WO2023024620A1 - 一种叠层光伏器件 - Google Patents

一种叠层光伏器件 Download PDF

Info

Publication number
WO2023024620A1
WO2023024620A1 PCT/CN2022/095201 CN2022095201W WO2023024620A1 WO 2023024620 A1 WO2023024620 A1 WO 2023024620A1 CN 2022095201 W CN2022095201 W CN 2022095201W WO 2023024620 A1 WO2023024620 A1 WO 2023024620A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
perovskite
interface
crystalline silicon
series
Prior art date
Application number
PCT/CN2022/095201
Other languages
English (en)
French (fr)
Inventor
吴兆
徐琛
李子峰
解俊杰
刘童
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to AU2022335362A priority Critical patent/AU2022335362A1/en
Priority to EP22859968.4A priority patent/EP4376569A1/en
Publication of WO2023024620A1 publication Critical patent/WO2023024620A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/15Organic photovoltaic [PV] modules; Arrays of single organic PV cells comprising both organic PV cells and inorganic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of solar photovoltaic technology, in particular to a laminated photovoltaic device.
  • the present application provides a laminated photovoltaic device, which aims to reduce the current and voltage loss of the laminated photovoltaic device, and further improve the photoelectric conversion efficiency of the laminated photovoltaic device.
  • an embodiment of the present application provides a stacked photovoltaic device, the stacked photovoltaic device includes a perovskite absorber layer, a crystalline silicon absorber layer, and the perovskite absorber layer and the crystalline silicon absorber layer are connected in series.
  • a single-layer electrical functional layer of the layer wherein,
  • the conductivity type of the crystalline silicon absorber layer at the second series interface is different from the conductivity type of the perovskite absorber layer at the first series interface;
  • the difference between the work function of the crystalline silicon absorber layer at the second serial interface and the work function of the perovskite absorber layer at the first serial interface is ⁇ 0.3eV and ⁇ 0.3eV.
  • the work function of the single-layer electrical functional layer is between the first work function and the second work function, and includes the first work function and the second work function;
  • the first work function is the work function of the perovskite absorbing layer at the first series interface on the perovskite absorbing layer;
  • the second work function is the work function of the crystalline silicon absorbing layer at the second series interface on the crystalline silicon absorbing layer.
  • the electrical conductivity of the single-layer electrical functional layer is greater than or equal to the maximum value of the first electrical conductivity and the second electrical conductivity;
  • the first conductivity is the conductivity of the perovskite absorbing layer at the first series interface on the perovskite absorbing layer;
  • the second conductivity is the conductivity of the crystalline silicon absorbing layer at the second series interface on the crystalline silicon absorbing layer.
  • the bandgap width of the perovskite material used in the perovskite absorbing layer is 1.5eV-2.3eV.
  • the stacked photovoltaic device further includes at least one of a first interface passivation layer and a second interface passivation layer;
  • the thickness of the first interface passivation layer is less than or equal to 5nm, and is located between the perovskite absorption layer and the single-layer electrical functional layer;
  • the thickness of the second interface passivation layer is less than or equal to 5 nm, and is located between the crystalline silicon absorption layer and the single-layer electrical functional layer.
  • the laminated photovoltaic device further includes a first functional layer, a second functional layer, a first electrode and a second electrode;
  • the second functional layer is located in a direction away from the single-layer electrical functional layer from the crystalline silicon absorption layer, and the second electrode is at least partially penetrated through the second functional layer.
  • the conductivity type at the second series interface on the crystalline silicon absorber layer is P-type
  • the first series interface on the perovskite absorber layer uses an N-type perovskite material
  • the The N-type perovskite material includes at least one of MAPbBr 3 , MAPb 0.91 I 2.82 , MAPbI 3 , FAPbI 3 , MASnI 3 , MANH 3 PbI 3 , MASnBr 3 , FASnI 3 , and CsSnBr 3 .
  • an N-type dopant is used at the first serial interface on the perovskite absorbing layer, and the N-type dopant includes at least one of indium, antimony, vanadium, and bismuth.
  • the materials used for the single-layer electrical functional layer include fluorine-doped tin oxide, nickel oxide, copper oxide, molybdenum oxide, 2,2',7,7'-tetrakis[N,N-bis(4-methyl Oxyphenyl)amino]-9,9'-spirobifluorene or any doping material;
  • the doping material is obtained by doping any one of alkali metal elements, alkaline earth metal elements, transition metal elements, and halogen metal elements.
  • the conductivity type at the second series interface on the crystalline silicon absorber layer is N-type
  • the first series interface on the perovskite absorber layer uses a P-type perovskite material
  • the The P-type perovskite material includes at least one of MAPbBr 3 , MAPb 0.91 I 2.82 , MAPbI 3 , FAPbI 3 , MASnI 3 , MANH 3 PbI 3 , MASnBr 3 , FASnI 3 , and CsSnBr 3 .
  • a P-type dopant is used at the first series interface on the perovskite absorbing layer, and the P-type dopant includes at least one of sodium, potassium, copper, and oxygen.
  • the material used for the single-layer electrical functional layer includes any one of zinc oxide, tin oxide, titanium oxide, fullerene carbon or any doped material;
  • the doping material is obtained by doping any one of alkali metal elements, alkaline earth metal elements, transition metal elements, and halogen metal elements.
  • the laminated photovoltaic device provided in the embodiment of the present application includes a perovskite absorber layer, a crystalline silicon absorber layer, and a single-layer electrical functional layer in which the perovskite absorber layer and the crystalline silicon absorber layer are connected in series, and the perovskite absorber layer and the single-layer
  • the contact interface of the electrical functional layer is the first serial interface
  • the contact interface between the crystalline silicon absorbing layer and the single-layer electrical functional layer is the second serial interface, wherein the conductivity type of the crystalline silicon absorbing layer at the second serial interface is the same as that of the first serial interface.
  • the conductivity type of the perovskite absorbing layer is different; the difference between the work function of the crystalline silicon absorbing layer at the second series interface and the work function of the perovskite absorbing layer at the first series interface is ⁇ -0.3eV, and ⁇ 0.3 eV.
  • the work function difference between the perovskite absorbing layer and the crystalline silicon absorbing layer at the contact interface is ⁇ -0.3eV and ⁇ 0.3eV, therefore, the perovskite absorbing layer can be realized It matches the work function of the crystalline silicon absorber layer, avoiding the voltage loss caused by the work function mismatch, and based on the matched work function, the perovskite absorber layer matches the energy band structure of the crystalline silicon absorber layer without energy level buffering, and can A single-layer electrical functional layer is used to connect two absorbing layers in series, which reduces the parasitic absorption of multi-layer series connection, reduces the resistance and interface loss introduced by the interface between multiple layers, reduces the current and voltage loss, and thus improves the output of stacked photovoltaic devices. voltage, further improving the photoelectric conversion efficiency of stacked photovoltaic devices.
  • Figure 1 shows a schematic structural view of a laminated photovoltaic device provided by an embodiment of the present application
  • Figure 2 shows a schematic diagram of the work function value and bandgap range of a crystalline silicon and some perovskite materials provided by the embodiment of the present application;
  • Figure 3a shows a schematic diagram of the energy band structure matching of a P-type crystalline silicon absorber layer in series with an N-type perovskite absorber layer provided by the implementation of the present application;
  • Figure 3b shows a schematic diagram of energy band structure matching of another P-type crystalline silicon absorber layer in series with an N-type perovskite absorber layer provided by the embodiment of the present application;
  • Figure 3c shows a schematic diagram of energy band structure matching of an N-type crystalline silicon absorber layer connected in series with a P-type perovskite absorber layer provided by the implementation of the present application;
  • Figure 3d shows a schematic diagram of band structure matching of another N-type crystalline silicon absorber layer connected in series with a P-type perovskite absorber layer provided by the implementation of the present application;
  • Figure 4 shows a schematic structural view of another laminated photovoltaic device provided by the embodiment of the present application.
  • Fig. 5 shows a schematic structural diagram of another stacked photovoltaic device provided by an embodiment of the present application.
  • the conductivity type of the crystalline silicon absorption layer 13 at the second series interface 131 is different from the conductivity type of the perovskite absorption layer 12 at the first series interface 121;
  • the difference between the work function of the crystalline silicon absorber layer 13 at the second serial interface 131 and the work function of the perovskite absorber layer 12 at the first serial interface 121 is ⁇ -0.3eV and ⁇ 0.3eV .
  • the work functions of the first series interface 121 and the second series interface 131 may be adjusted.
  • the work function of P-type crystalline silicon is 5.03eV-5.10eV
  • the work function of N-type crystalline silicon is 4.42eV-4.63eV.
  • the work function of the silicon material is a reference, by adjusting the work function at the first series interface 121 on the perovskite absorber layer 12, so that the work function of the crystalline silicon absorber layer 13 at the second series interface 131 is the same as that at the first series interface
  • the difference of the work function of the perovskite absorption layer 12 at 121 places is ⁇ -0.3eV and ⁇ 0.3eV, so as to realize the matching of the work function and the energy band structure, and then it is possible to use the single-layer electrical function layer 11 to the crystalline silicon absorption layer 13 is connected in series with the perovskite absorbing layer 12 to avoid excessive ⁇ E caused by work function mismatch and small open circuit voltage, resulting in voltage loss.
  • Figure 2 shows a schematic diagram of the work function value and bandgap range of a crystalline silicon and some perovskite materials provided by the embodiment of the present application.
  • the ordinate is the energy value
  • the unit is eV
  • the abscissa is The type of material, where the columns corresponding to each material type represent the bandgap range, and the values corresponding to P-type and N-type crystalline silicon materials represent the work function.
  • the work function of P-type crystalline silicon is about 5.03eV
  • the work function of crystalline silicon is about 4.45eV.
  • the values corresponding to other perovskite materials represent the conduction band and valence band edge values respectively.
  • the work function of perovskite materials is usually within the forbidden band width and can be adjusted more conveniently, then As shown in Figure 2, the maximum adjustable range of the work function of FAPbI 3 in some perovskite materials is 4.74eV to 6.24eV, the maximum adjustable range of the work function of MAPbCl 3 is 4.36eV to 5.93eV, and the maximum work function of CsPbI 3 The adjustable range is from 4.47eV to 6.25eV, and the maximum adjustable range of the work function of CsSnBr3 is from 4.07eV to 5.82eV. It can be seen that the work function of crystalline silicon is relatively fixed, while the work function of perovskite materials is within a certain range.
  • the work function of the perovskite material can be adjusted to achieve the work function matching between the crystalline silicon absorber layer and the perovskite absorber layer.
  • the work function shown in Figure 2 is the data when each material exists independently. Since the work function of each material may change due to contact in the laminated structure, and the work function of the multi-layer material is not easy to be accurately measured, therefore, here only Considering the value of the work function when the material exists independently, in addition, the types of perovskite materials in FIG. 2 are only examples, and do not limit the material selection of the perovskite absorbing layer in the embodiment of the present application.
  • the perovskite absorbing layer 12 may have different conductivity types and work functions due to different doping element concentrations and types
  • the crystalline silicon absorbing layer 13 may have different conductivity types and work functions due to the silicon wafer type, doping type, doping position, etc. different types of conductivity. Therefore, the conductivity type and work function at the first series interface 121 of the perovskite absorbing layer 12 and the single-layer electrical functional layer 11 can be regulated, and the second series connection between the crystalline silicon absorbing layer 13 and the single-layer electrical functional layer 11 can be regulated.
  • the conductivity type at the interface 131 is regulated.
  • the conductivity type at the second series interface 131 on the crystalline silicon absorber layer 13 is P
  • the work function of the perovskite absorbing layer 12 at the first series interface 121 can be adjusted to be 5.03 ⁇ 0.3eV, so that the difference of the work function is ⁇ -0.3eV and ⁇ 0.3 eV; when the conductivity type at the second series interface 131 on the crystalline silicon absorber layer 13 is N type, the work function is 4.45eV.
  • the work function of the perovskite absorber layer 12 at the first series interface 121 can be adjusted as 4.45 ⁇ 0.3eV, so that the difference of the work function is ⁇ -0.3eV and ⁇ 0.3eV.
  • the value of the above work function is only for example, within the allowable range, those skilled in the art can select the specific crystalline silicon absorption layer 13 according to the demand , the work function of the perovskite absorbing layer 12 at the contact interface, and the perovskite absorbing layer does not include a bipolar perovskite absorbing layer whose Fermi level is located in the middle of the band gap.
  • Figure 3a shows a schematic diagram of the energy band structure matching of a P-type crystalline silicon absorber layer connected in series with an N-type perovskite absorber layer provided by the implementation of this application
  • Figure 3b shows another P-type crystal provided by an embodiment of this application
  • Figure 3c shows a schematic diagram of an energy band structure match of an N-type crystalline silicon absorber layer connected in series with a P-type perovskite absorber layer provided by the application , FIG.
  • 3d shows a schematic diagram of energy band structure matching of another N-type crystalline silicon absorber layer connected in series with a P-type perovskite absorber layer provided by the implementation of the present application.
  • the vacuum energy level is 0, and downwards are the positions of each energy level, including the energy band structure of the single-layer electrical functional layer 11, the perovskite absorbing layer 12 and the crystalline silicon absorbing layer 13, as shown in Fig. 3a, 3c.
  • the series action can be realized through the single-layer electrical functional layer 1 .
  • the work function of the single-layer electrical functional layer 11 is located between the first work function and the second work function, and includes the first work function and the second work function;
  • the first work function is the work function of the perovskite absorbing layer 12 at the first serial interface 121 on the perovskite absorbing layer 12;
  • the second work function is the work function of the crystalline silicon absorbing layer 13 at the second serial interface 131 on the crystalline silicon absorbing layer 13 .
  • the single-layer electrical functional layer 11 plays a series role between the perovskite absorbing layer 12 and the crystalline silicon absorbing layer 13, therefore, the single-layer electrical functional layer 11 can choose to adopt a work function located at the first work function Between and the second work function, and including the material within the range of the first work function and the second work function, wherein the first work function is at the first series interface 121 on the perovskite absorbing layer 12 Work function, the second work function is the work function at the second series interface 131 on the crystalline silicon absorbing layer 13 .
  • the work function of the single-layer electrical functional layer 11 when the first work function is 5.03eV and the second work function is 5.03 ⁇ 0.3eV, when the specific value of the second work function is greater than the first work function, the work function of the single-layer electrical functional layer 11 The upper limit of the value is the specific value of the second work function, and the lower limit is 5.03eV. When the specific value of the second work function is smaller than the first work function, the upper limit of the value of the work function of the single-layer electrical functional layer 11 is 5.03 eV.
  • the lower limit is the specific value of the second work function; the first work function is 4.45eV, and the second work function is 4.45 ⁇ 0.3eV, the above description can be referred to, wherein the value of the work function of the single-layer electrical functional layer 11
  • the range includes the endpoint values.
  • the electrical conductivity of the single-layer electrical functional layer 11 is greater than or equal to the maximum value of the first electrical conductivity and the second electrical conductivity;
  • the first conductivity is the conductivity of the perovskite absorption layer 12 at the first series interface 121 on the perovskite absorption layer 12;
  • the second conductivity is the conductivity of the crystalline silicon absorption layer 13 at the second serial interface 131 on the crystalline silicon absorption layer 13 .
  • the single-layer electrical functional layer 11 can avoid the contact and contact of carriers in the perovskite absorption layer 12.
  • the influence of the transport capacity is realized in series through the tunneling recombination mechanism at the contact interface with the crystalline silicon absorption layer 13 .
  • the crystalline silicon absorber layer 13 can be used as the lower cell absorber layer of a stacked photovoltaic device, and the crystalline silicon absorber layer 13 can include or not include a PN junction, and its upper and lower surfaces can be planar structures, or A light trapping structure and the like may be provided.
  • the crystalline silicon absorbing layer 13 can use a crystalline silicon material that has light absorption and can be separated and collected by photogenerated carriers, such as a crystalline silicon material that is locally and comprehensively doped on the surface of a silicon wafer, which can play a role To light absorption, and provide separable photo-generated carriers, contribute to the photoelectric conversion efficiency of tandem photovoltaic devices.
  • the bandgap width of the perovskite material used in the perovskite absorbing layer 12 is 1.5eV ⁇ 2.3eV.
  • the perovskite absorbing layer 12 can be used as the upper cell absorbing layer of a laminated photovoltaic device, wherein the perovskite absorbing layer 12 can be a perovskite with a wide band gap of 1.5eV-2.3eV.
  • the material can be a single-component perovskite material, or a mixed-component perovskite material, and the perovskite material in the perovskite absorbing layer 12 can use a uniform component or a non-uniform component, so that It is sufficient that the work function at the first series interface 121 on the perovskite absorbing layer 12 conforms to the aforementioned limitation, and the embodiment of the present application does not specify the components of the perovskite absorbing layer 12 far away from the contact interface with the single-layer electrical functional layer 11 limit.
  • the conductivity type at the second series interface 131 on the crystalline silicon absorber layer 13 is P-type
  • the first series interface 121 on the perovskite absorber layer 12 uses N-type perovskite material
  • the N-type perovskite material comprises at least one of MAPbBr 3 , MAPb 0.91 I 2.82 , MAPbI 3 , FAPbI 3 , MASnI 3 , MANH 3 PbI 3 , MASnBr 3 , FASnI 3 , and CsSnBr 3
  • the conductivity type at the second series interface 131 on the crystalline silicon absorption layer 13, and the conductivity type and work function at the first series interface 121 on the perovskite absorption layer 12 are regulated, and the crystalline silicon absorption layer 13.
  • the conductivity type and work function of other positions on the perovskite absorption layer 12 are not limited.
  • the conductivity type at the second series interface 131 is P type
  • the conductivity type of other positions of the crystalline silicon absorption layer 13 can be P type.
  • the conductivity type at the first series interface 121 is P-type
  • the conductivity type at other positions of the perovskite absorbing layer 12 may be P-type or N-type, which is not specifically limited in this embodiment of the present application.
  • FAPbI 3 , MAPb 1.1 I 3.2 , MAPb 1.5 Br 4 , MASnI 3 , MAPbBr 1.5 Cl 1.5 can be used at the first series interface 121 , MAPbCl 3 , MAPbI 3 , MAPbI 2.1 Cl 0.9 , FASnI 3 , CsSnI 3 and other perovskite materials such as a single component or two or more mixed components, by adjusting the types and ratios of various atoms in the perovskite material
  • the relationship is that the first series interface 121 of the perovskite absorber layer 12 is N-type, and the difference between the work function and the work function of the crystalline silicon absorber layer 13 at the second series interface 131 is ⁇ -0.3eV and ⁇ 0.3eV.
  • an N-type dopant is used at the first series interface 121 on the perovskite absorbing layer 12, and the N-type dopant includes at least one of indium, antimony, vanadium, and bismuth.
  • an N-type dopant can also be used at the first series interface 121 to better regulate the first series interface 121 in series to be N-type when the second series interface 131 is P-type.
  • the N-type dopant may be at least one of indium, antimony, vanadium and bismuth.
  • the materials used for the single-layer electrical functional layer 11 include tin oxide, nickel oxide, copper oxide, molybdenum oxide, 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl) Amino]-9,9'-spirobifluorene, cuprous oxide, tungsten oxide, vanadium oxide, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], thiocyanate Any one of cuprous, poly-3,4-ethylenedioxythiophene, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid or any doping material;
  • the dopant material can be doped with any of alkali metal elements, alkaline earth metal elements, transition metal elements, and halogen metal elements, such as sodium and calcium , indium, gallium, fluorine and other elements, the work functions of the above materials are similar, and those skilled in the art can choose different types of materials according to process conditions and application requirements, which are not specifically limited in the embodiments of the present application.
  • the conductivity type at the second series interface 131 on the crystalline silicon absorber layer 13 is N-type
  • the first series interface 121 on the perovskite absorber layer 12 uses a P-type perovskite material
  • the P-type perovskite material includes at least one of MAPbBr 3 , MAPb 0.91 I 2.82 , MAPbI 3 , FAPbI 3 , MASnI 3 , MANH 3 PbI 3 , MASnBr 3 , FASnI 3 , and CsSnBr 3 .
  • MAPbBr 3 when the conductivity type at the second series interface 131 is N type, MAPbBr 3 , MAPb 0.91 I 2.82 , MAPbI 3 , FAPbI 3 , MASnI 3 , MANH 3 PbI can be used at the first series interface 121 3.
  • a single component or two or more mixed components of perovskite materials such as MASnBr 3 , FASnI 3 , CsSnBr 3 , etc., by adjusting the types and ratios of various atoms in the perovskite material, the perovskite absorbing layer
  • the first series interface 121 of 12 is P-type, and the difference between the work function and the work function of the crystalline silicon absorbing layer 13 at the second series interface 131 is ⁇ -0.3eV and ⁇ 0.3eV.
  • a P-type dopant is used at the first series interface 121 on the perovskite absorbing layer 12, and the P-type dopant includes at least one of sodium, potassium, copper, and oxygen.
  • a P-type dopant can also be used at the first series interface 121 to better regulate the first series interface 121 in series to be P-type when the second series interface 131 is N-type.
  • the P-type dopant may be at least one of sodium, potassium, copper, and oxygen.
  • the material used for the single-layer electrical functional layer 11 includes any one of zinc oxide, indium oxide, tin oxide, titanium oxide, molybdenum sulfide, niobium oxide, tantalum oxide, cadmium sulfide, fullerene carbon or Doping materials of any kind;
  • the doping material is obtained by doping any one of alkali metal elements, alkaline earth metal elements, transition metal elements, and halogen metal elements.
  • the materials that can be used for the single-layer electrical functional layer 11 include Zinc oxide, indium oxide, tin oxide, titanium oxide, molybdenum sulfide, niobium oxide, tantalum oxide, cadmium sulfide, fullerene carbon, or any doped material, wherein, any doped
  • the material refers to a material obtained by doping any one of zinc oxide, indium oxide, tin oxide, titanium oxide, molybdenum sulfide, niobium oxide, tantalum oxide, cadmium sulfide, and fullerene carbon with other elements.
  • Doping materials can be doped with any of alkali metal elements, alkaline earth metal elements, transition metal elements, and halogen metal elements, such as sodium, calcium, indium, gallium, fluorine and other elements.
  • alkali metal elements alkaline earth metal elements
  • transition metal elements transition metal elements
  • halogen metal elements such as sodium, calcium, indium, gallium, fluorine and other elements.
  • the laminated photovoltaic device further includes a first functional layer 14, a second functional layer 15, a first electrode 16 and a second electrode 17;
  • the first functional layer 14 is located in a direction away from the perovskite absorption layer 12 from the single-layer electrical functional layer 11 , and the first electrode 16 is at least partially penetrated through the first functional layer 14 .
  • the first functional layer 14 can be used as the upper functional layer on the surface of the perovskite absorbing layer 12, and is located in the direction where the perovskite absorbing layer 12 is away from the single-layer electrical functional layer 11.
  • the first functional layer 14 is multi-layered.
  • the layer structure can have at least one function such as interface passivation, selective contact and transmission, and anti-reflection on the upper surface;
  • the first electrode 16 can be used as the upper electrode on the surface of the perovskite absorbing layer 12, wherein the first electrode 16 can use Aluminum, copper, silver and other metals or alloys are prepared.
  • the first electrode 16 is at least partially penetrated through the first functional layer 14.
  • the first electrode 16 can be partially embedded in the first functional layer 14, or can penetrate the first functional layer 14.
  • a functional layer 14 is used to derive carriers for external output.
  • the second functional layer 15 is located in a direction away from the single-layer electrical functional layer 11 from the crystalline silicon absorbing layer 13 , and the second electrode 17 is at least partially penetrated through the second functional layer 15 .
  • the second functional layer 15 can be used as the lower functional layer on the surface of the crystalline silicon absorbing layer 13, and is located in the direction away from the single-layer electrical functional layer 11 of the crystalline silicon absorbing layer 13, and the second functional layer 15 has a multilayer structure , can have at least one function such as interface passivation, selective contact and transmission, and lower surface anti-reflection;
  • the second electrode 17 can be used as the lower electrode on the surface of the crystalline silicon absorption layer 13, wherein the second electrode 17 can be made of aluminum, copper , silver and other metals or alloys.
  • the second electrode 17 is at least partially pierced through the second functional layer 15.
  • the second electrode 17 can be partially embedded in the second functional layer 15, or can penetrate the second functional layer. 15, so as to derive carriers for external output.
  • the stacked photovoltaic device further includes at least one of a first interface passivation layer and a second interface passivation layer;
  • the thickness of the first interface passivation layer is less than or equal to 5nm, and is located between the perovskite absorption layer 12 and the single-layer electrical functional layer 11;
  • the thickness of the second interface passivation layer is less than or equal to 5 nm, and is located between the crystalline silicon absorption layer 13 and the single-layer electrical functional layer 11 .
  • a first interface passivation layer may be provided between the perovskite absorption layer 12 and the single-layer electrical functional layer 11, and/or, between the crystalline silicon absorption layer 13 and the single-layer electrical functional layer 11
  • a second interface passivation layer can be provided, and the first interface passivation layer and the second interface passivation layer can be made of dielectric materials, and the thickness is less than or equal to 5nm, so as to avoid excessive thickness from affecting electrical functions.
  • the conductivity type of the perovskite absorbing layer is different; the difference between the work function of the crystalline silicon absorbing layer at the second series interface and the work function of the perovskite absorbing layer at the first series interface is ⁇ -0.3eV, and ⁇ 0.3 eV.
  • the work function difference between the perovskite absorbing layer and the crystalline silicon absorbing layer at the contact interface is ⁇ -0.3eV and ⁇ 0.3eV, therefore, the perovskite absorbing layer can be realized It matches the work function of the crystalline silicon absorber layer, avoiding the voltage loss caused by the work function mismatch, and based on the matched work function, the perovskite absorber layer matches the energy band structure of the crystalline silicon absorber layer without energy level buffering, and can A single-layer electrical functional layer is used to connect two absorbing layers in series, which reduces the parasitic absorption of multi-layer series connection, reduces the resistance and interface loss introduced by the interface between multiple layers, reduces the current and voltage loss, and thus improves the output of stacked photovoltaic devices. voltage, further improving the photoelectric conversion efficiency of stacked photovoltaic devices.
  • the embodiment of the present application provides a specific example of a laminated photovoltaic device, including:
  • the first serial interface 121 of the perovskite absorbing layer 12 is prepared by FAPbI 3 single-component perovskite material with a thickness of 300nm to 500nm. During the deposition process, excessive PbI 2 components are used to make the perovskite absorbing layer 12
  • the first series interface 121 is N-type; at this time, the electrical conductivity of the perovskite absorbing layer 12 is on the order of 10 ⁇ 7 S ⁇ cm ⁇ 1 , much lower than that of crystalline silicon.
  • the first functional layer 14 is arranged on the perovskite absorbing layer 12, and the first functional layer 14 plays the functions of interface passivation, hole selective contact and transmission, and anti-reflection on the upper surface, wherein the first functional layer 14 is multi Layer structure, using 2nm thick calcium fluoride or lithium fluoride material as the interface passivation layer, using 50nm thick nickel oxide and 100nm thick tin oxide material lamination as hole selective contact and transport layer, using magnesium fluoride as the upper surface Anti-reflection film;
  • the crystalline silicon absorbing layer 13 adopts a P-type silicon wafer, and a whole-layer P-type heavily doped layer is formed by diffusion or ion implantation at the second serial interface 131 on the upper surface of the P-type silicon wafer, and the doping concentration at the second serial interface 131 is It is 5 ⁇ 10 18 cm -3 , the corresponding resistivity is 4 ⁇ 10 -2 ⁇ cm, the corresponding conductivity (reciprocal of resistivity) is 25S ⁇ cm -1 , and the upper and lower surfaces are planar structures.
  • a second functional layer 15 is arranged on the lower surface of the crystalline silicon absorbing layer 13, and the second functional layer 15 adopts a passivation contact structure to play the functions of interface passivation, electron selective contact and transmission, and lower surface anti-reflection, wherein the second The functional layer 15 is a multi-layer structure, which is a silicon oxide layer with a thickness of 2nm, an N-type polysilicon layer with a thickness of 30nm, an indium-doped tin oxide layer with a thickness of 100nm, and a silicon nitride film stack with a thickness of 80nm;
  • a single-layer electrical functional layer 11 is arranged between the perovskite absorber layer 12 and the crystalline silicon absorber layer 13, and the single-layer electrical functional layer 11 is an indium tin oxide layer with a thickness of 30nm; the conductivity of indium tin oxide can be as high as 10 4 S ⁇ cm - 1. Lightly doped indium oxide is used here, and the doping amount of tin oxide is less than 1wt%.
  • the surface of the single-layer electrical functional layer 11 and the crystalline silicon absorption layer 13 is provided with an interface silicon oxide with a thickness not exceeding 2nm, which acts as a surface passivator for the crystalline silicon;
  • the upper surface of the first functional layer 14 is provided with a corresponding first electrode 16, and the lower surface of the second functional layer 15 is provided with a corresponding second electrode 17, wherein the first electrode 16 and the second electrode 17 can be made of aluminum, copper or silver. and other metals or alloys, and at least partially pass through the functional layer in contact with it to achieve external output.
  • Fig. 4 shows a schematic structural diagram of another stacked photovoltaic device provided by the embodiment of the present application. As shown in Fig. 4, specific examples of another stacked photovoltaic device include:
  • the first series interface 221 of the perovskite absorbing layer 22 is prepared by using MAPbI3 single-component perovskite material, with a thickness of 300nm to 500nm. During the deposition process, the excess PbI2 component is used to make the perovskite absorbing layer 22
  • the first series interface 221 is N-type; the resistivity of MAPbI 3 is 4 ⁇ cm, and the conductivity is 0.25S ⁇ cm -1 .
  • the first functional layer 24 is arranged on the perovskite absorbing layer 22, and the first functional layer 24 plays the functions of interface passivation, hole selective contact and transmission, and upper surface anti-reflection, wherein the first functional layer 24 is multi Layer structure, using 2nm thick calcium fluoride material as the interface passivation layer, using 50nm thick Spiro-OMeTAD and 100nm thick tin oxide material lamination as hole selective contact and transport layer, using magnesium fluoride as the upper surface anti-reflection film;
  • the crystalline silicon absorbing layer 23 adopts an N-type silicon chip, and a P-type diffusion region is formed by thermal diffusion at the first series interface 231 on the upper surface of the N-type silicon chip, and the upper and lower surfaces are all textured structures, wherein the first series interface 121
  • the doping concentration is 1 ⁇ 10 19 cm -3
  • the conductivity is 60S ⁇ cm -1 .
  • a second functional layer 25 is provided on the lower surface of the crystalline silicon absorbing layer 23, and the second functional layer 25 adopts a heterojunction structure to play the functions of interface passivation, electron selective contact and transmission, and lower surface anti-reflection, wherein the second The functional layer 25 is a multi-layer structure, which is respectively 5nm thick intrinsic amorphous silicon, 20nm thick N-type amorphous silicon, 100nm thick indium-doped tin oxide layer and 80nm thick silicon nitride film stack;
  • a single-layer electrical functional layer 21 is arranged between the perovskite absorber layer 22 and the crystalline silicon absorber layer 23.
  • the single-layer electrical functional layer 21 is made of aluminum-doped zinc oxide material with a thickness of 20nm; the conductivity of the aluminum-doped zinc oxide layer is usually 100S ⁇ cm -1
  • a first interface passivation layer 28 is arranged between the perovskite absorbing layer 22 and the single-layer electrical functional layer 21, which is made of lithium fluoride material and has a thickness of 1 nm;
  • a second interface passivation layer 29 is arranged between the crystalline silicon absorption layer 23 and the single-layer electrical functional layer 21, and a silicon oxide layer with a thickness of 2nm is used to passivate the surface of the crystalline silicon;
  • the upper surface of the first functional layer 24 is provided with a corresponding first electrode 26, and the lower surface of the second functional layer 25 is provided with a corresponding second electrode 27, wherein the first electrode 26 and the second electrode 27 can be made of aluminum, copper or silver. and other metals or alloys, and at least partially pass through the functional layer in contact with it to achieve external output.
  • Fig. 5 shows a schematic structural diagram of another stacked photovoltaic device provided by the embodiment of the present application. As shown in Fig. 5, a specific example of another stacked photovoltaic device includes:
  • Single-layer electrical functional layer 31 perovskite absorption layer 32, crystalline silicon absorption layer 33, first functional layer 34, second functional layer 35, first electrode 36, second electrode 37;
  • the first serial interface 321 of the perovskite absorbing layer 32 is prepared by using a blended perovskite material of MASnBr3 and FASnI3 , with a thickness of 300nm to 500nm. During the deposition process, excessive MAI and FAI components are used to make calcium.
  • the first series interface 321 of the titanite absorbing layer 32 is P-type; the electrical conductivity corresponding to the mixed perovskite is on the order of 10 ⁇ 3 S ⁇ cm ⁇ 1 .
  • the perovskite absorbing layer 32 is provided with a first functional layer 34, the first functional layer 34 plays the functions of selective contact and transmission of electrons and anti-reflection on the upper surface, wherein the first functional layer 34 is a multi-layer structure, adopting 10nm Thick C 60 , 20nm-thick tin oxide and 80nm-thick aluminum-doped tin oxide are stacked as the hole selective contact and transport layer, and magnesium fluoride is used as the upper surface anti-reflection film;
  • the crystalline silicon absorbing layer 33 is made of an N-type silicon wafer with a doping concentration of 1 ⁇ 10 16 cm -3 and a conductivity of 2 S ⁇ cm -1 , and the second series interface 331 on the lower surface of the crystalline silicon absorbing layer 33 has a textured structure and is It has a P-type region obtained by diffusion or ion implantation doping, and the upper surface is a planar structure;
  • the second functional layer 35 is arranged on the lower surface of the crystalline silicon absorbing layer 33, and the second functional layer 35 and the crystalline silicon absorbing layer 33 form a PERT (Passivated Emitter Rear Totally-diffused cell) back structure, thereby Passivation of the interface and anti-reflection of the lower surface, wherein the second functional layer 35 is a multi-layer structure, which is a stack of silicon oxide with a thickness of 3nm, aluminum oxide with a thickness of 35nm, and silicon nitride film with a thickness of 80nm;
  • a single-layer electrical functional layer 31 is arranged between the perovskite absorbing layer 32 and the crystalline silicon absorbing layer 33 , and is made of nickel oxide with a thickness of 50nm.
  • the conductivity of undoped nickel oxide is 5S ⁇ cm -1 , meeting the requirements.
  • the upper surface of the first functional layer 34 is provided with a corresponding first electrode 36
  • the lower surface of the second functional layer 35 is provided with a corresponding second electrode 37
  • the first electrode 36 and the second electrode 37 can be made of aluminum, copper or silver. and other metals or alloys, and at least partially pass through the functional layer in contact with it to achieve external output.
  • the laminated photovoltaic device provided in the embodiment of the present application is a structure of crystalline silicon and perovskite with two junctions at both ends.
  • the work function of the crystalline silicon absorber layer of the lower battery is matched, thereby reducing the voltage loss caused by the energy level mismatch at the series interface of the upper and lower batteries; at the same time, because the absorber layers of the upper and lower batteries have matching work functions at the series interface, the middle series structure
  • a single layer of electrical functional layer can realize the series connection of the upper and lower cells, reducing the number of series structure layers, thereby reducing the free carrier parasitic caused by the introduction of multi-layer electrical functional layer Absorption, also reduces the number of interfaces, thereby reducing transmission losses introduced by interface resistance and defects.
  • the tandem photovoltaic device provided by this application can effectively reduce the cost of the tandem photovoltaic device by adjusting the work function matching of the absorbing layers of the upper and lower cells at the series interface, and adopting a single-layer electrical functional layer series structure on this basis.
  • the voltage and current loss can be reduced, the overall efficiency of stacked photovoltaic devices can be improved, and it can be applied to upper and lower cells with various structures.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供了一种叠层光伏器件,涉及太阳能光伏技术领域。其中,叠层光伏器件包括钙钛矿吸收层、晶体硅吸收层,及串联两吸收层的单层电学功能层,钙钛矿吸收层与单层电学功能层的接触界面为第一串联界面,晶体硅吸收层与单层电学功能层的接触界面为第二串联界面;其中,第二串联界面处的导电类型与第一串联界面处的导电类型不同,且功函数的差值≥-0.3eV,且≤0.3eV。由于叠层光伏器件的钙钛矿吸收层与晶体硅吸收层在接触界面处功函数的差值≥-0.3eV,且≤0.3eV,因此,两吸收层功函数匹配,避免了功函数失配造成的电压损失,且中间串联结构无需能带缓冲为单层,可以降低由于多层电学功能层引入导致的载流子寄生性吸收,降低由界面电阻和缺陷引入的传输损失。

Description

一种叠层光伏器件
相关申请的交叉引用
本申请要求在2021年08月27日提交中国专利局、申请号为202111000183.3、名称为“一种叠层光伏器件”的中国专利公开的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能光伏技术领域,特别是涉及一种叠层光伏器件。
背景技术
叠层光伏器件是采用在晶体硅器件上叠加宽带隙钙钛矿器件构成两端两结叠层结构,以期望突破晶体硅器件光电转换效率(Power Conversion Efficiency,PCE)约29.4%的理论极限,获得光电转换效率超过30%的光伏器件。
目前叠层电池常采用多层电学功能层对上下电池进行串联,这种串联方法虽然实现了能带缓冲、载流子运输以及复合串联等功能,也引起了较高的寄生性吸收,且多层电学功能层叠加的多界面会引入更多的界面电阻以及缺陷损耗,导致电流损失;另外,叠层光伏器件为晶体硅、钙钛矿器件串联叠加结构,理论电压值应为两器件输出电压总和,但是实际情况是存在电压损失使得实际输出电压低于理论电压。
因此,如何降低叠层光伏器件的电流、电压损失是进一步提升叠层光伏器件的光电转换效率的关键。
概述
本申请提供一种叠层光伏器件,旨在降低叠层光伏器件的电流、电压损失,进一步提升叠层光伏器件的光电转换效率。
第一方面,本申请实施例提供了一种叠层光伏器件,所述叠层光伏器件包括钙钛矿吸收层、晶体硅吸收层,以及串联所述钙钛矿吸收层与所述晶体硅吸 收层的单层电学功能层;其中,
所述第二串联界面处所述晶体硅吸收层的导电类型与所述第一串联界面处所述钙钛矿吸收层的导电类型不同;
所述第二串联界面处所述晶体硅吸收层的功函数与所述第一串联界面处所述钙钛矿吸收层的功函数的差值≥-0.3eV,且≤0.3eV。
可选地,所述单层电学功能层的功函数位于第一功函数与第二功函数之间,且包括所述第一功函数、所述第二功函数的范围内;
所述第一功函数为所述钙钛矿吸收层上所述第一串联界面处所述钙钛矿吸收层的功函数;
所述第二功函数为所述晶体硅吸收层上所述第二串联界面处所述晶体硅吸收层的功函数。
可选地,所述单层电学功能层的电导率大于或等于第一电导率与第二电导率中的最大值;
所述第一电导率为所述钙钛矿吸收层上所述第一串联界面处所述钙钛矿吸收层的电导率;
所述第二电导率为所述晶体硅吸收层上所述第二串联界面处所述晶体硅吸收层的电导率。
可选地,所述钙钛矿吸收层采用的钙钛矿材料带隙宽度为1.5eV~2.3eV。
可选地,所述叠层光伏器件还包括第一界面钝化层、第二界面钝化层中的至少一个;
所述第一界面钝化层的厚度小于或等于5nm,且位于所述钙钛矿吸收层和所述单层电学功能层之间;
所述第二界面钝化层的厚度小于或等于5nm,且位于所述晶体硅吸收层和所述单层电学功能层之间。
可选地,所述叠层光伏器件还包括第一功能层、第二功能层、第一电极和第二电极;
所述第一功能层位于所述钙钛矿吸收层远离所述单层电学功能层的方向上,所述第一电极至少部分穿设于所述第一功能层;
所述第二功能层位于所述晶体硅吸收层远离所述单层电学功能层的方向上,所述第二电极至少部分穿设于所述第二功能层。
可选地,所述晶体硅吸收层上所述第二串联界面处的导电类型为P型, 所述钙钛矿吸收层上所述第一串联界面处采用N型钙钛矿材料,所述N型钙钛矿材料包含MAPbBr 3、MAPb 0.91I 2.82、MAPbI 3、FAPbI 3、MASnI 3、MANH 3PbI 3、MASnBr 3、FASnI 3、CsSnBr 3中的至少一种。
可选地,所述钙钛矿吸收层上所述第一串联界面处还采用N型掺杂剂,所述N型掺杂剂包含铟、锑、钒、铋中的至少一种。
可选地,所述单层电学功能层采用的材料包括掺氟氧化锡、氧化镍、氧化铜、氧化钼、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴中的任一种或任一种的掺杂材料;
所述掺杂材料采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种掺杂得到。
可选地,所述晶体硅吸收层上所述第二串联界面处的导电类型为N型,所述钙钛矿吸收层上所述第一串联界面处采用P型钙钛矿材料,所述P型钙钛矿材料包含MAPbBr 3、MAPb 0.91I 2.82、MAPbI 3、FAPbI 3、MASnI 3、MANH 3PbI 3、MASnBr 3、FASnI 3、CsSnBr 3中的至少一种。
可选地,所述钙钛矿吸收层上所述第一串联界面处还采用P型掺杂剂,所述P型掺杂剂包括钠、钾、铜、氧中的至少一种。
可选地,所述单层电学功能层采用的材料包括氧化锌、氧化锡、氧化钛、富勒烯碳中的任一种或任一种的掺杂材料;
所述掺杂材料采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种掺杂得到。
本申请实施例中提供的叠层光伏器件包括钙钛矿吸收层、晶体硅吸收层、以及串联钙钛矿吸收层与晶体硅吸收层的单层电学功能层,钙钛矿吸收层与单层电学功能层的接触界面为第一串联界面,晶体硅吸收层与单层电学功能层的接触界面为第二串联界面,其中,第二串联界面处晶体硅吸收层的导电类型与第一串联界面处所述钙钛矿吸收层的导电类型不同;第二串联界面处晶体硅吸收层的功函数与第一串联界面处钙钛矿吸收层的功函数的差值≥-0.3eV,且≤0.3eV。本申请实施例提供的叠层光伏器件,其钙钛矿吸收层与晶体硅吸收层在接触界面处功函数的差值≥-0.3eV,且≤0.3eV,因此,能够实现钙钛矿吸收层和晶体硅吸收层的功函数匹配,避免了功函数失配导致的电压损失,而且基于匹配的功函数,钙钛矿吸收层与晶体硅吸收层能带结构匹配,无需进行能级缓冲,可以采用单层电学功能层串联两吸收层,降低了多层串联 的寄生性吸收,减少了多层间界面引入的电阻和界面损耗,减少了电流、电压损失,从而提升了叠层光伏器件的输出电压,进一步提高了叠层光伏器件的光电转换效率。
附图简述
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的一种叠层光伏器件的结构示意图;
图2示出了本申请实施例提供的一种晶体硅与部分钙钛矿材料的功函数数值与带隙范围示意图;
图3a示出了本申请实施提供的一种P型晶体硅吸收层串联N型钙钛矿吸收层的能带结构匹配示意图;
图3b示出了本申请实施例提供的另一种P型晶体硅吸收层串联N型钙钛矿吸收层的能带结构匹配示意图;
图3c示出了本申请实施提供的一种N型晶体硅吸收层串联P型钙钛矿吸收层的能带结构匹配示意图;
图3d示出了本申请实施提供的另一种N型晶体硅吸收层串联P型钙钛矿吸收层的能带结构匹配示意图;
图4示出了本申请实施例提供的另一种叠层光伏器件的结构示意图;
图5示出了本申请实施例提供的又一种叠层光伏器件的结构示意图。
详细描述
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出了本申请实施例提供的一种叠层光伏器件的结构示意图,参照图1,该叠层光伏器件包括所述叠层光伏器件包括钙钛矿吸收层12、晶体硅 吸收层13,以及串联所述钙钛矿吸收层12与所述晶体硅吸收层13的单层电学功能层11,所述钙钛矿吸收层12上所述第一串联界面121为第一串联界面121,所述晶体硅吸收层13上所述第二串联界面131为第二串联界面131;其中,
所述第二串联界面131处所述晶体硅吸收层13的导电类型与所述第一串联界面121处所述钙钛矿吸收层12的导电类型不同;
所述第二串联界面131处所述晶体硅吸收层13的功函数与所述第一串联界面121处所述钙钛矿吸收层12的功函数的差值≥-0.3eV,且≤0.3eV。
本申请实施例中,晶体硅吸收层13与钙钛矿吸收层12通过单层电学功能层11串联连接,则钙钛矿吸收层12上与单层电学功能层11串联的界面为第一串联界面121,晶体硅吸收层13上与单层电学功能层11串联的界面为第二串联界面131。经对叠层光伏器件的研究发现,第一串联界面121处钙钛矿吸收层12处的能级p-E c在光照条件下分裂产生p-qusi-E e钙钛矿吸收层电子准费米能级、p-qusi-E h钙钛矿吸收层空穴准费米能级,第二串联界面131处晶体硅吸收层13处的能级s-E v在光照条件下分裂产生s-qusi-E e晶体硅吸收层电子准费米能级、s-qusi-E h晶体硅吸收层空穴准费米能级,在材料、光照条件相同的情况下,p-qusi-E e和p-qusi-E h的差值p-FS(Fermi Level Spliting,费米能级分裂)以及s-qusi-E e和s-qusi-E h的差值s-FS为一定值。此时,叠层光伏器件的能级差ΔE=(p-E c)-(s-E v),则开路电压Voc=(s-qusi-E e)-(p-qusi-E h)=(p-FS)+(s-FS)-Δqusi-E≈(p-FS)+(s-FS)-ΔE,而由于p-FS与s-FS为固定值,因此Voc的大小与ΔE有密切关系,ΔE越小,Voc越大。进一步地,在第一串联界面121处钙钛矿吸收层12的功函数与第二串联界面131处晶体硅吸收层13的功函数失配时,ΔE较大,从而导致Voc越小,即叠层光伏器件中功函数失配导致电压损失。同时,功函数失配时,ΔE较大,会产生界面势垒,需要引入多层电学功能层实现载流子能级缓冲并降低界面势垒,增加了串联结构厚度,影响中间串联结构的电阻率和透过率,造成寄生性吸收,进一步导致电流、电压损失。
本申请实施例中,为了避免两吸收层的功函数失配,可以对第一串联界面121、第二串联界面131的功函数进行调整。可选地,由于晶体硅吸收层13的能带结构较为固定,P型晶体硅的功函数为5.03eV~5.10eV,N型晶体硅的功函数为4.42eV~4.63eV,因此,可以以晶体硅材料的功函数为参考,通过对钙 钛矿吸收层12上第一串联界面121处的功函数进行调整,以使第二串联界面131处晶体硅吸收层13的功函数与第一串联界面121处钙钛矿吸收层12的功函数的差值≥-0.3eV,且≤0.3eV,从而实现功函数匹配,实现能带结构匹配,进而能够采用单层电学功能层11对晶体硅吸收层13与钙钛矿吸收层12进行串联,并避免功函数失配导致ΔE过大,开路电压小,造成电压损失。
图2示出了本申请实施例提供的一种晶体硅与部分钙钛矿材料的功函数数值与带隙范围示意图,如图2所示,纵坐标为能量数值,单位为eV,横坐标为材料种类,其中,各材料种类对应的柱形表示带隙范围,P型、N型晶体硅材料对应的数值表示功函数,则晶体硅中P型晶体硅的功函数约为5.03eV,N型晶体硅的功函数约为4.45eV,其他钙钛矿材料对应的数值分别表示导带和价带带边数值,钙钛矿材料的功函数通常位于禁带宽度内并且可以较为方便的调节,则如图2所示,部分钙钛矿材料中FAPbI 3的功函数最大可调范围为4.74eV~6.24eV,MAPbCl 3的功函数最大可调范围为4.36eV~5.93eV,CsPbI 3的功函数最大可调范围为4.47eV~6.25eV,CsSnBr 3的功函数最大可调范围为4.07eV~5.82eV等,可以看出,晶体硅的功函数较为固定,而钙钛矿材料的功函数在一定范围内可调整,以晶体硅功函数为参考,可以对钙钛矿材料的功函数进行调整从而达成晶体硅吸收层与钙钛矿吸收层的功函数匹配。图2中所示功函数为各材料独立存在时的数据,由于各材料的功函数在叠层结构中可能会由于接触发生变化,同时多层材料的功函数不易准确测定,因此,此处仅考虑材料独立存在时的功函数数值,另外,图2中钙钛矿材料的种类仅为示例,不限制本申请实施例中钙钛矿吸收层的材料选择。
其中,由于钙钛矿吸收层12可能由于掺杂元素浓度、种类等不同使得各处导电类型、功函数不同,晶体硅吸收层13可能由于硅片类型、掺杂种类、掺杂位置等使得各处导电类型不同。因此,可以对钙钛矿吸收层12与单层电学功能层11的第一串联界面121处的导电类型、功函数进行调控,对晶体硅吸收层13与单层电学功能层11的第二串联界面131处的导电类型进行调控。调控钙钛矿吸收层12的第一串联界面121处功函数时,在不同钙钛矿材料可实现的功函数范围内,如晶体硅吸收层13上第二串联界面131处的导电类型为P型时功函数为5.03eV,此时,可以调整钙钛矿吸收层12在第一串联界面121处的功函数为5.03±0.3eV,以使功函数的差值≥-0.3eV,且≤0.3eV;当晶体硅吸收层13上第二串联界面131处的导电类型为N型时功函数为4.45eV, 此时,可以调整钙钛矿吸收层12在第一串联界面121处的功函数为4.45±0.3eV,以使功函数的差值≥-0.3eV,且≤0.3eV,上述功函数的数值仅用于举例,在允许范围内本领域技术人员可以根据需求选择具体晶体硅吸收层13、钙钛矿吸收层12在接触界面处的功函数,且钙钛矿吸收层中不包括费米能级位于带隙中间的双极型钙钛矿吸收层。
图3a示出了本申请实施提供的一种P型晶体硅吸收层串联N型钙钛矿吸收层的能带结构匹配示意图,图3b示出了本申请实施例提供的另一种P型晶体硅吸收层串联N型钙钛矿吸收层的能带结构匹配示意图,图3c示出了本申请实施提供的一种N型晶体硅吸收层串联P型钙钛矿吸收层的能带结构匹配示意图,图3d示出了本申请实施提供的另一种N型晶体硅吸收层串联P型钙钛矿吸收层的能带结构匹配示意图。其中,真空能级为0,向下为各能级位置,包括单层电学功能层11、钙钛矿吸收层12以及晶体硅吸收层13的能带结构,如图3a、3c所示的能带结构,其中,单层电学功能层11通过在与晶体硅吸收层13的接触界面处实现隧穿复合机制起到串联作用;如3b、3d所示的能带结构,隧穿复合发生于单层电学功能层11与钙钛矿吸收层12的串联界面,由于晶体硅吸收层13的电导率通常高于钙钛矿吸收层12,因此,如图3b、3d所示的能带结构中,输出效果可能会受到钙钛矿材料内载流子迁移率的限制。在图3a、3b、3c、3d中,由于晶体硅吸收层13与钙钛矿吸收层12之间实现了能带结构匹配,因此,可以通过单层电学功能功能层1实现串联作用。
可选地,所述单层电学功能层11的功函数位于第一功函数与第二功函数之间,且包括所述第一功函数、所述第二功函数的范围内;
所述第一功函数为所述钙钛矿吸收层12上所述第一串联界面121处所述钙钛矿吸收层12的功函数;
所述第二功函数为所述晶体硅吸收层13上所述第二串联界面131处所述晶体硅吸收层13的功函数。
本申请实施例中,单层电学功能层11在钙钛矿吸收层12与晶体硅吸收层13之间起到串联作用,因此,单层电学功能层11可以选择采用功函数位于第一功函数与第二功函数之间,且包括所述第一功函数、所述第二功函数的范围内的材料,其中,第一功函数为钙钛矿吸收层12上第一串联界面121处的功函数,第二功函数为晶体硅吸收层13上第二串联界面131处的功函数。 具体的,当第一功函数为5.03eV,第二功函数为5.03±0.3eV时,在第二功函数的具体取值大于第一功函数的情况下,单层电学功能层11功函数的取值上限为第二功函数的具体取值,下限为5.03eV,在第二功函数的具体取值小于第一功函数的情况下,单层电学功能层11功函数的取值上限为5.03eV,下限为第二功函数的具体取值;第一功函数为4.45eV,第二功函数为4.45±0.3eV的情况可参考上述说明,其中,单层电学功能层11功函数的取值范围包括端点值。
可选地,所述单层电学功能层11的电导率大于或等于第一电导率与第二电导率中的最大值;
所述第一电导率为所述钙钛矿吸收层12上所述第一串联界面121处所述钙钛矿吸收层12的电导率;
所述第二电导率为所述晶体硅吸收层13上所述第二串联界面131处所述晶体硅吸收层13的电导率。
本申请实施例中,单层电学功能层11的电导率可以大于或等于与晶体硅吸收层13的接触界面位置处的第一电导率,与钙钛矿吸收层12接触界面位置的第二电导率中的最大值,可选地,可以依据接触界面处材料的种类、组成等确定其电导率,作为第一电导率、第二电导率进行对比,以确定单层电学功能层11的电导率大于或等于第一电导率、第二电导率中的最大值。在实际应用中,由于晶体硅材料的电导率通常高于钙钛矿材料,因此,如前述图3b、3d,单层电学功能层11可避免对钙钛矿吸收层12载流子的接触与输运能力的影响,通过与晶体硅吸收层13接触界面的隧穿复合机制实现串联。
可选地,所述晶体硅吸收层13采用具有光吸收作用,且光生载流子可被分离、收集的晶体硅材料。
本申请实施例中,晶体硅吸收层13可以作为叠层光伏器件的下电池吸收层,晶体硅吸收层13中可以包括PN结,也可以不包括PN结,其上下表面可以为平面结构,也可以具备陷光结构等。可选地,晶体硅吸收层13可以采用具有光吸收作用,且光生载流子可被分离、收集的晶体硅材料,如对硅片表面进行局域、全面掺杂的晶体硅材料,可以起到光吸收作用,并提供可分离的光生载流子,对叠层光伏器件的光电转换效率产生贡献。而非晶硅、TOPCon(隧穿氧化层钝化接触,Tunnel Oxide Passivated Contact)电池等钝化层上的微晶硅或纳米晶硅层,虽然可以吸收入射光,但是产生的光生载流子不能被分 离和收集,因此,不作为单层电学功能层11的材料。
可选地,所述钙钛矿吸收层12采用的钙钛矿材料带隙宽度为1.5eV~2.3eV。
本申请实施例中,钙钛矿吸收层12可以作为叠层光伏器件的上电池吸收层,其中,钙钛矿吸收层12可以采用带隙宽度为1.5eV~2.3eV的宽带隙的钙钛矿材料,可以采用单一组分钙钛矿材料,也可以采用混合组分钙钛矿材料,钙钛矿吸收层12中的钙钛矿材料可以采用均匀组分,也可以采用非均匀组分,使得钙钛矿吸收层12上第一串联界面121处功函数符合前述限定即可,本申请实施例对钙钛矿吸收层12远离与单层电学功能层11的接触界面处的组分不做具体限制。
可选地,所述晶体硅吸收层13上所述第二串联界面131处的导电类型为P型,所述钙钛矿吸收层12上所述第一串联界面121处采用N型钙钛矿材料,所述N型钙钛矿材料包含MAPbBr 3、MAPb 0.91I 2.82、MAPbI 3、FAPbI 3、MASnI 3、MANH 3PbI 3、MASnBr 3、FASnI 3、CsSnBr 3中的至少一种
本申请实施例中,对晶体硅吸收层13上第二串联界面131处的导电类型,以及钙钛矿吸收层12上第一串联界面121处的导电类型与功函数进行调控,晶体硅吸收层13、钙钛矿吸收层12上其他位置的导电类型、功函数不作限制,如当第二串联界面131处的导电类型为P型时,晶体硅吸收层13其他位置的导电类型可以是P型,也可以是N型,如在P型硅片的第二串联界面131处进行N型掺杂。同理,当第一串联界面121处导电类型为P型时,钙钛矿吸收层12其他位置的导电类型可以是P型,也可以是N型,本申请实施例对此不作具体限制。
本申请实施例中,当第二串联界面131处的导电类型为P型时,在第一串联界面121处可以采用FAPbI 3、MAPb 1.1I 3.2、MAPb 1.5Br 4、MASnI 3、MAPbBr 1.5Cl 1.5、MAPbCl 3、MAPbI 3、MAPbI 2.1Cl 0.9、FASnI 3、CsSnI 3等钙钛矿材料的一种单一组分或两种以上混合组分,通过调整钙钛矿材料中各种原子的种类、比例关系使钙钛矿吸收层12的第一串联界面121处呈N型,且功函数与第二串联界面131处晶体硅吸收层13的功函数差值≥-0.3eV,≤0.3eV。
可选地,所述钙钛矿吸收层12上所述第一串联界面121处还采用N型掺杂剂,所述N型掺杂剂包含铟、锑、钒、铋中的至少一种。
本申请实施例中,还可以在第一串联界面121处采用N型掺杂剂,以在 第二串联界面131处呈P型时,更好地调控串联的第一串联界面121为N型,其中,N型掺杂剂可以是铟、锑、钒、铋中的至少一种。
所述单层电学功能层11采用的材料包括氧化锡、氧化镍、氧化铜、氧化钼、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、氧化亚铜、氧化钨、氧化钒、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、硫氰酸亚铜、聚3,4-乙烯二氧噻吩、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸中的任一种或任一种的掺杂材料;
所述掺杂材料采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种掺杂得到。
本申请实施例中,基于功函数、电导率等参数的要求,在晶体硅吸收层13的第二串联界面131为P型,钙钛矿吸收层12的第一串联界面121为N型时,单层电学功能层11可以采用的材料包括氧化锡、氧化镍、氧化铜、氧化钼、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD)、氧化亚铜、氧化钨、氧化钒、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、硫氰酸亚铜、聚3,4-乙烯二氧噻吩(Poly(3,4-ethylenedioxythiophene),PEDOT)、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)中的任一种或任一种的掺杂材料,其中,任一种的掺杂材料指对氧化锡、氧化镍、氧化铜、氧化钼、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、氧化亚铜、氧化钨、氧化钒、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、硫氰酸亚铜、聚3,4-乙烯二氧噻吩、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸中的任一种采用其他元素进行掺杂得到的材料,可选地,掺杂材料可以采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种进行掺杂,如钠、钙、铟、镓、氟等元素,上述各材料的功函数相近,本领域技术人员可以根据工艺条件、应用需求等选择不同种类的材料,本申请实施例对此不做具体限制。
可选地,所述晶体硅吸收层13上所述第二串联界面131处的导电类型为N型,所述钙钛矿吸收层12上所述第一串联界面121处采用P型钙钛矿材料,所述P型钙钛矿材料包含MAPbBr 3、MAPb 0.91I 2.82、MAPbI 3、FAPbI 3、MASnI 3、MANH 3PbI 3、MASnBr 3、FASnI 3、CsSnBr 3中的至少一种。
本申请实施例中,当第二串联界面131处的导电类型为N型时,在第一串联界面121处可以采用MAPbBr 3、MAPb 0.91I 2.82、MAPbI 3、FAPbI 3、MASnI 3、MANH 3PbI 3、MASnBr 3、FASnI 3、CsSnBr 3等钙钛矿材料的一种单一组分或两种以上混合组分,通过调整钙钛矿材料中各种原子的种类、比例关系使钙钛矿 吸收层12的第一串联界面121处呈P型,且功函数与第二串联界面131处晶体硅吸收层13的功函数差值≥-0.3eV,≤0.3eV。
可选地,所述钙钛矿吸收层12上所述第一串联界面121处还采用P型掺杂剂,所述P型掺杂剂包括钠、钾、铜、氧中的至少一种。
本申请实施例中,还可以在第一串联界面121处采用P型掺杂剂,以在第二串联界面131处呈N型时,更好地调控串联的第一串联界面121为P型,其中,P型掺杂剂可以是钠、钾、铜、氧中的至少一种。
可选地,所述单层电学功能层11采用的材料包括氧化锌、氧化铟、氧化锡、氧化钛、硫化钼、氧化铌、氧化钽、硫化镉、富勒烯碳中的任一种或任一种的掺杂材料;
所述掺杂材料采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种掺杂得到。
本申请实施例中,在晶体硅吸收层13的第二串联界面131为N型,钙钛矿吸收层12的第一串联界面121为P型时,单层电学功能层11可以采用的材料包括氧化锌、氧化铟、氧化锡、氧化钛、硫化钼、氧化铌、氧化钽、硫化镉、富勒烯碳中的任一种或任一种的掺杂材料,其中,任一种的掺杂材料指对氧化锌、氧化铟、氧化锡、氧化钛、硫化钼、氧化铌、氧化钽、硫化镉、富勒烯碳中的任一种采用其他元素进行掺杂得到的材料,可选地,掺杂材料可以采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种进行掺杂,如钠、钙、铟、镓、氟等元素,上述各材料的功函数相近,本领域技术人员可以根据工艺条件、应用需求等选择不同种类的材料,本申请实施例对此不做具体限制。
可选地,所述叠层光伏器件还包括第一功能层14、第二功能层15、第一电极16和第二电极17;
所述第一功能层14位于所述钙钛矿吸收层12远离所述单层电学功能层11的方向上,所述第一电极16至少部分穿设于所述第一功能层14。
本申请实施例中,第一功能层14可以作为钙钛矿吸收层12表面的上功能层,位于钙钛矿吸收层12远离单层电学功能层11的方向上,第一功能层14为多层结构,可以具备界面钝化、选择性接触及传输、上表面减反射等至少一项功能;第一电极16可以作为钙钛矿吸收层12表面的上电极,其中,第一电极16可以采用铝、铜、银等金属或合金制备得到,可选地,第一电极 16至少部分穿设于第一功能层14,如第一电极16可以部分嵌入第一功能层14,也可以穿透第一功能层14,从而导出载流子,以实现对外输出。
所述第二功能层15位于所述晶体硅吸收层13远离所述单层电学功能层11的方向上,所述第二电极17至少部分穿设于所述第二功能层15。
本申请实施例中,第二功能层15可以作为晶体硅吸收层13表面的下功能层,位于晶体硅吸收层13远离单层电学功能层11的方向上,第二功能层15为多层结构,可以具备界面钝化、选择性接触及传输、下表面减反射等至少一项功能;第二电极17可以作为晶体硅吸收层13表面的下电极,其中,第二电极17可以采用铝、铜、银等金属或合金制备得到,可选地,第二电极17至少部分穿设于第二功能层15,如第二电极17可以部分嵌入第二功能层15,也可以穿透第二功能层15,从而导出载流子,以实现对外输出。
可选地,所述叠层光伏器件还包括第一界面钝化层、第二界面钝化层中的至少一个;
所述第一界面钝化层的厚度小于或等于5nm,且位于所述钙钛矿吸收层12和所述单层电学功能层11之间;
所述第二界面钝化层的厚度小于或等于5nm,且位于所述晶体硅吸收层13和所述单层电学功能层11之间。
本申请实施例中,在钙钛矿吸收层12与单层电学功能层11之间可以设置第一界面钝化层,和/或,在晶体硅吸收层13与单层电学功能层11之间可以设置第二界面钝化层,第一界面钝化层、第二界面钝化层可以采用电介质材料,且厚度小于或等于5nm,以避免过厚影响电学功能。
本申请实施例中提供的叠层光伏器件包括钙钛矿吸收层、晶体硅吸收层、以及串联钙钛矿吸收层与晶体硅吸收层的单层电学功能层,钙钛矿吸收层与单层电学功能层的接触界面为第一串联界面,晶体硅吸收层与单层电学功能层的接触界面为第二串联界面,其中,第二串联界面处晶体硅吸收层的导电类型与第一串联界面处所述钙钛矿吸收层的导电类型不同;第二串联界面处晶体硅吸收层的功函数与第一串联界面处钙钛矿吸收层的功函数的差值≥-0.3eV,且≤0.3eV。本申请实施例提供的叠层光伏器件,其钙钛矿吸收层与晶体硅吸收层在接触界面处功函数的差值≥-0.3eV,且≤0.3eV,因此,能够实现钙钛矿吸收层和晶体硅吸收层的功函数匹配,避免了功函数失配导致的电压损失,而且基于匹配的功函数,钙钛矿吸收层与晶体硅吸收层能带结构匹配, 无需进行能级缓冲,可以采用单层电学功能层串联两吸收层,降低了多层串联的寄生性吸收,减少了多层间界面引入的电阻和界面损耗,减少了电流、电压损失,从而提升了叠层光伏器件的输出电压,进一步提高了叠层光伏器件的光电转换效率。
示例1
如图1所示,本申请实施例提供了一种叠层光伏器件的具体示例,包括:
钙钛矿吸收层12的第一串联界面121处采用FAPbI 3单组分钙钛矿材料制备,厚度为300nm~500nm,沉积过程中通过采用过量的PbI 2组分使钙钛矿吸收层12上第一串联界面121处呈N型;此时,钙钛矿吸收层12对应的电导率为10 -7S·cm -1量级,远低于晶体硅。
钙钛矿吸收层12上设置第一功能层14,第一功能层14起到界面钝化、空穴选择性接触与传输,以及上表面减反射的功能,其中,第一功能层14为多层结构,采用2nm厚度氟化钙或氟化锂材料作为界面钝化层,采用50nm厚度氧化镍与100nm厚度氧化锡材料叠层作为空穴选择性接触与传输层,采用氟化镁作为上表面减反射薄膜;
晶体硅吸收层13采用P型硅片,在P型硅片上表面第二串联界面131处采用扩散或离子注入方法生成整层的P型重掺杂层,第二串联界面131处掺杂浓度为5×10 18cm -3,对应电阻率为4×10 -2Ω·cm,对应的电导率(电阻率的倒数)为25S·cm -1,且上下表面为平面结构。
晶体硅吸收层13的下表面设置第二功能层15,第二功能层15采用钝化接触结构,起到界面钝化、电子选择性接触与传输以及下表面减反射的功能,其中,第二功能层15为多层结构,分别为2nm厚度的氧化硅层、30nm厚度的N型多晶硅层、100nm厚度的掺铟氧化锡层以及80nm厚度氮化硅薄膜叠层;
钙钛矿吸收层12与晶体硅吸收层13之间设置单层电学功能层11,单层电学功能层11为30nm厚度的氧化铟锡层;氧化铟锡电导率可以高达10 4S·cm -1,此处采用轻掺杂氧化铟,氧化锡掺杂量较少,低于1wt%。
单层电学功能层11与晶体硅吸收层13表面设置有厚度不超过2nm界面氧化硅,起到对晶体硅的表面钝化作用;
第一功能层14的上表面设置对应的第一电极16,第二功能层15的下表面设置对应的第二电极17,其中,第一电极16、第二电极17可以采用铝、 铜、银等金属或合金,且至少部分穿设于其接触的功能层,以实现对外输出。
示例2
图4示出了本申请实施例提供的另一种叠层光伏器件的结构示意图,如图4所示,另一种叠层光伏器件的具体示例包括:
单层电学功能层21、钙钛矿吸收层22、晶体硅吸收层23、第一功能层24、第二功能层25、第一电极26、第二电极27、第一界面钝化层28以及第二界面钝化层29;
钙钛矿吸收层22的第一串联界面221处采用MAPbI 3单组分钙钛矿材料制备,厚度为300nm~500nm,沉积过程中通过采用过量的PbI 2组分使钙钛矿吸收层22的第一串联界面221处呈N型;MAPbI 3电阻率为4Ω·cm,电导率为0.25S·cm -1
钙钛矿吸收层22上设置第一功能层24,第一功能层24起到界面钝化、空穴选择性接触与传输,以及上表面减反射的功能,其中,第一功能层24为多层结构,采用2nm厚度氟化钙材料作为界面钝化层,采用50nm厚度的Spiro-OMeTAD与100nm厚度氧化锡材料叠层作为空穴选择性接触与传输层,采用氟化镁作为上表面减反射薄膜;
晶体硅吸收层23采用N型硅片,在N型硅片上表面第一串联界面231处通过热扩散形成P型扩散区,且上下表面均为绒面结构,其中,第一串联界面121处掺杂浓度为1×10 19cm -3,电导率60S·cm -1
晶体硅吸收层23的下表面设置第二功能层25,第二功能层25采用异质结结构,起到界面钝化、电子选择性接触与传输以及下表面减反射的功能,其中,第二功能层25为多层结构,分别为5nm厚度的本征非晶硅、20nm厚度的N型非晶硅、100nm厚度的掺铟氧化锡层以及80nm厚度氮化硅薄膜叠层;
钙钛矿吸收层22与晶体硅吸收层23之间设置单层电学功能层21,单层电学功能层21采用掺铝氧化锌材料制备,厚度为20nm;掺铝氧化锌层的电导率通常为100S·cm -1
钙钛矿吸收层22与单层电学功能层21之间设置有第一界面钝化层28,采用氟化锂材料制备,厚度为1nm;
晶体硅吸收层23与单层电学功能层21之间设置有第二界面钝化层29,采用2nm厚度的氧化硅层,以实现对晶体硅的表面钝化;
第一功能层24的上表面设置对应的第一电极26,第二功能层25的下表 面设置对应的第二电极27,其中,第一电极26、第二电极27可以采用铝、铜、银等金属或合金,且至少部分穿设于其接触的功能层,以实现对外输出。
示例3
图5示出了本申请实施例提供的又一种叠层光伏器件的结构示意图,如图5所示,又一种叠层光伏器件的具体示例,包括:
单层电学功能层31、钙钛矿吸收层32、晶体硅吸收层33、第一功能层34、第二功能层35、第一电极36、第二电极37;
钙钛矿吸收层32的第一串联界面321处采用MASnBr 3与FASnI 3的共混组分钙钛矿材料制备,厚度为300nm~500nm,沉积过程中通过采用过量的MAI与FAI组分使钙钛矿吸收层32的第一串联界面321处呈P型;混合钙钛矿对应的电导率为10 -3S·cm -1量级。
钙钛矿吸收层32上设置上第一功能层34,第一功能层34起到电子选择性接触与传输以及上表面减反射的功能,其中,第一功能层34为多层结构,采用10nm厚度的C 60、20nm厚度的氧化锡与80nm厚度的掺铝氧化锡材料叠层作为空穴选择性接触与传输层,采用氟化镁作为上表面减反射薄膜;
晶体硅吸收层33采用N型硅片,掺杂浓度为1×10 16cm -3,电导率2S·cm -1,且晶体硅吸收层33下表面第二串联界面331处为绒面结构并具备通过扩散或离子注入掺杂获得的P型区,上表面为平面结构;
晶体硅吸收层33下表面设置第二功能层35,第二功能层35与晶体硅吸收层33形成PERT(Passivated Emitter Rear Totally-diffused cell,钝化发射极背表面全扩散电池)背面结构,起到界面钝化以及下表面减反射的功能,其中,第二功能层35为多层结构,分别为3nm厚度的氧化硅、35nm厚度的氧化铝以及80nm厚度的氮化硅薄膜叠层;
钙钛矿吸收层32与晶体硅吸收层33之间设置单层电学功能层31,采用氧化镍材料制备,厚度为50nm,未掺杂氧化镍电导率为5S·cm -1,符合要求。
第一功能层34的上表面设置对应的第一电极36,第二功能层35的下表面设置对应的第二电极37,其中,第一电极36、第二电极37可以采用铝、铜、银等金属或合金,且至少部分穿设于其接触的功能层,以实现对外输出。
本申请实施例提供的叠层光伏器件为晶体硅、钙钛矿两端两结结构,通过调节串联界面处上电池的钙钛矿吸收层的功函数,实现上电池的钙钛矿吸收层与下电池的晶体硅吸收层的功函数匹配,从而降低上下电池串联界面由于 能级失配造成的电压损失;同时由于上下电池的吸收层在串联界面处具备匹配的功函数,因此,中间串联结构无需多层功能层结构进行能带缓冲,单层电学功能层即可以实现对上下电池进行串联,减少了串联结构层数,从而可以降低由于多层电学功能层引入导致的自由载流子寄生性吸收,也减少了界面数量,从而降低由界面电阻和缺陷引入的传输损失。
综上所述,本申请提供的叠层光伏器件通过调整串联界面处上下电池的吸收层的功函数匹配,并以此为基础采用单层电学功能层串联结构,可以有效地降低叠层光伏器件的电压、电流损失,提高叠层光伏器件整体效率,且可以应用于多种结构的上下电池中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (10)

  1. 一种叠层光伏器件,其特征在于,所述叠层光伏器件包括钙钛矿吸收层、晶体硅吸收层,以及串联所述钙钛矿吸收层与所述晶体硅吸收层的单层电学功能层,所述钙钛矿吸收层与所述单层电学功能层的接触界面为第一串联界面,所述晶体硅吸收层与所述单层电学功能层的接触界面为第二串联界面;其中,
    所述第二串联界面处所述晶体硅吸收层的导电类型与所述第一串联界面处所述钙钛矿吸收层的导电类型不同;
    所述第二串联界面处所述晶体硅吸收层的功函数与所述第一串联界面处所述钙钛矿吸收层的功函数的差值≥-0.3eV,且≤0.3eV。
  2. 根据权利要求1所述的叠层光伏器件,其特征在于,所述单层电学功能层的功函数位于第一功函数与第二功函数之间,且包括所述第一功函数、所述第二功函数的范围内;
    所述第一功函数为所述钙钛矿吸收层上所述第一串联界面处所述钙钛矿吸收层的功函数;
    所述第二功函数为所述晶体硅吸收层上所述第二串联界面处所述晶体硅吸收层的功函数。
  3. 根据权利要求1所述的叠层光伏器件,其特征在于,所述单层电学功能层的电导率大于或等于第一电导率与第二电导率中的最大值;
    所述第一电导率为所述钙钛矿吸收层上所述第一串联界面处所述钙钛矿吸收层的电导率;
    所述第二电导率为所述晶体硅吸收层上所述第二串联界面处所述晶体硅吸收层的电导率。
  4. 根据权利要求1所述的叠层光伏器件,其特征在于,所述晶体硅吸收层上所述第二串联界面处的导电类型为P型,所述钙钛矿吸收层上所述第一串联界面处采用N型钙钛矿材料,所述钙钛矿材料包含FAPbI 3、MAPb 1.1I 3.2、MAPb 1.5Br 4、MASnI 3、MAPbBr 1.5Cl 1.5、MAPbCl 3、MAPbI 3、MAPbI 2.1Cl 0.9、FASnI 3、CsSnI 3中的至少一种;
    所述钙钛矿吸收层上所述第一串联界面处还采用N型掺杂剂,所述N型掺杂剂包含铟、锑、钒、铋中的至少一种。
  5. 根据权利要求4所述的叠层光伏器件,其特征在于,所述单层电学功能层采用的材料包含氧化锡、氧化镍、氧化铜、氧化钼、2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴、氧化亚铜、氧化钨、氧化钒、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、硫氰酸亚铜、聚3,4-乙烯二氧噻吩、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸中的任一种或任一种的掺杂材料;
    所述掺杂材料采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种掺杂得到。
  6. 根据权利要求1所述的叠层光伏器件,其特征在于,所述晶体硅吸收层上所述第二串联界面处的导电类型为N型,所述钙钛矿吸收层上所述第一串联界面处采用P型钙钛矿材料,所述P型钙钛矿材料包含MAPbBr 3、MAPb 0.91I 2.82、MAPbI 3、FAPbI 3、MASnI 3、MANH 3PbI 3、MASnBr 3、FASnI 3、CsSnBr 3中的至少一种;
    所述钙钛矿吸收层上所述第一串联界面处还采用P型掺杂剂,所述P型掺杂剂包括钠、钾、铜、氧中的至少一种。
  7. 根据权利要求6所述的叠层光伏器件,其特征在于,所述单层电学功能层采用的材料包含氧化锌、氧化铟、氧化锡、氧化钛、硫化钼、氧化铌、氧化钽、硫化镉、富勒烯碳中的任一种或任一种的掺杂材料;
    所述掺杂材料采用碱金属元素、碱土金属元素、过渡金属元素、卤族金属元素中的任一种掺杂得到。
  8. 根据权利要求1所述的叠层光伏器件,其特征在于,所述钙钛矿吸收层采用的钙钛矿材料带隙宽度为1.5eV~2.3eV。
  9. 根据权利要求1所述的叠层光伏器件,其特征在于,所述叠层光伏器件还包括第一界面钝化层、第二界面钝化层中的至少一个;
    所述第一界面钝化层的厚度小于或等于5nm,且位于所述钙钛矿吸收层和所述单层电学功能层之间;
    所述第二界面钝化层的厚度小于或等于5nm,且位于所述晶体硅吸收层和所述单层电学功能层之间。
  10. 根据权利要求1所述的叠层光伏器件,其特征在于,所述叠层光伏器件还包括第一功能层、第二功能层、第一电极和第二电极;
    所述第一功能层位于所述钙钛矿吸收层远离所述单层电学功能层的方向上,所述第一电极至少部分穿设于所述第一功能层;
    所述第二功能层位于所述晶体硅吸收层远离所述单层电学功能层的方向上,所述第二电极至少部分穿设于所述第二功能层。
PCT/CN2022/095201 2021-08-27 2022-05-26 一种叠层光伏器件 WO2023024620A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022335362A AU2022335362A1 (en) 2021-08-27 2022-05-26 Stacked photovoltaic device
EP22859968.4A EP4376569A1 (en) 2021-08-27 2022-05-26 Stacked photovoltaic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111000183.3A CN115734625A (zh) 2021-08-27 2021-08-27 一种叠层光伏器件
CN202111000183.3 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023024620A1 true WO2023024620A1 (zh) 2023-03-02

Family

ID=85290633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095201 WO2023024620A1 (zh) 2021-08-27 2022-05-26 一种叠层光伏器件

Country Status (4)

Country Link
EP (1) EP4376569A1 (zh)
CN (1) CN115734625A (zh)
AU (1) AU2022335362A1 (zh)
WO (1) WO2023024620A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014635A (ja) * 2009-06-30 2011-01-20 Idemitsu Kosan Co Ltd 光電変換素子及びその製造方法
US20170271622A1 (en) * 2016-06-03 2017-09-21 Solar-Tectic, Llc High efficiency thin film tandem solar cells and other semiconductor devices
CN110521008A (zh) * 2017-02-20 2019-11-29 牛津光伏有限公司 多结光伏设备
CN113257940A (zh) * 2020-02-13 2021-08-13 隆基绿能科技股份有限公司 叠层光伏器件及生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014635A (ja) * 2009-06-30 2011-01-20 Idemitsu Kosan Co Ltd 光電変換素子及びその製造方法
US20170271622A1 (en) * 2016-06-03 2017-09-21 Solar-Tectic, Llc High efficiency thin film tandem solar cells and other semiconductor devices
CN110521008A (zh) * 2017-02-20 2019-11-29 牛津光伏有限公司 多结光伏设备
CN113257940A (zh) * 2020-02-13 2021-08-13 隆基绿能科技股份有限公司 叠层光伏器件及生产方法

Also Published As

Publication number Publication date
CN115734625A (zh) 2023-03-03
EP4376569A1 (en) 2024-05-29
AU2022335362A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
AU2021266213B2 (en) Multijunction photovoltaic device
EP3583631B1 (en) Multijunction photovoltaic device
TW201513380A (zh) 高效率堆疊太陽電池
CN111081878A (zh) 一种钙钛矿/硅基异质结叠层太阳能电池及其制备方法
JP2010531064A (ja) 単p−n接合タンデム型光起電力デバイス
CN112259686B (zh) 一种叠层电池及其制作方法
US20180019361A1 (en) Photoelectric conversion device, manufacturing method for photoelectric conversion device, and photoelectric conversion module
CN111816726B (zh) 背接触太阳电池及生产方法、背接触电池组件
WO2022134991A1 (zh) 太阳能电池及生产方法、光伏组件
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
CN111430494A (zh) 一种串联型钙钛矿晶硅太阳能电池及其制备方法
CN114530524A (zh) 一种太阳能叠层电池制备方法及太阳能叠层电池
GB2566293A (en) Multi-junction photovoltaic device
KR20160085121A (ko) 태양 전지
WO2023024620A1 (zh) 一种叠层光伏器件
CN111900228B (zh) 一种面向晶硅太阳电池的电子选择性接触
KR102101504B1 (ko) 캡핑층을 구비한 전하선택접촉접합 실리콘 태양전지 및 그 제조 방법
CN114744052A (zh) 太阳能电池及光伏组件
CN211980627U (zh) 一种串联型钙钛矿晶硅太阳能电池
WO2024066478A1 (zh) 一种太阳能电池及光伏组件
CN113990959B (zh) 中间串联层及生产方法、叠层光伏器件及制备方法
CN112086534B (zh) 一种叠层电池及其制作方法
CN108630763B (zh) 一种光电转换装置及其制备方法
TWM645198U (zh) 雙面吸光型光伏電池
CN114678438A (zh) 太阳能电池及光伏组件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022859968

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2022335362

Country of ref document: AU

Ref document number: AU2022335362

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022859968

Country of ref document: EP

Effective date: 20240222

ENP Entry into the national phase

Ref document number: 2022335362

Country of ref document: AU

Date of ref document: 20220526

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE