WO2015067132A1 - 一种直流换流阀用带蓄冷的外冷却系统及其操作方法 - Google Patents

一种直流换流阀用带蓄冷的外冷却系统及其操作方法 Download PDF

Info

Publication number
WO2015067132A1
WO2015067132A1 PCT/CN2014/089626 CN2014089626W WO2015067132A1 WO 2015067132 A1 WO2015067132 A1 WO 2015067132A1 CN 2014089626 W CN2014089626 W CN 2014089626W WO 2015067132 A1 WO2015067132 A1 WO 2015067132A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
cold
chiller
cooling
heat exchanger
Prior art date
Application number
PCT/CN2014/089626
Other languages
English (en)
French (fr)
Inventor
查鲲鹏
魏晓光
周建辉
文玉良
吴文伟
王航
栾洪洲
王治翔
Original Assignee
国家电网公司
国网智能电网研究院
中电普瑞电力工程有限公司
国网山东省电力公司电力科学研究院
广州高澜节能技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网智能电网研究院, 中电普瑞电力工程有限公司, 国网山东省电力公司电力科学研究院, 广州高澜节能技术股份有限公司 filed Critical 国家电网公司
Publication of WO2015067132A1 publication Critical patent/WO2015067132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14339Housings specially adapted for power drive units or power converters specially adapted for high voltage operation

Definitions

  • the invention relates to an external cooling system, in particular to an external cooling system with a cold storage for a DC converter valve and an operating method thereof.
  • the cooling system is an important component of the converter valve cooling system, and its operation directly affects the transmission capacity of the entire DC system. Therefore, it is especially important to ensure a stable, reliable and efficient operation of the cooling system.
  • the closed circulating water cooling system of modern high-power power electronic devices generally uses an air cooler as an external cooling device in the cold and water-deficient areas, and transfers the heat generated by the converter valve to the air cooler through the circulating cooling water. Take the heat away.
  • the difference between the upper limit of the inlet temperature of the converter valve and the limit temperature of the environment is one of the key parameters for designing the air cooler, which directly affects the heat exchange efficiency of the air cooler. Since the ambient temperature changes periodically, when the difference between the inlet temperature of the air cooler and the ambient temperature is small, the air cooler is inefficient and the air cooler occupies a very large area. Due to the numerous air coolers, the line pressure ratio and space arrangement often become a problem for technicians.
  • the storage temperature of a general air-conditioning water storage project is 7 to 12 °C.
  • the lower limit of the temperature can be lowered from 7 ° C to 4 ° C.
  • the present invention provides an external cooling system with a cold storage for a DC converter valve and an operation method thereof, which have a larger cold storage temperature difference, can withstand high temperature in summer, and have antifreeze capability through heat storage in winter.
  • the invention provides a DC converter valve with a cold storage external cooling system
  • the external cooling system comprises an air cooler 2, a plate heat exchanger 3, a chiller, a fixed frequency cold pump 6, a buffer tank 7, and an oblique temperature.
  • Layered The cold storage tank 8, the variable frequency cold pump 9, the cooling water pump 10 and the valve, the plate heat exchanger 3 is provided with a hot side branch and a cold side branch in parallel, and the improvement is as follows:
  • the cooled device 1 and the air cooler 2, the valve K1, the plate heat exchanger 3, and the cooling water pump 10 are sequentially connected in series to form a circulation loop, and the air cooler 2 and Between the cooling water pump 10, a valve K2 bypass is provided in parallel with the valve K1 and the plate heat exchanger 3 branch;
  • the valve V2, the inclined layer type cold storage tank 8, the valve V3, and the variable frequency cold pump 9 are sequentially connected in series to form a cold storage branch and a cold branch, a chiller and a fixed frequency cold pump 6
  • the buffer tank 7 and the valve V4 are connected in series to form a cold water supply branch branch, and the cold storage branch cooling branch and the chiller cooling branch are connected in parallel to form a cold side circulation in series with the plate heat exchanger 3 Cold circuit.
  • the cooled device 1 is a DC converter valve
  • the DC converter valve comprises: a thyristor, a damping capacitor, a voltage equalizing capacitor, a damping resistor, a voltage equalizing resistor, a saturation reactor, a thyristor control unit, and a water distribution system;
  • the external cooling system is connected to the water distribution system of the DC converter valve through a pipeline.
  • the chiller comprises a first chiller 4, a valve V6 bypass and a second chiller 5 arranged in parallel in sequence, and the outlet of the first chiller 4 and the valve V6 bypass is provided with a valve V7, The inlet of the second chiller 5 and the valve V5 bypass is provided with a valve V5.
  • the refrigerant used in the chiller is 134R.
  • the operating temperature of the 134R is lower than 55 °C.
  • the hot side outlet of the plate heat exchanger 3 is provided with a temperature detecting device T1.
  • the chiller and the inclined layer type cold storage tank 7 are provided with an insulating material outside.
  • the cooling medium used in the external cooling system is pure water.
  • the present invention is based on another object of the present invention to provide a method of operating a cold-flow external cooling system for a DC-compressor valve, the improvement comprising the steps of:
  • the flow rate of the cooling water 1/2 on the hot side of the plate heat exchanger 3 is bypassed from the valve K2 bypass, and the flow rate of 1/2 flows into the plate heat exchanger 3, and the plate type
  • the chilled water on the cold side of the heat exchanger 3 is heat exchanged, and the first chiller 4 and the second chiller 5 are turned off, and the fixed frequency cold pump 6 and the variable frequency cold pump 9 are turned on, so that the chilled water after warming is stored in an oblique layer type cold storage.
  • the tank 8 stores heat; skip to step 5;
  • step 4 includes the following operation modes:
  • valve V1 valve V4, valve V5, valve V7 and variable frequency cold pump 9 are closed, valve V6, first chiller 4, second chiller 5 and fixed frequency cold pump 6 are opened, when the ramp layer When the water temperature of the type cold storage tank 8 reaches 4 ° C, the cold storage is completed;
  • valve V2 valve V3, valve V6 and variable frequency cold pump 9 closed, valve V1, valve V4, valve V5, valve V7, first chiller 4, second chiller 5 and fixed frequency
  • the cold pump 6 is turned on, and during the cooling process, the valve V4 adjusts the flow rate of the cooling circuit through the temperature detected by the temperature detecting device T1, and the first chiller 4 and the second chiller 5 are automatically unloaded according to the return water temperature, respectively, when the plate heat exchanger
  • the first chiller 4 and the second chiller 5 are operated at full load, and the chilled water temperature of the cooling circuit is 7 ° C;
  • the inclined temperature layer type cold storage tank 8 is separately supplied with cooling mode; the first chiller 4, the second chiller 5, the fixed frequency cold pump 6, the valve V4, the valve V5 and the valve V6 are closed, the valve V1, the valve V2, the valve V3 And the frequency conversion cold pump 9 is turned on, and the frequency conversion cold pump 9 performs frequency conversion control by the temperature detected by the temperature detecting device T1 to control the flow rate of the cooling circuit;
  • the chiller and the inclined layer type cold storage tank 8 are combined with the cooling mode; all the components in the cooling circuit are opened, and the valve V4 and the variable frequency cold pump 9 are respectively adjusted by the temperature detected by the temperature detecting device T1 to control the cooling circuit. Traffic.
  • the system has a larger cold storage temperature difference, ranging from 5 to 20 °C.
  • the ambient temperature is up to 55 °C.
  • FIG. 1 is a schematic diagram of an external cooling system with a cold storage for a DC converter valve provided by the present invention
  • an external cooling system with a cold storage valve is used as an example.
  • an external cooling system with a cold storage for a DC converter valve includes: a cooled device 1 , air cooling 2, plate heat exchanger 3, first chiller 4, second chiller 5, fixed frequency cold pump 6, buffer tank 7, oblique temperature layer cold storage tank 8, variable frequency cold pump 9, cooling water pump 10, temperature detection Device T1, valve K1, valve K2, valve V1, valve V2, valve V3, valve V4, valve V5, valve V6; on the hot side of the plate heat exchanger 3, the cooled device 1 and the air cooler 2, the valve K1
  • the plate heat exchanger 3 and the cooling water pump 10 are connected in series to form a circulation circuit, and a valve K2 bypass is provided between the air cooler 2 and the cooling water pump 10 in parallel with the valve K1 and the plate heat exchanger 3 branch; the plate heat exchanger
  • the hot side outlet of 3 is provided with a temperature detecting device T1;
  • the valve V2, the inclined layer type cold storage tank 8, the valve V3, and the variable frequency cold pump 9 are sequentially connected in series to form a cold storage branch and a cold branch, a chiller, a fixed frequency cold pump 6, and a buffer.
  • the tank 7 and the valve V4 are connected in series to form a cold branch for the chiller, and the cold branch of the cold storage tank and the cold branch of the chiller are connected in parallel to form a cold side circulating cooling circuit in series with the plate heat exchanger 3.
  • the cooled device 1 is a DC converter valve, and the DC converter valve includes: a thyristor, a damper capacitor, a voltage equalizing capacitor, a damping resistor, a voltage equalizing resistor, a saturable reactor, a thyristor control unit, and a water distribution system;
  • the road is connected to the water distribution system of the DC converter valve.
  • the refrigerant used in the chiller is 134R
  • the working temperature is lower than 55 °C
  • the chiller includes the first chiller 4, the valve V6 bypass and the second chiller 5, the first chiller 4 and the valve V6 which are arranged in parallel in sequence.
  • the outlet of the bypass parallel connection is provided with a valve V7
  • the inlet of the second chiller 5 and the valve V5 bypass is provided with a valve V5.
  • the outside of the chiller and the inclined layer type cold storage tank 7 is provided with a heat insulating material to avoid a large influence on the temperature of the chilled water inside due to the decrease of the external environment temperature.
  • the flow rate of the cooling water 1/2 on the hot side of the plate heat exchanger 3 is bypassed from the valve K2 bypass, the flow rate of 1/2 flows into the plate heat exchanger 3, and the plate heat exchanger
  • the chilled water on the cold side of the device 3 is heat exchanged, and the first chiller unit 4 and the second chiller unit 5 are turned off, and the fixed frequency cold pump 6 and the variable frequency cold pump 9 are turned on, so that the chilled water after the temperature rise is directed to the slant layer type cold storage tank 8 Heat storage.
  • the flow rate of 2/3 of the cooling water on the hot side of the plate heat exchanger 3 is bypassed from the valve K2 bypass, 1/3 of the flow rate flows into the plate heat exchanger 3, and exchanges with the plate heat exchanger.
  • the chilled water on the cold side of the vessel 3 is heat exchanged, and the chilled water is cooled to cool the cooling water.
  • valve V1 valve V4, valve V5, valve V7 and variable frequency cold pump 9 are closed, valve V6, first chiller 4, second chiller 5 and fixed frequency cold pump 6 are turned on, when the inclined layer type cold storage When the water temperature of the tank 8 reaches 4 ° C, the cold storage is completed.
  • the chiller is separately supplied with cooling mode; valve V2, valve V3, valve V6 and variable frequency cold pump 9 are closed, valve V1, valve V4, valve V5, valve V7, first chiller 4, second chiller 5 and fixed frequency cold pump 6 is turned on, the temperature of the cooling circuit is adjusted by the temperature detected by the valve V4 through the temperature detecting device T1 during the cooling process, and the first chiller 4 and the second chiller 5 are automatically unloaded according to the return water temperature, respectively, when the plate heat exchanger 3 When the water temperature at the cold side outlet is 20 ° C, the first chiller 4 and the second chiller 5 are operated at full load, and the chilled water temperature of the cooling circuit is 7 ° C.
  • the inclined layer type cold storage tank 8 is separately supplied with the cooling mode; the first chiller 4, the second chiller 5, the fixed frequency cold pump 6, the valve V4, the valve V5 and the valve V6 are closed, the valve V1, the valve V2, the valve V3 and the frequency conversion
  • the cold pump 9 is turned on, and the variable frequency cold pump 9 performs frequency conversion control by the temperature detected by the temperature detecting device T1 to control the flow rate of the cooling circuit.
  • the chiller and the inclined layer type cold storage tank 8 are combined with the cooling mode; all the components in the cooling circuit are opened, and the valve V4 and the variable frequency cold pump 9 are respectively adjusted by the temperature detected by the temperature detecting device T1 to control the flow of the cooling circuit. .
  • the present invention is based on another object of the present invention to provide a method of operating a cold-flow external cooling system for a DC-compressor valve, the improvement comprising the steps of:
  • the flow rate of the cooling water 1/2 on the hot side of the plate heat exchanger 3 is bypassed from the valve K2 bypass, and the flow rate of 1/2 flows into the plate heat exchanger 3, and the plate type
  • the chilled water on the cold side of the heat exchanger 3 is heat exchanged, and the first chiller 4 and the second chiller 5 are turned off, and the fixed frequency cold pump 6 and the variable frequency cold pump 9 are turned on, so that the chilled water after warming is stored in an oblique layer type cold storage.
  • the tank 8 stores heat; skip to step 5;
  • step 4 the following operation modes are included in step 4:
  • valve V1 valve V4, valve V5, valve V7 and variable frequency cold pump 9 are closed, valve V6, first chiller 4, second chiller 5 and fixed frequency cold pump 6 are opened, when the ramp layer When the water temperature of the type cold storage tank 8 reaches 4 ° C, the cold storage is completed;
  • valve V2 valve V3, valve V6 and variable frequency cold pump 9 closed, valve V1, valve V4, valve V5, valve V7, first chiller 4, second chiller 5 and fixed frequency
  • the cold pump 6 is turned on, and during the cooling process, the valve V4 adjusts the flow rate of the cooling circuit through the temperature detected by the temperature detecting device T1, and the first chiller 4 and the second chiller 5 are automatically unloaded according to the return water temperature, respectively, when the plate heat exchanger
  • the first chiller 4 and the second chiller 5 are operated at full load, and the chilled water temperature of the cooling circuit is 7 ° C;
  • the inclined temperature layer type cold storage tank 8 is separately supplied with cooling mode; the first chiller 4, the second chiller 5, the fixed frequency cold pump 6, the valve V4, the valve V5 and the valve V6 are closed, the valve V1, the valve V2, the valve V3 And the frequency conversion cold pump 9 is turned on, and the frequency conversion cold pump 9 performs frequency conversion control by the temperature detected by the temperature detecting device T1 to control the flow rate of the cooling circuit;
  • the chiller and the inclined layer type cold storage tank 8 are combined with the cooling mode; all the components in the cooling circuit are opened, and the valve V4 and the variable frequency cold pump 9 are respectively adjusted by the temperature detected by the temperature detecting device T1 to control the cooling circuit. Traffic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供一种直流换流阀用带蓄冷的外冷却系统及其操作方法,该系统包括空气冷却器(2)、板式换热器(3)、冷水机组、定频冷泵(6)、缓冲罐(7)、斜温层式蓄冷槽(8)、变频冷泵(9)和冷却水泵(10),板式换热器(3)分为热侧和冷侧,其改进之处在于,板式换热器(3)热侧,被冷却器件(1)与空气冷却器(2)、板式换热器(3)、冷却水泵(10)串联成循环回路;板式换热器(3)冷侧,斜温层式蓄冷槽(8)、变频冷泵(9)串联形成储冷罐供冷支路,冷水机组、定频冷泵(6)、缓冲罐(7)串联形成冷水机组供冷支路,储冷罐供冷支路和冷水机组供冷支路并联后与板式换热器(3)串联形成冷侧循环供冷回路。和现有技术比,本发明提供的直流换流阀用带蓄冷的外冷却系统及其操作方法,蓄冷温差范围大,夏天能够耐高温、冬天通过蓄热而具有防冻能力。

Description

一种直流换流阀用带蓄冷的外冷却系统及其操作方法 技术领域
本发明涉及一种外冷却系统,具体讲涉及一种直流换流阀用带蓄冷的外冷却系统及其操作方法。
背景技术
随着我国高压直流输电技术的日益成熟,直流输电工程建设正处于发展的黄金期。在高压直流输电系统中,冷却系统作为换流阀散热系统的重要组成,其运行情况直接影响到整个直流系统的输电能力。因此,保证冷却系统稳定、可靠和高效运行显得尤为重要。
现代大功率电力电子器件的密闭式循环水冷却系统,在高寒缺水地区通常采用空气冷却器作为外冷设备,通过循环冷却水把换流阀产生的热量传输给空气冷却器,由外设风机把热量带走。换流阀的进水温度上限与环境的极限温度之差是设计空气冷却器的关键参数之一,直接影响到空气冷却器的换热效率。由于环境温度呈周期性变化,当空气冷却器的进水温度与环境温度之差很小时,会使得空气冷却器效率很低导致空气冷却器占地非常大。由于众多的空气冷却器,管路压力配比和空间布置经常成为困扰技术人员的一项难题;另则,众多换流站达到极限温度以及达到极限附近5℃范围内的全年累计时间非常短,导致空气冷却器群在全年众多时刻处于闲置状况。最后,当前的水冷系统都采用无蓄冷的装置,系统热容小,热惯性小,对气候的敏感性较大。当系统出现温度升高过快,报警到跳闸的过度时间非常短,会产生跳闸等误报警信号,影响换流阀正常运行;尤其在冬天出现换流阀停运时,考虑到防冻需求,需要设计大量的加热器。
一般的空调水蓄冷工程的蓄水温度在7~12℃。加大温差情况下,温度的下限可以从7℃降到4℃。
发明内容
针对现有技术的不足,本发明提供了一种直流换流阀用带蓄冷的外冷却系统及其操作方法,具有更大的蓄冷温差,夏天能够耐高温、冬天通过蓄热而具有防冻能力。
本发明的目的是采用下述技术方案实现的:
本发明提供的一种直流换流阀用带蓄冷的外冷却系统,所述外冷却系统包括空气冷却器2、板式换热器3、冷水机组、定频冷泵6、缓冲罐7、斜温层式 蓄冷槽8、变频冷泵9、冷却水泵10和阀门,所述板式换热器3平行设有热侧支路和冷侧支路,其改进之处在于:
在所述板式换热器3的热侧,被冷却器件1与所述空气冷却器2、阀门K1、板式换热器3、冷却水泵10依次串联连接形成循环回路,所述空气冷却器2和冷却水泵10之间设有与所述阀门K1和板式换热器3支路并联的阀门K2旁路;
在所述板式换热器3的冷侧,阀门V2、斜温层式蓄冷罐8、阀门V3、变频冷泵9依次串联连接形成储冷罐供冷支路,冷水机组、定频冷泵6、缓冲罐7、阀门V4依次串联连接形成冷水机组供冷支路,所述储冷罐供冷支路和冷水机组供冷支路并联后与所述板式换热器3串联形成冷侧循环供冷回路。
其中,所述被冷却器件1为直流换流阀,所述直流换流阀包括:晶闸管、阻尼电容、均压电容、阻尼电阻、均压电阻、饱和电抗器、晶闸管控制单元和配水系统;所述外冷却系统通过管路与直流换流阀的配水系统连接。
其中,所述冷水机组包括依次并联设置的第一冷水机组4、阀门V6旁路和第二冷水机组5,所述第一冷水机组4和阀门V6旁路并联的出口设有阀门V7,所述第二冷水机组5和阀门V5旁路并联的入口设有阀门V5。
其中,所述冷水机组采用的制冷剂为134R。
其中,所述134R的工作温度为低于55℃。
其中,所述板式换热器3的热侧出口设有温度检测装置T1。
其中,所述冷水机组和斜温层式蓄冷槽7外部设有保温材料。
其中,所述外冷却系统采用的冷却介质为纯水。
本发明基于另一目的提供的一种直流换流阀用带蓄冷的外冷却系统的操作方法,其改进之处在于,所述方法包括下述步骤:
1、测定环境温度,确定运行模式;当环境温度低于5℃时,进入步骤2;当环境温度为5℃~35℃时,跳至步骤3;当环境温度高于35℃时,跳至步骤4;
2、当环境温度低于5℃时,板式换热器3热侧的冷却水1/2的流量从阀门K2旁路旁通,1/2的流量流进板式换热器3,并与板式换热器3冷侧的冷冻水进行热交换,第一冷水机组4和第二冷水机组5关闭,开启定频冷泵6和变频冷泵9,使升温后的冷冻水向斜温层式蓄冷槽8蓄热;跳至步骤5;
3、当环境温度为5℃~35℃时,板式换热器3热侧的冷却水全部流量从阀门K2旁路旁通,减小冷却水泵10的压力损失;跳至步骤5;
4、当环境温度高于35℃时,板式换热器3热侧的冷却水2/3的流量从阀门K2旁路旁通,1/3的流量流进板式换热器3,并与板式换热器3冷侧的冷冻水进行热交换,冷冻水供冷使冷却水降温;跳至步骤5;
5、冷却水经降温后,通过回路流入被冷却器件1中吸热升温;返回至步骤1。
其中,所述步骤4中包括下述运行模式:
1、夜间蓄冷模式;阀门V1、阀门V4、阀门V5、阀门V7和变频冷泵9关闭,阀门V6、第一冷水机组4、第二冷水机组5和定频冷泵6开启,当斜温层式蓄冷槽8的水温达到4℃时,蓄冷结束;
2、冷水机组单独供冷模式;阀门V2、阀门V3、阀门V6和变频冷泵9关闭,阀门V1、阀门V4、阀门V5、阀门V7、第一冷水机组4、第二冷水机组5和定频冷泵6开启,在供冷过程中阀门V4通过温度检测装置T1检测的温度调节供冷回路的流量,第一冷水机组4和第二冷水机组5分别根据回水温度自动卸载,当板式换热器3冷侧出口的水温为20℃时,第一冷水机组4和第二冷水机组5满负荷运行,供冷回路的冷冻水温度为7℃;
3、斜温层式蓄冷槽8单独供冷模式;第一冷水机组4、第二冷水机组5、定频冷泵6、阀门V4、阀门V5和阀门V6关闭,阀门V1、阀门V2、阀门V3和变频冷泵9开启,变频冷泵9通过温度检测装置T1检测的温度进行变频控制,以控制供冷回路的流量;
4、冷水机组和斜温层式蓄冷槽8联合供冷模式;供冷回路中的部件全部开启,阀门V4和变频冷泵9分别通过温度检测装置T1检测的温度进行调节,以控制供冷回路的流量。
与现有技术比,本发明达到的有益效果是:
1、系统具有更大的蓄冷温差,范围高达5~20℃。
2、夏天能够耐高温,冬天通过蓄热而具有防冻能力。
3、夏天蓄冷冬天蓄热,系统具备冬季和夏季两种模式。
4、由于系统中在加水后不再消耗水,系统的节水环保性能强。
5、通过冷水机组的组合,承受的环境温度高达55℃。
6、采用蓄冷槽单独供冷、冷水机单独供冷两种模式,提高系统的可靠性。
7、采用冷水机和蓄冷槽联合供冷,提高系统的冗余。
8、为提高可靠性,水泵和冷水机组都有冗余。
附图说明
图1是:本发明提供的直流换流阀用带蓄冷的外冷却系统的原理图;
其中:1、被冷却器件;2、空气冷却器;3、板式换热器;4、第一冷水机组;5、第二冷水机组;6、定频冷泵;7、缓冲罐;8、斜温层式蓄冷槽;9、变频冷 泵;10、冷却水泵;T1、温度检测装置;K1、阀门;K2、阀门;V1、阀门;V2、阀门;V3、阀门;V4、阀门;V5、阀门;V6、阀门。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
本实施例以直流换流阀用带蓄冷的外冷却系统为例,如图1所示,本发明实施例提供的直流换流阀用带蓄冷的外冷却系统包括:被冷却器件1、空气冷却器2、板式换热器3、第一冷水机组4、第二冷水机组5、定频冷泵6、缓冲罐7、斜温层式蓄冷槽8、变频冷泵9、冷却水泵10、温度检测装置T1、阀门K1、阀门K2、阀门V1、阀门V2、阀门V3、阀门V4、阀门V5、阀门V6;在板式换热器3的热侧,被冷却器件1与空气冷却器2、阀门K1、板式换热器3、冷却水泵10依次串联连接形成循环回路,空气冷却器2和冷却水泵10之间设有与阀门K1和板式换热器3支路并联的阀门K2旁路;板式换热器3的热侧出口设有温度检测装置T1;
在板式换热器3的冷侧,阀门V2、斜温层式蓄冷罐8、阀门V3、变频冷泵9依次串联连接形成储冷罐供冷支路,冷水机组、定频冷泵6、缓冲罐7、阀门V4依次串联连接形成冷水机组供冷支路,储冷罐供冷支路和冷水机组供冷支路并联后与板式换热器3串联形成冷侧循环供冷回路。
其中,被冷却器件1为直流换流阀,直流换流阀包括:晶闸管、阻尼电容、均压电容、阻尼电阻、均压电阻、饱和电抗器、晶闸管控制单元和配水系统;外冷却系统通过管路与直流换流阀的配水系统连接。
其中,冷水机组采用的制冷剂为134R,工作温度低于55℃,冷水机组包括依次并联设置的第一冷水机组4、阀门V6旁路和第二冷水机组5,第一冷水机组4和阀门V6旁路并联的出口设有阀门V7,第二冷水机组5和阀门V5旁路并联的入口设有阀门V5。
其中,冷水机组和斜温层式蓄冷槽7外部设有保温材料,避免由于外部环境温度的降低,而对其内部的冷冻水温度产生较大的影响。
实施例1
当环境温度低于5℃时,板式换热器3热侧的冷却水1/2的流量从阀门K2旁路旁通,1/2的流量流进板式换热器3,并与板式换热器3冷侧的冷冻水进行热交换,第一冷水机组4和第二冷水机组5关闭,开启定频冷泵6和变频冷泵9,使升温后的冷冻水向斜温层式蓄冷槽8蓄热。
实施例2
当环境温度为5℃~35℃时,板式换热器3热侧的冷却水全部流量从阀门K2旁路旁通,减小冷却水泵10的压力损失。
实施例3
当环境温度高于35℃时,板式换热器3热侧的冷却水2/3的流量从阀门K2旁路旁通,1/3的流量流进板式换热器3,并与板式换热器3冷侧的冷冻水进行热交换,冷冻水供冷使冷却水降温。
分为以下四种运行模式:
夜间蓄冷模式;阀门V1、阀门V4、阀门V5、阀门V7和变频冷泵9关闭,阀门V6、第一冷水机组4、第二冷水机组5和定频冷泵6开启,当斜温层式蓄冷槽8的水温达到4℃时,蓄冷结束。
冷水机组单独供冷模式;阀门V2、阀门V3、阀门V6和变频冷泵9关闭,阀门V1、阀门V4、阀门V5、阀门V7、第一冷水机组4、第二冷水机组5和定频冷泵6开启,在供冷过程中阀门V4通过温度检测装置T1检测的温度调节供冷回路的流量,第一冷水机组4和第二冷水机组5分别根据回水温度自动卸载,当板式换热器3冷侧出口的水温为20℃时,第一冷水机组4和第二冷水机组5满负荷运行,供冷回路的冷冻水温度为7℃。
斜温层式蓄冷槽8单独供冷模式;第一冷水机组4、第二冷水机组5、定频冷泵6、阀门V4、阀门V5和阀门V6关闭,阀门V1、阀门V2、阀门V3和变频冷泵9开启,变频冷泵9通过温度检测装置T1检测的温度进行变频控制,以控制供冷回路的流量。
冷水机组和斜温层式蓄冷槽8联合供冷模式;供冷回路中的部件全部开启,阀门V4和变频冷泵9分别通过温度检测装置T1检测的温度进行调节,以控制供冷回路的流量。
本发明基于另一目的提供的一种直流换流阀用带蓄冷的外冷却系统的操作方法,其改进之处在于,所述方法包括下述步骤:
1、测定环境温度,确定运行模式;当环境温度低于5℃时,进入步骤2;当环境温度为5℃~35℃时,跳至步骤3;当环境温度高于35℃时,跳至步骤4;
2、当环境温度低于5℃时,板式换热器3热侧的冷却水1/2的流量从阀门K2旁路旁通,1/2的流量流进板式换热器3,并与板式换热器3冷侧的冷冻水进行热交换,第一冷水机组4和第二冷水机组5关闭,开启定频冷泵6和变频冷泵9,使升温后的冷冻水向斜温层式蓄冷槽8蓄热;跳至步骤5;
3、当环境温度为5℃~35℃时,板式换热器3热侧的冷却水全部流量从阀门K2旁路旁通,减小冷却水泵10的压力损失;跳至步骤5;
4、当环境温度高于35℃时,板式换热器3热侧的冷却水2/3的流量从阀门K2旁路旁通,1/3的流量流进板式换热器3,并与板式换热器3冷侧的冷冻水进行热交换,冷冻水供冷使冷却水降温;跳至步骤5;
5、冷却水经降温后,通过回路流入被冷却器件1中吸热升温;返回至步骤1。
其中,步骤4中包括下述运行模式:
1、夜间蓄冷模式;阀门V1、阀门V4、阀门V5、阀门V7和变频冷泵9关闭,阀门V6、第一冷水机组4、第二冷水机组5和定频冷泵6开启,当斜温层式蓄冷槽8的水温达到4℃时,蓄冷结束;
2、冷水机组单独供冷模式;阀门V2、阀门V3、阀门V6和变频冷泵9关闭,阀门V1、阀门V4、阀门V5、阀门V7、第一冷水机组4、第二冷水机组5和定频冷泵6开启,在供冷过程中阀门V4通过温度检测装置T1检测的温度调节供冷回路的流量,第一冷水机组4和第二冷水机组5分别根据回水温度自动卸载,当板式换热器3冷侧出口的水温为20℃时,第一冷水机组4和第二冷水机组5满负荷运行,供冷回路的冷冻水温度为7℃;
3、斜温层式蓄冷槽8单独供冷模式;第一冷水机组4、第二冷水机组5、定频冷泵6、阀门V4、阀门V5和阀门V6关闭,阀门V1、阀门V2、阀门V3和变频冷泵9开启,变频冷泵9通过温度检测装置T1检测的温度进行变频控制,以控制供冷回路的流量;
4、冷水机组和斜温层式蓄冷槽8联合供冷模式;供冷回路中的部件全部开启,阀门V4和变频冷泵9分别通过温度检测装置T1检测的温度进行调节,以控制供冷回路的流量。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种直流换流阀用带蓄冷的外冷却系统,所述外冷却系统包括空气冷却器(2)、板式换热器(3)、冷水机组、定频冷泵(6)、缓冲罐(7)、斜温层式蓄冷槽(8)、变频冷泵(9)、冷却水泵(10)和阀门,所述板式换热器(3)平行设有热侧支路和冷侧支路,其特征在于:
    在所述板式换热器(3)的热侧,被冷却器件(1)与所述空气冷却器(2)、阀门(K1)、板式换热器(3)、冷却水泵(10)依次串联连接形成循环回路,所述空气冷却器(2)和冷却水泵(10)之间设有与所述阀门(K1)和板式换热器(3)支路并联的阀门(K2)旁路;
    在所述板式换热器(3)的冷侧,阀门(V2)、斜温层式蓄冷罐(8)、阀门(V3)、变频冷泵(9)依次串联连接形成储冷罐供冷支路,冷水机组、定频冷泵(6)、缓冲罐(7)、阀门(V4)依次串联连接形成冷水机组供冷支路,所述储冷罐供冷支路和冷水机组供冷支路并联后与所述板式换热器(3)串联形成冷侧循环供冷回路。
  2. 如权利要求1所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述被冷却器件(1)为直流换流阀,所述直流换流阀包括:晶闸管、阻尼电容、均压电容、阻尼电阻、均压电阻、饱和电抗器、晶闸管控制单元和配水系统;所述外冷却系统通过管路与直流换流阀的配水系统连接。
  3. 如权利要求1所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述冷水机组包括依次并联设置的第一冷水机组(4)、阀门(V6)旁路和第二冷水机组(5),所述第一冷水机组(4)和阀门(V6)旁路并联的出口设有阀门(V7),所述第二冷水机组(5)和阀门(V5)旁路并联的入口设有阀门(V5)。
  4. 如权利要求3所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述冷水机组采用的制冷剂为134R。
  5. 如权利要求4所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述134R的工作温度为低于55℃。
  6. 如权利要求1所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述板式换热器(3)的热侧出口设有温度检测装置(T1)。
  7. 如权利要求1所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述冷水机组和斜温层式蓄冷槽(7)外部设有保温材料。
  8. 如权利要求1所述的直流换流阀用带蓄冷的外冷却系统,其特征在于,所述外冷却系统采用的冷却介质为纯水。
  9. 一种如权利要求1~8所述的直流换流阀用带蓄冷的外冷却系统的操作方法,其特征在于,所述方法包括下述步骤:
    (1)测定环境温度,确定运行模式;当环境温度低于5℃时,进入步骤(2);当环境温度为5℃~35℃时,跳至步骤(3);当环境温度高于35℃时,跳至步骤(4);
    (2)当环境温度低于5℃时,板式换热器(3)热侧的冷却水1/2的流量从阀门(K2)旁路旁通,1/2的流量流进板式换热器(3),并与板式换热器(3)冷侧的冷冻水进行热交换,第一冷水机组(4)和第二冷水机组(5)关闭,开启定频冷泵(6)和变频冷泵(9),使升温后的冷冻水向斜温层式蓄冷槽(8)蓄热;跳至步骤(5);
    (3)当环境温度为5℃~35℃时,板式换热器(3)热侧的冷却水全部流量从阀门(K2)旁路旁通,减小冷却水泵(10)的压力损失;跳至步骤(5);
    (4)当环境温度高于35℃时,板式换热器(3)热侧的冷却水2/3的流量从阀门(K2)旁路旁通,1/3的流量流进板式换热器(3),并与板式换热器(3)冷侧的冷冻水进行热交换,冷冻水供冷使冷却水降温;跳至步骤(5);
    (5)冷却水经降温后,通过回路流入被冷却器件(1)中吸热升温;返回至步骤(1)。
  10. 如权利要求9所述的操作方法,其特征在于,所述步骤(4)中包括下述运行模式:
    (1)夜间蓄冷模式;阀门(V1)、阀门(V4)、阀门(V5)、阀门(V7)和变频冷泵(9)关闭,阀门(V6)、第一冷水机组(4)、第二冷水机组(5)和定频冷泵(6)开启,当斜温层式蓄冷槽(8)的水温达到4℃时,蓄冷结束;
    (2)冷水机组单独供冷模式;阀门(V2)、阀门(V3)、阀门(V6)和变频冷泵(9)关闭,阀门(V1)、阀门(V4)、阀门(V5)、阀门(V7)、第一冷水机组(4)、第二冷水机组(5)和定频冷泵(6)开启,在供冷过程中阀门(V4)通过温度检测装置(T1)检测的温度调节供冷回路的流量,第一冷水机组(4)和第二冷水机组(5)分别根据回水温度自动卸载,当板式换热器(3)冷侧出口的水温为20℃时,第一冷水机组(4)和第二冷水机组(5)满负荷运行,供冷回路的冷冻水温度为7℃;
    (3)斜温层式蓄冷槽(8)单独供冷模式;第一冷水机组(4)、第二冷水机组(5)、定频冷泵(6)、阀门(V4)、阀门(V5)和阀门(V6)关闭,阀门(V1)、阀门(V2)、阀门(V3)和变频冷泵(9)开启,变频冷泵(9)通过温度检测装置(T1)检测的温度进行变频控制,以控制供冷回路的流量;
    (4)冷水机组和斜温层式蓄冷槽(8)联合供冷模式;供冷回路中的部件全部开启,阀门(V4)和变频冷泵(9)分别通过温度检测装置(T1)检测的温度进行调节,以控制供冷回路的流量。
PCT/CN2014/089626 2013-11-06 2014-10-28 一种直流换流阀用带蓄冷的外冷却系统及其操作方法 WO2015067132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310547431.5 2013-11-06
CN201310547431.5A CN103582396B (zh) 2013-11-06 2013-11-06 一种直流换流阀用带蓄冷的外冷却系统及其操作方法

Publications (1)

Publication Number Publication Date
WO2015067132A1 true WO2015067132A1 (zh) 2015-05-14

Family

ID=50052963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089626 WO2015067132A1 (zh) 2013-11-06 2014-10-28 一种直流换流阀用带蓄冷的外冷却系统及其操作方法

Country Status (2)

Country Link
CN (1) CN103582396B (zh)
WO (1) WO2015067132A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582396B (zh) * 2013-11-06 2016-09-21 国家电网公司 一种直流换流阀用带蓄冷的外冷却系统及其操作方法
CN103853203A (zh) * 2014-03-19 2014-06-11 中国科学院高能物理研究所 一种致冷装置
CN104362834B (zh) * 2014-11-06 2019-03-22 许昌许继晶锐科技有限公司 用于直流输电工程的换流阀与阀厅的综合换热系统
CN104501447B (zh) * 2014-12-03 2018-11-23 许昌许继晶锐科技有限公司 一种制冷系统
CN104747793B (zh) * 2015-03-09 2017-03-15 中国能源建设集团广东省电力设计研究院有限公司 直流换流站阀冷系统及其控制方法
CN104879992B (zh) * 2015-03-26 2017-11-03 上海大众祥源动力供应有限公司 一种基于自动热交换的节能供水系统
CN106817885B (zh) * 2017-03-20 2023-12-19 南方电网科学研究院有限责任公司 一种换流阀的混合式外冷却系统和冷却系统
CN109217632A (zh) * 2017-06-29 2019-01-15 许昌许继晶锐科技有限公司 一种直流输电换流阀用空气冷却器串冷却塔冷却系统
CN107477735A (zh) * 2017-07-21 2017-12-15 深圳达实智能股份有限公司 水蓄冷系统
CN107666234B (zh) * 2017-08-30 2019-06-07 全球能源互联网研究院 一种适用于海上平台的柔性直流换流阀冷却系统
CN107484395A (zh) * 2017-09-15 2017-12-15 郑州云海信息技术有限公司 一种低能耗水冷式集装箱数据中心及温度控制方法
CN108541192A (zh) * 2018-05-29 2018-09-14 许昌许继晶锐科技有限公司 一种电力电子装置的冷却系统及电力电子装置
CN110779230A (zh) * 2019-11-29 2020-02-11 重庆通用工业(集团)有限责任公司 一种大温差低温冷却循环系统
CN111059658B (zh) * 2019-12-11 2021-03-19 珠海格力电器股份有限公司 冷水机组、冰蓄冷空调设备
CN112361862A (zh) * 2020-09-27 2021-02-12 许继集团有限公司 一种平衡水池防冻系统
CN113359897B (zh) * 2021-06-02 2022-05-27 常州博瑞电力自动化设备有限公司 一种换流阀水冷却系统内循环水出水温度控制方法及系统
CN115031424A (zh) * 2022-06-21 2022-09-09 河南保营机电有限公司 基于相变灭火剂的冷却绝缘系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412706A (zh) * 2011-11-29 2012-04-11 广州高澜节能技术股份有限公司 一种削峰型直流输电换流阀冷却系统
CN102435032A (zh) * 2011-12-01 2012-05-02 国家电网公司 一种密闭式循环水冷却装置和方法
CN103582396A (zh) * 2013-11-06 2014-02-12 国家电网公司 一种直流换流阀用带蓄冷的外冷却系统及其操作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2561099Y (zh) * 2002-08-05 2003-07-16 广州市高澜水技术有限公司 密闭式循环水冷却装置
CN1632430A (zh) * 2004-12-28 2005-06-29 包军婷 冷库水冷式冷凝器蓄能型循环冷却技术
CN102545546B (zh) * 2011-12-01 2014-05-14 国家电网公司 循环冷却系统及控制循环冷却系统的方法
CN202435232U (zh) * 2011-12-01 2012-09-12 国家电网公司 循环冷却系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412706A (zh) * 2011-11-29 2012-04-11 广州高澜节能技术股份有限公司 一种削峰型直流输电换流阀冷却系统
CN102435032A (zh) * 2011-12-01 2012-05-02 国家电网公司 一种密闭式循环水冷却装置和方法
CN103582396A (zh) * 2013-11-06 2014-02-12 国家电网公司 一种直流换流阀用带蓄冷的外冷却系统及其操作方法

Also Published As

Publication number Publication date
CN103582396B (zh) 2016-09-21
CN103582396A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2015067132A1 (zh) 一种直流换流阀用带蓄冷的外冷却系统及其操作方法
CN102435032B (zh) 一种密闭式循环水冷却装置和方法
JP6271026B2 (ja) 電力電子素子冷却システム及び分布式発電システム
TWI669475B (zh) Chilled water cooling system
CN102155772B (zh) 复叠式冰蓄冷空调系统和利用该系统对空调供冷的方法
CN103047710B (zh) 机房空调系统及控制方法
CN103129348A (zh) 一种电动汽车热泵系统
CN104501648A (zh) 一种数据机房机柜冷却系统
CN104613577A (zh) 内融冰冰蓄冷空调系统及其运行方法
CN204359196U (zh) 一种数据机房机柜冷却系统
CN202403477U (zh) 一种密闭式循环水冷却装置
CN104633873A (zh) 空调机组
CN101840739A (zh) 一种核电厂重要厂用水系统
CN106653291A (zh) 一种利用日夜温差对变压器强迫油循环冷却的系统
CN216903111U (zh) 一种用于储能电池的混合外冷却系统
CN203687496U (zh) 电驱压气站压缩机电机、变频器冷却系统
TW201319492A (zh) 具熱回收功能之冷媒循環系統
US20220053671A1 (en) Data center heat recovery system
CN203482566U (zh) 一种闭式复合冷却系统
CN102980346A (zh) 一种工业设备冷却系统及其控制方法
CN203474138U (zh) 一种提升机中压变频柜的冷却装置
CN113660835A (zh) 一种用于储能交流侧的一体化冷却系统及方法
CN106912185A (zh) 内循环并联式双级液气双通道自然冷却数据中心散热系统
CN209626373U (zh) 动力电池热泵式冷媒直接热管理系统
CN203518304U (zh) 电力电子器件冷却系统及分布式发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860214

Country of ref document: EP

Kind code of ref document: A1