WO2023025003A1 - 一种肺炎球菌结合疫苗制备方法 - Google Patents

一种肺炎球菌结合疫苗制备方法 Download PDF

Info

Publication number
WO2023025003A1
WO2023025003A1 PCT/CN2022/113063 CN2022113063W WO2023025003A1 WO 2023025003 A1 WO2023025003 A1 WO 2023025003A1 CN 2022113063 W CN2022113063 W CN 2022113063W WO 2023025003 A1 WO2023025003 A1 WO 2023025003A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsular polysaccharide
polysaccharide
glycoconjugate
adh
protein
Prior art date
Application number
PCT/CN2022/113063
Other languages
English (en)
French (fr)
Inventor
王浩猛
刘磊
严志红
张慢慢
李军强
巢守柏
朱涛
Original Assignee
康希诺生物股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康希诺生物股份公司 filed Critical 康希诺生物股份公司
Publication of WO2023025003A1 publication Critical patent/WO2023025003A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • A61K38/09Luteinising hormone-releasing hormone [LHRH], i.e. Gonadotropin-releasing hormone [GnRH]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/09Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the technical field of vaccine development, in particular to a glycoconjugate prepared by reacting capsular polysaccharide of serotype Streptococcus pneumoniae with a carrier protein, an immunogenic composition comprising the glycoconjugate, and the Application of the above-mentioned glycoconjugates and immunogenic compositions in the preparation of drugs or vaccines for preventing and/or treating individual Streptococcus pneumoniae infection and diseases related to Streptococcus pneumoniae.
  • Pneumococcus (Streptococcus pneumoniae) is a Gram-positive bacterium, and the capsular polysaccharide outside the cell wall has a thicker capsule. Pneumococcus is the main pathogen that causes pneumonia, bacteremia, and meningitis in children and the elderly. Both have high morbidity and mortality. The pathogenicity and serotype of bacteria are often related to the composition and structure of the capsular polysaccharide. So far, more than 90 different serotypes of the capsular polysaccharide of Streptococcus pneumoniae have been found, and more than 20 of them have been used to prepare bacteria caused by Streptococcus pneumoniae infection. Disease vaccine. Streptococcus pneumoniae conjugate vaccine is a pneumococcal vaccine used to prevent diseases caused by Streptococcus pneumoniae. Currently, Pfizer's thirteen-valent vaccine Prevenar 13 is available worldwide.
  • a 24-valent pneumococcal conjugate vaccine including serotypes 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F.
  • the traditional sodium periodate method or CDAP (1-cyano-4-(dimethylamino)pyridine tetrafluoroborate) method can be used for various serotypes in the research process to obtain highly immunogenic conjugates.
  • the stability of activated polysaccharides obtained by sodium periodate method or CDAP method for serotype polysaccharides such as 12F is poor, and the immune response of the final conjugate is weak.
  • Patent 104870463A discloses a new method for preparing conjugates from 12F serotype capsular polysaccharides, developed by Pfizer. Specifically, methods for preparing glycoconjugates comprising saccharides conjugated to carrier proteins, immunogenic compositions comprising such glycoconjugates, and the use of stable nitroxyl-related reagents/oxidants as oxidizing species Methods of such glycoconjugates and immunogenic compositions. The method uses TEMPO-NCS to selectively oxidize primary hydroxyl groups to generate aldehyde groups to prepare activated polysaccharides.
  • Patent CN101247827 discloses an improved method for sugar-protein conjugation reaction using carbodiimide condensation chemistry: the carboxyl group on the Vi sugar structure of Salmonella typhi is derivatized by ADH and combined with the carrier protein. Pneumococcal vaccines have not yet been marketed using sugar ring carboxyl-coupled carrier proteins.
  • the present invention provides a variety of methods for preparing 12F type pneumococcal capsular polysaccharide and protein conjugates, using the sugar ring specific activation site reaction to obtain 12F type pneumococcal capsular polysaccharide and A glycoconjugate coupled to a protein carrier, and an activation site of 12F type pneumococcal capsular polysaccharide is disclosed, the activation site being: acetylaminopyranosyl carboxyl group ( ⁇ -D-ManpNAcA).
  • the preparation method of the glycoconjugate provided by the present invention is applicable to any carboxyl-containing polysaccharides, such as serotypes 1, 2, 3, 5, 8, 9N, 9V, 12F, 22F, etc., after intensive research by the inventors.
  • the method has obvious advantages over activation methods such as sodium periodate or CDAP, and the obtained glycoconjugates of several serotypes have higher stability.
  • the conjugate of the present invention Compared with the conjugate obtained with carrier protein after periodate activation, CDAP activation or TEMPO-NCS activation in the prior art, the conjugate of the present invention has high stability, high immunogenicity and significantly improved bactericidal effect .
  • the first aspect of the present invention provides a glycoconjugate, which is obtained by derivatizing the carboxyl group of the bacterial capsular polysaccharide through a spacer and then combining it with a carrier protein.
  • the bacterial capsular polysaccharide is selected from Streptococcus pneumoniae type 1, 2, 3, 5, 8, 9N, 9V, 12F or 22F capsular polysaccharide, and the bacterial capsular polysaccharide reactive site includes ⁇ - D-ManpNAcA, ⁇ -D-GalpA, D-GlcpA, ⁇ -D-GlcpA, ⁇ -D-GlcpA, or ⁇ -D-GlupA.
  • the bacterial capsular polysaccharide is Streptococcus pneumoniae type 12F capsular polysaccharide.
  • the Streptococcus pneumoniae type 12F capsular polysaccharide reactive site includes ⁇ -D-ManpNAcA.
  • the Streptococcus pneumoniae 12F capsular polysaccharide can be natural or synthetic.
  • the spacer contains the general formula Y 1 -LY 2 , wherein Y 1 contains the first primary amino group that can react with the carbonyl (or carboxyl) in the polysaccharide; Y 2 contains an ester that can react with the linker and L is the linking moiety in the other linker.
  • Typical L groups are straight chain alkyl groups having 1-10 carbon atoms (eg C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 ) , especially -(CH 2 ) 4 -.
  • Homobifunctional linkers of the general formula YLY are particularly suitable as spacers, wherein the two Y groups are identical and are both capable of reacting with carbonyl (or carboxyl) and ester groups; and wherein L is the linkage in the spacer part.
  • the Y group is a -NHNH2 group.
  • L generally has the general formula -L'- L2 -L'-, where L' is carbonyl.
  • the L2 group is a straight chain alkyl having 1-10 carbon atoms (e.g. C1 , C2 , C3 , C4 , C5 , C6 , C7 , C8 , C9 , C10 ) , especially -(CH 2 ) 4 -.
  • the spacer is selected from ADH (adipate dihydrazide) or CDH (carboxydihydrazine).
  • the spacer is ADH.
  • the mass ratio of the activated capsular polysaccharide to ADH is 1:(1-30) (for example, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6 , 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1 :19, 1:20, 1:21, 1:22, 1:23, 1:24, 1:25, 1:26, 1:27, 1:28, 1:29, 1:30).
  • the carrier protein contains one or more amino or carboxyl groups.
  • the carrier protein can be a related protein antigen from the target pathogen that enhances the specific immune response to the pathogen, or a general immunogenic protein that mainly acts as an adjuvant or general immune response stimulator.
  • the carrier protein is selected from diphtheria toxoid mutant (CRM197/CRM), tetanus toxoid (TT), outer membrane protein from Gram-negative bacteria, Haemophilus influenzae surface lipoprotein, Fusion protein formed by Haemophilus influenzae HiD protein gene and Haemophilus influenzae Hin47 protein gene in a 1:1 manner, pertussis toxin, hepatitis B surface antigen, hepatitis B core antigen, rotavirus VP7 protein or respiratory syncytia Viral F and G proteins or active parts thereof.
  • CCM197/CRM diphtheria toxoid mutant
  • TT tetanus toxoid
  • outer membrane protein from Gram-negative bacteria
  • Haemophilus influenzae surface lipoprotein Fusion protein formed by Haemophilus influenzae HiD protein gene and Haemophilus influenzae Hin47 protein gene in a 1:1 manner
  • pertussis toxin hepatitis B surface antigen
  • the carrier protein is CRM197 or TT (tetanus toxoid).
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (0.3-3):1 (for example, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1 , 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2.0:1, 2.1 :1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3:1).
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (0.8-2):1.
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (1.0-1.3):1.
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (0.8-1.2):1.
  • the carrier protein Preferably, for every 10 to 30 sugar repeating units of the bacterial capsular polysaccharide, there is at least one covalent bond between the carrier protein and the bacterial capsular polysaccharide.
  • the second aspect of the present invention provides a method for preparing a glycoconjugate, comprising:
  • the acid solution is an acetic acid solution to obtain a bacterial capsular polysaccharide hydrolyzed, reacting the bacterial capsular polysaccharide with a spacer to obtain a bacterial capsular polysaccharide derivative, and the bacterial capsular polysaccharide
  • the membrane polysaccharide derivative is combined with a carrier protein to prepare a glycoconjugate.
  • the bacterial capsule polysaccharide is reacted with a spacer in the presence of EDAC to obtain a bacterial capsule polysaccharide derivative.
  • the bacterial capsular polysaccharide is selected from Streptococcus pneumoniae type 1, 2, 3, 5, 8, 9N, 9V, 12F or 22F capsular polysaccharide, and the bacterial capsular polysaccharide reactive site includes ⁇ - D-ManpNAcA, ⁇ -D-GalpA, D-GlcpA, ⁇ -D-GlcpA, ⁇ -D-GlcpA, or ⁇ -D-GlupA.
  • the bacterial capsular polysaccharide is Streptococcus pneumoniae type 12F capsular polysaccharide.
  • the reactive site of the Streptococcus pneumoniae type 12 capsular polysaccharide is acetylaminopyranosyl carboxyl group ( ⁇ -D-ManpNAcA).
  • the spacer contains the general formula Y 1 -LY 2 , wherein Y 1 contains the first primary amino group that can react with the carbonyl (or carboxyl) in the polysaccharide; Y 2 contains an ester that can react with the linker and L is the linking moiety in the other linker.
  • Typical L groups are straight chain alkyl groups having 1-10 carbon atoms (eg C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 ) , especially -(CH 2 ) 4 -.
  • Homobifunctional linkers of the general formula YLY are particularly suitable as spacers, wherein the two Y groups are identical and are both capable of reacting with carbonyl (or carboxyl) and ester groups; and wherein L is the linkage in the spacer part.
  • the Y group is a -NHNH2 group.
  • L generally has the general formula -L'- L2 -L'-, where L' is carbonyl.
  • the L2 group is a straight chain alkyl having 1-10 carbon atoms (e.g. C1 , C2 , C3 , C4 , C5 , C6 , C7 , C8 , C9 , C10 ) , especially -(CH 2 ) 4 -.
  • the spacer is selected from ADH or CDH.
  • the spacer is ADH.
  • the mass ratio of the activated capsular polysaccharide to ADH is 1:1-30 (for example, 1:1, 1:2, 1:1:3, 1:4, 1:5, 1:6 , 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:16, 1:17, 1:18, 1 :19, 1:20, 1:21, 1:22, 1:23, 1:24, 1:25, 1:26, 1:27, 1:28, 1:29, 1:30).
  • the carrier protein contains one or more amino/carboxyl groups.
  • the carrier protein can be a related protein antigen from the target pathogen that enhances the specific immune response to the pathogen, or a general immunogenic protein that mainly acts as an adjuvant or general immune response stimulator.
  • the carrier protein is selected from diphtheria toxoid mutant (CRM197), tetanus toxoid (TT), outer membrane protein from Gram-negative bacteria, Haemophilus influenzae surface lipoprotein (HiD) , a fusion protein formed by the HiD protein gene of Haemophilus influenzae and the Hin47 protein gene of Haemophilus influenzae in a 1:1 manner, pertussis toxin, hepatitis B surface antigen, hepatitis B core antigen, rotavirus VP7 protein or respiratory syndrome Cytovirus F and G proteins or active parts thereof.
  • CCM197 diphtheria toxoid mutant
  • TT tetanus toxoid
  • HiD Haemophilus influenzae surface lipoprotein
  • a fusion protein formed by the HiD protein gene of Haemophilus influenzae and the Hin47 protein gene of Haemophilus influenzae in a 1:1 manner pertussis toxin, hepatitis B surface anti
  • the carrier protein is CRM197 or TT.
  • the Streptococcus pneumoniae 12F capsular polysaccharide can be natural or synthetic.
  • the carboxyl derivatization reaction is carried out in an aqueous solvent.
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (0.3-3):1 (for example, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1 , 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2.0:1, 2.1 :1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3:1).
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (0.8-1.7):1.
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (1.0-1.5):1.
  • the mass ratio of the bacterial capsular polysaccharide to the carrier protein is (0.8-1.2):1.
  • the carrier protein Preferably, for every 10 to 30 sugar repeating units of the bacterial capsular polysaccharide, there is at least one covalent bond between the carrier protein and the bacterial capsular polysaccharide.
  • the preparation method of the glycoconjugate comprises:
  • step 2) The polysaccharide derived from step 1) is reacted with CRM197 or TT to prepare a glycoconjugate.
  • the 12F Streptococcus pneumoniae capsular polysaccharide is hydrolyzed to a molecular weight of 50-500 kDa.
  • the step 1) further includes the step of purifying the derivatized polysaccharide.
  • the method is applicable to any carboxy-containing capsular polysaccharide of Streptococcus pneumoniae serotype.
  • the third aspect of the present invention provides a glycoconjugate prepared by the above-mentioned preparation method.
  • the fourth aspect of the present invention provides an immunogenic composition, comprising the above-mentioned glycoconjugate or the glycoconjugate prepared by the above-mentioned preparation method, and a pharmaceutically acceptable excipient, carrier and/or diluent .
  • the composition includes a Streptococcus pneumoniae 12F type capsular polysaccharide conjugate
  • the Streptococcus pneumoniae 12F type capsular polysaccharide conjugate is hydrolyzed by adding an acid solution, preferably, the acid solution is acetic acid Solution, to obtain 12F type capsular polysaccharide hydrolyzate, react 12F type capsular polysaccharide with spacer to obtain 12F type capsular polysaccharide derivative, combine 12F type capsular polysaccharide derivative with carrier protein to prepare glycoconjugate, preferably , reacting 12F capsular hydrolyzed polysaccharide with a spacer in the presence of EDAC to obtain 12F capsular polysaccharide derivatives.
  • the immunogenic composition further comprises glycoconjugates of other bacterial capsular polysaccharides selected from Streptococcus pneumoniae serotypes 1, 2, 3, 4, 5, and 6A , 6B, 7F, 8, 9N, 9V, 10A, 11A, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F capsular polysaccharide.
  • other bacterial capsular polysaccharides selected from Streptococcus pneumoniae serotypes 1, 2, 3, 4, 5, and 6A , 6B, 7F, 8, 9N, 9V, 10A, 11A, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F capsular polysaccharide.
  • the dosage form of the immunogenic composition is selected from the group consisting of tablets, capsules, pills, injections, inhalants, buccal tablets, suppositories, emulsions, microemulsions, submicroemulsions, nanoparticles, gels, powders, Suspoemulsion, cream, jelly, spray, etc.
  • the administration mode of the immunogenic composition is selected from: oral administration, enteral administration, subcutaneous injection, intramuscular injection, intravenous injection, nasal cavity administration, transdermal administration, subconjunctival administration, intraocular administration , orbital administration, retrobulbar administration, retinal administration, choroidal administration, intrathecal injection, etc.
  • the immunogenic composition further includes an adjuvant.
  • the adjuvant is an aluminum adjuvant.
  • the aluminum-based adjuvant is selected from aluminum phosphate, aluminum sulfate and aluminum hydroxide.
  • the immunogenic composition further comprises physiological saline and succinic acid.
  • the fifth aspect of the present invention provides the above-mentioned glycoconjugate, the glycoconjugate prepared by the above-mentioned preparation method or the above-mentioned immunogenic composition in the prevention and/or treatment of individual Streptococcus pneumoniae infection, and pneumoniae Drugs or vaccines for cocci-related diseases.
  • glycoconjugates and immunogenic compositions provided by the invention have high immunogenicity and can induce therapeutic immune responses in individuals.
  • the disease associated with Streptococcus pneumoniae is selected from pneumonia, meningitis, cellulitis, osteomyelitis, endocarditis, septic shock, febrile bacteremia, middle ear infection, sinusitis, recurrent type bronchitis and other severe invasive diseases.
  • the sixth aspect of the present invention provides a drug for preventing and/or treating individual Streptococcus pneumoniae infection and Streptococcus pneumoniae-related diseases, the drug comprising the glycoconjugate or immunogenicity of the present invention combination.
  • the seventh aspect of the present invention provides a vaccine for preventing and/or treating individual Streptococcus pneumoniae infection and Streptococcus pneumoniae-related diseases, said vaccine comprising the glycoconjugate or immunogenicity of the present invention combination.
  • the vaccine is a liquid injection.
  • the injection also contains physiological saline, succinic acid, aluminum phosphate adjuvant and the like.
  • the vaccine comprises at least serotypes 1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C of Streptococcus pneumoniae , 19A, 19F, 20, 22F, 23F, 33F capsular polysaccharides.
  • each dose of the vaccine contains 1 to 5 ⁇ g of polysaccharide.
  • the eighth aspect of the present invention provides a method for preventing and/or treating individual Streptococcus pneumoniae infection and Streptococcus pneumoniae-related diseases, the method comprising administering to the individual an effective dose of the glycoconjugated compounds or immunogenic compositions.
  • glycoconjugate in the present invention refers to a sugar covalently conjugated to a carrier protein. Wherein, the glycoconjugate may contain a certain amount of free sugar.
  • activation degree refers to the molar ratio of sugar repeating units per mole of aldehyde.
  • the "derivatization rate” in the present invention refers to the ratio of ADH concentration ( ⁇ g/ml) to polysaccharide concentration (mg/ml).
  • binding ratio in the present invention refers to the ratio of the polysaccharide concentration (mg/ml) to the protein concentration (mg/ml) in the conjugate.
  • “Pharmaceutically acceptable” in the present invention means neither significantly stimulating the individual nor inhibiting the biological activity and characteristics of the administered active substance.
  • prevention in the present invention refers to all actions of suppressing symptoms or delaying the tension of specific symptoms by administering the products described in the present invention.
  • Treatment refers to therapeutic intervention to ameliorate the signs, symptoms, etc. of a disease or pathological condition after the disease has begun to develop.
  • the "individual” in the present invention includes mammals and humans.
  • the “effective dose” in the present invention refers to the amount or dose of the composition of the present invention that provides the desired treatment or prevention after being administered to an individual or an organ in single or multiple doses.
  • the "comprising" in the present invention is an open-ended description, containing the described specified components or steps, and other specified components or steps that do not substantially affect.
  • Figure 1 Structural formula and expression of the capsular polysaccharide of Streptococcus pneumoniae serotype 12F, where the position of the ellipse indicates the carboxyl group of the reaction site ⁇ -D-ManpNAcA of this method, and the position of the rectangular box indicates the site ⁇ -D-
  • the primary hydroxyl groups of GalpNAc, ⁇ -D-Galp, and ⁇ -D-Glcp, and the positions of the circle boxes indicate the adjacent dihydroxyl groups of ⁇ -D-Galp and ⁇ -D-Glcp;
  • Figure 2 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 12F;
  • Figure 3 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 1;
  • Figure 4 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 2;
  • Figure 5 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 3;
  • Figure 6 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 5;
  • Figure 7 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 8;
  • Figure 8 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 9N;
  • Figure 9 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 9V;
  • Figure 10 Structural formula and expression of capsular polysaccharide of Streptococcus pneumoniae serotype 22F;
  • FIG 11 Immunogenicity comparison of Streptococcus pneumoniae serotype 12F polysaccharide-protein conjugates (Elisa method);
  • FIG. 12 Immunogenicity comparison of Streptococcus pneumoniae serotype 12F polysaccharide-protein conjugates (MOPA method);
  • Figure 13 Comparison of the immunogenicity of conjugates derived from 1, 3, 5, 8, 9N, 9V, 12F, 22F carboxyl groups and Prevnar13 (Elisa method);
  • Figure 14 Comparison of the immunogenicity of conjugates derived from 1, 3, 5, 8, 9N, 9V, 12F, 22F carboxyl groups and Prevnar13 (Mopa method);
  • Figure 15 Correlation nuclear magnetic spectrum after derivatization of capsular polysaccharides of each serotype, where each parameter NAME is the name number of the relevant product, EXPNO is the experiment number, PROCNO is the treatment number, INSTRUM is the name of the cabinet, PROBHD is the probe model, and PULPROG is the pulse sequence , TD is the number of sampling points, SOLVENT is the solvent, NS is the number of scans, DS is the number of empty scans, SWH is the spectrum width, FIDRES is the resolution of the free induction attenuation signal, AQ is the sampling time, RG is the receiver gain, DW is the sampling Interval, DE is the time interval when the transmitter is turned off and the receiver is turned on, D1 is the cycle delay, TD0 represents how many times it is saved, SFO1 is the fundamental frequency + offset of the observation channel, NUC1 is the core of the observation channel, P1 is the pulse width, PLW1 is the power, SI is the number of points after Fourier transform
  • FIG. 15A Correlation nuclear magnetic spectrum after derivatization of 12F serotype capsular polysaccharide
  • FIG. 15B Correlation nuclear magnetic spectrum after derivatization of capsular polysaccharide of serotype 9V;
  • Figure 15C Correlation nuclear magnetic spectrum after derivatization of capsular polysaccharide of type 1 serotype
  • Figure 15D Correlation nuclear magnetic spectrum after derivatization of capsular polysaccharide of type 3 serotype
  • Figure 15E Correlation nuclear magnetic spectrum after derivatization of capsular polysaccharide of type 5 serotype
  • FIG. 15F Correlation nuclear magnetic spectrum after derivatization of capsular polysaccharide of serotype 8.
  • Figure 15G Correlation nuclear magnetic spectrum after derivation of 22F serotype capsular polysaccharide
  • Figure 17 Comparison of NMR shifts of products related to the carboxyl derivatization process.
  • the inventors creatively chose to use the carboxyl group of the sugar ring as the reaction site, and derivatized the carboxyl group through a spacer. combined with the carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-ManpNAcA (see Figures 1 and 2), and this method can also be used for the preparation of polysaccharides of other serotypes.
  • the structural formulas and expressions of polysaccharides of other serotypes are shown in Figure 3 -10 shown.
  • the method for preparing the serotype 12F-CRM197 conjugate is as follows:
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate. All monovalent conjugates of carboxyl-containing serotypes can be generated in a similar manner.
  • the protein content was measured by the Folin phenol method, the capsular polysaccharide content was measured by the anthrone method, the free polysaccharide content was measured by the DOC precipitation method, the free protein content was measured by the SDS-PAGE method, and the molecular weight was measured by CL-4B.
  • Example 2 The method of this example is similar to Example 1, but the carrier protein is tetanus toxoid.
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure ADH content (Chinese Pharmacopoeia General Rules 3118 Determination of Adipic Dihydrazide Content), and the ratio of ADH content (unit ⁇ g/ml) to polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate. All monovalent conjugates of carboxyl-containing serotypes can be generated in a similar manner.
  • the protein content was measured by the Folin phenol method, the capsular polysaccharide content was measured by the anthrone method, the free polysaccharide content was measured by the DOC precipitation method, the free protein content was measured by the SDS-PAGE method, and the molecular weight was measured by CL-4B.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-GalpA (see Figure 3).
  • the method for preparing the serotype 1-CRM197 conjugate is as follows:
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the method for preparing the serotype 1-TT conjugate is as follows:
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the inventor chose to use the carboxyl group of the sugar ring as the reaction site, derivatize the carboxyl group through a spacer (ADH), and then combine with the carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of D-GlcpA (see Figure 4).
  • the method for preparing the serotype 2-CRM197 conjugate is as follows:
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the inventor chose to use the carboxyl group of the sugar ring as the reaction site, derivatize the carboxyl group through a spacer (ADH), and then combine with the carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-GlcpA (see Figure 5).
  • the method for preparing the serotype 3-CRM197 conjugate is as follows:
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure ADH content (Chinese Pharmacopoeia General Rules 3118 Determination of Adipic Dihydrazide Content), and the ratio of ADH content (unit ⁇ g/ml) to polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the inventors chose to use the carboxyl group of the sugar ring as the reaction site, derivatize the carboxyl group through a spacer (ADH), and then conjugate it to the carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-GlcpA (see Figure 6).
  • the method for preparing the serotype 5-CRM197 conjugate is as follows:
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the structure of capsular polysaccharide was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the inventors derivatized the carboxyl group of the sugar ring through a spacer (ADH), and then conjugated to the carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-GlcpA (see Figure 7).
  • the method for preparing the serotype 8-CRM197 conjugate is as follows:
  • the pharmacopoeia method measures the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the inventors derivatized the polysaccharide through a spacer (ADH), and then conjugated it to a carrier protein.
  • the reaction site of this scheme is the carboxyl group on the ⁇ -D-GlupA sugar ring (see Figure 8).
  • the method for preparing the serotype 9N-CRM197 conjugate is as follows:
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the inventor derivatized the polysaccharide through a spacer (ADH), and then conjugated it to a carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-GlcpA (see Figure 9).
  • the method for preparing the serotype 9V-CRM197 conjugate is as follows:
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the method for preparing the serotype 9V-TT conjugate is as follows:
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the inventors derivatized the polysaccharide with a spacer ADH, and then conjugated it to a carrier protein.
  • the reaction site of this scheme is the carboxyl group on the sugar ring of ⁇ -D-GlcpA (see Figure 10).
  • the method for preparing the serotype 22F-CRM197 conjugate is as follows:
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • the sugar content was measured by anthrone method, the molecular weight was measured by TSK, and the capsular polysaccharide structure was detected by NMR.
  • the pharmacopoeia method is used to measure the ADH content (Chinese Pharmacopoeia General Rule 3118), and the ratio of the ADH content (unit ⁇ g/ml) to the polysaccharide content (unit mg/ml) is the ADH derivation rate.
  • the stock solution of the above conjugate was sterile filtered with a 0.22 ⁇ m filter, and this stock solution material was referred to as a monovalent conjugate.
  • a similar approach applies to all carboxyl-containing serotypes.
  • Table 1 summary table of experimental data related to the embodiment
  • pneumococcal conjugate stocks (1, 2, 3, 4, 5, 6A, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20 , 22F, 23F, 33F) were added in 0.9% normal saline according to a certain proportion, fully mixed, and an appropriate amount of 50mM succinic acid solution and aluminum phosphate adjuvant were added to prepare a pneumococcal 24-valent polysaccharide conjugate vaccine.
  • the content of various types of polysaccharides is 2.2 ⁇ g/ml (6B 4.4 ⁇ g/ml), the content of aluminum ions is not higher than 0.2 mg/ml, and it is packaged in 0.5 ml/cartridge.
  • the titer of IgG to various pneumococcal capsular polysaccharides was detected by ELISA method, and the operation was performed according to the standardized WHO ELISA process.
  • the immunogenicity of 12F polysaccharide conjugates is shown in FIG. 11 .
  • the OPA GMT of the pooled serum was measured, and the immunogenicity of the 12F polysaccharide conjugate is shown in Figure 12.
  • ELISA method was used to detect the titer of IgG against various pneumococcal capsular polysaccharides, and the operation was performed according to the standardized WHO ELISA procedure. The comparison of immunogenicity of 1, 3, 5, 8, 9N, 9V, 12F, and 22F polysaccharide conjugates is shown in Fig. 13 .
  • the OPA GMT of the pooled serum was measured, and the immunogenicity comparison of 1, 3, 5, 8, 9N, 9V, 12F, and 22F polysaccharide conjugates is shown in Figure 14.
  • Figure 15 shows the relevant NMR spectra of capsular polysaccharides of each serotype after derivatization. After each type of capsular polysaccharide is derivatized by ADH, there are ADH characteristic peaks at 1.57 and 2.18 (ADH characteristic peaks are shown in Fig. 16).
  • Examples 1-2 the polysaccharide derived from the carboxyl group of the sugar ring with ADH is compared with the 12F capsular polysaccharide: the biggest difference lies in the two shifts, see the shift interval in the box in Figure 17, and this shift is the two shifts of ADH.
  • Group methylene characteristic peaks ⁇ 1.57, ⁇ 2.18 ( Figure 16).
  • the ratio of the ADH characteristic peak integration to the polysaccharide characteristic peak integration can calculate the polysaccharide derivatization rate, but the method of calculating the derivation rate by NMR integration is not accurate.
  • the derivatization rate of the derivatized polysaccharides in Table 4 measured according to the Pharmacopoeia method is consistent with the data obtained by the nuclear magnetic integration method ( Figure 17) in terms of derivation trend.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reproductive Health (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种糖缀合物,和将细菌荚膜多糖的羧基通过间隔物衍生后,再与载体蛋白结合制备糖缀合物的具体制备方法及一种包含所述糖缀合物的免疫原性组合物。还公开了所述糖缀合物、免疫原性组合物在制备预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的药物或疫苗中的应用。所述的糖缀合物具有免疫原性更高、杀菌作用更强的特点。

Description

一种肺炎球菌结合疫苗制备方法 技术领域
本发明涉及疫苗研制技术领域,具体涉及一种血清型肺炎链球菌荚膜多糖与载体蛋白反应制备获得的糖缀合物,一种包含所述糖缀合物的免疫原性组合物,以及所述的糖缀合物、免疫原性组合物在制备预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的药物或疫苗中的应用。
背景技术
肺炎球菌(Streptococcus pneumoniae)为革兰氏阳性菌,细胞壁外的荚膜多糖有较厚的荚膜,肺炎球菌是引发儿童及老人罹患肺炎、菌血症、脑膜炎等的主要病原菌,在世界各地均有较高的发病率和死亡率。细菌的病原性和血清型常与荚膜多糖成分与结构有关,目前发现的肺炎链球菌荚膜多糖超过90种不同的血清型,其中,20多种已用于制备由肺炎链球菌感染所导致疾病的疫苗。肺炎链球菌缀合物疫苗是用于预防肺炎链球菌所致疾病的肺炎球菌疫苗,目前在全球上可以获得辉瑞公司的十三价疫苗Prevenar 13。
本发明人按照肺炎球菌在中国流行的清型的情况,开发了一款24价肺炎球菌结合疫苗,包含血清型为1、2、3、4、5、6A、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17F、18C、19A、19F、20、22F、23F、33F。
其中,多种血清型在研究过程中利用传统的高碘酸钠法或CDAP(1-氰基-4-(二甲氨基)吡啶四氟硼酸盐)法均可得到免疫原性较高的结合物。但12F等血清型多糖利用高碘酸钠法或CDAP法所得活化多糖的稳定性较差,而且最终结合物免疫应答较弱。
专利104870463A(CN201380066823)公开了一种12F血清型荚膜多糖制备结合物的新方法,由辉瑞公司开发。具体的,通过使用稳定的硝酰基相关的试剂/氧化剂作为氧化物质来制备包含与载体蛋白缀合的糖的糖缀合物的方法、包含此类糖缀合物的免疫原性组合物以及使用此类糖缀合物和免疫原性组合物的方法。该方法利用TEMPO-NCS选择性氧化伯羟基产生醛基,制备活化多糖。
专利CN101247827公开了一种使用碳二亚胺缩合化学法进行糖-蛋白缀合反应的改进方法:伤寒沙门氏菌(Salmonella typhi)的Vi糖结构上的羧基利用ADH衍生后与载体蛋白结合。肺炎球菌疫苗尚无利用糖环羧基偶联载体蛋白的产品上市。
发明内容
根据上述方法的技术缺陷或技术壁垒,本发明提供了多种制备12F型肺炎球菌荚膜多糖与蛋白缀合物的方法,利用糖环特异活化位点反应,获取12F型肺炎球菌荚膜多糖与蛋白载体偶联的糖缀合物,并且公开了12F型肺炎球菌荚膜多糖的活化位点,所述的活化位点为:乙酰氨基吡喃型甘露糖基羧基(β-D-ManpNAcA)。
本发明提供的糖缀合物的制备方法,经发明人深入研究,该方法适用于任何包含羧基的多糖,如血清型1、2、3、5、8、9N、9V、12F、22F等。本方法具有优于高碘酸钠或CDAP等活化方法的明显优点,所得的几种血清型的糖缀合物稳定性较高。
本发明所述的缀合物与现有技术中用高碘酸盐活化、CDAP活化或TEMPO-NCS活化后与载体蛋白所得结合物相比,稳定性高,免疫原性高,杀菌作用显著改善。
具体地,本发明的第一方面,提供了一种糖缀合物,所述的糖缀合物为将细菌荚膜多糖的羧基通过间隔物衍生后,再与载体蛋白结合获得。
优选的,所述的细菌荚膜多糖选自肺炎链球菌1、2、3、5、8、9N、9V、12F或22F型荚膜多糖,所述的细菌荚膜多糖反应位点包括β-D-ManpNAcA、α-D-GalpA、D-GlcpA、β-D-GlcpA、α-D-GlcpA或α-D-GlupA。
优选的,所述的细菌荚膜多糖为肺炎链球菌12F型荚膜多糖。
优选的,肺炎链球菌12F型荚膜多糖反应位点包括β-D-ManpNAcA。
优选的,所述的肺炎链球菌12F型荚膜多糖可以为天然的或人工合成的。
优选的,所述的间隔物包含通式Y 1-L-Y 2,其中Y 1包含可以与多糖中的羰基(或羧基)反应的第一伯胺基;Y 2包含可以与连接体中的一个酯基反应的伯胺基;并且L是其他连接体中的连接部分。一般的L基团是具有1-10个碳原子的直链烷基(例如C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10),特别地-(CH 2) 4-。通式Y-L-Y的同型双功能连接体是特别合适作为间隔物的,其中两个Y基团是相同的,并且均能与羰基(或羧基)以及酯基反应;并且其中L是间隔物中的连接部分。一般Y基团是-NHNH2基团。L通常具有通式-L'- L 2-L'-,其中L'是羰基。一般L 2基团是具有1-10个碳原子的直链烷基(例如C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10),特别地-(CH 2) 4-。
优选的,所述的间隔物选自ADH(己二酸二酰肼)或CDH(羧二肼)。
在本发明的一个具体实施方式中,所述的间隔物为ADH。
优选的,所述的活化的荚膜多糖与ADH的质量比为1:(1~30)(例如,1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19、1:20、1:21、1:22、1:23、1:24、1:25、1:26、1:27、1:28、1:29、1:30)。
优选的,所述的载体蛋白含有一个或多个氨基或羧基。所述的载体蛋白可以是来自靶标病原体的增强对该病原体的特异性免疫应答的相关蛋白抗原,或是主要作为佐剂或一般免疫应答刺激剂的一般免疫原性蛋白。
进一步优选的,所述的载体蛋白选自白喉类毒素突变体(CRM197/CRM)、破伤风类毒素(TT)、得自革兰氏阴性菌的外膜蛋白质、流感嗜血杆菌表面脂蛋白、由流感嗜血杆菌HiD蛋白基因和流感嗜血杆菌Hin47蛋白基因以1:1方式形成的融合蛋白、百日咳毒素、乙型肝炎表面抗原、乙型肝炎核心抗原、轮状病毒VP7蛋白质或呼吸道合胞病毒F和G蛋白或其活性部分。
在本发明的一个具体实施方式中,所述的载体蛋白为CRM197或TT(破伤风类毒素)。
优选的,所述的细菌荚膜多糖与载体蛋白的质量比为(0.3~3):1(例如,0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1、2.0:1、2.1:1、2.2:1、2.3:1、2.4:1、2.5:1、2.6:1、2.7:1、2.8:1、2.9:1、3:1)。
进一步优选的,所述的细菌荚膜多糖与载体蛋白的质量比为(0.8~2):1。
在本发明的一个具体实施方式,所述的细菌荚膜多糖与载体蛋白的质量比为(1.0~1.3):1。
在本发明的一个具体实施方式,所述的细菌荚膜多糖与载体蛋白的质量比为(0.8~1.2):1。
优选的,所述的细菌荚膜多糖的每10至30个糖重复单元,在所述载体蛋白与所述细菌荚膜多糖之间存在至少一个共价键。
本发明的第二方面,提供了一种糖缀合物的制备方法,包括:
将细菌荚膜多糖加入酸溶液水解,优选的,所述的酸溶液为醋酸溶液,得到细菌荚膜水解多糖,将细菌荚膜水解多糖与间隔物反应得到细菌荚膜多糖衍生物,将细菌荚膜多糖衍生物与载体蛋白结合制备糖缀合物,优选的,将细菌荚膜水解多糖与间隔物在EDAC存在下反应得到细菌荚膜多糖衍生物。
优选的,所述的细菌荚膜多糖选自肺炎链球菌1、2、3、5、8、9N、9V、12F或22F型荚膜多糖,所述的细菌荚膜多糖反应位点包括β-D-ManpNAcA、α-D-GalpA、D-GlcpA、β-D-GlcpA、α-D-GlcpA或α-D-GlupA。
优选的,所述的细菌荚膜多糖为肺炎链球菌12F型荚膜多糖。
优选的,所述的肺炎链球菌12型荚膜多糖的反应位点为乙酰氨基吡喃型甘露糖基羧基(β-D-ManpNAcA)。
优选的,所述的间隔物包含通式Y 1-L-Y 2,其中Y 1包含可以与多糖中的羰基(或羧基)反应的第一伯胺基;Y 2包含可以与连接体中的一个酯基反应的伯胺基;并且L是其他连接体中的连接部分。一般的L基团是具有1-10个碳原子的直链烷基(例如C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10),特别地-(CH 2) 4-。通式Y-L-Y的同型双功能连接体是特别合适作为间隔物的,其中两个Y基团是相同的,并且均能与羰基(或羧基)以及酯基反应;并且其中L是间隔物中的连接部分。一般Y基团是-NHNH2基团。L通常具有通式-L'-L 2-L'-,其中L'是羰基。一般L 2基团是具有1-10个碳原子的直链烷基(例如C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10),特别地-(CH 2) 4-。
优选的,所述的间隔物选自ADH或CDH。
在本发明的一个具体实施方式中,所述的间隔物为ADH。
优选的,所述的活化的荚膜多糖与ADH的质量比为1:1~30(例如,1:1、1:2、1:1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19、1:20、1:21、1:22、1:23、1:24、1:25、1:26、1:27、1:28、1:29、1:30)。
优选的,未反应的羧基,在与蛋白反应完之后使用0.1M氢氧化钠调节pH至7.0以封闭反应。
优选的,所述的载体蛋白含有一个或多个氨基/羧基。所述的载体蛋白可以是来自靶标病原体的增强对该病原体的特异性免疫应答的相关蛋白抗原,或是主要作为佐剂或一般免疫应答刺激剂的一般免疫原性蛋白。
进一步优选的,所述的载体蛋白选自白喉类毒素突变体(CRM197)、破伤风类毒素(TT)、得自革兰氏阴性菌的外膜蛋白质、流感嗜血杆菌表面脂蛋白(HiD)、由流感嗜血杆菌HiD蛋白基因和流感嗜血杆菌Hin47蛋白基因以1:1方式形成的融合蛋白、百日咳毒素、乙型肝炎表面抗原、乙型肝炎核心抗原、轮状病毒VP7蛋白质或呼吸道合胞病毒F和G蛋白或其活性部分。
在本发明的一个具体实施方式中,所述的载体蛋白为CRM197或TT。
优选的,所述的肺炎链球菌12F型荚膜多糖可以为天然的或人工合成的。
优选的,所述的羧基衍生的反应是在水性溶剂中进行。
优选的,所述的细菌荚膜多糖与载体蛋白的质量比为(0.3~3):1(例如,0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1、2.0:1、2.1:1、2.2:1、2.3:1、2.4:1、2.5:1、2.6:1、2.7:1、2.8:1、2.9:1、3:1)。
进一步优选的,所述的细菌荚膜多糖与载体蛋白的质量比为(0.8~1.7):1。
在本发明的一个具体实施方式,所述的细菌荚膜多糖与载体蛋白的质量比为 (1.0~1.5):1。
在本发明的一个具体实施方式,所述的细菌荚膜多糖与载体蛋白的质量比为(0.8~1.2):1。
优选的,所述的细菌荚膜多糖的每10至30个糖重复单元,在所述载体蛋白与所述细菌荚膜多糖之间存在至少一个共价键。
在本发明的一个具体实施方式中,所述的糖缀合物的制备方法,包括:
1)将12F型肺炎链球菌荚膜多糖水解至50-500kDa的分子量,通过加入ADH获得12F型肺炎链球菌荚膜衍生多糖。
2)将步骤1)衍生多糖与CRM197或TT反应制备糖缀合物。
3)纯化步骤2)获得的糖缀合物。
优选的,所述步骤1)中将12F型肺炎链球菌荚膜多糖水解至50-500kDa的分子量。
优选的,所述的步骤1)还包括纯化衍生多糖的步骤。
优选的,所述的方法适用于任一含羧基的肺炎链球菌血清型荚膜多糖。
本发明的第三方面,提供了一种上述的制备方法制备得到的糖缀合物。
本发明的第四方面,提供了免疫原性组合物,包含上述的糖缀合物或上述的制备方法制备的糖缀合物,以及药学上可接受的赋形剂、载体和/或稀释剂。
优选的,所述的组合物中包括肺炎链球菌12F型荚膜多糖缀合物,所述肺炎链球菌12F型荚膜多糖缀合物加入酸溶液水解,优选的,所述的酸溶液为醋酸溶液,得到12F型荚膜水解多糖,将12F型荚膜水解多糖与间隔物反应得到12F型荚膜多糖衍生物,将12F型荚膜多糖衍生物与载体蛋白结合制备糖缀合物,优选的,将12F型荚膜水解多糖与间隔物在EDAC存在下反应得到12F型荚膜多糖衍生物。
优选的,所述的免疫原性组合物还包含其他细菌荚膜多糖的糖缀合物,所述的其他细菌荚膜多糖选自肺炎链球菌血清型1、2、3、4、5、6A、6B、7F、8、9N、9V、10A、11A、14、15B、17F、18C、19A、19F、20、22F、23F、33F荚膜多糖。
优选的,所述免疫原性组合物的剂型选自:片剂、胶囊、丸剂、注射剂、吸入剂、含片、栓剂、乳剂、微乳剂、亚微乳剂、纳米颗粒、凝胶剂、粉剂、悬乳液、乳膏剂、胶冻剂、喷雾剂等。
优选的,所述免疫原性组合物的给药方式选自:口服、肠给药、皮下注射、肌肉注射、静脉注射、鼻腔给药、透皮给药、结膜下给药、眼球内给药、眼眶给药、眼球后给药、视网膜给药、脉络膜给药、鞘内注射等。
优选的,所述的免疫原性组合物还包括佐剂。更优选的,所述的佐剂为铝系佐剂。最优选的,所述铝系佐剂选自磷酸铝、硫酸铝和氢氧化铝。
优选的,所述的免疫原性组合物还包含生理盐水和琥珀酸。
本发明的第五方面,提供了上述的糖缀合物、上述的制备方法制备的糖缀合物或上述的免疫原性组合物在制备预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的药物或疫苗中的应用。
本发明提供的糖缀合物、免疫原性组合物具有较高的免疫原性,并在个体中诱导治疗性免疫应答。
优选的,所述的与肺炎链球菌相关的疾病选自肺炎、脑膜炎、蜂窝组织炎、骨髓炎、心内膜炎、败血性休克、发热性菌血症、中耳感染、鼻窦炎、复发型支气管炎及其他严重的侵袭性疾病。
本发明的第六方面,提供了一种预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的药物,所述的药物包括本发明所述的糖缀合物或免疫原性组合物。
本发明的第七方面,提供了一种预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的疫苗,所述的疫苗包括本发明所述的糖缀合物或免疫原性组合物。
优选的,所述的疫苗为液体注射剂。
优选的,所述的注射剂中还含有生理盐水、琥珀酸、磷酸铝佐剂等。
优选的,所述的疫苗至少包含肺炎链球菌的血清型1、2、3、4、5、6A、6B、7F、8、 9N、9V、10A、11A、12F、14、15B、17F、18C、19A、19F、20、22F、23F、33F荚膜多糖。
优选的,所述的疫苗每一次使用剂量,含有多糖1至5μg。
本发明的第八方面,提供了一种预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的方法,所述的方法包括向个体施用有效剂量的本发明所述的糖缀合物或免疫原性组合物。
本发明所述的“糖缀合物”是指与载体蛋白共价缀合的糖。其中,所述的糖缀合物中可以包含一定量的游离糖。
本发明所述的“活化度”是指每摩尔醛的糖重复单元摩尔比。
本发明所述的“衍生率”是指ADH浓度(μg/ml)与多糖浓度(mg/ml)的比值。
本发明所述的“结合比”是指结合物中多糖浓度(mg/ml)与蛋白浓度(mg/ml)的比值。
本发明所述的“药学上可接受的”是指既不显著刺激个体也不抑制所施用的产的活性物质的生物学活性及特性。
本发明所述的“预防”是指通过施用本发明所述的产品来抑制症状或者延缓特定症状紧张的所有行为。
本发明所述的“治疗”是指在疾病已开始发展后改善疾病或病理状态的体征、症状等等的治疗干预。
本发明所述的“个体”包括哺乳动物和人。
本发明所述的“有效剂量”是指在以单个或多个剂量给予至个体或器官之后提供所希望的治疗或预防的本发明的组合物的量或剂量。
本发明所述的“和/或”包括择一列出的项目以及任何数量的项目组合。
本发明所述的“包括”是开放式的描述,含有所描述的指定成分或步骤,以及不会实质上影响的其他指定成分或步骤。
以上只是概括了本发明的一些方面,不是也不应该认为是在任何方面限制本发明。
本说明书提到的所有专利和出版物都是通过参考文献作为整体而引入本发明的。本领域的技术人员应认识到,对本发明可作某些改变并不偏离本发明的构思或范围。
下面的实施例进一步详细说明本发明,不能认为是限制本发明或本发明所说明的具体方法的范围。
附图说明
以下,结合附图来详细说明本发明的实施例,其中:
图1:肺炎链球菌血清型12F的荚膜多糖的结构式和表达式,其中,椭圆圈位置表示本方法的反应位点β-D-ManpNAcA的羧基,长方形框的位置表示位点β-D-GalpNAc、α-D-Galp、α-D-Glcp的伯羟基,圆形框的位置表示位点α-D-Galp、α-D-Glcp的邻二羟基;
图2:肺炎链球菌血清型12F的荚膜多糖的结构式和表达式;
图3:肺炎链球菌血清型1的荚膜多糖的结构式及表达式;
图4:肺炎链球菌血清型2的荚膜多糖的结构式及表达式;
图5:肺炎链球菌血清型3的荚膜多糖的结构式及表达式;
图6:肺炎链球菌血清型5的荚膜多糖的结构式及表达式;
图7:肺炎链球菌血清型8的荚膜多糖的结构式及表达式;
图8:肺炎链球菌血清型9N的荚膜多糖的结构式及表达式;
图9:肺炎链球菌血清型9V的荚膜多糖的结构式及表达式;
图10:肺炎链球菌血清型22F的荚膜多糖的结构式及表达式;
图11:肺炎链球菌血清型12F多糖蛋白缀合物的免疫原性比较(Elisa法);
图12:肺炎链球菌血清型12F多糖蛋白缀合物的免疫原性比较(MOPA法);
图13:1、3、5、8、9N、9V、12F、22F羧基衍生所得结合物与Prevnar13免疫原性对比(Elisa法);
图14:1、3、5、8、9N、9V、12F、22F羧基衍生所得结合物与Prevnar13免疫原性对比(Mopa法);
图15:各血清型荚膜多糖衍生后相关核磁图谱,其中各参数NAME为相关产物名称编号,EXPNO为实验号,PROCNO为处理号,INSTRUM为机柜的名称,PROBHD为探头型号,PULPROG为脉冲序列,TD为采样点数,SOLVENT为溶剂,NS为扫描次数, DS为空扫次数,SWH为谱宽,FIDRES为自由感应衰减信号的分辨率,AQ为采样时间,RG为接收机增益,DW为采样间隔,DE为发射机关闭接收机打开的时间间隔,D1为循环延迟,TD0代表每隔多少次保存,SFO1为观测通道的基频+偏移,NUC1为观测通道的核,P1为脉宽,PLW1为功率,SI为傅里叶变换之后的点数,SF为基频,WDW为窗函数,EM指的是采用指数窗函数,SSB为正弦振铃型窗函数的参数,LB线性展宽因子,GB为高斯窗函数的参数,PC为检峰灵敏度;
图15A:12F型血清型荚膜多糖衍生后相关核磁图谱;
图15B:9V型血清型荚膜多糖衍生后相关核磁图谱;
图15C:1型血清型荚膜多糖衍生后相关核磁图谱;
图15D:3型血清型荚膜多糖衍生后相关核磁图谱;
图15E:5型血清型荚膜多糖衍生后相关核磁图谱;
图15F:8型血清型荚膜多糖衍生后相关核磁图谱;
图15G:22F型血清型荚膜多糖衍生后相关核磁图谱;
图16:ADH亚甲基特征峰,核磁位移;
图17:羧基衍生工艺相关产物核磁位移比较。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1制备血清型12F-CRM197糖缀合物
为了改善12F多糖疫苗工艺的稳定性,以及结合物的免疫原性,发明人在全面研究12F多糖结构的基础上,独创性的选择利用糖环羧基为反应位点,通过间隔物对羧基衍生,再与载体蛋白结合。本方案的反应位点为β-D-ManpNAcA糖环上的羧基(见图1和2),且此方法还可用于其他血清型多糖的制备,其他血清型多糖的结构式及表达式如图3-10所示。
制备血清型12F-CRM197缀合物的方法如下:
1)制备水解多糖:将12F荚膜多糖加入醋酸溶液,控制pH=2,加热2小时,即得12F水解多糖;TSK测分子量,分子量应控制在50KDa至500KDa;
2)制备ADH衍生多糖,具体操作为:室温下,将250mg的12F水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(5g,20m),反应过程中用0.1M盐酸调节pH=4.3~4.6,避光室温反应8小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤20次,得衍生多糖197mg,收率78.8%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)将12F衍生多糖与CRM197载体蛋白结合
将200mg的12F衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入等质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.2~5.6,反应2h,反应结束后,用氢氧化钠调节pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,用AKTA纯化,得结合物原液97mg,收率48.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。用类似的方法可以生成含羧基的血清型的所有单价的结合体。
福林酚法测蛋白含量,蒽酮法测荚膜多糖含量,DOC沉淀法测游离多糖含量,SDS-PAGE法测游离蛋白含量,CL-4B测分子量。
实验具体检测数据见表1。
同时对不同方法制备的肺炎链球菌血清型12F相关样品的稳定性进行比较,结果如表2所示。
表2:肺炎链球菌血清型12F相关样品的稳定性比较
Figure PCTCN2022113063-appb-000001
Figure PCTCN2022113063-appb-000002
实施例2制备血清型12F-TT糖缀合物
本实施例的方法与实施例1相似,但载体蛋白为破伤风类毒素。
制备血清型12F-TT缀合物的方法如下:
1)制备水解多糖,将12F荚膜多糖加入醋酸溶液,控制pH=2,加热2小时,即得12F水解多糖;TSK测分子量,分子量应控制在50KDa至500KDa。
2)制备衍生多糖,具体操作为:室温下,将250mg的12F水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(5g,20m),反应过程中用0.1M盐酸调节pH=4.2~4.6,避光室温反应8小时。超滤,0.1M磷酸盐超滤50次,纯水超滤20次,得衍生多糖192mg,收率76.8%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物:将肺炎球菌12F衍生多糖200mg溶于水中,至终浓度为4mg/ml,冰浴控温2~8℃,加入等质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5,反应2h,反应结束后,用氢氧化钠调节pH封闭1h,结束反应。0.45μm滤器过滤,用AKTA纯化,得结合物原液93mg,收率46.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。用类似的方法可以生成含羧基的血清型的所有单价的结合体。
福林酚法测蛋白含量,蒽酮法测荚膜多糖含量,DOC沉淀法测游离多糖含量,SDS-PAGE法测游离蛋白含量,CL-4B测分子量。
实验具体检测数据表1。
实施例3制备血清型1-CRM197糖缀合物
发明人在全面研究1型肺炎球菌荚膜多糖结构的基础上,选择利用糖环羧基为反应位点,通过间隔物对羧基衍生,再与载体蛋白结合。本方案的反应位点为α-D-GalpA糖环上的羧基(见图3)。
制备血清型1-CRM197缀合物的方法如下:
1)制备水解多糖:将1型肺炎球菌荚膜多糖加入酸溶液加热反应,即得1型水解多糖;TSK测分子量,分子量应控制在50KDa至500KDa;
2)制备ADH衍生多糖,具体操作为:室温下,将300mg的1型水解多糖溶于水中,至终浓度为5mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(3g,10m),反应过程中用0.1M盐酸调节pH=4.3~4.6,避光室温反应3小时。
超滤,0.1M磷酸盐超滤30次,纯水超滤30次,得衍生多糖245mg,收率81.7%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)将1型衍生多糖与CRM197载体蛋白结合
将200mg的1型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入等质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.3~5.6,反应1h,反应结束后,用氢氧化钠调节pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液125mg,收率62.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据汇总见表1。
实施例4制备血清型1-TT缀合物
制备血清型1-TT缀合物的方法如下:
1)制备水解多糖;
2)制备衍生多糖,同实施例3所述2)中的方法,以ADH衍生多糖。
3)制备结合物;
将200mg的1型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入等1.1倍质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.0~5.5,反应1h,反应结束后,用氢氧化钠调节pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液117mg,收率58.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例5制备血清型2-CRM197糖缀合物
发明人在研究2型肺炎球菌荚膜多糖结构的基础上,选择利用糖环羧基为反应位点,通过间隔物(ADH)对羧基衍生,再与载体蛋白结合。本方案的反应位点为D-GlcpA糖环上的羧基(见图4)。
制备血清型2-CRM197缀合物的方法如下:
1)制备水解多糖,醋酸酸性条件加热即得。
2)制备衍生多糖,具体操作为:室温下,将250mg的2型水解多糖溶于水中,至终浓度为5mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(3.75g,15m),反应过程中用0.1M盐酸调节pH=4.0~4.5,避光室温反应5小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤30次,得衍生多糖195mg,收率78.0%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国 药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将180mg的2型肺炎球菌荚膜多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入1.1倍质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为25mg/ml,盐酸调节pH=5.5±0.2,反应2h,结束后用氢氧化钠调pH=7.0,封闭反应2h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液103mg,收率57.2%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例6制备血清型2-TT缀合物
制备血清型2-TT缀合物的方法如下:
1)制备水解多糖,醋酸酸性条件加热即得。
2)制备衍生多糖,具体操作为:室温下,将250mg的2型水解多糖溶于水中,至终浓度为5mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(3.75g,15m),反应过程中用0.1M盐酸调节pH=4.0~4.5,避光室温反应5小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤30次,得衍生多糖190mg,收率76.0%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将150mg的2型衍生多糖溶于水中,至终浓度为3mg/ml,冰浴下控温2~8℃,加入等质量的TT载体蛋白,混匀,加入EDAC至终浓度为30mg/ml,盐酸调节pH=5.5±0.3, 反应1.5h,后用氢氧化钠调pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液98mg,收率65.3%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例7制备血清型3-CRM197缀合物
发明人在研究3型肺炎球菌荚膜多糖结构的基础上,选择利用糖环羧基为反应位点,通过间隔物(ADH)对羧基衍生,再与载体蛋白结合。本方案的反应位点为β-D-GlcpA糖环上的羧基(见图5)。
制备血清型3-CRM197缀合物的方法如下:
1)制备水解多糖,酸性条件加热即得。
2)制备衍生多糖,具体操作为:室温下,将250mg的3型水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(2.5g,10m),反应过程中用0.1M盐酸调节pH=4.0~4.5,避光室温反应3小时。
超滤,0.1M磷酸盐超滤30次,纯水超滤30次,得衍生多糖203mg,收率81.2%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的3型衍生多糖溶于水中,至终浓度为5mg/ml,冰浴下控温2~8℃,加入1.2倍质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.2,反应1h,结束后用氢氧化钠调pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液106mg,收率53.0%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例8制备血清型3-TT缀合物
制备血清型3-TT缀合物的方法如下:
1)制备水解多糖,酸性条件加热即得。
2)制备衍生多糖,具体操作为:室温下,将250mg的3型水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(2.5g,10m),反应过程中用0.1M盐酸调节pH=4.0~4.5,避光室温反应3小时。
超滤,0.1M磷酸盐超滤30次,纯水超滤30次,得衍生多糖188mg,收率75.2%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118己二酰肼含量测定法),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的3型衍生多糖溶于水中,至终浓度为5mg/ml,冰浴下控温2~8℃,加入等质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.2,反应2h,后用氢氧化钠调pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液115mg,收率57.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。·
核磁测相关衍生物的结构。相关实验数据见表1。
实施例9制备血清型5-CRM197缀合物
发明人在研究5型肺炎球菌荚膜多糖结构的基础上,选择利用糖环羧基为反应位点, 通过间隔物(ADH)对羧基衍生,再与载体蛋白缀合。本方案的反应位点为α-D-GlcpA糖环上的羧基(见图6)。
制备血清型5-CRM197缀合物的方法如下:
1)制备水解多糖,酸性条件加热即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的5型水解多糖溶于水中,至终浓度为8mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(6g,20m),反应过程中用0.1M盐酸调节pH=4.5±0.3,避光室温反应12小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤10次,得衍生多糖225mg,收率75.0%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的5型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入1.1倍质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.3,反应1h,结束后用氢氧化钠调pH=7.0,封闭反应3h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液110mg,收率55.0%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例10制备血清型5-TT缀合物
制备血清型5-TT缀合物的方法如下:
1)制备水解多糖,酸性条件加热即得。
2)制备衍生多糖,具体操作为:室温下,将250mg的5型水解多糖溶于水中,至终 浓度为8mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(500mg,2m),以及ADH固体(5g,20m),反应过程中用0.1M盐酸调节pH=4.5±0.3,避光室温反应12小时。超滤,得衍生多糖200mg,收率80.0%。蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的5型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入1.1倍质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.3,反应1h,结束后用氢氧化钠调pH=7.0,封闭反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液105mg,收率51.2%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例11制备血清型8-CRM197缀合物
发明人在研究8型肺炎球菌荚膜多糖结构的基础上,通过间隔物(ADH)对糖环羧基衍生,再与载体蛋白缀合。本方案的反应位点为β-D-GlcpA糖环上的羧基(见图7)。
制备血清型8-CRM197缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的8型水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(4.5g,15m),反应过程中用0.1M盐酸调节pH=4.5±0.2,避光室温反应8小时。
超滤,0.1M磷酸盐超滤30次,纯水超滤10次,得衍生多糖220mg,收率73.3%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国 药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的8型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入等质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.3,反应2h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液137mg,收率68.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例12制备血清型8-TT缀合物
制备血清型8-TT缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的8型水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(4.5g,15m),反应过程中用0.1M盐酸调节pH=4.5±0.2,避光室温反应8小时。
超滤,0.1M磷酸盐超滤30次,纯水超滤10次,得衍生多糖233mg,收率77.7%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的8型衍生多糖溶于水中,至终浓度为3mg/ml,冰浴下控温2~8℃,加入1.2倍质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5± 0.2,反应3h,结束后用氢氧化钠调pH=7.0,反应1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液131mg,收率65.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例13制备血清型9N-CRM197缀合物
发明人在研究9N型肺炎球菌荚膜多糖结构的基础上,通过间隔物(ADH)将多糖衍生,再与载体蛋白缀合。本方案的反应位点为α-D-GlupA糖环上的羧基(见图8)。
制备血清型9N-CRM197缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的9N型水解多糖溶于水中,至终浓度为8mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(6g,20m),反应过程中用0.1M盐酸调节pH=4.5±0.2,避光室温反应12小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤10次,得衍生多糖239mg,收率79.7%。用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的9N型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入等质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.2,反应2h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液97mg,收率48.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似 的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例14制备血清型9N-TT缀合物
制备血清型9N-TT缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的9N型水解多糖溶于水中,至终浓度为8mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(6g,20m),反应过程中用0.1M盐酸调节pH=4.5±0.2,避光室温反应12小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤10次,得衍生多糖225mg,收率75.0%。
用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的9N型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入1.1倍质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.3,反应2h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液100mg,收率50.0%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例15制备血清型9V-CRM197缀合物
发明人在研究9V型肺炎球菌荚膜多糖结构的基础上,通过间隔物(ADH)将多糖衍生,再与载体蛋白缀合。本方案的反应位点为α-D-GlcpA糖环上的羧基(见图9)。
制备血清型9V-CRM197缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的9V型水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(4.5g,15m),反应过程中用0.1M盐酸调节pH=4.5±0.2,避光室温反应15小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤20次,得衍生多糖221mg,收率73.7%。
用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的9V型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入等质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.2,反应3h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液101mg,收率50.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例16制备血清型9V-TT缀合物
制备血清型9V-TT缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的9V型水解多糖溶于水中,至终浓度为6mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(4.5g,15m),反应过程中用0.1M盐酸调节pH=4.5±0.2,避光室温反 应15小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤20次,得衍生多糖228mg,收率76.0%。
用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的9V型衍生多糖溶于水中,至终浓度为5mg/ml,冰浴下控温2~8℃,加入等质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.3,反应2h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液110mg,收率55.0%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例17制备血清型22F-CRM197缀合物
发明人在研究22F型肺炎球菌荚膜多糖结构的基础上,利用间隔物ADH将多糖衍生,再与载体蛋白缀合。本方案的反应位点为β-D-GlcpA糖环上的羧基(见图10)。
制备血清型22F-CRM197缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的22F型水解多糖溶于水中,至终浓度为8mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(6g,20m),反应过程中用0.1M盐酸调节pH=4.5±0.3,避光,37℃反应24小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤50次,得衍生多糖215mg,收率71.7%。
用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中 国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的22F型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入1.2倍质量的CRM197载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5±0.2,反应3h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液123mg,收率61.5%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。相关实验数据见表1。
实施例18制备血清型22F-TT缀合物
制备血清型22F-TT缀合物的方法如下:
1)制备水解多糖,酸性条件加热反应即得。
2)制备衍生多糖,具体操作为:室温下,将300mg的22F型水解多糖溶于水中,至终浓度为8mg/ml,加入磷酸盐缓冲液至终浓度为10mM,加入EDAC固体(600mg,2m),以及ADH固体(6g,20m),反应过程中用0.1M盐酸调节pH=4.5±0.3,避光,37℃反应24小时。
超滤,0.1M磷酸盐超滤50次,纯水超滤50次,得衍生多糖210mg,收率70.0%。
用蒽酮法测糖含量,TSK测分子量,核磁检测荚膜多糖结构。药典法测ADH含量(中国药典通则3118),ADH含量(单位μg/ml)与多糖含量(单位mg/ml)的比值即为ADH衍生率。
3)制备结合物
将200mg的22F型衍生多糖溶于水中,至终浓度为4mg/ml,冰浴下控温2~8℃,加入1.1倍质量的TT载体蛋白,混匀,加入EDAC至终浓度为20mg/ml,盐酸调节pH=5.5 ±0.3,反应3h,结束后用氢氧化钠调pH=7.0,封闭1h,结束反应。0.45μm过滤器过滤后,纯化,得结合物原液130mg,收率65.0%。
上述结合物原液用0.22μm过滤器无菌过滤,将这种原液材料称为单价结合体。类似的方法适用于所有含羧基的血清型。
核磁测相关衍生物的结构。
表1:实施例相关实验数据汇总表
Figure PCTCN2022113063-appb-000003
Figure PCTCN2022113063-appb-000004
实施例19将缀合物物配制为疫苗
将24种肺炎球菌结合物原液(1、2、3、4、5、6A、6B、7F、8、9N、9V、10A、11A、12F、14、15B、17F、18C、19A、19F、20、22F、23F、33F)按一定比例加入到0.9%的生理盐水中,充分混合,加适量的50mM琥珀酸溶液以及磷酸铝佐剂,配制为肺炎球菌24价多糖结合疫苗。
其中,各型多糖含量为2.2μg/ml(6B 4.4μg/ml),铝离子含量不高于0.2mg/ml,0.5ml/支分装,即得。
实施例20免疫原性研究
针对本研究,招募普通家兔,每只2.5kg左右,雌雄各半,实验共设10组:8组实验组、1组阳性对照疫苗(Prevnar13)、1组安慰剂。不管制剂的化合价,给予家兔0.5ml的剂量体积,相当于成人中的单剂量,皮下注射,分别于0、14、28天进行免疫,免疫后42天颈部静脉采集全血,分离血清。具体试验组别见表3。
表3:试验组别
组别 12F结合物原液结合工艺
PCV-1 高碘酸钠活化
PCV-2 CDAP工艺结合CRM197
PCV-3 CDAP工艺结合TT
PCV-4 羧基衍生工艺TT
PCV-5 羧基衍生工艺CRM197
PCV-6 Prevnar13
ELISA法检测IgG对各种肺炎球菌荚膜多糖的滴度,按照标准化的WHO ELISA流 程操作。12F多糖缀合物的免疫原性见图11。
按照标准化的OPA流程操作,测定合并血清的OPA GMT,12F多糖缀合物的免疫原性见图12。
ELISA法检测IgG对各种肺炎球菌荚膜多糖的滴度,按照标准化的WHO ELISA流程操作。1、3、5、8、9N、9V、12F、22F多糖缀合物的免疫原性对比见图13。
按照标准化的OPA流程操作,测定合并血清的OPA GMT,1、3、5、8、9N、9V、12F、22F多糖缀合物的免疫原性对比见图14。
实施例21核磁结构的比较
各血清型荚膜多糖衍生后相关核磁图谱如图15所示,各型荚膜多糖被ADH衍生后,在1.57与2.18处有ADH特征峰(ADH特征峰如图16所示)。
实施例1~2中,由糖环羧基以ADH衍生所得的衍生多糖与12F荚膜多糖比较:最大的不同点在两组位移,见图17方框中的位移区间,此位移即为ADH两组亚甲基特征峰δ1.57、δ2.18(图16)。
理论上,ADH特征峰积分后,与多糖特征峰积分的比值,可计算多糖的衍生率,但核磁积分计算衍生率的方法准确性较差。
若ADH两侧氨基均与多糖羧基反应,核磁依然会显示特征峰,但其产物对本工艺无意义,所以只能用核磁方法推算衍生趋势。
实际操作中,表4中衍生多糖按药典方法测得的衍生率,与核磁积分法所得数据(图17)在衍生趋势上保持一致。
表4衍生多糖按药典方法测得的衍生率
Figure PCTCN2022113063-appb-000005
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (14)

  1. 一种糖缀合物,其特征在于,所述的糖缀合物为将细菌荚膜多糖的羧基通过间隔物衍生后,再与载体蛋白结合获得,其中,所述的细菌荚膜多糖包括肺炎链球菌1、2、3、5、8、9N、9V、12F或22F型荚膜多糖,所述的荚膜多糖的反应位点包括β-D-ManpNAcA、α-D-GalpA、D-GlcpA、α-D-GlcpA、β-D-GlcpA或α-D-GlupA。
  2. 根据权利要求1所述的糖缀合物,其特征在于,所述的间隔物选自ADH或CDH。
  3. 根据权利要求1所述的糖缀合物,其特征在于,所述的载体蛋白选自白喉类毒素突变体、破伤风类毒素、得自革兰氏阴性菌的外膜蛋白质、流感嗜血杆菌表面脂蛋白、由流感嗜血杆菌HiD蛋白基因和流感嗜血杆菌Hin47蛋白基因形成的融合蛋白、百日咳毒素、乙型肝炎表面抗原、乙型肝炎核心抗原、轮状病毒VP7蛋白质或呼吸道合胞病毒F和G蛋白或其活性部分。
  4. 根据权利要求1所述的糖缀合物,其特征在于,所述的细菌荚膜多糖与载体蛋白的质量比为(0.3~3):1。
  5. 根据权利要求1-4任一所述的糖缀合物,其特征在于,所述的细菌荚膜多糖的每10至30个糖重复单元,在所述载体蛋白与所述细菌荚膜多糖之间存在至少一个共价键。
  6. 一种糖缀合物的制备方法,其特征在于,包括:
    将细菌荚膜多糖加入酸溶液水解,优选的,所述的酸溶液为醋酸溶液,得到细菌荚膜水解多糖,将细菌荚膜水解多糖与间隔物反应得到细菌荚膜多糖衍生物,将细菌荚膜多糖衍生物与载体蛋白结合制备糖缀合物;
    其中,所述的细菌荚膜多糖包括肺炎链球菌1、2、3、5、8、9N、9V、12F或22F型荚膜多糖,优选的,将细菌荚膜水解多糖与间隔物在EDAC存在下反应得到细菌荚膜多糖衍生物。
  7. 根据权利要求6所述的一种糖缀合物的制备方法,其特征在于,所述的间隔物选自ADH或CDH。
  8. 根据权利要求6或7所述的一种糖缀合物的制备方法,其特征在于,所述的细菌荚 膜多糖与间隔物的的质量比为1:(1~30)。
  9. 根据权利要求6所述的一种糖缀合物的制备方法,其特征在于,所述的载体蛋白选自白喉类毒素突变体、破伤风类毒素、得自革兰氏阴性菌的外膜蛋白质、流感嗜血杆菌表面脂蛋白、由流感嗜血杆菌HiD蛋白基因和流感嗜血杆菌Hin47蛋白基因形成的融合蛋白、百日咳毒素、乙型肝炎表面抗原、乙型肝炎核心抗原、轮状病毒VP7蛋白质或呼吸道合胞病毒F和G蛋白或其活性部分。
  10. 根据权利要求6所述的一种糖缀合物的制备方法,其特征在于,所述的细菌荚膜多糖与载体蛋白的质量比为(0.3~3):1。
  11. 根据权利要求6-10任一所述的制备方法制备得到的糖缀合物。
  12. 免疫原性组合物,其特征在于,包含权利要求1-5任一所述的糖缀合物或权利要求11所述的糖缀合物,以及药学上可接受的赋形剂、载体和/或稀释剂。
  13. 根据权利要求12所述的免疫原性组合物,其特征在于,所述的组合物中包括肺炎链球菌12F型荚膜多糖缀合物,所述肺炎链球菌12F型荚膜多糖缀合物加入酸溶液水解,优选的,所述的酸溶液为醋酸溶液,得到12F型荚膜水解多糖,将12F型荚膜水解多糖与间隔物反应得到12F型荚膜多糖衍生物,将12F型荚膜多糖衍生物与载体蛋白结合制备糖缀合物,优选的,将12F型荚膜水解多糖与间隔物在EDAC存在下反应得到12F型荚膜多糖衍生物;其中,所述的组合物还包括肺炎链球菌1、2、3、5、8、9N、9V或22F型荚膜多糖。
  14. 权利要求1-5任一所述的糖缀合物、权利要求11所述的糖缀合物或权利要求12-13任一所述的免疫原性组合物在制备预防和/或治疗个体肺炎链球菌感染、与肺炎链球菌相关的疾病的药物或疫苗中的应用。
PCT/CN2022/113063 2021-08-27 2022-08-17 一种肺炎球菌结合疫苗制备方法 WO2023025003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110999963.7A CN115721709A (zh) 2021-08-27 2021-08-27 一种肺炎球菌结合疫苗制备方法
CN202110999963.7 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023025003A1 true WO2023025003A1 (zh) 2023-03-02

Family

ID=85290594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113063 WO2023025003A1 (zh) 2021-08-27 2022-08-17 一种肺炎球菌结合疫苗制备方法

Country Status (2)

Country Link
CN (1) CN115721709A (zh)
WO (1) WO2023025003A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184071A1 (en) * 2001-06-20 2010-05-12 Novartis Ag Capsular polysaccharide solubilisation and combination vaccines
CN101784282A (zh) * 2007-06-26 2010-07-21 葛兰素史密丝克莱恩生物有限公司 包含肺炎链球菌荚膜多糖缀合物的疫苗
CN106102770A (zh) * 2014-01-21 2016-11-09 辉瑞公司 包含缀合荚膜糖抗原的免疫原性组合物及其用途
CN110302375A (zh) * 2019-06-27 2019-10-08 康希诺生物股份公司 一种糖缀合物及其用途
CN111132691A (zh) * 2017-06-10 2020-05-08 创赏有限公司 提供改善的免疫原性和亲合力的具有二价或多价缀合物多糖的多价缀合物疫苗
CN112741901A (zh) * 2019-10-31 2021-05-04 北京科兴中维生物技术有限公司 一种含有5型肺炎链球菌荚膜多糖的疫苗及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184071A1 (en) * 2001-06-20 2010-05-12 Novartis Ag Capsular polysaccharide solubilisation and combination vaccines
CN101784282A (zh) * 2007-06-26 2010-07-21 葛兰素史密丝克莱恩生物有限公司 包含肺炎链球菌荚膜多糖缀合物的疫苗
CN106102770A (zh) * 2014-01-21 2016-11-09 辉瑞公司 包含缀合荚膜糖抗原的免疫原性组合物及其用途
CN111132691A (zh) * 2017-06-10 2020-05-08 创赏有限公司 提供改善的免疫原性和亲合力的具有二价或多价缀合物多糖的多价缀合物疫苗
CN110302375A (zh) * 2019-06-27 2019-10-08 康希诺生物股份公司 一种糖缀合物及其用途
CN112741901A (zh) * 2019-10-31 2021-05-04 北京科兴中维生物技术有限公司 一种含有5型肺炎链球菌荚膜多糖的疫苗及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NURIEV, R. ET AL.: "Immunochemical characteristics of Streptococcus pneumoniae type 3 capsular polysaccharide glycoconjugate constructs correlate with its immunogenicity in mice model", VACCINE, vol. 38, 16 November 2020 (2020-11-16), XP086381232, DOI: 10.1016/j.vaccine.2020.11.024 *
赵嘉祯等 (ZHAO, JIAZHEN ET AL.): "不同功能基团对3型肺炎球菌荚膜多糖免疫原性影响的初步研究 (The effect from different functional group of serotype 3 pneumococcal polysaccharide to its immunogenicity)", 微生物学免疫学进展 (PROGRESS IN MICROBIOLOGY AND IMMUNOLOGY), vol. 48, no. 01, 29 February 2020 (2020-02-29) *

Also Published As

Publication number Publication date
CN115721709A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
JP7132954B2 (ja) 改善された免疫原性及び結合活性を提供する2価又は多価コンジュゲート多糖を含む多価コンジュゲートワクチン
ES2621359T3 (es) Polisacáridos modificados para vacunas conjugadas
JP4846906B2 (ja) ワクチン
US10105431B2 (en) Streptococcus pneumoniae capsular polysaccharides and conjugates thereof
JP6808658B2 (ja) 多価肺炎球菌コンジュゲートワクチン
AU2024201265A1 (en) Compositions comprising Streptococcus pneumoniae polysaccharide-protein conjugates and methods of use thereof
JP2022068303A (ja) 多価肺炎球菌多糖体-タンパク質複合体組成物
JP2021512870A (ja) 多価肺炎球菌多糖体−タンパク質複合体組成物
JP7441301B2 (ja) 球菌多糖類-タンパク質接合体を含む免疫原性組成物
WO2020259076A1 (zh) 一种糖缀合物及其用途
JP2022513562A (ja) 肺炎連鎖球菌の精製された莢膜多糖
KR102083973B1 (ko) 향상된 IgG 역가를 갖는 다가면역원성 조성물 및 이의 용도
Lee Bacterial capsular polysaccharides: immunogenicity and vaccines
WO2023025003A1 (zh) 一种肺炎球菌结合疫苗制备方法
WO2023025002A1 (zh) 一种肺炎球菌结合疫苗组合物
Zou et al. Preparation of glycoconjugate vaccines
AU2018290298A2 (en) Immunogenic compositions
JP2002509115A (ja) 哺乳動物におけるモラクセラ(ブランハメラ)カタラリス感染の予防のためのリポオリゴ糖ベースのワクチン
KR20200005458A (ko) 다가 폐렴구균 다당체-단백질 접합체를 포함하는 면역원성 조성물, 및 이를 포함하는 약학 조성물
US20240066110A1 (en) Immunogenic Composition Comprising Multivalent Streptococcus Pneumoniae Polysaccharide-Protein Conjugates
RU2780425C2 (ru) Композиции neisseria meningitidis и способы
MXPA01009459A (es) Vacuna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22860349

Country of ref document: EP

Kind code of ref document: A1