh) * 2013-08-01 2015-02-11 快捷半导体(苏州)有限公司 充电控制电路、方法及电子设备
CN204720978U (zh) * 2015-02-06 2015-10-21 深圳一电科技有限公司 电源切换电路及电子设备
KR101665097B1 (ko) * 2015-09-01 2016-10-13 희성전자 주식회사 배터리 관리 시스템에서의 전원 제어 회로
CN106230077A (zh) * 2016-09-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种移动终端的供电控制电路、供电控制方法及电源管理模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573209A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556914A (zh) * 2019-09-21 2019-12-10 温岭爱特制冷设备有限公司 一种真空泵的电源控制系统
CN110556914B (zh) * 2019-09-21 2024-04-02 温岭爱特制冷设备有限公司 一种真空泵的电源控制系统

Also Published As

Publication number Publication date
US20190356160A1 (en) 2019-11-21
CN108336810B (zh) 2022-11-29
EP3573209A4 (en) 2020-07-22
JP6818153B2 (ja) 2021-01-20
JP2020505894A (ja) 2020-02-20
EP3573209A1 (en) 2019-11-27
US11025087B2 (en) 2021-06-01
CN108336810A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
US11108246B2 (en) Charging system and charging circuit thereof
WO2018133484A1 (zh) 一种兼容电池和外部电源供电的控制电路
CN115833298B (zh) 一种终端设备的供电电路、终端设备及供电方法
US10727677B2 (en) Fast charging circuit
US20150357864A1 (en) Power source switching apparatus and methods for dual-powered electronic devices
WO2023025293A1 (zh) 一种上下电控制电路及信号输出装置
US20150035369A1 (en) Charging control circuit, method and electronic device thereof
US20110095615A1 (en) Power source selection circuit and electronic device using the same
WO2016177197A1 (zh) 一种单电源电路和电源系统
CN101162872A (zh) 识别电源适配器的控制电路与方法
US9954431B2 (en) Starting circuit of power management chip, and power management chip
US20140217890A1 (en) Handheld device and power supply circuit thereof
CN107979372B (zh) 具有模/数转换功能的电路及电子设备
TW202119692A (zh) 一種鋰電池保護系統
US20200266816A1 (en) Power supply circuits
CN110311429A (zh) 低功耗电源管理系统及管理方法
TW201616767A (zh) 電池充放電裝置
CN107196510B (zh) 一种用于电池开关控制电路的升压电路
CN220066900U (zh) 一种电池升压电路
TW541778B (en) Power supply control device for electronic device equipped with multiple batteries
CN216872087U (zh) 一种低功耗唤醒电路
JP2013027227A (ja) 充電装置
TW201322577A (zh) 電源切換電路與其電源切換方法
US20130106345A1 (en) Charger for reducing static power consumption
CN115483726A (zh) 电池系统以及电池系统的省电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537173

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893331

Country of ref document: EP

Effective date: 20190820