WO2023024861A1 - 电容包或电池包冷却系统及其控制方法 - Google Patents

电容包或电池包冷却系统及其控制方法 Download PDF

Info

Publication number
WO2023024861A1
WO2023024861A1 PCT/CN2022/110066 CN2022110066W WO2023024861A1 WO 2023024861 A1 WO2023024861 A1 WO 2023024861A1 CN 2022110066 W CN2022110066 W CN 2022110066W WO 2023024861 A1 WO2023024861 A1 WO 2023024861A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling
switch valve
way switch
reverse
Prior art date
Application number
PCT/CN2022/110066
Other languages
English (en)
French (fr)
Inventor
严嵘
龚正大
章锦
解凌峰
华黎
Original Assignee
上海奥威科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奥威科技开发有限公司 filed Critical 上海奥威科技开发有限公司
Publication of WO2023024861A1 publication Critical patent/WO2023024861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a capacitor pack or battery pack cooling system and a control method thereof.
  • the best cooling solution for the system is to use a parallel water circuit design for each PACK.
  • An object of the present invention is to provide a capacitor pack or battery pack cooling system and a control method thereof.
  • a capacitor pack or battery pack cooling system comprising:
  • a series water-cooled plate group the series-connected water-cooled plate group includes water-cooled plate units connected in series in sequence, and the water-cooled plate unit is provided with a capacitor pack or a battery pack, wherein there are at least two water-cooled plate units;
  • Forward and reverse circulation switching pipeline one end of the forward and reverse circulation switching pipeline is connected with the water cooling plate unit at the head of the series water cooling plate group, and the other end of the forward and reverse circulation switching pipeline is connected with the series water cooling plate
  • the water-cooled plate units at the end of the group are connected, and the forward and reverse cycle cooling water circulates in the forward and reverse cycle switching pipelines and each water-cooled plate unit.
  • the forward and reverse cycle switching pipeline includes:
  • a cooling water pump communicating with the cooling unit
  • Forward and reverse cycle switching switch the forward and reverse cycle switching switch is respectively connected with the cooling water pump, the water tank, the water cooling plate unit at the head of the series water cooling plate group and the water cooling plate unit at the tail of the series series water cooling plate group .
  • the forward and reverse cycle switching switch includes: a first four-way switch valve and a second four-way switch valve, a first reverse pipeline and a second reverse pipeline, wherein,
  • the first end of the first four-way switch valve communicates with the cooling water pump
  • the second end of the first four-way switch valve communicates with the water-cooled plate unit at the head of the series water-cooled plate group
  • the first four-way switch valve communicates with the cooling water pump.
  • the third end of a four-way switch valve is connected to one end of the first reverse pipeline
  • the fourth end of the first four-way switch valve is connected to one end of the second reverse pipeline;
  • the first end of the second four-way switch valve communicates with the water tank
  • the second end of the second four-way switch valve communicates with the water-cooled plate unit at the tail of the series water-cooled plate group
  • the second four-way switch valve communicates with the water tank.
  • the third end of the directional switch valve is connected to the other end of the second reverse pipeline
  • the fourth end of the second four-way switch valve is connected to the other end of the first reverse pipeline.
  • each water-cooled plate unit includes one water-cooled plate.
  • each water-cooled plate unit includes at least two water-cooled plates, and the water-cooled plates in each water-cooled plate unit are connected in parallel with each other.
  • a control method for a capacitor pack or battery pack cooling system wherein the capacitor pack or battery pack cooling system described in any one of the above is used, and the method includes:
  • Step S1 start the capacitor pack or battery pack cooling system
  • Step S2 monitoring whether the temperature difference between capacitor packs or battery packs is greater than a preset threshold
  • step S3 after controlling the cooling water pump of the capacitor pack or battery pack cooling system to stop, switch the valve positions of the first four-way switch valve and the second four-way switch valve, start the cooling water pump, and then go to step S2;
  • the present invention effectively balances the temperature gradient between capacitor packs or battery packs by switching the forward and reverse cycles of the cooling water in the pipeline, and can keep the capacitor packs or battery packs in a state of temperature balance , to solve the problem of large temperature difference between capacitor packs or battery packs in series cooling structure, which can improve the performance and life of supercapacitors, effectively balance the temperature of single circuits, and achieve higher safety and economy.
  • Fig. 1 shows the schematic diagram of the condenser pack cooling system of an embodiment of the present invention
  • Fig. 2 shows the schematic diagram of the forward flow state of the capacitor pack cooling system of an embodiment of the present invention
  • Fig. 3 shows the schematic diagram of the reverse flow state of the capacitance pack cooling system of an embodiment of the present invention
  • Fig. 4 shows a diagram of the control method of the capacitor pack cooling system according to an embodiment of the present invention
  • the present invention provides a capacitor pack or battery pack cooling system, the system comprising:
  • a series water-cooled plate group the series-connected water-cooled plate group includes water-cooled plate units connected in series in sequence, and the water-cooled plate unit is provided with a capacitor pack or a battery pack, wherein there are at least two water-cooled plate units;
  • Forward and reverse circulation switching pipeline one end of the forward and reverse circulation switching pipeline is connected with the water cooling plate unit at the head of the series water cooling plate group, and the other end of the forward and reverse circulation switching pipeline is connected with the series water cooling plate
  • the water-cooled plate units at the end of the group are connected, and the forward and reverse cycle cooling water circulates in the forward and reverse cycle switching pipelines and each water-cooled plate unit.
  • the series cooling structure between capacitor packs or battery packs has low requirements on the maximum flow rate of the cooling system, and because the series flow rate is consistent, there is no need for means such as flow valves to balance the flow rate.
  • the series cooling structure has the inherent problem of large temperature difference of the monomers in each PACK. Since the series structure is to enter the cooling water into the first group of PACKs for heat exchange, and the heated cooling water enters the second group of PACKs for heat exchange, so the first group There is a temperature gradient between PACK and the last group of PACK. The first group has the best cooling effect and the lowest temperature, and the last group of PACK has the worst cooling effect. monomer decay.
  • the invention can effectively balance the temperature gradient between capacitor packs or battery packs by switching forward and reverse cycles of the cooling water in the pipeline, so that the capacitor packs or battery packs can be in a temperature balanced state, and solve the problem of capacitance in the series cooling structure. If there is a large temperature difference between the cells in the pack or battery pack, the performance and life of the supercapacitor can be improved, and the temperature of the single circuit can be effectively balanced to achieve higher safety and economy.
  • the forward and reverse cycle switching pipeline includes:
  • Cooling unit 2
  • a cooling water pump 3 communicated with the cooling unit
  • a water tank 4 communicated with the cooling unit
  • Forward and reverse cycle switching switch the forward and reverse cycle switching switch is respectively connected with the cooling water pump, the water tank, the water cooling plate unit at the head of the series water cooling plate group and the water cooling plate unit at the tail of the series series water cooling plate group .
  • the cooling unit may include: a compressor, an expansion valve, and a heat exchanger, wherein the principle of the cooling unit is similar to that of a general air conditioner, by circulating the refrigerant with the outside to provide cooling water to the Cooling water pump 3.
  • the cooling water flows to each water-cooling plate by the cooling water pump 3, and the cooling water exchanges heat with the capacitor pack or the battery cells in the battery pack on each water-cooling plate to cool the capacitor pack or battery pack.
  • the high-temperature cooling water after heat exchange returns to the water tank 4, and the high-temperature cooling water returns to the cooling unit 2 for cooling and recirculation.
  • the forward circulation or reverse circulation of the cooling water controlled by the forward and reverse circulation switching switch can make the capacitor pack or the battery pack in a state of temperature balance.
  • the forward and reverse cycle switching switch includes: a first four-way switching valve 5 and a second four-way switching valve 6, a first reverse pipeline 71 and a second reverse pipeline 72, wherein,
  • the first end of the first four-way switch valve communicates with the cooling water pump
  • the second end of the first four-way switch valve communicates with the water-cooled plate unit at the head of the series water-cooled plate group
  • the first four-way switch valve communicates with the cooling water pump.
  • the third end of a four-way switch valve is connected to one end of the first reverse pipeline
  • the fourth end of the first four-way switch valve is connected to one end of the second reverse pipeline;
  • the first end of the second four-way switch valve communicates with the water tank
  • the second end of the second four-way switch valve communicates with the water-cooled plate unit at the tail of the series water-cooled plate group
  • the second four-way switch valve communicates with the water tank.
  • the third end of the directional switch valve is connected to the other end of the second reverse pipeline
  • the fourth end of the second four-way switch valve is connected to the other end of the first reverse pipeline.
  • this embodiment uses the first four-way switch valve and the second four-way switch valve, the first reverse pipeline and the second reverse pipeline to effectively balance the temperature gradient between the PACKs, and solve the temperature difference of the monomers in the serial cooling structure PACK
  • the big problem is to improve the performance and life of the supercapacitor, effectively balance the temperature of the single circuit, achieve higher safety and economy, and keep the capacitor pack or battery pack in a temperature balanced state.
  • the forward flow state of the system is shown in Figure 2, the valve of the first four-way switch valve 5 is in the first position 9, and the valve of the first four-way switch valve 6 is in the second position 10, at this time the bypass
  • the waterway that is, the first reverse pipeline and the second reverse pipeline are closed; the first end of the first four-way switch valve is connected to the second end, and the first end of the second four-way switch valve is connected to the second end; the main waterway Open, the water flow is as shown in Figure 2, the first line 101 - the second line 102 - the third line 103 - the fourth line 104 represents the water temperature increases in sequence.
  • the cooling effect of the capacitor pack on the top layer is the best, and the temperature is the lowest; the cooling effect of the capacitor pack on the bottom layer is the worst, and the temperature is the highest.
  • the temperature difference is formed, and at this time, it needs to switch to the reverse flow state.
  • the capacitor pack or battery pack cooling system of the present invention when the first end and the second end of the first four-way switch valve are not connected, and the first end and the second end of the second four-way switch valve are not connected , the third end and the fourth end of the first four-way switch valve are opened, and the third end and the fourth end of the second four-way switch valve are opened.
  • the reverse flow state of the system is shown in Figure 3, the cooling water pump 3 is shut down for 3 seconds at the beginning of switching to ensure that the circulation stops, the on-off valve of the first four-way switch valve 5 rotates, and the valve of the first four-way switch valve 5 is controlled by the first four-way switch valve.
  • the cooling water pump 3 starts, the main waterway is closed, and the bypass waterway is the first reverse pipe.
  • the first and second reverse pipelines are opened, and the water flow lines are shown in Figure 3.
  • the fifth 105-sixth line 106-seventh line 107-eighth line 108 represent that the water temperature increases in sequence. At this time, the cooling effect of the capacitor pack on the bottom layer is the best, and the temperature is the lowest; the cooling effect of the capacitor pack on the top layer is the worst, and the temperature is the highest.
  • the reverse flow state bridges the temperature difference of the PACK in the forward flow state, and the capacitor pack or battery pack is in a temperature balanced state by switching between forward and reverse flow at regular intervals.
  • each water-cooled plate unit includes one water-cooled plate.
  • each water-cooled plate unit includes at least two water-cooled plates, and the water-cooled plates in each water-cooled plate unit are connected in parallel with each other.
  • the present invention also provides a control method for a capacitor pack or battery pack cooling system, using the capacitor pack or battery pack cooling system described in any of the above-mentioned embodiments, the method comprising:
  • Step S1 start the capacitor pack or battery pack cooling system
  • Step S2 monitoring whether the temperature difference between capacitor packs or battery packs is greater than a preset threshold
  • step S3 after controlling the cooling water pump of the capacitor pack or battery pack cooling system to stop, switch the valve positions of the first four-way switch valve and the second four-way switch valve, start the cooling water pump, and then go to step S2;
  • the system can perform shut-down switching.
  • the shut-down switching strategy is to switch forward and reverse flow of the four-way valve when the cooling system is shut down, which is suitable for short-time or fixed-shift applications.
  • the system can also be switched during operation, which is suitable for systems that work continuously for a long time or require very strict temperature differences.
  • the judgment condition is generally the temperature difference of the PACK. If the temperature difference control requirement does not exceed 3°C, set the switching judgment condition to a temperature difference greater than 2°C. The specific method is shown in Figure 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明的目的是提供一种电容包或电池包冷却系统及其控制方法,本发明通过正逆循环切换管路中的冷却水的正向循环或逆向循环,有效均衡电容包或电池包间的温度梯度,可以使电容包或电池包处于温度平衡状态,解决串联冷却结构的电容包或电池包内单体温差大的问题,可以提高超级电容性能及寿命,有效均衡单体路温度,达到更高的安全性及经济性。

Description

电容包或电池包冷却系统及其控制方法 技术领域
本发明涉及一种电容包或电池包冷却系统及其控制方法。
背景技术
对于由多个超级电容包或电池包(以下简称PACK)串并联使用组成的系统,为保证各PACK内的单体温度均衡,系统的最佳冷却方案是采用各PACK水路并联设计。
但实际设计中存在各种限制导致无法采用各PACK完全并联的方案,有些原因是由于最大冷却水流量的限制,如电容系统与整车共用空调,则其水流量一般都较小,全并联无法满足PACK的最低冷却水量要求;另一些由于布置空间限制,如没有并联管路布置空间;或无法均匀对称布置并联管路以保证各包PACK水流量相等的情况下,需在系统内设计相当数量流量阀及流量计,且需定期矫正流量或使用电控阀进行实时控制。
发明内容
本发明的一个目的是提供一种电容包或电池包冷却系统及其控制方法。
根据本发明的一个方面,提供了一种电容包或电池包冷却系统,该系统包括:
串联水冷板组,所述串联水冷板组包括依次串联连通的水冷板单元,所述水冷板单元上设置电容包或电池包,其中,所述水冷板单元至少为2个;
正逆循环切换管路,所述正逆循环切换管路的一端与所述串联水冷板组的头部的水冷板单元连通,所述正逆循环切换管路的另一端与所述串联 水冷板组的尾部的水冷板单元连通,所述正逆循环切换管路和各水冷板单元内流通有正向循环或逆向循环的冷却水。
进一步的,上述系统中,所述正逆循环切换管路,包括:
冷却机组;
与所述冷却机组连通的冷却水泵;
与所述冷却机组连通的水箱;
正逆循环切换开关,所述正逆循环切换开关的分别与所述冷却水泵、水箱、所述串联水冷板组的头部的水冷板单元和所述串联水冷板组的尾部的水冷板单元连通。
进一步的,上述系统中,所述正逆循环切换开关包括:第一四向开关阀和第二四向开关阀、第一逆向管路和第二逆向管路,其中,
所述第一四向开关阀的第一端与所述冷却水泵连通,所述第一四向开关阀的第二端与所述串联水冷板组的头部的水冷板单元连通,所述第一四向开关阀的第三端与所述第一逆向管路的一端连接,所述第一四向开关阀的第四端与所述第二逆向管路的一端连接;
所述第二四向开关阀的第一端与所述水箱连通,所述第二四向开关阀的第二端与所述串联水冷板组的尾部的水冷板单元连通,所述第二四向开关阀的第三端与所述第二逆向管路的另一端连接,所述第二四向开关阀的第四端与所述第一逆向管路的另一端连接。
进一步的,上述系统中,当第一四向开关阀的第一端和第二端连通,且第二四向开关阀的第一端和第二端连通时,第一四向开关阀的第三端和第四端封闭,且第二四向开关阀的第三端和第四端封闭。
进一步的,上述系统中,当第一四向开关阀的第一端和第二端未连通,且第二四向开关阀的第一端和第二端未连通时,第一四向开关阀的第三端和第四端打开,且第二四向开关阀的第三端和第四端打开。
进一步的,上述系统中,每个水冷板单元包括1块水冷板。
进一步的,上述系统中,每个水冷板单元包括至少2块水冷板,每个水冷板单元内的各块水冷板之间互相并联。
根据本发明的另一面,还提供一种电容包或电池包冷却系统的控制方法,其中,采用上述任一项所述的电容包或电池包冷却系统,所述方法包括:
步骤S1,启动电容包或电池包冷却系统;
步骤S2,监测电容包或电池包之间的温差是否大于预设阈值,
若是,步骤S3,控制电容包或电池包冷却系统的冷却水泵停机后,对第一四向开关阀和第二四向开关阀的阀门位置进行切换后,启动冷却水泵,然后转到步骤S2;
若否,转到步骤S2。
与现有技术相比,本发明通过正逆循环切换管路中的冷却水的正向循环或逆向循环,有效均衡电容包或电池包间的温度梯度,可以使电容包或电池包处于温度平衡状态,解决串联冷却结构的电容包或电池包内单体温差大的问题,可以提高超级电容性能及寿命,有效均衡单体路温度,达到更高的安全性及经济性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1示出本发明一实施例的电容包冷却系统的原理图;
图2示出本发明一实施例的的电容包冷却系统的正向流动状态原理图;
图3示出本发明一实施例的的电容包冷却系统的逆向流动状态原理图;
图4示出本发明一实施例的的电容包冷却系统的控制方法图;
其中,1、压缩机;2、冷却机组;3、冷却水泵;4、水箱;5、第一四向开关阀;6、第二四向开关阀;71、第一逆向管路;72、第二逆向管路;8、电容包或电池包;
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
下面结合附图对本发明作进一步详细描述。
本发明提供一种电容包或电池包冷却系统,所述系统包括:
串联水冷板组,所述串联水冷板组包括依次串联连通的水冷板单元,所述水冷板单元上设置电容包或电池包,其中,所述水冷板单元至少为2个;
正逆循环切换管路,所述正逆循环切换管路的一端与所述串联水冷板组的头部的水冷板单元连通,所述正逆循环切换管路的另一端与所述串联水冷板组的尾部的水冷板单元连通,所述正逆循环切换管路和各水冷板单元内流通有正向循环或逆向循环的冷却水。
在此,电容包或电池包(PACK)间串联冷却结构对冷却系统最大流量的要求低,且因串联流量一致无需流量阀等手段均衡流量。但串联冷却结构存在各PACK内单体温差大的固有问题,由于串联结构是将冷却水进入第一组PACK进行热交换,升温的冷却水再进入第二组PACK进行热交换,故第一组PACK至最后一组PACK间存在温度梯度,第一组的冷却效果最好温度最低,最后一组PACK的冷却效果最差,PACK间始终存在温差,会影响单体性能及系统均衡性,并加快单体的衰减。
本发明通过正逆循环切换管路中的冷却水的正向循环或逆向循环,有效均衡电容包或电池包间的温度梯度,可以使电容包或电池包处于温度平衡状态,解决串联冷却结构的电容包或电池包内单体温差大的问题,可以提高超级电容性能及寿命,有效均衡单体路温度,达到更高的安全性及经 济性。
本发明的电容包或电池包冷却系统一实施例中,所述正逆循环切换管路,包括:
冷却机组2;
与所述冷却机组连通的冷却水泵3;
与所述冷却机组连通的水箱4;
正逆循环切换开关,所述正逆循环切换开关的分别与所述冷却水泵、水箱、所述串联水冷板组的头部的水冷板单元和所述串联水冷板组的尾部的水冷板单元连通。
在此,如图1所示,所述冷却机组可以包括:压缩机、膨胀阀及热交换器,其中,所述冷却机组原理与一般空调类似,通过将制冷剂与外界循环,提供冷却水至冷却水泵3。
冷却水由冷却水泵3流到各块水冷板,冷却水与各块水冷板上的电容包或电池包内的电池单体进行热交换,以对电容包或电池包进行冷却。热交换后的高温冷却水返回水箱4,高温冷却水再返回冷却机组2进行冷却再循环。
本实施例通过正逆循环切换开关控制的冷却水的正向循环或逆向循环,可以使电容包或电池包处于温度平衡状态。
本发明的电容包或电池包冷却系统一实施例中,所述正逆循环切换开关包括:第一四向开关阀5和第二四向开关阀6、第一逆向管路71和第二逆向管路72,其中,
所述第一四向开关阀的第一端与所述冷却水泵连通,所述第一四向开关阀的第二端与所述串联水冷板组的头部的水冷板单元连通,所述第一四向开关阀的第三端与所述第一逆向管路的一端连接,所述第一四向开关阀的第四端与所述第二逆向管路的一端连接;
所述第二四向开关阀的第一端与所述水箱连通,所述第二四向开关阀 的第二端与所述串联水冷板组的尾部的水冷板单元连通,所述第二四向开关阀的第三端与所述第二逆向管路的另一端连接,所述第二四向开关阀的第四端与所述第一逆向管路的另一端连接。
在此,本实施例通过第一四向开关阀和第二四向开关阀、第一逆向管路和第二逆向管路,有效均衡PACK间的温度梯度,解决串联冷却结构PACK内单体温差大的问题,提高超级电容性能及寿命,有效均衡单体路温度,达到更高的安全性及经济性,可以使电容包或电池包处于温度平衡状态。
本发明的电容包或电池包冷却系统一实施例中,当第一四向开关阀的第一端和第二端连通,且第二四向开关阀的第一端和第二端连通时,第一四向开关阀的第三端和第四端封闭,且第二四向开关阀的第三端和第四端封闭。
具体的,系统的正向流动状态如图2所示,第一四向开关阀5的阀门处于第一位置9,且第一四向开关阀6的阀门处于第二位置10,此时旁通水路即第一逆向管路和第二逆向管路封闭;第一四向开关阀的第一端和第二端连通,且第二四向开关阀的第一端和第二端连通,主水路打开,水流如线路如图2所示,第一线路101-第二线路102-第三线路103-第四线路104代表水温依次升高。此时最上层电容包的冷却效果最好,温度最低;最下层的电容包冷却效果最差,温度最高。持续一段时间后温差形成,此时需切换为逆向流动状态。
本发明的电容包或电池包冷却系统一实施例中,当第一四向开关阀的第一端和第二端未连通,且第二四向开关阀的第一端和第二端未连通时,第一四向开关阀的第三端和第四端打开,且第二四向开关阀的第三端和第四端打开。
具体的,系统的逆向流动状态如图3所示,切换开始冷却水泵3停机3s确保循环停止,第一四向开关阀5的开关阀阀门转动,第一四向开关阀5的阀门由第一位置9旋转到第三位置11,且第一四向开关阀6的阀门由 第二位置10、旋转到第四位置12后,冷却水泵3启动,主水路关闭,旁通水路即第一逆向管路和第二逆向管路打开,水流线路如图3所示,第五105-第六线路106-第七线路107-第八线路108代表水温依次升高。此时最下层电容包的冷却效果最好,温度最低;最上层的电容包冷却效果最差,温度最高。逆向流动状态弥合了正向流动状态时PACK的温差,通过正、逆向流动的定时间隙切换,使电容包或电池包处于温度平衡状态。
本发明的电容包或电池包冷却系统一实施例中,每个水冷板单元包括1块水冷板。
本发明的电容包或电池包冷却系统一实施例中,每个水冷板单元包括至少2块水冷板,每个水冷板单元内的各块水冷板之间互相并联。
如图4所示,本发明还提供一种电容包或电池包冷却系统的控制方法,采用上述任一实施例所述的电容包或电池包冷却系统,所述方法包括:
步骤S1,启动电容包或电池包冷却系统;
步骤S2,监测电容包或电池包之间的温差是否大于预设阈值,
若是,步骤S3,控制电容包或电池包冷却系统的冷却水泵停机后,对第一四向开关阀和第二四向开关阀的阀门位置进行切换后,启动冷却水泵,然后转到步骤S2;
若否,转到步骤S2。
在此,本系统可以进行停机切换,停机切换策略是在冷却系统停机状态下进行正逆流的四向阀门切换,适用于短时或定班次应用。
本系统还可以再运行过程中切换,适用于长时连续工作的系统或对温差要求非常严苛的情况。判定条件一般为PACK的温差。如温差控制要求未不超过3℃,则将切换判定条件设为温差大于2℃,具体方法如图4所示。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离 本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (8)

  1. 一种电容包冷却系统,其中,该系统包括:
    串联水冷板组,所述串联水冷板组包括依次串联连通的水冷板单元,所述水冷板单元上设置电容包或电池包,其中,所述水冷板单元至少为2个;
    正逆循环切换管路,所述正逆循环切换管路的一端与所述串联水冷板组的头部的水冷板单元连通,所述正逆循环切换管路的另一端与所述串联水冷板组的尾部的水冷板单元连通,所述正逆循环切换管路和各水冷板单元内流通有正向循环或逆向循环的冷却水。
  2. 根据权利要求1所述的系统,其中,所述正逆循环切换管路,包括:
    冷却机组;
    与所述冷却机组连通的冷却水泵;
    与所述冷却机组连通的水箱;
    正逆循环切换开关,所述正逆循环切换开关的分别与所述冷却水泵、水箱、所述串联水冷板组的头部的水冷板单元和所述串联水冷板组的尾部的水冷板单元连通。
  3. 根据权利要求2所述的系统,其中,所述正逆循环切换开关包括:第一四向开关阀和第二四向开关阀、第一逆向管路和第二逆向管路,其中,
    所述第一四向开关阀的第一端与所述冷却水泵连通,所述第一四向开关阀的第二端与所述串联水冷板组的头部的水冷板单元连通,所述第一四向开关阀的第三端与所述第一逆向管路的一端连接,所述第一四向开关阀的第四端与所述第二逆向管路的一端连接;
    所述第二四向开关阀的第一端与所述水箱连通,所述第二四向开关阀的第二端与所述串联水冷板组的尾部的水冷板单元连通,所述第二四向开关阀的第三端与所述第二逆向管路的另一端连接,所述第二四向开关阀的第四端与所述第一逆向管路的另一端连接。
  4. 根据权利要求3所述的系统,其中,当第一四向开关阀的第一端和第二端连通,且第二四向开关阀的第一端和第二端连通时,第一四向开关阀的第三端和第四端封闭,且第二四向开关阀的第三端和第四端封闭。
  5. 根据权利要求3所述的系统,其中,当第一四向开关阀的第一端和第二端未连通,且第二四向开关阀的第一端和第二端未连通时,第一四向开关阀的第三端和第四端打开,且第二四向开关阀的第三端和第四端打开。
  6. 根据权利要求1所述的系统,其中,每个水冷板单元包括1块水冷板。
  7. 根据权利要求1所述的系统,其中,每个水冷板单元包括至少2块水冷板,每个水冷板单元内的各块水冷板之间互相并联。
  8. 一种电容包或电池包冷却系统的控制方法,其中,采用如权利要求1至7任一项所述的电容包或电池包冷却系统,所述方法包括:
    步骤S1,启动电容包或电池包冷却系统;
    步骤S2,监测电容包或电池包之间的温差是否大于预设阈值,
    若是,步骤S3,控制电容包或电池包冷却系统的冷却水泵停机后,对第一四向开关阀和第二四向开关阀的阀门位置进行切换后,启动冷却水泵,然后转到步骤S2;
    若否,转到步骤S2。
PCT/CN2022/110066 2021-08-26 2022-08-03 电容包或电池包冷却系统及其控制方法 WO2023024861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110987764.4A CN113904032A (zh) 2021-08-26 2021-08-26 电容包或电池包冷却系统及其控制方法
CN202110987764.4 2021-08-26

Publications (1)

Publication Number Publication Date
WO2023024861A1 true WO2023024861A1 (zh) 2023-03-02

Family

ID=79188003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110066 WO2023024861A1 (zh) 2021-08-26 2022-08-03 电容包或电池包冷却系统及其控制方法

Country Status (2)

Country Link
CN (1) CN113904032A (zh)
WO (1) WO2023024861A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904032A (zh) * 2021-08-26 2022-01-07 上海奥威科技开发有限公司 电容包或电池包冷却系统及其控制方法
CN114709518A (zh) * 2022-04-20 2022-07-05 深圳市欣旺达综合能源服务有限公司 一种储能液冷系统及其应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244572A (zh) * 2020-01-22 2020-06-05 恒大新能源汽车科技(广东)有限公司 电池包温差控制系统、控制方法及电子设备
CN210866416U (zh) * 2019-09-12 2020-06-26 郑州宇通客车股份有限公司 一种电池冷却系统
CN213322740U (zh) * 2020-09-11 2021-06-01 浙江吉利控股集团有限公司 动力电池包温度调节系统及具有其的车辆
WO2021143125A1 (zh) * 2020-01-19 2021-07-22 华为技术有限公司 一种热管理系统及电动汽车
CN113904032A (zh) * 2021-08-26 2022-01-07 上海奥威科技开发有限公司 电容包或电池包冷却系统及其控制方法
CN216793821U (zh) * 2021-08-26 2022-06-21 上海奥威科技开发有限公司 电容包或电池包冷却系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993446A (zh) * 2019-12-18 2021-06-18 观致汽车有限公司 用于电池包的液冷系统、电池包和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210866416U (zh) * 2019-09-12 2020-06-26 郑州宇通客车股份有限公司 一种电池冷却系统
WO2021143125A1 (zh) * 2020-01-19 2021-07-22 华为技术有限公司 一种热管理系统及电动汽车
CN111244572A (zh) * 2020-01-22 2020-06-05 恒大新能源汽车科技(广东)有限公司 电池包温差控制系统、控制方法及电子设备
CN213322740U (zh) * 2020-09-11 2021-06-01 浙江吉利控股集团有限公司 动力电池包温度调节系统及具有其的车辆
CN113904032A (zh) * 2021-08-26 2022-01-07 上海奥威科技开发有限公司 电容包或电池包冷却系统及其控制方法
CN216793821U (zh) * 2021-08-26 2022-06-21 上海奥威科技开发有限公司 电容包或电池包冷却系统

Also Published As

Publication number Publication date
CN113904032A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023024861A1 (zh) 电容包或电池包冷却系统及其控制方法
KR100923962B1 (ko) 지열원을 활용한 히트펌프 시스템
WO2015067132A1 (zh) 一种直流换流阀用带蓄冷的外冷却系统及其操作方法
WO2021120815A1 (zh) 车辆的热管理系统和车辆
CN211457832U (zh) 一种换流阀冷却系统
CN115692927A (zh) 一种液冷储能机组的热管理系统及方法
CN210245678U (zh) 电池组液冷均温系统
CN103017389B (zh) 高精度温控热交换系统
CN107819140B (zh) 全钒液流电池系统及其冷却方法
CN216793821U (zh) 电容包或电池包冷却系统
CN111148413A (zh) 一种换流阀冷却系统
CN114497804B (zh) 电池热管理系统、控制方法及车辆
CN106653291A (zh) 一种利用日夜温差对变压器强迫油循环冷却的系统
JP3550336B2 (ja) 冷暖房システム
CN115764058A (zh) 一种电化学储能热管理系统
CN108541188A (zh) 一种换热单元及数据中心液冷系统
CN112696958B (zh) 闭式蓄热系统及其蓄放热方法
US11721854B2 (en) Battery thermal management system and method
CN209766604U (zh) 一种节能型水路可逆电池热管理系统
KR101136723B1 (ko) 여름철 여열 처리를 위한 중간 열교환기가 설치된 흡수식 냉온수기 및 그 운전방법
JP2014134302A (ja) 熱供給システム
CN113264618A (zh) 用于低温海水的电解法压载水处理系统
CN218677316U (zh) 一种电化学储能热管理系统
CN213984093U (zh) -40℃~200℃ 全串联密闭制冷加热循环系统
CN212619461U (zh) 设备和厂房共同制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE