WO2022134991A1 - 太阳能电池及生产方法、光伏组件 - Google Patents

太阳能电池及生产方法、光伏组件 Download PDF

Info

Publication number
WO2022134991A1
WO2022134991A1 PCT/CN2021/132482 CN2021132482W WO2022134991A1 WO 2022134991 A1 WO2022134991 A1 WO 2022134991A1 CN 2021132482 W CN2021132482 W CN 2021132482W WO 2022134991 A1 WO2022134991 A1 WO 2022134991A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
solar cell
silicon substrate
titanium nitride
Prior art date
Application number
PCT/CN2021/132482
Other languages
English (en)
French (fr)
Inventor
刘继宇
李华
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011541852.3A external-priority patent/CN114744052B/zh
Priority claimed from CN202011541833.0A external-priority patent/CN114744063B/zh
Priority claimed from CN202011555985.6A external-priority patent/CN114678438B/zh
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2022134991A1 publication Critical patent/WO2022134991A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices

Definitions

  • the present disclosure relates to the technical field of solar photovoltaics, and in particular, to a solar cell, a production method, and a photovoltaic assembly.
  • the crystalline silicon solar cell can be a double-sided structure, that is, a p-type semiconductor layer is arranged on one side of the silicon substrate, and an n-type semiconductor layer is arranged on the other side.
  • the metal electrode on the light-receiving surface of the substrate produces shadow loss from the shading of sunlight, thereby reducing the conversion efficiency of the solar cell. Therefore, both the p-type semiconductor layer and the n-type semiconductor layer can be arranged on the backlight side of the silicon substrate to obtain a back-contact solar cell, that is, the p-type semiconductor layer and the n-type semiconductor layer are arranged in the form of a finger-like cross structure on the backside of the silicon substrate.
  • the metal electrodes corresponding to the p-type semiconductor layer and the n-type semiconductor layer are also arranged on the back side of the silicon substrate, thereby reducing the shading of sunlight and improving the conversion efficiency of the solar cell.
  • forming the p-type semiconductor layer and the n-type semiconductor layer of the interdigitated structure on the backside of the silicon substrate requires the use of photolithography techniques or multiple masks, for example, preparing the first region on the backside of the silicon substrate After the p-type semiconductor layer, a mask is required to prepare an n-type semiconductor in the second area on the backside of the silicon substrate, which makes the solar cell preparation process numerous, poor controllability, and high cost, making it difficult to mass-produce.
  • a distinguishing feature of solar cells is their ability to direct light-generated electrons and holes into asymmetrically conductive paths, that is, to separate charge carriers and then collect them through the positive and negative electrodes, thereby outputting electrical energy.
  • Conventional crystalline silicon solar cells are doped near the surface of the silicon substrate to obtain electron selective contact and hole selective contact to achieve carrier separation.
  • heavy doping is bound to occur. It affects the performance of the cell.
  • the high temperature process of the doping technology will introduce more impurities and affect the lifetime of minority carriers, resulting in lower efficiency of the solar cell.
  • the electron selectivity can be arranged on one side of the silicon substrate Or hole-selective carrier-selective transport layers to collect electrons or holes in the silicon substrate to separate the carriers in the silicon substrate, which can be formed for the separation of carriers without doping the silicon substrate Hole-selective contacts and electron-selective contacts of electrons.
  • any semiconductor material can only absorb photons whose energy value is larger than its band gap.
  • perovskite materials as light absorbing materials to prepare perovskite solar cells that can absorb higher energy sunlight
  • silicon materials as light absorbing materials to prepare silicon crystalline solar cells that can absorb lower energy sunlight Therefore, the perovskite solar cell can be used as the top cell
  • the silicon crystalline solar cell can be used as the bottom cell
  • a tunneling recombination junction can be set between the top cell and the bottom cell to connect the top cell and the bottom cell to form a tandem solar cell Therefore, the spectral response range of solar cells can be broadened and the efficiency of solar cells can be improved.
  • ITO indium tin oxide
  • the present disclosure provides a solar cell, a production method, and a photovoltaic module, aiming at solving the problems of numerous steps in the solar cell preparation process, poor controllability, high cost, and difficulty in mass production.
  • embodiments of the present disclosure provide a solar cell, the solar cell comprising:
  • a silicon substrate a first semiconductor layer, a carrier recombination layer, a second semiconductor layer, a first electrode and a second electrode;
  • One side surface of the silicon substrate is divided into a first area and a second area;
  • the first semiconductor layer is arranged on a first region of one side surface of the silicon substrate, and the carrier recombination layer is arranged on a side of the first semiconductor layer away from the silicon substrate;
  • the second semiconductor layer is disposed on the side of the carrier recombination layer away from the first semiconductor layer, and the second semiconductor layer covers the first region and the second region at the same time;
  • the first electrode and the second electrode are disposed on the side of the second semiconductor layer away from the silicon substrate, the first electrode is located in the first region, and the second electrode is located in the first region. in the second area;
  • the conductivity types of the first semiconductor layer and the second semiconductor layer are different from each other, and the carrier recombination layer includes a tunneling PN junction formed by a metalloid material.
  • the solar cell further includes: a first intrinsic semiconductor layer and a second intrinsic semiconductor layer;
  • the first intrinsic semiconductor layer is disposed between the first semiconductor layer and the silicon substrate
  • the second intrinsic semiconductor layer is disposed between the second semiconductor layer and the silicon substrate and the between the second semiconductor layer and the carrier recombination layer.
  • the first intrinsic semiconductor layer and the second intrinsic semiconductor layer are both intrinsic amorphous silicon, with a thickness of 1-10 nanometers.
  • the solar cell further comprises: a first transparent conductive layer and a second transparent conductive layer;
  • the first transparent conductive layer is located in the first region, and is arranged between the second semiconductor layer and the first electrode;
  • the second transparent conductive layer is located in the second region and is disposed between the second semiconductor layer and the second electrode.
  • both the first transparent conductive layer and the second transparent conductive layer include: any one of indium oxide, tin oxide and zinc oxide.
  • the metalloid material includes any one of titanium nitride, titanium carbide, aluminum titanium carbide and aluminum tantalum carbide.
  • the thicknesses of the first semiconductor layer and the second semiconductor layer are both 5-15 nanometers.
  • embodiments of the present disclosure provide a method for producing a solar cell, the method comprising:
  • a silicon substrate is provided, and one side surface of the silicon substrate is divided into a first area and a second area;
  • a second semiconductor layer is formed on the side of the carrier recombination layer away from the first semiconductor layer, and the second semiconductor layer covers both the first region and the second region;
  • a first electrode and a second electrode are prepared on the side of the second semiconductor layer away from the silicon substrate, the first electrode is located in the first area, and the second electrode is located in the second area;
  • the conductivity types of the first semiconductor layer and the second semiconductor layer are different from each other, and the carrier recombination layer includes a tunneling PN junction formed by a metalloid material.
  • the step of preparing the first semiconductor layer in the first region of one side surface of the silicon substrate includes:
  • the first intrinsic semiconductor layer is intrinsic amorphous silicon with a thickness of 1-10 nanometers.
  • the step of forming a second semiconductor layer on the side of the carrier recombination layer away from the first semiconductor layer includes:
  • the second intrinsic semiconductor layer is intrinsic amorphous silicon with a thickness of 1-10 nanometers.
  • the step of preparing a first electrode and a second electrode on the side of the second semiconductor layer away from the silicon substrate includes:
  • a first transparent conductive layer and a second transparent conductive layer are prepared on the side of the second semiconductor layer away from the silicon substrate, the first transparent conductive layer is located in the first region, and the second transparent conductive layer is located in the within the second area;
  • the first electrode is prepared on the side of the first transparent conductive layer away from the second semiconductor layer
  • the second electrode is prepared on the side of the second transparent conductive layer away from the second semiconductor layer.
  • the metalloid material includes any one of titanium nitride, titanium carbide, aluminum titanium carbide and aluminum tantalum carbide.
  • an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
  • the solar cell in the present application includes: a silicon substrate, a first semiconductor layer, a carrier composite layer, a second semiconductor layer, a first electrode and a second electrode; one side surface of the silicon substrate is divided into a first area and a second area; the first semiconductor layer is arranged in the first area of one side surface of the silicon substrate, and the carrier recombination layer is arranged on the part of the first semiconductor layer away from the silicon substrate one side; the second semiconductor layer is arranged on the side of the carrier recombination layer away from the first semiconductor layer, and the second semiconductor layer covers the first area and the second area at the same time; the first electrode and the second electrode are arranged on the side away from the second semiconductor layer One side of the silicon substrate, the first electrode is located in the first area, and the second electrode is located in the second area; wherein, the conductivity types of the first semiconductor layer and the second semiconductor layer are different from each other, and the carrier recomb
  • a carrier recombination layer including a tunneling PN junction formed by a metalloid material is disposed between the first semiconductor layer and the second semiconductor layer, the resistance of the tunneling PN junction formed by the metalloid material is low, can be used for the connection between the first semiconductor layer and the second semiconductor layer, so that after the first semiconductor layer is prepared in the first region of the silicon substrate, there is no need to prepare the second semiconductor layer only in the second region of the silicon substrate, Instead, the second semiconductor is fabricated in the entire surface including the first region and the second region, so that there is no need to cover the first semiconductor layer with a mask, thereby simplifying the production process of the solar cell.
  • the present disclosure provides a solar cell and a photovoltaic assembly, aiming at solving the problem that the carrier selective transport layer of the solar cell reacts with the surface of the silicon substrate, resulting in the reduction of the field effect passivation effect of the carrier selective transport layer.
  • embodiments of the present disclosure provide a solar cell, the solar cell comprising:
  • a silicon substrate a first titanium nitride layer, a first carrier selective transport layer and a first electrode;
  • the first titanium nitride layer is disposed on the first surface of the silicon substrate, and the first carrier selective transport layer is disposed on the side of the first titanium nitride layer away from the silicon substrate, so the first electrode is disposed on the side of the first carrier selective transport layer away from the first titanium nitride layer;
  • the first carrier selective transport layer is one of an electron selective transport material or a hole selective transport material
  • the first titanium nitride layer is one of an electron transport material or a hole transport material
  • the majority carriers of the first titanium nitride layer and the first carrier selective transport layer are of the same type.
  • the thickness of the first carrier selection transport layer is 0.5-10 nanometers.
  • the solar cell further comprises: a first transparent conductive layer;
  • the first transparent conductive layer is disposed between the first carrier selective transport layer and the first electrode.
  • the hole selective transport material includes: any one of molybdenum oxide, poly-3,4-ethylenedioxythiophene/polystyrene sulfonate, tungsten oxide, cuprous thiocyanate and cupric phthalocyanide ;
  • the electron selective transport material includes: any one of lithium fluoride, magnesium oxide, magnesium fluoride, cesium fluoride, potassium fluoride, cesium oxide and cesium carbonate.
  • the work function of the electron transport material is less than a preset work function threshold, and the work function of the hole transport material is greater than the preset work function threshold;
  • the preset work function threshold is 5.5 electron volts
  • the solar cell further comprises: an interface passivation layer;
  • the interface passivation layer is disposed between the first titanium nitride layer and the silicon substrate;
  • the interface passivation layer includes: any one or more of hydrogenated amorphous silicon, titanium oxide, silicon dioxide, aluminum oxide and hafnium dioxide.
  • the solar cell further comprises: a second titanium nitride layer, a second carrier selective transport layer and a second electrode;
  • the second titanium nitride layer is disposed on the second surface of the silicon substrate opposite to the first surface, or the first titanium nitride layer and the second titanium nitride layer are located on the silicon substrate the first area and the second area of the first surface;
  • the second carrier selective transport layer is another type of electron selective transport material or hole selective transport material that is different from the first carrier selective transport layer;
  • the second titanium nitride layer is another type of electron transport material or hole transport material that is different from the first titanium nitride layer.
  • the thickness of the second carrier selection transport layer is 0.5-10 nanometers.
  • the first titanium nitride layer and the second titanium nitride layer are located in the first region and the second region of the first surface of the silicon substrate, the first titanium nitride layer and the The second titanium nitride layers are electrically insulated.
  • the solar cell further comprises: a second transparent conductive layer;
  • the second transparent conductive layer is provided between the second carrier selective transport layer and the second electrode.
  • the first transparent conductive layer and the second transparent conductive layer include: metal transparent conductive films, transparent conductive oxide films, non-oxide transparent conductive films, polymer transparent conductive films, graphene films and carbon nanotubes any of the films.
  • an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
  • the solar cell in the present application includes: a silicon substrate, a first titanium nitride layer, a first carrier selective transport layer and a first electrode; wherein, the first nitrogen The titanium oxide layer is arranged on the first surface of the silicon substrate, the first carrier selective transport layer is arranged on the side of the first titanium nitride layer away from the silicon substrate, and the first electrode is arranged on the first carrier selective transport layer away from the first One side of the titanium nitride layer; the first carrier selective transport layer is one of electron selective transport material or hole selective transport material; the first titanium nitride layer is one of electron transport material or hole transport material ; The majority carriers of the first titanium nitride layer and the first carrier selective transport layer are of the same type.
  • a first titanium nitride layer is arranged between the first carrier selective transport layer and the silicon substrate, which avoids the surface reaction caused by the direct contact between the first carrier selective transport layer and the silicon substrate.
  • the majority carrier type of the first titanium nitride layer is the same as that of the first carrier selective transport layer, that is, the first titanium nitride layer can also be selectively contacted as a carrier. Therefore, the first titanium nitride layer is used at the same time. It is in selective contact with the first carrier selection and transport layer as a carrier, so that the thicknesses of the first titanium nitride layer and the first carrier selection and transport layer are both within a suitable range, avoiding the need for the first titanium nitride layer.
  • the short-circuit current of the solar cell is low due to the ultraviolet light absorption caused by the excessive thickness of the layer, and also avoids the problem of intensified reaction with the surface of the silicon substrate caused by the excessive thickness of the first carrier selective transport layer. Improves the efficiency of solar cells.
  • the present disclosure provides a solar cell and a photovoltaic assembly, aiming at solving the problems of complex, high cost, and low efficiency of the tandem solar cell in the fabrication of the tunneling compound junction.
  • embodiments of the present disclosure provide a solar cell, the solar cell comprising:
  • the tunneling composite junction includes a first metalloid layer and a second metalloid layer, the first metalloid layer and the second metalloid layer have different carrier selectivities, and the first metalloid layer
  • the carrier selectivity is electron selectivity or hole selectivity
  • the light absorber of the first sub-cell is a first light absorber
  • the light absorber of the second sub-cell is a second light absorber
  • the band gap of the first light absorber is larger than that of the second light absorber The band gap of the absorber.
  • the first metalloid layer and the second metalloid layer contain at least one of the same elements.
  • the first metalloid layer and the second metalloid layer include any one of titanium nitride, titanium carbide, aluminum titanium carbide and aluminum tantalum carbide.
  • the thicknesses of the first metalloid layer and the second metalloid layer are both 5-100 nanometers.
  • the first metalloid layer and the second metalloid layer are n-type titanium nitride and p-type titanium nitride, respectively.
  • the n-type titanium nitride is doped titanium nitride doped with a first doping element
  • the first doping element includes: any one of aluminum element, arsenic element and phosphorus element or Multiple, the concentration of the first doping element is greater than 10 ⁇ 10 18 /cm3;
  • the p-type titanium nitride is doped titanium nitride doped with a second doping element, and the second doping element is aluminum.
  • both the first doping element and the second doping element include aluminum, and the concentration of the aluminum in the first metalloid layer is along a direction away from the first sub-cell, the first The concentration of the aluminum element in the two metalloid layers increases in a gradient along the direction away from the second sub-cell.
  • an undoped metalloid layer is provided between the first metalloid layer and the second metalloid layer.
  • a silicon oxide tunneling layer is provided between the second metalloid layer and the second sub-cell.
  • the first light absorber comprises perovskite material or group III-V compound semiconductor
  • the second light absorber is a silicon substrate.
  • an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
  • the present application has the following beneficial effects: the solar cell in the present application includes: a first sub-cell and a second sub-cell, and a solar cell disposed between the first sub-cell and the second sub-cell Tunneling compound junction; the tunneling compound junction includes a first metalloid layer and a second metalloid layer, the first metalloid layer and the second metalloid layer have different carrier selectivities, and the first metalloid layer has a carrier
  • the carrier selectivity is electron selectivity or hole selectivity;
  • the light absorber of the first subcell is the first light absorber, the light absorber of the second subcell is the second light absorber, and the light absorber of the first subcell is the second light absorber.
  • the tunneling recombination junction between the first sub-cell and the second sub-cell includes a first metalloid layer and a second metalloid layer, since the first metalloid layer and the second metalloid layer have different current carriers subselectivity, such that the carriers generated in the first light absorber of the first subcell and the second light absorber of the second subcell have a reduced recombination rate on the surface in contact with the tunneling recombination junction, and It is ensured that one type of carriers is effectively extracted on the surface, so that the first sub-cell and the second sub-cell can be well electrically connected to form a tandem cell with higher conversion efficiency; at the same time, due to the metalloid material With excellent electrical conductivity and thermal stability, the first metalloid layer and the second metalloid layer reduce the resistance loss between the sub-cells, improve the conversion efficiency of the tandem solar cell, and the deposition temperature of the metalloid material It is lower and there are more deposition methods, so that the process
  • FIG. 1 shows a schematic structural diagram of a solar cell in an embodiment of the present disclosure
  • FIG. 2 shows a top view of a solar cell in an embodiment of the present disclosure
  • FIG. 3 shows a flow chart of steps of a method for producing a solar cell in an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of a first intermediate process for preparing solar cells in an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram of a second intermediate process for preparing solar cells in an embodiment of the present disclosure
  • FIG. 6 shows a schematic structural diagram of a third intermediate process for preparing solar cells in an embodiment of the present disclosure
  • FIG. 7 shows a schematic structural diagram of a fourth intermediate process for preparing solar cells in an embodiment of the present disclosure
  • FIG. 8 shows a schematic structural diagram of a first solar cell in an embodiment of the present disclosure
  • FIG. 9 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure.
  • FIG. 10 shows a schematic structural diagram of a third solar cell in an embodiment of the present disclosure.
  • FIG. 11 shows a schematic structural diagram of a fourth solar cell in an embodiment of the present disclosure
  • FIG. 12 shows a flow chart of steps of a method for producing a solar cell in an embodiment of the present disclosure
  • FIG. 13 shows a schematic structural diagram of a first solar cell in an embodiment of the present disclosure
  • FIG. 14 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure
  • FIG. 15 shows a schematic structural diagram of a third type of solar cell in an embodiment of the present disclosure.
  • 10-silicon substrate 20-first semiconductor layer, 30-carrier recombination layer, 40-second semiconductor layer, 50-first electrode, 60-second electrode, 70-first intrinsic semiconductor layer, 80- The second intrinsic semiconductor layer, 90-mask;
  • 210-silicon substrate 220-first titanium nitride layer, 230-first carrier selective transport layer, 240-first electrode, 250-second titanium nitride layer, 260-second carrier selective transport layer , 270-second electrode, 280-first transparent conductive layer, 290-second transparent conductive layer, 2100-interface passivation layer, 2110-passivation antireflection layer;
  • a solar cell, a production method, and a photovoltaic photovoltaic assembly provided by the present disclosure will be described in detail below by listing several specific embodiments.
  • FIG. 1 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure.
  • the solar cell may include: a silicon substrate 10 , a first semiconductor layer 20 , a carrier recombination layer 30 , and a second semiconductor layer 40 , the first electrode 50 and the second electrode 60 .
  • One side surface of the silicon substrate 10 is divided into a first area and a second area, the first semiconductor layer 20 is arranged on the first area on one side surface of the silicon substrate 10, and the carrier recombination layer 30 is arranged on the first semiconductor layer 20 on the side away from the silicon substrate 10, the second semiconductor layer 40 is disposed on the side of the carrier recombination layer 30 away from the first semiconductor layer 20, and the second semiconductor layer 40 covers both the first area and the second area, and the first electrode 50 and the second electrode 60 are disposed on the side of the second semiconductor layer 40 away from the silicon substrate 10 , the first electrode 50 is located in the first area, and the second electrode 60 is located in the second area.
  • the conductivity types of the first semiconductor layer and the second semiconductor layer are different from each other, and the carrier recombination layer provided between the first semiconductor layer and the second semiconductor layer includes a tunneling PN junction formed of a metalloid material.
  • the above-mentioned silicon substrate may be an n-type silicon substrate composed of monocrystalline silicon or polycrystalline silicon, that is, the doping type of the silicon substrate is n-type doping, and the corresponding dopant may include V group elements. Any one or more of phosphorus (P), arsenic (As), bismuth (Bi), and antimony (Sb) elements, the n-type silicon substrate has a higher resistance to contaminants and can reduce contaminants impact on lifetime, resulting in higher lifetime, and since the n-type silicon substrate has no boron-oxygen defects, performance degradation can be avoided.
  • P phosphorus
  • As arsenic
  • Bi bismuth
  • Sb antimony
  • the silicon substrate can also be a p-type silicon substrate, that is, the doping type of the silicon substrate is p-type doping, and the corresponding dopants can include boron (B), aluminum (Al), gallium in group III elements. Any one or more of element (Ga) and indium element (In).
  • the conductivity types of the first semiconductor layer and the second semiconductor layer may be different from each other.
  • the second semiconductor layer is an n-type semiconductor layer.
  • the second semiconductor layer is a p-type semiconductor layer.
  • the p-type semiconductor layer has a p-type conductivity type, and its majority carriers are holes, which is conducive to the selection and transport of holes
  • the n-type semiconductor layer has an n-type conductivity type, and its majority carriers are electrons, which is beneficial to Electronic selection and transmission.
  • both the first semiconductor layer and the second semiconductor layer may be disposed on one side surface of the silicon substrate, and the one side surface of the silicon substrate may be the backlight surface of the silicon substrate, that is, a back contact type solar cell is formed, so as to reduce the The shading of sunlight produces shadow loss, thereby improving the conversion efficiency of solar cells.
  • a traditional back-contact solar cell one side surface of the silicon substrate is divided into a first area and a second area, so that the first semiconductor layer and the second semiconductor layer are located in the first area and the second area, respectively, forming a finger-shaped interdigitated structure.
  • photolithography technology or multiple masks need to be used. For example, after the first semiconductor layer is prepared in the first area of The preparation of the second semiconductor layer in the second region of the backlit surface of the substrate makes the preparation process of the solar cell numerous, poor controllability, and high cost, making it difficult to mass-produce.
  • the first semiconductor layer may be disposed in the first region of one side surface of the silicon substrate, and the carrier recombination layer may be disposed on the side of the first semiconductor layer away from the silicon substrate, and the carrier recombination layer may be disposed far away from the silicon substrate.
  • a second semiconductor layer is arranged on one side of the first semiconductor layer, and its thickness can be 10 nanometers, and the second semiconductor layer covers the first area and the second area at the same time, so that the second semiconductor layer is not only arranged in the second area for The back surface field is formed to suppress the recombination of minority carriers on the interface between the backlight surface of the silicon substrate and the semiconductor layer, thereby improving the cell efficiency.
  • the second semiconductor layer When preparing the second semiconductor layer, there is no need to use a mask to shield the first semiconductor layer located in the first region, but the second semiconductor layer is directly deposited on the entire surface to prepare the second semiconductor layer, and the process is simple, thereby simplifying the production process of the solar cell.
  • first electrode and the second electrode are arranged on the side of the second semiconductor layer away from the silicon substrate, so that the first electrode is located in the first area, so as to correspond to the first semiconductor layer, so that the second electrode is located in the second area inside, thus corresponding to the second semiconductor layer.
  • the second electrode may correspond to an n-type electrode, and the electron carriers in the hole-electron pairs generated by the silicon substrate under illumination conditions can be absorbed by the n-type
  • the semiconductor layer is selected and transmitted to the n-type electrode, and the collection of electrons is completed through the n-type electrode
  • the first semiconductor layer is a p-type semiconductor layer
  • the corresponding first electrode can be a p-type electrode, and the silicon substrate is exposed to light conditions.
  • the hole carriers in the generated hole-electron pair can be selected by the p-type semiconductor layer and transported to the p-type electrode, and the collection of electrons is completed through the p-type electrode.
  • FIG. 2 shows a top view of a solar cell in an embodiment of the present disclosure.
  • a first electrode 50 serving as an n-type electrode and a second electrode 60 serving as a p-type electrode are interdigitated and arranged along the same The direction is formed in a line shape.
  • the n-type electrode and the p-type electrode are used as grid lines for collecting carriers and generating electric current in the solar cell, and may have a single-layer structure or a multi-layer stack structure.
  • a carrier recombination layer can be arranged between the p-type semiconductor layer and the n-type semiconductor layer, that is, a carrier recombination layer can be arranged on the side of the p-type semiconductor layer away from the silicon substrate.
  • the tunneling PN junction can achieve low resistance between the p-type semiconductor layer and the p-type electrode, so that the p-type electrode can well collect and extract hole carriers, thereby reducing carrier collection loss and improving solar energy. battery performance.
  • a solar cell includes: a silicon substrate, a first semiconductor layer, a carrier recombination layer, a second semiconductor layer, a first electrode, and a second electrode; one side surface of the silicon substrate is divided into a a region and a second region; the first semiconductor layer is arranged on the first region of one side surface of the silicon substrate, the carrier recombination layer is arranged on the side of the first semiconductor layer away from the silicon substrate; the second semiconductor layer is arranged on the carrier The side of the composite layer away from the first semiconductor layer, and the second semiconductor layer covers the first area and the second area at the same time; the first electrode and the second electrode are arranged on the side of the second semiconductor layer away from the silicon substrate, and the first electrode is located at the In one area, the second electrode is located in the second area; wherein the conductivity types of the first semiconductor layer and the second semiconductor layer are different from each other, and the carrier recombination layer includes a tunneling PN junction formed by a metalloid material.
  • a carrier recombination layer including a tunneling PN junction formed by a metalloid material is disposed between the first semiconductor layer and the second semiconductor layer, the resistance of the tunneling PN junction formed by the metalloid material is low, can be used for the connection between the first semiconductor layer and the second semiconductor layer, so that after the first semiconductor layer is prepared in the first region of the silicon substrate, there is no need to prepare the second semiconductor layer only in the second region of the silicon substrate, Instead, the second semiconductor is fabricated in the entire surface including the first region and the second region, so that there is no need to cover the first semiconductor layer with a mask, thereby simplifying the production process of the solar cell.
  • the solar cell may further include: a first intrinsic semiconductor layer 70 and a second intrinsic semiconductor layer 80 , wherein the first intrinsic semiconductor layer 70 is disposed on the first semiconductor layer 20 and the silicon substrate 10 In between, the second intrinsic semiconductor layer 80 is disposed between the second semiconductor layer 40 and the silicon substrate 10 and between the second semiconductor layer 40 and the carrier recombination layer 30 .
  • the first intrinsic semiconductor layer 70 and the second intrinsic semiconductor layer 80 are used to passivate the surface defects of the silicon substrate 10, thereby improving the performance of the solar cell, and the first intrinsic semiconductor layer 70 is disposed on the first semiconductor layer 20 and the Between the silicon substrates 10, that is, the first intrinsic semiconductor layer 70 is only disposed in the first region, the second intrinsic semiconductor layer 80 is disposed between the second semiconductor layer 40 and the silicon substrate 10, and between the second semiconductor layer 40 and the current carrier Between the sub-composite layers 30 , that is, the second intrinsic semiconductor layer 80 is disposed on the entire surface including the first region and the second region. Therefore, there is no need to use a mask for the first region when preparing the second intrinsic semiconductor layer 80 . For shielding, the second intrinsic semiconductor layer 80 is directly deposited and prepared on the entire surface, and the process is simple, thereby simplifying the production process of the solar cell.
  • the carrier recombination layer 30 is located between the first semiconductor layer 20 and the second intrinsic semiconductor layer 80 .
  • the carrier recombination layer 30 By providing the carrier recombination layer 30, not only the resistance between the first electrode and the first semiconductor layer 20 can be lowered, but also the carrier collection loss can be reduced, and the performance of the solar cell can be improved.
  • the first intrinsic semiconductor layer and the second intrinsic semiconductor layer are both intrinsic amorphous silicon, and the thickness is 1-10 nanometers.
  • the first intrinsic semiconductor layer may be formed on the surface of one side of the silicon substrate along a direction parallel to the surface of one side of the silicon substrate, the first intrinsic semiconductor layer may be an intrinsic amorphous silicon layer, and the intrinsic amorphous The silicon layer can passivate the surface defects of the silicon substrate and improve the performance of the solar cell, and the thickness of the first intrinsic semiconductor layer can be 1-10 nanometers.
  • the second intrinsic semiconductor layer may be an intrinsic amorphous silicon layer, and the second intrinsic semiconductor layer is formed by spanning from one side surface of the silicon substrate to the first semiconductor layer, so that the second intrinsic semiconductor layer covers one side of the silicon substrate.
  • the entire surface of the surface, arranged in the second region, that is, the second intrinsic semiconductor layer between the silicon substrate and the second semiconductor layer, can passivate the surface of the second region of the silicon substrate corresponding to the second semiconductor layer and improve the performance of the solar cell , the thickness of the second intrinsic semiconductor layer can also be 1-10 nanometers.
  • the solar cell may further include: a first transparent conductive layer and a second transparent conductive layer, wherein the first transparent conductive layer is located in the first region and is disposed between the second semiconductor layer and the first electrode, and the second transparent conductive layer is located in the first region.
  • the transparent conductive layer is located in the second region and is disposed between the second semiconductor layer and the second electrode.
  • the first transparent conductive layer and the second transparent conductive layer can assist in the transport of carriers, which is conducive to better collection.
  • a larger area of the first electrode or The second electrode is laid on the second semiconductor layer, which will cause serious shading and affect the performance of the battery. Therefore, a first transparent conductive layer and a second transparent conductive layer can be provided to effectively assist the transmission of current and reduce the battery life. Power loss due to internal resistance.
  • the thickness, size and material of the first transparent conductive layer and the second transparent conductive layer can be determined according to actual needs, and only one of the first transparent conductive layer and the second transparent conductive layer can be provided, or both set up.
  • the first transparent conductive layer and the second transparent conductive layer may include any one of transparent conductive oxides such as indium oxide, tin oxide, and zinc oxide. Strong conductivity.
  • the metalloid material contained in the above-mentioned carrier composite layer may include any one of titanium nitride, titanium carbide, aluminum titanium carbide and aluminum tantalum carbide, and the metalloid material in the carrier composite layer may form The tunneling PN junction, the metalloid material can be an n-type metalloid with an n-type work function, and a p-type metalloid with a p-type work function, when using metalloid materials of different polarities to form the tunneling PN junction , even if a carrier recombination layer is formed on the surface of the first semiconductor layer, the contact between the first semiconductor layer and the carrier recombination layer is approximately low resistance, that is, ohmic contact, the element composition of the above n-type metalloid and p-type metalloid Can be the same or different.
  • the thickness of the carrier recombination layer may be 1-10 nm.
  • the thicknesses of the first semiconductor layer and the second semiconductor layer can both be 5-15 nanometers.
  • the metalloid material has the same electrical conductivity and suitable work function
  • the carrier composite layer can be made of the same material as the electrode.
  • the metalloid material in the carrier composite layer is titanium nitride
  • the first The electrode and the second electrode may also be titanium nitride.
  • the polarity of the first electrode and the carrier recombination layer is opposite, for example, when the carrier recombination layer is composed of n-type titanium nitride and p-type titanium nitride and the tunneling PN junction is p-type, the first electrode is of the opposite polarity.
  • the electrode is n-type and may be composed of n-type titanium nitride
  • the second electrode is p-type and may be composed of p-type titanium nitride.
  • the carrier composite layer composed of metalloid materials due to its low resistance and thin thickness, can form a transparent tunneling PN junction, and can also be used for connection between tandem cells without parasitic absorption.
  • the present disclosure also provides a method for producing a solar cell.
  • FIG. 3 it shows a flow chart of the steps of the method for producing a solar cell provided by an embodiment of the present disclosure.
  • the method may include the following steps:
  • step 101 a silicon substrate is provided, and one surface of the silicon substrate is divided into a first region and a second region.
  • a silicon substrate can be obtained first, and then one side surface of the silicon substrate can be divided into a first area and a second area, and one side surface of the silicon substrate can be the backlight surface of the silicon substrate, that is, a back contact type is formed.
  • the solar cell can reduce the shadow loss due to the shading of sunlight, thereby improving the conversion efficiency of the solar cell.
  • the first region is used to prepare the first semiconductor layer and the first electrode to complete the selection, transport and collection of one type of carrier
  • the second region is used to prepare the second semiconductor layer and the second electrode to Complete the selection, transport and collection of another type of carrier.
  • Step 102 preparing a first semiconductor layer in a first region of one side surface of the silicon substrate.
  • a first semiconductor layer may be prepared on a first region of one side surface of the silicon substrate.
  • the first semiconductor layer may be prepared on the first region of one side surface of the track by using a chemical vapor deposition method (Chemical Vapor Deposition, CVD).
  • CVD Chemical Vapor Deposition
  • Step 103 preparing a carrier recombination layer on the side of the first semiconductor layer away from the silicon substrate.
  • a carrier recombination layer may be further prepared on the side of the first semiconductor layer away from the silicon substrate, and the carrier recombination layer is also located in the first region Inside.
  • the above-mentioned carrier recombination layer may include a tunneling PN junction formed by a metalloid material.
  • the metalloid material in the above-mentioned carrier composite layer may include any one of titanium nitride, titanium carbide, aluminum titanium carbide and aluminum tantalum carbide, and may be in ohmic contact with the first semiconductor layer.
  • the carrier composite layer may be prepared by a sputtering method, a CVD method or a thermal atomic deposition method.
  • the step of preparing the first semiconductor layer in the first region of one side surface of the silicon substrate may include: forming a first intrinsic semiconductor layer in the first region of the one side surface of the silicon substrate, and then forming a first intrinsic semiconductor layer in the first region of the one side surface of the silicon substrate.
  • a first semiconductor layer is prepared on the side of the intrinsic semiconductor layer away from the silicon substrate, so that a first intrinsic semiconductor layer is arranged between the first semiconductor layer and the silicon substrate, and the first intrinsic semiconductor layer can be intrinsic amorphous silicon with a thickness of For 1-10 nm, it is used to passivate surface defects of silicon substrates, thereby improving solar cell performance.
  • FIG. 4 shows a schematic structural diagram of a first intermediate process for preparing solar cells in an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram for a second intermediate process for preparing solar cells in an embodiment of the present disclosure.
  • the process of preparing the first intrinsic semiconductor layer 70 , the first semiconductor layer 20 and the carrier recombination layer 30 in the first region of one side surface of the silicon substrate 10 may be specifically as follows:
  • the first intrinsic semiconductor layer 70 , the first semiconductor layer 20 , and the carrier recombination layer 30 are sequentially formed on the entire surface of the silicon substrate 10 by using the CVD method on the entire surface of one side of the silicon substrate 10 , and then the carrier recombination layer 30 is formed on the entire surface.
  • a mask 90 with a predetermined pattern is set at the position corresponding to the first region on the side away from the first semiconductor layer 20 , and the position of the mask 90 corresponds to the position of the first electrode.
  • FIG. 6 shows a schematic structural diagram of the third intermediate process for preparing solar cells in the embodiment of the present disclosure.
  • the first intrinsic semiconductor layer 70 , the first semiconductor layer 20 and the current carrying The sub-composite layer 30 is patterned, the first intrinsic semiconductor layer 70, the first semiconductor layer 20 and the carrier recombination layer 30 in the first region are retained, and the first intrinsic semiconductor layer 70, the first intrinsic semiconductor layer 70, the A semiconductor layer 20 and a carrier recombination layer 30 .
  • Step 104 forming a second semiconductor layer on the side of the carrier recombination layer away from the first semiconductor layer, the second semiconductor layer covering the first region and the second region at the same time.
  • a second semiconductor layer may be further formed on the side of the carrier recombination layer away from the first semiconductor layer, so that the second semiconductor layer covers both the first region and the second region, wherein the first semiconductor layer and the second semiconductor layer
  • the conductivity types of the layers are different from each other.
  • the step of forming the second semiconductor layer on the side of the carrier recombination layer away from the first semiconductor layer may include: forming a second intrinsic semiconductor layer on the side of the carrier recombination layer away from the first semiconductor layer, Make the second intrinsic semiconductor cover the first region and the second region, and then prepare a second semiconductor layer on the side of the second intrinsic semiconductor layer away from the silicon substrate,
  • FIG. 7 shows the fourth type of the embodiment of the present disclosure A schematic structural diagram of an intermediate process of preparing a solar cell, referring to FIG.
  • a second intrinsic semiconductor layer 80 is provided between the carrier recombination layer 30 and the second semiconductor layer 40 , and in the second region, A second intrinsic semiconductor layer 80 is disposed between the silicon substrate 10 and the second semiconductor layer 40 .
  • the second intrinsic semiconductor layer may be intrinsic amorphous silicon with a thickness of 1-10 nanometers, and is used to passivate the surface defects of the silicon substrate, thereby improving the performance of the solar cell.
  • the first intrinsic semiconductor layer, the p-type semiconductor layer, and the carrier recombination layer are prepared in the first region of the n-type silicon substrate by CVD, it can be crossed from the backlight side of the n-type silicon substrate to the carrier recombination layer.
  • the second intrinsic semiconductor layer and the n-type semiconductor layer are sequentially formed without using a mask again, so that the production simplicity of the solar cell can be improved.
  • Step 105 preparing a first electrode and a second electrode on the side of the second semiconductor layer away from the silicon substrate, the first electrode is located in the first area, and the second electrode is located in the second area Inside.
  • the first electrode and the second electrode may be further prepared on the side of the second semiconductor layer away from the silicon substrate, wherein the first electrode is located in the first area, and the second electrode is located in the second area.
  • the above-mentioned step of preparing the first electrode and the second electrode on the side of the second semiconductor layer away from the silicon substrate may include: firstly preparing the first transparent conductive layer and the second transparent conductive layer on the side of the second semiconductor layer away from the silicon substrate. conductive layer, so that the first transparent conductive layer is located in the first area, and the second transparent conductive layer is located in the second area; then, a first electrode is prepared on the side of the first transparent conductive layer away from the second semiconductor layer, and A second electrode is prepared on the side of the conductive layer away from the second semiconductor layer.
  • a first transparent conductive layer is arranged between the first electrode and the second semiconductor layer, and a second transparent conductive layer is arranged between the second electrode and the second semiconductor layer, so as to effectively assist the transmission of current and reduce the internal Power loss due to resistance.
  • a p-type electrode can be formed as a first electrode in a predetermined pattern on the n-type semiconductor layer prepared above by using a CVD method, a sputtering method, a vapor deposition method, an electroplating method, a printing method, or the like, and an n-type electrode can be formed. as the second electrode.
  • the p-type electrode and the n-type electrode can be the same metal electrode material, such as silver; they can also be different metal electrode materials, such as p-type electrode is aluminum, n-type electrode is silver; or p-type electrode and n-type electrode are the same , but with different work functions, for example, the first electrode can be n-type titanium nitride, and the second electrode can be p-type titanium nitride.
  • the n-type titanium nitride and the p-type titanium nitride can be formed using different deposition methods or precursors, or formed by the same deposition method followed by different ion implantations.
  • FIG. 8 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure.
  • the solar cell may include: a silicon substrate 210 , a first titanium nitride layer 220 , and a first carrier selective transport layer 230 and the first electrode 240, the first titanium nitride layer 220 is disposed on the first surface of the silicon substrate 210, the first carrier selection transport layer 230 is disposed on the side of the first titanium nitride layer 220 away from the silicon substrate 210, the first The electrode 240 is disposed on the side of the first carrier selection and transport layer 230 away from the first titanium nitride layer 220 .
  • the first carrier selective transport layer is one of an electron selective transport material or a hole selective transport material
  • the first titanium nitride layer is one of an electron transport material or a hole transport material
  • the first nitrogen The majority carrier type of the titanium oxide layer and the first carrier selective transport layer is the same.
  • the first titanium nitride layer disposed on the first surface of the silicon substrate may be an electron transport material or a hole transport material, and the first surface may be the light-facing surface of the silicon substrate, or the silicon substrate On the backlight side of the substrate, the first titanium nitride layer can significantly improve the open circuit voltage and fill factor of the solar cell.
  • the first titanium nitride layer is an electron transport material, the majority carriers in the first titanium nitride layer are electrons, and their work function is relatively low, and the first titanium nitride layer can realize the transport of electrons generated in the silicon substrate ; If the first titanium nitride layer is a hole transport material, the majority carriers in the first titanium nitride layer are holes, and their work function is high, and the first titanium nitride layer can realize the generation of holes in the silicon substrate. Transport of holes. Therefore, the silicon substrate in the solar cell generates carriers under the irradiation of sunlight, and the holes or electrons in the carriers move to the first titanium nitride layer, thereby effectively separating and extracting the carriers.
  • the first carrier selective transport layer is disposed on the side of the first titanium nitride layer away from the silicon substrate, which can avoid surface reaction caused by direct contact between the first carrier selective transport layer and the silicon substrate. If the first carrier selective transport layer is in direct contact with the silicon substrate, for example, the first carrier selective transport layer is molybdenum oxide (MoOx), then due to the unstable performance of MoOx, the first carrier selective transport layer will be in contact with the silicon substrate. The surface of the silicon substrate reacts to form an amorphous silicon oxide (SiOx) interface layer.
  • MoOx molybdenum oxide
  • the SiOx interface layer will disperse the potential difference of the silicon substrate/MoOx interface, and on the other hand, the SiOx interface layer will generate oxygen vacancies, making the MoOx The hole selectivity drops significantly, thereby reducing the cell efficiency of the solar cell.
  • a thicker MoOx layer needs to be provided. Since a thicker MoOx layer can provide more oxygen atoms, the SiOx interface layer becomes more thick, resulting in more oxygen vacancies in the MoOx layer, and the reaction between MoOx and the silicon substrate is intensified, thereby further reducing the cell efficiency of the solar cell. It should be noted that x in the chemical formula can be determined by those skilled in the art according to actual needs.
  • the first titanium nitride layer is disposed between the first carrier selective transport layer and the silicon substrate, so that the first carrier selective transport layer will not be in direct contact with the silicon substrate, thereby improving the cell efficiency of the solar cell .
  • the thickness of the first carrier selective transport layer can be appropriately reduced, so as to avoid the first carrier selective transport layer.
  • the excessive thickness of the carrier selective transport layer causes the problem of intensified reaction with the surface of the silicon substrate, which improves the efficiency of the solar cell.
  • the use of the first titanium nitride layer can significantly improve the open circuit voltage and fill factor of the solar cell, but when the thickness of the first titanium nitride layer exceeds 50 nm, the first titanium nitride layer has strong ultraviolet light absorption characteristic, which is not conducive to the short-circuit current of the solar cell.
  • first titanium nitride layer Since the majority carriers of the first titanium nitride layer and the first carrier selective transport layer are of the same type, there is no need to provide a first titanium nitride layer with a larger thickness, so that the thickness of the first titanium nitride layer can be at a suitable thickness
  • the range of , for example, is less than 50 nanometers, so as to avoid the short-circuit current of the solar cell caused by the absorption of ultraviolet light caused by the excessive thickness of the first titanium nitride layer.
  • the first carrier selective transport layer can be an electron selective transport material or a hole selective transport material. If the first carrier selective transport layer is an electron selective transport material, the first carrier selective transport layer can pass through the The de-pinning of the Fermi level reduces the work function of the first electrode, thereby reducing the height of the potential barrier for electron transport.
  • the majority carriers in the first carrier selection transport layer are electrons, and the first carrier selects The transport layer can realize the transport and collection of electrons generated in the silicon substrate.
  • the first carrier-selective transport layer can not only reduce contact resistivity, but also reduce surface recombination; if the first carrier-selective transport layer is If the hole selective transport material is used, the first carrier selective transport layer will cause upward energy band bending in the silicon substrate, which is beneficial to the transport of holes, and the majority carriers in the first carrier selective transport layer are empty. Holes, the first carrier selection and transport layer can realize the selection and transport of holes generated in the silicon substrate.
  • the first electrode disposed on the side of the first carrier selective transport layer away from the first titanium nitride layer is used to collect the first titanium nitride layer and the selection of the first carrier selective transport layer and transported carriers.
  • the silicon substrate acts as a light absorbing layer to generate electron-hole pairs. Since the first carrier selective transport layer is an electron selective transport material or a hole selective transport material, the first titanium nitride layer is an electron selective transport material.
  • the majority carriers of the first titanium nitride layer and the first carrier selective transport layer are of the same type, so that electrons or holes generated in the silicon substrate are transported to the first nitride In the titanium layer, it is further selected and transported to the first carrier selective transport layer, and then extracted by the first electrode connected to the first carrier selective transport layer, so that electrons and holes are separated by the solar cell, and the first electrode A potential difference is generated between it and the silicon substrate, that is, a voltage is generated, thereby converting light energy into electrical energy.
  • a solar cell includes: a silicon substrate, a first titanium nitride layer, a first carrier selective transport layer and a first electrode; wherein the first titanium nitride layer is disposed on the silicon substrate On the first surface, the first carrier selective transport layer is arranged on the side of the first titanium nitride layer away from the silicon substrate, and the first electrode is arranged on the side of the first carrier selective transport layer away from the first titanium nitride layer; a carrier selective transport layer is one of electron selective transport material or hole selective transport material; the first titanium nitride layer is one of electron transport material or hole transport material; the first titanium nitride layer and The majority carriers of the first carrier selective transport layer are of the same type.
  • a first titanium nitride layer is arranged between the first carrier selective transport layer and the silicon substrate, which avoids the surface reaction caused by the direct contact between the first carrier selective transport layer and the silicon substrate.
  • the majority carrier type of the first titanium nitride layer is the same as that of the first carrier selective transport layer, that is, the first titanium nitride layer can also be selectively contacted as a carrier. Therefore, the first titanium nitride layer is used at the same time. It is in selective contact with the first carrier selection and transport layer as a carrier, so that the thicknesses of the first titanium nitride layer and the first carrier selection and transport layer are both within a suitable range, avoiding the need for the first titanium nitride layer.
  • the short-circuit current of the solar cell is low due to the ultraviolet light absorption caused by the excessive thickness of the layer, and also avoids the problem of intensified reaction with the surface of the silicon substrate caused by the excessive thickness of the first carrier selective transport layer. Improves the efficiency of solar cells.
  • the thickness of the first carrier selective transport layer is 0.5-10 nanometers.
  • FIG. 9 shows a schematic structural diagram of a second type of solar cell provided by an embodiment of the present disclosure.
  • the solar cell may further include: a first transparent conductive layer 280 , and the first transparent conductive layer 280 is disposed on the first transparent conductive layer.
  • a carrier selects between the transport layer 230 and the first electrode 240 .
  • the first transparent conductive layer can assist in the transport of carriers, which is conducive to better collection. Specifically, in order to improve the conductivity, a larger area of the first electrode is used to lay on the first carrier selection and transport layer. Above, it will cause serious shading, thereby affecting the performance of the battery. Therefore, a first transparent conductive layer can be provided to effectively assist the transmission of current and reduce the power loss caused by the internal resistance of the battery.
  • the thickness, size and material of the first transparent conductive layer can be determined according to actual needs.
  • the above hole selective transport material may include: molybdenum oxide (MoOx), poly-3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS), vanadium oxide (VOx), tungsten oxide ( WOx), any one of cuprous thiocyanate (CuSCN) and copper phthalocyanide (CuPc).
  • MoOx molybdenum oxide
  • PEDOT:PSS poly-3,4-ethylenedioxythiophene/polystyrene sulfonate
  • VOx vanadium oxide
  • WOx tungsten oxide
  • CuSCN cuprous thiocyanate
  • CuPc copper phthalocyanide
  • MoOx, Vox, and WOx can be used as hole-selective transport materials due to their relatively large work functions (greater than 5.5 eV), and can induce upward band bending in the silicon substrate, which is beneficial to the For the selection and transmission of holes, it should be noted that x in the chemical formula can be determined by those skilled in the art according to actual needs.
  • the first carrier selective transport layer is a hole selective transport material
  • the thickness of the first carrier selective transport layer may be 0.5-10 nanometers.
  • the above electron selective transport material may include: lithium fluoride (LiF), magnesium oxide (MgOx), magnesium fluoride (MgF2), cesium fluoride (CsFx), potassium fluoride (KFx), cesium oxide (CsOx) ) and either cesium carbonate (CsCO3).
  • LiF, MgF2, MgOx and CsCO3 can generate a dipole moment and reduce the work function of the first electrode through the de-pinning of the Fermi level, thereby reducing the height of the potential barrier for electron transport, which is beneficial to the selection and transport of electrons , it should be noted that x in the chemical formula can be determined by those skilled in the art according to actual needs.
  • the thickness of the first carrier selective transport layer may be 0.5-5 nanometers.
  • the work function of the electron transport material may be less than a preset work function threshold, and the work function of the hole transport material may be greater than a preset work function threshold, wherein the preset work function threshold may be 5.5 electron volts.
  • FIG. 10 shows a schematic structural diagram of a third solar cell provided by an embodiment of the present disclosure.
  • the solar cell may further include: an interface passivation layer 2100 , wherein the interface passivation layer 2100 is disposed on the third solar cell.
  • the interface passivation layer may include: hydrogenated amorphous silicon (a-Si:H), titanium oxide (TiOx), silicon dioxide (SiO2), dioxide trioxide Any one or more of aluminum (Al2O3) and hafnium dioxide (HfO2), it should be noted that x in the chemical formula can be determined by those skilled in the art according to actual needs.
  • the interface passivation layer can passivate the defects on the surface of the silicon substrate, thereby reducing the density of defect states, realizing surface passivation, and improving the efficiency of the solar cell.
  • the solar cell may further include: a second titanium nitride layer 250 , a second carrier selective transport layer 260 and a second electrode 270 , and the second titanium nitride layer 250 is disposed on the silicon substrate 210 and the silicon substrate 210 .
  • the second surface opposite to the first surface forms a double-sided solar cell.
  • FIG. 11 shows a schematic structural diagram of a fourth solar cell provided by an embodiment of the present disclosure. Referring to FIG.
  • the first titanium nitride layer 220 and the first The titanium dioxide layer 250 is located on the first area and the second area of the first surface of the silicon substrate 210, thereby forming a back-contact solar cell, and the first surface is the backlight surface of the silicon substrate.
  • the second carrier selective transport layer is another type of electron selective transport material or hole selective transport material that is different from the first carrier selective transport layer;
  • the second titanium nitride layer is an electron transport material or hole selective transport material Another transmission material than the first titanium nitride layer.
  • the first titanium nitride layer can be a hole transport material
  • the first carrier selective transport layer is a hole selective transport material, which is beneficial to the selection and transport of holes generated in the silicon substrate
  • the first electrode is also It can be a metal electrode with high work function, such as aluminum electrode or aluminum/silver electrode, which is conducive to the collection of holes, and the structure of hole transport material/hole selective transport material/high work function metal electrode can be used as a solar cell , the hole selectivity is significantly increased.
  • the second titanium nitride layer can be an electron transport material.
  • the second carrier selective transport layer is an electron selective transport material, which is beneficial to the selection and transport of electrons generated in the silicon substrate.
  • the second electrode can also be made of low power Functional metal electrodes, such as any one of silver electrodes, gold electrodes, palladium electrodes and platinum electrodes, are beneficial for electron collection and can also reduce resistance, and electron transport materials/electron selective transport materials/low work function metal electrodes. structure, so that the electron selectivity is significantly increased.
  • Low power Functional metal electrodes such as any one of silver electrodes, gold electrodes, palladium electrodes and platinum electrodes, are beneficial for electron collection and can also reduce resistance, and electron transport materials/electron selective transport materials/low work function metal electrodes. structure, so that the electron selectivity is significantly increased.
  • the thickness of the second carrier selective transport layer may be 0.5-10 nanometers.
  • the first titanium nitride layer and the second titanium nitride layer are located in the first region and the second region of the first surface of the silicon substrate, the first titanium nitride layer and the second titanium nitride layer electrical isolation between them.
  • the first titanium nitride layer 220 and the second titanium nitride layer 250 are distributed at intervals on the backlight surface of the silicon substrate 210, and the first titanium nitride layer 220 and the second titanium nitride layer 250 are electrically insulated. Electrical insulation can be achieved by arranging voids, dielectric layers or insulating layers. Furthermore, it is not easy to leak electricity, and the recombination of carriers can be reduced, so as to improve the photoelectric conversion efficiency. Specific isolation methods include using laser isolation, chemical isolation, etc., and can also use a patterned mask to assist in isolation.
  • the light-facing surface of the silicon substrate 210 may be provided with a textured structure to increase the light trapping of the solar cell and increase the light absorption of the solar cell.
  • the first titanium nitride layer 220 and the second titanium nitride layer 250 When both are arranged on the backlight surface of the silicon substrate 210, a passivation antireflection layer 2110 can be provided on the light-facing surface of the silicon substrate, so as to passivate and reduce reflection on the light-facing surface of the silicon substrate 210, thereby improving the efficiency of the solar cell.
  • the textured structure can also be provided on both sides of the silicon substrate 210 at the same time, and the shapes of the remaining structural layers on the silicon substrate 210 can be set according to the textured structure of the light-facing side and the backlight side of the silicon substrate 210, so that the back of the battery can also be Absorb light energy and improve light utilization.
  • the first region and the second region are The size is not particularly limited, for example, the region corresponding to the titanium nitride layer with minority carrier selectivity in both the first titanium nitride layer and the second titanium nitride layer is more selective than the nitride layer with majority carrier selectivity.
  • the size of the area corresponding to the titanium layer is large.
  • the dopant atoms or ions contained in the first titanium nitride layer may include: oxygen atoms or ions, carbon atoms or ions, phosphorus atoms or ions , at least two of arsenic atoms or ions, aluminum atoms or ions, and zinc atoms or ions.
  • Doping atoms or ions makes the first titanium nitride layer have good electron selectivity, so that it can be used as an electron transport layer.
  • the atomic ratio of nitrogen atoms and titanium atoms in the first titanium nitride layer is also not specifically limited.
  • the atom/ion ratios corresponding to or ions, carbon atoms or ions, phosphorus atoms or ions, arsenic atoms or ions, aluminum atoms or ions, and zinc atoms or ions, respectively, are also not specifically limited.
  • the dopant atoms or ions contained in the second titanium nitride layer may include any one or more of nitrogen atoms or ions, boron atoms or ions. Doping atoms or ions makes the second titanium nitride layer have good hole selectivity, so that it can be used as a hole transport layer, and the atomic ratio of nitrogen atoms and titanium atoms in the second titanium nitride layer is also not specifically limited.
  • doping can be performed by means of ion implantation, for example, ion implantation of phosphorus atoms or ions can form phosphorus-induced dipoles through interface reactions, which significantly reduces the work function of the titanium nitride layer; nitrogen ion implantation The nitrogen-titanium ratio of the titanium nitride layer can be increased, and the work function of the titanium nitride layer can be improved.
  • the solar cell may further include: a second transparent conductive layer 290 disposed between the second carrier selective transport layer 260 and the second electrode 270 .
  • the second transparent conductive layer can assist in the transport of carriers, which is conducive to better collection.
  • a second electrode with a larger area is used to lay on the second carrier selective transport layer. Above, it will cause serious shading, thereby affecting the performance of the battery. Therefore, a second transparent conductive layer can be provided to effectively assist the transmission of current and reduce the power loss caused by the internal resistance of the battery.
  • the thickness, size, and material of the second transparent conductive layer may be determined according to actual needs, and only one of the first transparent conductive layer and the second transparent conductive layer may be provided, or both may be provided.
  • the first transparent conductive layer and the second transparent conductive layer may include: metal transparent conductive film, transparent conductive oxide (TCO) film, non-oxide transparent conductive film, polymer transparent conductive film, graphene film and carbon
  • TCO transparent conductive oxide
  • the above-mentioned materials have good light transmittance and strong lateral conductivity.
  • the above-mentioned metal transparent conductive thin film may include at least one of silver (Ag) thin film, gold (Au) thin film, aluminum (Al) thin film, copper (Cu) thin film, and palladium (Pd) thin film.
  • the TCO thin film may include various materials based on tin dioxide (SnO2), indium trioxide (In2O3) and zinc oxide (ZnO), as well as other oxygen-containing metal compounds.
  • SnO2-based types such as TCO conductive glass (FTO) and lead-doped tin oxide (SnO:Pb), etc., such as fluorine-doped tin oxide (SnO:F).
  • In2O3-based types such as: tin-doped indium oxide (ITO), tungsten-doped indium oxide (IWO), molybdenum-doped indium oxide (IMO), titanium-doped indium oxide (In2O3:Ti), indium hydroxide-doped (In2O3:H, IOH) Wait.
  • ZnO-based classes such as: aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (ZnO:Ga, GZO).
  • TCO films also include other TCO materials, such as: cadmium oxide (CdO), niobium-doped titanium oxide (TIO2:Nb, TNO), cadmium stannate (Cd2SnO4, CTO), a-zinc stannate (a-Zn2SnO4, ZTO) Wait. Due to its high conductivity, TCO has good light transmittance in the visible light range and strong lateral conductivity, so it can improve the performance of the battery. Obviously, the TCO here can be a composite structure of various thin films.
  • CdO cadmium oxide
  • TIO2:Nb, TNO niobium-doped titanium oxide
  • Cd2SnO4, CTO cadmium stannate
  • a-Zn2SnO4, ZTO a-zinc stannate
  • the non-oxide transparent conductive film may include one of a titanium nitride (TiN) film, a hafnium nitride (HfN) film, and a lanthanum boride (LaB4) film.
  • the polymer transparent conductive film may include polyaniline, polypyrrole-polyvinyl alcohol composite material (PPY-PVA), and the like.
  • the material of the first electrode and the second electrode may be any one or more of silver, gold, copper, nickel, aluminum, tin, chromium and palladium, therefore, the first electrode and the second electrode may include : Any one of aluminum electrode, silver electrode, aluminum/silver composite electrode, nickel/copper/tin composite electrode, chromium/palladium/silver composite electrode and nickel/copper/silver composite electrode.
  • the present disclosure also provides a method for producing a solar cell.
  • FIG. 12 shows a flow chart of the steps of the method for producing a solar cell provided by an embodiment of the present disclosure.
  • the method may include the following steps:
  • Step 2101 preparing a first titanium nitride layer on the first surface of the silicon substrate.
  • a silicon substrate can be obtained first, and then a first titanium nitride layer is prepared on the first surface of the silicon substrate.
  • a second titanium nitride layer can also be formed on the second surface of the silicon substrate opposite to the first surface, or the first titanium nitride layer and the second titanium nitride layer are located on the first surface of the first surface of the silicon substrate. region and a second region, wherein the first titanium nitride layer is one of an electron transport material or a hole transport material, and the second titanium nitride layer is an electron transport material or a hole transport material different from the first Another type of titanium nitride layer.
  • the doping type of the silicon substrate may be n-type doping or p-type doping, and the silicon substrate may be a silicon wafer after surface damage, polishing, or texturing and diffusion .
  • the steps of preparing the first titanium nitride layer and the second titanium nitride layer by thermal atomic deposition may be as follows: using an organic precursor of titanium as the titanium source, using ammonia as the nitrogen source, at 300-500 Thermal atomic deposition is performed in a temperature range of degrees Celsius to generate the first titanium nitride layer, wherein the organic precursor of titanium may include any one or more of TDMAT, TDEAT and TEMAT.
  • a textured n-type silicon wafer can be used as a silicon substrate.
  • plasma-enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) can be used at 200 degrees Celsius.
  • PECVD plasma-enhanced chemical vapor deposition
  • a hydrogenated amorphous silicon thin film with a thickness of 6 nm was deposited on the backlight surface of the silicon substrate as an interface passivation layer.
  • ALD thermal atomic layer deposition
  • Step 2102 preparing a first carrier selective transport layer on the side of the first titanium nitride layer away from the silicon substrate.
  • a first carrier selective transport layer may be prepared on the side of the first titanium nitride layer away from the silicon substrate.
  • a second carrier selective transport layer may be prepared on the side of the second titanium nitride layer away from the silicon substrate, wherein the first carrier selective transport layer is an electron One of the selective transport material or the hole selective transport material, and the second carrier selective transport layer is the electron selective transport material or the hole selective transport material that is different from the first carrier selective transport layer.
  • the above hole selective transport material may include: molybdenum oxide (MoOx), poly-3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS), vanadium oxide (VOx), Any one of tungsten oxide (WOx), cuprous thiocyanate (CuSCN) and copper phthalocyanide (CuPc);
  • the above electron selective transport materials may include: lithium fluoride (LiF), magnesium oxide (MgOx), fluoride Any one of magnesium (MgF2), cesium fluoride (CsFx), potassium fluoride (KFx), cesium oxide (CsOx) and cesium carbonate (CsCO3), it should be noted that x in the chemical formula actually needs to be determined.
  • the method for preparing the first carrier selective transport layer and the first carrier selective transport layer may adopt any one of vacuum thermal evaporation method, thermal atomic deposition method and spin coating.
  • the hole selective transport material or electron selective transport material is LiF, KFx, CsFx or MoOx
  • it can be prepared by vacuum thermal evaporation powder source (purity greater than 3N) deposition it should be noted that x in the chemical formula is skilled in the art Personnel can be determined according to actual needs.
  • Step 2103 preparing a first electrode on the side of the first carrier selective transport layer away from the first titanium nitride layer.
  • a first electrode may be further prepared on the side of the first carrier selective transport layer away from the first titanium nitride layer.
  • the second electrode can also be prepared on the side of the second carrier selective transport layer away from the second titanium nitride layer.
  • a first transparent conductive layer can also be prepared between the first carrier selective transport layer and the first electrode, and a second transparent conductive layer can be prepared between the second carrier selective transport layer and the second electrode.
  • MoOx with a thickness of 10 nanometers can be prepared by thermal evaporation on the first titanium nitride layer on the smooth surface of the silicon substrate as the first carrier selective transport layer, and on the first carrier selective transport layer at room temperature
  • a bilayer film consisting of 55 nm of hydrogenated indium oxide and about 10 nm of ITO was prepared by sputtering as the first transparent conductive layer, and a silver front gate with 5% contact fraction was screen-printed as the first electrode and heated at 130 °C. Bake to cure.
  • a 1-nanometer LiFx was prepared by evaporation on the second titanium nitride layer on the backside of the silicon substrate as the second carrier selective transport layer, and a 100-nanometer aluminum layer was prepared on the second carrier selective transport layer as the second electrode.
  • silver layers are simultaneously deposited on the glossy surface and the backlight surface of the silicon substrate as the first electrode and the second electrode by electroplating, and the transparent conductive layer and The aluminum layer can be used as a seed layer for electroplating. Before electroplating, a patterned area of the electroplating electrode can be formed on the light surface and the backlight surface of the silicon substrate through a mask.
  • FIG. 13 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure.
  • the solar cell may include: a first sub-cell 310 and a second sub-cell 320 , and a first sub-cell 310 and a second sub-cell 320 arranged on the first sub-cell 310 and Tunneling recombination junction 330 between second sub-cells 320 .
  • the light absorber of the first sub-cell 310 is the first light absorber 311
  • the light absorber of the second sub-cell 320 is the second light absorber 321
  • the band gap of the first light absorber 311 is larger than the second light absorber 311 .
  • the band gap of the light absorber 321 so that when sunlight irradiates the solar cell, the first sub-cell 310 with the first light absorber 311 can absorb higher-energy sunlight, and generate a current in the first light absorber 311 Therefore, the second sub-cell 320 with the second light absorber 321 can absorb the lower energy sunlight and generate carriers in the second light absorber 321 .
  • the tunneling recombination junction 330 disposed between the first sub-cell 310 and the second sub-cell 320 includes the first metalloid layer 331 and the second metalloid layer 332 , the first metalloid layer 331 and the second metalloid layer 331
  • the metal layers 332 have different carrier selectivities.
  • the carrier selectivity of the first metalloid layer 331 is electron selectivity or hole selectivity.
  • the carrier selectivity of the second metalloid layer 332 is The characteristic is hole selectivity or electron selectivity, so that the carriers generated in the first light absorber 311 of the first subcell 310 and the second light absorber 321 of the second subcell 320 recombine with the tunneling The recombination rate on the surface contacted by the junction 330 is reduced and ensures that one type of carrier is efficiently extracted on the surface, so that the first sub-cell 310 and the second sub-cell 320 can be well electrically connected to form a conversion High-efficiency tandem solar cells.
  • the first sub-cell 310 in the above-mentioned tandem solar cell may be disposed on the light-facing side of the solar cell, and the first sub-cell 310 may further include a first electron transport layer 312 and a first hole transport layer 313, the first electron transport layer 312 is arranged on the side of the first light absorber 311 close to the tunneling recombination junction 330, the first hole transport layer 313 is arranged on the side of the first light absorber 311 away from the tunneling compound junction 330, in addition , the solar cell may further include a first electrode 360 disposed on the side of the first hole transport layer 313 away from the first light absorber 311 .
  • the higher-energy sunlight in the sunlight is first absorbed by the first light absorber 311 in the first sub-cell 310 to generate carriers, and the first light absorber 311 generates carriers.
  • the electron carriers are transported by the first electron transport layer 312 to the surfaces of the first sub-cell 310 and the tunneling recombination junction 330 .
  • the first metalloid layer in the tunneling recombination junction 330 connected to the first electron transport layer 312 is transported.
  • 331 may have electron selectivity, so as to select and transport electron carriers generated in the first light absorber 311; and hole carriers generated in the first light absorber 311 are transported to the first hole transport layer 313. the first electrode 360 and collected by the first electrode 360 .
  • the second sub-cell 320 may further include a second electron transport layer 322 and a second electrode 380.
  • the second electron transport layer 322 is disposed on the side of the second light absorber 321 away from the tunneling recombination junction 330.
  • the solar cell It can also include a second electrode 380 disposed on the side of the second electron transport layer 322 away from the second light absorber 321, so that when sunlight irradiates the solar cell, the lower energy sunlight in the sunlight passes through the first sub-electrode.
  • the battery 310 is absorbed by the second light absorber 321 in the second sub-cell 320 and generates carriers, and the electron carriers generated in the second light absorber 321 are transported to the second electrode 380 by the second electron transport layer 322, and collected by the second electrode 380, thereby realizing separation and collection of carriers; at this time, the second metalloid layer 332 connected to the second light absorber 321 in the tunneling recombination junction 330 may have hole selectivity.
  • the charge exchange process between the tandem solar cells is recombination, and the recombination of the contact area between the cells can increase the conversion efficiency of the tandem cells.
  • the efficiency of the cell is maximized only when the probability of recombination in the contact zone is maximized.
  • the electron carriers generated in the first light absorber 311 in the first sub-cell 310 are transported by the first electron transport layer 312 to the surface of the first sub-cell and the tunneling recombination junction 330, and the second sub-cell 310
  • the hole carriers generated in the second light absorber 321 in the cell 320 can be recombined in the tunneling recombination junction 330 between the first subcell 310 and the second subcell 320 .
  • a solar cell includes: a first subcell and a second subcell, and a tunneling recombination junction disposed between the first subcell and the second subcell; the tunneling recombination junction includes a first subcell and a second subcell.
  • a metalloid layer and a second metalloid layer, the first metalloid layer and the second metalloid layer have different carrier selectivities, and the carrier selectivity of the first metalloid layer is electron selectivity or hole selectivity Selectivity;
  • the light absorber of the first subcell is the first light absorber
  • the light absorber of the second subcell is the second light absorber
  • the band gap of the first light absorber is larger than that of the second light absorber .
  • the tunneling recombination junction between the first sub-cell and the second sub-cell includes a first metalloid layer and a second metalloid layer, since the first metalloid layer and the second metalloid layer have different current carriers subselectivity, such that the carriers generated in the first light absorber of the first subcell and the second light absorber of the second subcell have a reduced recombination rate on the surface in contact with the tunneling recombination junction, and It is ensured that one type of carriers is effectively extracted on the surface, so that the first sub-cell and the second sub-cell can be well electrically connected to form a tandem cell with higher conversion efficiency; at the same time, due to the metalloid material With excellent electrical conductivity and thermal stability, the first metalloid layer and the second metalloid layer reduce the resistance loss between the sub-cells, improve the conversion efficiency of the tandem solar cell, and the deposition temperature of the metalloid material lower, and there are more deposition methods, so that the process complexity and cost of preparing the tandem battery can be reduced.
  • the first metalloid layer and the second metalloid layer may include: any one of titanium nitride (TiN), titanium carbide (TiC), titanium aluminum carbide (TiAlC) and tantalum aluminum carbide (TaAlC) .
  • first metalloid layer and the second metalloid layer may be metalloid layers with electron selectivity or hole selectivity obtained by high-concentration doping of the above-mentioned TiN, TiC, TiAlC or TaAlC.
  • the first metalloid layer and the second metalloid layer contain at least one same element, so that the matching between the first metalloid layer and the second metalloid layer can be improved.
  • the first metalloid layer is titanium nitride
  • the second metalloid layer may be titanium carbide or aluminum titanium carbide, so that the first metalloid layer and the second metalloid layer have the same titanium element.
  • the thicknesses of the first metalloid layer and the second metalloid layer may both be 5-100 nanometers.
  • the conductance of the metalloid layer first increases with the increase of the thickness, it remains unchanged when the thickness of the metalloid layer reaches a certain value.
  • the influence of thickness on electrical conductivity and light transmittance needs to be comprehensively considered to determine the thicknesses of the first metalloid layer and the second metalloid layer.
  • the first metalloid layer and the second metalloid layer may be n-type titanium nitride and p-type titanium nitride, respectively, that is, the first metalloid layer and the second metalloid layer may be titanium nitride, carbide
  • the metalloid layers prepared from different materials among titanium, aluminum carbide titanium and aluminum tantalum carbide can also be metalloid layers with different carrier selectivities prepared from the same material.
  • both the first metalloid layer and the second metalloid layer may be titanium nitride, but the first metalloid layer may be a titanium nitride layer with electron selectivity (lower work function), namely n-type titanium nitride
  • the second metalloid layer may be a titanium nitride layer with hole selectivity (higher work function), that is, a metalloid layer composed of p-type titanium nitride.
  • the direct contact between n-type titanium nitride and p-type titanium nitride forms a tunneling composite junction with tunneling effect, so that a low-resistance series connection is formed between the first light absorber and the second light absorber, and the series connection is made.
  • the voltage loss of the connection is minimal.
  • the tunneling recombination junction is like a current source in a stacked device, and at the operating current density of the device, the voltage drop across the tunneling recombination junction depends on its properties.
  • different preparation methods or doping methods may be used to prepare n-type titanium nitride and p-type titanium nitride with different work functions as the first metalloid layer and the second metalloid layer.
  • n-type titanium nitride and p-type titanium nitride can be the same or different.
  • both n-type titanium nitride and p-type titanium nitride can be sputtered by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • Titanium nitride prepared by PVD sputtering deposition has an intermediate band gap, and by further doping the titanium nitride prepared by PVD sputtering deposition, p-type titanium nitride and n-type titanium nitride can be obtained .
  • both n-type titanium nitride and p-type titanium nitride are prepared by thermal atomic deposition, but different precursors are used to prepare n-type titanium nitride and p-type titanium nitride.
  • titanium tetrachloride and ammonia gas can be used as the titanium source and nitrogen source, respectively, and deposited in the temperature range of 300-500 degrees Celsius to obtain p-type titanium nitride; while tetrakis(dimethylamino)titanium (TDMAT), tetrakis(diethylamino)titanium (TDEAT) or tetrakis(ethylmethylamino)titanium (TEMAT) as the titanium source and ammonia as the nitrogen source, the deposition is carried out in the temperature range of 100-300 degrees Celsius, which can Obtain n-type titanium nitride. Among them, since the titanium nitride generated by TDMAT has higher oxygen content and carbon content, the prepared titanium nitride has n-type metal behavior.
  • the above-mentioned n-type titanium nitride may be doped titanium nitride doped with a first doping element, wherein the first doping element may include: any one of aluminum element, arsenic element and phosphorus element or more, the concentration of the first doping element can be greater than 10 ⁇ 10 18 /cm3, so that the work function of the n-type titanium nitride is effectively reduced, which is more conducive to the extraction and transmission of electrons, that is, if the first metalloid layer is n-type titanium nitride, the first metalloid layer has electron selectivity.
  • the first doping element may include: any one of aluminum element, arsenic element and phosphorus element or more, the concentration of the first doping element can be greater than 10 ⁇ 10 18 /cm3, so that the work function of the n-type titanium nitride is effectively reduced, which is more conducive to the extraction and transmission of electrons, that is, if the first metalloid layer is n-type
  • the above-mentioned p-type titanium nitride can be doped titanium nitride doped with a second doping element, wherein the second doping element can be an aluminum element, so that the work function of the p-type titanium nitride can be effectively improved, and more It is beneficial to the extraction and transport of holes, that is, if the second metalloid layer is p-type titanium nitride, the second metalloid layer has hole selectivity.
  • the concentration of aluminum in the first metalloid layer may increase in a gradient along the direction away from the first sub-cell, and the second The concentration of aluminum in the metal layer can be gradually increased along the direction away from the second sub-cell, so that aluminum is gradually distributed in the n-type titanium nitride and p-type titanium nitride, and a graded aluminum composition tunneling composite junction is obtained.
  • the gradient composition can be used to control the energy band tilt, enhance the carrier diffusion-drift joint movement mode, and help to enhance the migration and tunneling probability of carriers in the tunneling composite junction, and the tunneling probability can be improved by 1-2 order of magnitude.
  • FIG. 14 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure.
  • the solar cell may include: a first sub-cell 310 and a second sub-cell 320 , and a first sub-cell 310 and a second sub-cell 320 , and the Tunneling recombination junction 330 between second sub-cells 320 .
  • the first sub-cell 310 includes a first light absorber 311 , a first electron transport layer 312 and a first hole transport layer 313 , and the first electron transport layer 312 is disposed on the first light absorber 311 away from the tunneling recombination junction 330
  • the first hole transport layer 313 is disposed on the side of the first light absorber 311 close to the tunneling recombination junction 330 .
  • the first metalloid layer 331 connected to the first hole transport layer 313 in the tunneling recombination junction 330 may have hole selectivity, thereby selecting and transporting hole carriers generated in the first light absorber 311 , and the electron carriers generated in the first light absorber 311 are transported to the first electrode 360 by the first electron transport layer 312 and collected by the first electrode 360 , thereby realizing the separation and collection of the carriers.
  • the second sub-cell 320 includes a second light absorber 321 and a second hole transport layer 323 , and the second hole transport layer 323 is disposed on the side of the second light absorber 321 away from the tunneling recombination junction 330 .
  • the second metalloid layer 332 connected to the second light absorber 321 in the tunneling recombination junction 330 may have electron selectivity, so that the electron carriers generated in the second light absorber 321 are selected and transported, and the The hole carriers generated in the two light absorbers 321 are transported to the second electrode 380 by the second hole transport layer 323 and collected by the second electrode 380, thereby realizing separation and collection of carriers.
  • n-type titanium nitride with low work function may be used as the second metalloid layer 332, and an n-type silicon substrate may be used as the second metalloid layer 332.
  • the second light absorber 321 makes the interface of the n-type titanium nitride/n-type silicon substrate have a smaller conduction band shift and a larger valence band shift.
  • the silicon oxide tunneling layer 340 containing silicon dioxide is disposed between the two light absorbing layers, the carrier-selective contact structure of the n-type titanium nitride/silicon dioxide/n-type silicon substrate has a ratio of electron carriers to the empty space.
  • Hole carriers are more permeable, with lower contact resistance and simpler structure.
  • the electrons generated in the second light absorber 321 can be efficiently transferred to other sub-cells of the solar cell.
  • the holes generated in the second light absorber 321 are blocked near the interface between the second light absorber 321 and the second metalloid layer 332 or at the interface, and cannot enter other sub-cells, so that the second light absorber is obtained. Recombination losses on the 321 surface are minimized.
  • the second hole transport layer 323 may be a p+ layer formed by doping on the surface of the silicon substrate, or a p-type amorphous silicon, partially crystalline silicon, nanocrystalline silicon or polycrystalline silicon layer deposited on the surface of the silicon substrate.
  • the method can be plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) or low pressure chemical vapor deposition (Low Pressure Chemical Vapor Deposition, LPCVD), and the surface doping of the silicon substrate can be in the deposition process or later. Processes such as vapor phase thermal diffusion, ion implantation, or by printing or spin-coating processes are performed in situ, and processes such as thermally propelled dopant application can be performed during subsequent doping.
  • the second hole transport layer may also be a non-doped or non-diffused transition metal oxide, such as any one of molybdenum oxide (MoOx), vanadium oxide (VOx) or tungsten oxide (WOx) , due to its relatively large work function (greater than 5.5 electron volts) can be used as a hole selective contact, it should be noted that x in the chemical formula can be determined by those skilled in the art according to actual needs.
  • the second hole transport layer can induce upward energy band bending in the silicon substrate, thereby facilitating hole transport.
  • nickel oxide (NiOx) is another candidate for hole-selective contact, which can selectively block electrons due to the large conduction band difference between nickel oxide and silicon.
  • a passivation layer can also be provided between the second hole transport layer and the second light absorber of the silicon substrate, wherein the passivation layer can be silicon dioxide, titanium dioxide, aluminum oxide and hydrogen Any one of amorphous silicon (a-Si:H), the thickness of which can be 1-15 nm, the passivation layer can eliminate the difference between the second light absorber and the second hole transport layer as the emitter layer.
  • a passivation layer such as ultra-thin silicon oxide can be used as a tunneling layer to improve the interfacial properties of the second light absorber and smoothly transport the carriers generated by the tunneling effect.
  • FIG. 15 shows a schematic structural diagram of a third type of solar cell in an embodiment of the present disclosure.
  • a non-doped metalloid layer is provided between the first metalloid layer 331 and the second metalloid layer 332 Metal layer 333 .
  • the tunneling hole injection can be improved by changing the thickness of the undoped metalloid layer, wherein the undoped metalloid layer can be an intermediate band gap, and the composition of the first metalloid layer and the second metalloid layer Can be the same or different.
  • a silicon oxide tunneling layer 340 may be disposed between the second metalloid layer 332 and the second sub-cell 320 .
  • the silicon oxide tunneling layer 340 can improve the contact between the second metalloid layer 332 and the second light absorber 321 and provide a surface passivation effect for the second light absorber 321 .
  • the second light absorber 321 of the second sub-cell 320 is a silicon substrate, since the direct contact effect between the metalloid in the second metalloid layer 332 and the silicon substrate is not good, and the potential barrier is relatively large, in the second standard A silicon oxide tunneling layer 340 is disposed between the metal layer 332 and the second sub-cell 320, which can be used as an interface dielectric layer, thereby effectively reducing the potential barrier and achieving surface passivation effect.
  • the first light absorber may include a perovskite material or a III-V group compound semiconductor
  • the second light absorber may be a silicon substrate.
  • the band gap of the silicon substrate is 1.12 electron volts
  • the silicon substrate is used as the second light absorber, other than the silicon substrate, the band gap is higher than that of the silicon substrate, that is, the band gap is between 1.12 and 2.2 electrons.
  • a volt light absorbing material is used as the first light absorber, preferably 1.5-1.8 eV, for example, a mixture of organic and/or inorganic substances of perovskite materials or III-V compound semiconductors are used as the first light absorber, so that The photons are maximally transmitted to the second light absorber at the bottom of the solar cell and efficiently absorb the higher photon energy sunlight to generate electron-hole pairs.
  • the thickness of the first light absorber may be 0.5-5 ⁇ m, and if the first light absorber is a perovskite material, the thickness of the first light absorber may be 0.1-2 microns.
  • the second light absorber may be a silicon substrate, that is, a light absorber composed of crystalline silicon, especially a silicon wafer made of monocrystalline silicon or polycrystalline silicon, and the thickness of the crystalline silicon absorber may be 50- In the range of 300 microns, the crystalline silicon absorber can be p-doped or n-doped crystalline silicon.
  • the light-facing side of the crystalline silicon absorber can be flat or textured suede, and the backside of the crystalline silicon can also be flat or textured suede.
  • a titanium nitride layer can be directly used as an electrode on the backlight surface of the solar cell, and a whole-surface titanium nitride contact can be applied on the backlight surface of the solar cell, which greatly simplifies the cell structure and process flow.
  • a titanium nitride layer can be directly used as an electrode on the backlight surface of the solar cell, and a whole-surface titanium nitride contact can be applied on the backlight surface of the solar cell, which greatly simplifies the cell structure and process flow.
  • the devices contacted by titanium nitride show strong parasitic absorption in the near-infrared range, the current density of the light-receiving surface is limited.
  • the light-facing side can be Using an ultra-thin titanium nitride layer (such as ⁇ 5 nm) and a composite film of metal in the contact area as the electrode, on the one hand, the passivation effect of titanium nitride on the surface of the silicon substrate can be used to suppress the surface recombination of carriers; Effectively separate and extract carriers to improve cell efficiency.
  • an ultra-thin titanium nitride layer such as ⁇ 5 nm
  • a composite film of metal in the contact area as the electrode on the one hand, the passivation effect of titanium nitride on the surface of the silicon substrate can be used to suppress the surface recombination of carriers; Effectively separate and extract carriers to improve cell efficiency.
  • a passivation anti-reflection layer 360 is provided on the light-facing side of the solar cell, that is, the side of the first sub-cell 310 away from the second sub-cell 320 , and the first electrode 310 passes through the passivation anti-reflection layer.
  • the layer 360 is in contact with the first sub-cell 310 so as to passivate and de-reflect the light-facing surface of the solar cell, thereby improving the efficiency of the solar cell.
  • a passivation layer 370 is provided on the backlight side of the solar cell, that is, the side of the second sub-cell 320 away from the first sub-cell 310, and the second electrode 320 passes through the passivation layer 370 and contacts the second sub-cell 320 to enhance the solar cell Passivation effect.
  • the first metalloid layer or the second metalloid layer since the first metalloid layer or the second metalloid layer is in contact with the atmosphere during the deposition process of the first metalloid layer or the second metalloid layer, a thin insulating layer is formed on the surface due to oxidation. , the insulating layer will consume the current of the tandem solar cell, therefore, in the process of preparing the above solar cell, after depositing the first metalloid layer or the second metalloid layer, the first metalloid layer or the second metalloid layer can be The surface of the metal layer is treated with hydrogen by using hydrogen, which is beneficial to reduce or even eliminate the insulating layer composed of oxide, thereby removing the oxide layer on the surface of the first metalloid layer or the second metalloid layer.
  • the hydrogen treatment time is preferably not more than 20 seconds.
  • other gases or methods may also be used to perform surface treatment on the first metalloid layer or the second metalloid layer, so as to improve the performance of the tandem solar cell.
  • an embodiment of the present disclosure also provides a photovoltaic assembly, including any one of the aforementioned solar cells, and both sides of the solar cell may be provided with an encapsulation film, a cover plate, a back plate, and the like. It has the same or similar beneficial effects as the aforementioned solar cells.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开提供一种太阳能电池及生产方法、光伏组件,涉及太阳能光伏技术领域。太阳能电池包括:硅基底、第一半导体层、载流子复合层、第二半导体层;第一半导体层设置在硅基底的一侧表面的第一区域,载流子复合层设置在第一半导体层的一面;第二半导体层设置在载流子复合层的一面,且第二半导体层同时覆盖第一区域和第二区域;载流子复合层包含准金属材料形成的隧穿PN结。本申请中,由准金属材料形成的隧穿PN结电阻较低,可以用于第一半导体层和第二半导体层之间的连接,使得在硅基底制备得到第一半导体层之后,无需使用掩膜覆盖第一半导体层,在包含第一区域和第二区域的整面中制备第二半导体,从而简化了太阳能电池的生产过程。

Description

太阳能电池及生产方法、光伏组件
相关申请的交叉引用
本申请要求在2020年12月23日提交中国专利局、申请号为202011541833.0、名称为“太阳能电池及生产方法、光伏组件”;在2020年12月23日提交中国专利局、申请号为202011541852.3、名称为“太阳能电池及光伏组件”以及在2020年12月24日提交中国专利局、申请号为202011555985.6、名称为“太阳能电池及光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能光伏技术领域,特别是涉及一种太阳能电池及生产方法、光伏组件。
背景技术
随着传统能源的不断消耗及其对环境带来的负面影响,太阳能作为一种无污染、可再生能源,其开发和利用得到了迅速的发展。
晶体硅太阳能电池可以是双面结构,即在硅基底的一面设置p型半导体层,在另一面设置n型半导体层,并为了高效地输出电流,在半导体层上设置有金属电极,但位于硅基底受光面的金属电极对太阳光的遮蔽产生阴影损失,从而降低太阳能电池的转换效率。因此,可以将p型半导体层和n型半导体层均设置在硅基底的背光面得到背接触型太阳能电池,即p型半导体层和n型半导体层以指状交叉结构的形式设置在硅基底的背面,相应的,p型半导体层和n型半导体层对应的金属电极也同样均设置在硅基底的背面,从而降低了对太阳光的遮蔽,提高了太阳能电池的转化效率。
但是,在目前的方案中,在硅基底的背面形成指状交叉结构的p型半导体层和n型半导体层需要使用光刻技术或多道掩膜,例如,在硅基底背面的第一区域制备p型半导体层之后,需使用掩膜,在硅基底背面的第二区域制备n型半导体,使得太阳能电池的制备过程步骤繁多、可控性差,而且成本 较高,难以大规模生产。
太阳能电池的一个显著特点是它们能够将光产生的电子和空穴引导到非对称导电的路径上,即将载流子分开,然后通过正极和负极进行收集,从而输出电能。传统的晶体硅太阳能电池是通过在硅基底的近表面进行掺杂,从而得到电子选择性接触和空穴选择性接触以实现载流子的分离,但由于掺杂技术势必引起重掺杂效应,影响电池性能,同时掺杂技术的高温过程会引入较多杂质,且会影响少数载流子的寿命,从而导致太阳电池的效率较低,因此,可以通过在硅基底的一面设置具有电子选择性或者空穴选择性的载流子选择传输层,以收集硅基底中的电子或空穴,从而分离硅基底中的载流子,而无需对硅基底进行掺杂就可以形成用于分离载流子的空穴选择性接触和电子选择性接触。
但是,在目前的方案中,由于载流子选择传输层的性能不稳定,会与硅基底的表面发生反应,导致载流子选择传输层的性能恶化,从而降低了载流子选择传输层的场效应钝化效果,使得太阳能电池的效率降低。
由于太阳光谱的能量分布较宽,任何一种半导体材料只能吸收能量值比其禁带宽度大的光子,为最大限度地利用太阳能,近年来,叠层太阳能电池体系在太阳能电池领域受到了广泛的关注,例如,采用钙钛矿材料作为光吸收材料制备得到能够吸收较高能量太阳光的钙钛矿太阳能电池,采用硅材料作为光吸收材料制备得到能够吸收较低能量太阳光的硅晶太阳能电池,从而可以将钙钛矿太阳能电池作为顶层电池,将硅晶太阳能电池作为底层电池,并在顶层电池和底层电池之间设置隧穿复合结,以连接顶层电池和底层电池,形成叠层太阳能电池,从而拓宽太阳能电池的光谱响应范围,提高太阳能电池的效率。
但是,在目前的方案中,隧穿复合结多采用较厚的氧化铟锡(ITO)材料,其制备方法复杂、成本高,且厚度较大的ITO具有较大的寄生吸收,使得太阳能电池的效率降低。
概述
本公开提供一种太阳能电池及生产方法、光伏组件,旨在解决太阳能电池制备过程步骤繁多、可控性差,而且成本较高,难以大规模生产的问题。
第一方面,本公开实施例提供了一种太阳能电池,所述太阳能电池包括:
硅基底、第一半导体层、载流子复合层、第二半导体层、第一电极和第二电极;
所述硅基底的一侧表面区分为第一区域和第二区域;
所述第一半导体层设置在所述硅基底的一侧表面的第一区域,所述载流子复合层设置在所述第一半导体层远离所述硅基底的一面;
所述第二半导体层设置在所述载流子复合层远离所述第一半导体层的一面,且所述第二半导体层同时覆盖所述第一区域和第二区域;
所述第一电极和所述第二电极设置在所述第二半导体层远离所述硅基底的一面,且所述第一电极位于所述第一区域内,所述第二电极位于所述第二区域内;
其中,所述第一半导体层和第二半导体层的导电类型互不相同,所述载流子复合层包含准金属材料形成的隧穿PN结。
可选地,所述太阳能电池还包括:第一本征半导体层和第二本征半导体层;
所述第一本征半导体层设置在所述第一半导体层和所述硅基底之间,所述第二本征半导体层设置在所述第二半导体层和所述硅基底之间以及所述第二半导体层与所述载流子复合层之间。
可选地,所述第一本征半导体层和所述第二本征半导体层均为本征非晶硅,厚度为1-10纳米。
可选地,所述太阳能电池还包括:第一透明导电层和第二透明导电层;
所述第一透明导电层位于所述第一区域内,设置在所述第二半导体层和所述第一电极之间;
所述第二透明导电层位于所述第二区域内,设置在所述第二半导体层和所述第二电极之间。
可选地,所述第一透明导电层和所述第二透明导电层均包括:氧化铟、氧化锡和氧化锌中的任意一种。
可选地,所述准金属材料包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种。
可选地,所述第一半导体层和所述第二半导体层的厚度均为5-15纳米。
第二方面,本公开实施例提供了一种太阳能电池的生产方法,所述方法包括:
提供一硅基底,所述硅基底的一侧表面区分为第一区域和第二区域;
在所述硅基底的一侧表面的第一区域制备第一半导体层;
在所述第一半导体层远离所述硅基底的一面制备载流子复合层;
在所述载流子复合层远离所述第一半导体层的一面形成第二半导体层,所述第二半导体层同时覆盖所述第一区域和第二区域;
在所述第二半导体层远离所述硅基底的一面制备第一电极和第二电极,所述第一电极位于所述第一区域内,所述第二电极位于所述第二区域内;
其中,所述第一半导体层和第二半导体层的导电类型互不相同,所述载流子复合层包含准金属材料形成的隧穿PN结。
可选地,在所述硅基底的一侧表面的第一区域制备第一半导体层的步骤,包括:
在所述硅基底的一侧表面的第一区域形成第一本征半导体层;
在所述第一本征半导体层远离所述硅基底的一面制备所述第一半导体层;
所述第一本征半导体层为本征非晶硅,厚度为1-10纳米。
可选地,在所述载流子复合层远离所述第一半导体层的一面形成第二半导体层的步骤,包括:
在所述载流子复合层远离所述第一半导体层的一面上形成第二本征半导体层,所述第二本征半导体覆盖所述第一区域和第二区域;
在所述第二本征半导体层远离所述硅基底的一面制备所述第二半导体层;
所述第二本征半导体层为本征非晶硅,厚度为1-10纳米。
可选地,在所述第二半导体层远离所述硅基底的一面制备第一电极和第二电极的步骤,包括:
在所述第二半导体层远离所述硅基底的一面制备第一透明导电层和第二透明导电层,所述第一透明导电层位于所述第一区域内,所述第二透明导电层位于所述第二区域内;
在所述第一透明导电层远离所述第二半导体层的一面制备所述第一电极,在所述第二透明导电层远离所述第二半导体层的一面制备所述第二电极。
可选地,所述准金属材料包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽 中的任意一种。
第三方面,本公开实施例提供了一种光伏组件,所述光伏组件包括前述任一所述的太阳能电池。
基于上述太阳能电池及生产方法、光伏组件,本申请存在以下有益效果:本申请中太阳能电池包括:硅基底、第一半导体层、载流子复合层、第二半导体层、第一电极和第二电极;硅基底的一侧表面区分为第一区域和第二区域;第一半导体层设置在硅基底的一侧表面的第一区域,载流子复合层设置在第一半导体层远离硅基底的一面;第二半导体层设置在载流子复合层远离第一半导体层的一面,且第二半导体层同时覆盖第一区域和第二区域;第一电极和第二电极设置在第二半导体层远离硅基底的一面,且第一电极位于第一区域内,第二电极位于第二区域内;其中,第一半导体层和第二半导体层的导电类型互不相同,载流子复合层包含准金属材料形成的隧穿PN结。本申请中,由于在第一半导体层和第二半导体层之间设置有包含准金属材料形成的隧穿PN结的载流子复合层,由准金属材料形成的隧穿PN结电阻较低,可以用于第一半导体层和第二半导体层之间的连接,使得在硅基底的第一区域中制备得到第一半导体层之后,无需仅在硅基底的第二区域中制备第二半导体层,而是在包含第一区域和第二区域的整面中制备第二半导体,因而无需使用掩膜覆盖第一半导体层,从而简化了太阳能电池的生产过程。
本公开提供一种太阳能电池及光伏组件,旨在解决太阳能电池载流子选择传输层与硅基底的表面发生反应,导致载流子选择传输层的场效应钝化效果降低的问题。
第四方面,本公开实施例提供了一种太阳能电池,所述太阳能电池包括:
硅基底、第一氮化钛层、第一载流子选择传输层和第一电极;
其中,所述第一氮化钛层设置在所述硅基底的第一表面,所述第一载流子选择传输层设置在所述第一氮化钛层远离所述硅基底的一面,所述第一电极设置在所述第一载流子选择传输层远离所述第一氮化钛层的一面;
所述第一载流子选择传输层为电子选择传输材料或空穴选择传输材料中的一种;
所述第一氮化钛层为电子传输材料或空穴传输材料中的一种;
所述第一氮化钛层和所述第一载流子选择传输层的多数载流子类型相同。
可选地,所述第一载流子选择传输层厚度为0.5-10纳米。
可选地,所述太阳能电池还包括:第一透明导电层;
所述第一透明导电层设置在所述第一载流子选择传输层和所述第一电极之间。
可选地,所述空穴选择传输材料包括:氧化钼、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐、氧化钨、硫氰酸亚铜和酞氰铜中的任意一种;
所述电子选择传输材料包括:氟化锂、氧化镁、氟化镁、氟化铯、氟化钾、氧化铯和碳酸铯中的任意一种。
可选地,所述电子传输材料的功函数小于预设功函数阈值,所述空穴传输材料的功函数大于所述预设功函数阈值;
所述预设功函数阈值为5.5电子伏特
可选地,所述太阳能电池还包括:界面钝化层;
所述界面钝化层设置在所述第一氮化钛层与所述硅基底之间;
所述界面钝化层包括:氢化非晶硅、氧化钛、二氧化硅、三氧化二铝和二氧化铪中的任意一种或多种。
可选地,所述太阳能电池还包括:第二氮化钛层、第二载流子选择传输层和第二电极;
所述第二氮化钛层设置在所述硅基底与所述第一表面相对的第二表面,或,所述第一氮化钛层和所述第二氮化钛层位于所述硅基底的第一表面的第一区域和第二区域;
所述第二载流子选择传输层为电子选择传输材料或空穴选择传输材料中不同于所述第一载流子选择传输层的另一种;
所述第二氮化钛层为电子传输材料或空穴传输材料中不同于所述第一氮化钛层的另一种。
可选地,所述第二载流子选择传输层厚度为0.5-10纳米。
可选地,所述第一氮化钛层和所述第二氮化钛层位于所述硅基底的第一表面的第一区域和第二区域,所述第一氮化钛层和所述第二氮化钛层之间电学绝缘。
可选地,所述太阳能电池还包括:第二透明导电层;
所述第二透明导电层设置在所述第二载流子选择传输层和所述第二电极 之间。
可选地,所述第一透明导电层和第二透明导电层包括:金属透明导电薄膜、透明导电氧化物薄膜、非氧化物透明导电薄膜、高分子透明导电薄膜、石墨烯薄膜和碳纳米管薄膜中的任意一种。
第五方面,本公开实施例提供了一种光伏组件,所述光伏组件包括前述任一所述的太阳能电池。
基于上述太阳能电池及光伏组件,本申请存在以下有益效果:本申请中太阳能电池包括:硅基底、第一氮化钛层、第一载流子选择传输层和第一电极;其中,第一氮化钛层设置在硅基底的第一表面,第一载流子选择传输层设置在第一氮化钛层远离硅基底的一面,第一电极设置在第一载流子选择传输层远离第一氮化钛层的一面;第一载流子选择传输层为电子选择传输材料或空穴选择传输材料中的一种;第一氮化钛层为电子传输材料或空穴传输材料中的一种;第一氮化钛层和第一载流子选择传输层的多数载流子类型相同。本申请中,在第一载流子选择传输层和硅基底之间设置了第一氮化钛层,避免了第一载流子选择传输层与硅基底直接接触而发生表面反应,同时,由于第一氮化钛层与第一载流子选择传输层的多数载流子类型相同,即第一氮化钛层也能够作为载流子选择性接触,因此,同时采用第一氮化钛层和第一载流子选择传输层作为载流子选择性接触,使得第一氮化钛层和第一载流子选择传输层的厚度均处于适宜的范围内,避免了因第一氮化钛层的厚度过大引起的紫外光吸收,导致的太阳能电池短路电流低的缺点,也避免了因第一载流子选择传输层的厚度过大导致的与硅基底表面的反应加剧的问题,从而提高了太阳能电池的效率。
本公开提供一种太阳能电池及光伏组件,旨在解决叠层太阳能电池的隧穿复合结制备方法复杂、成本高,以及叠层太阳能电池效率低下的问题。
第六方面,本公开实施例提供了一种太阳能电池,所述太阳能电池包括:
第一子电池和第二子电池,以及设置在所述第一子电池和所述第二子电池之间的隧穿复合结;
所述隧穿复合结包括第一准金属层和第二准金属层,所述第一准金属层和所述第二准金属层具有不同的载流子选择性,所述第一准金属层具有的载流子选择性为电子选择性或空穴选择性;
所述第一子电池的光吸收体为第一光吸收体,所述第二子电池的光吸收体为第二光吸收体,所述第一光吸收体的带隙大于所述第二光吸收体的带隙。
可选地,所述第一准金属层和所述第二准金属层中包含至少一种相同的元素。
可选地,所述第一准金属层和所述第二准金属层包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种。
可选地,所述第一准金属层和所述第二准金属层的厚度均为5-100纳米。
可选地,所述第一准金属层和所述第二准金属层分别为n型氮化钛和p型氮化钛。
可选地,所述n型氮化钛为掺杂有第一掺杂元素的掺杂氮化钛,所述第一掺杂元素包括:铝元素、砷元素和磷元素中的任意一种或多种,所述第一掺杂元素的浓度大于10×10 18/cm3;
所述p型氮化钛为掺杂有第二掺杂元素的掺杂氮化钛,所述第二掺杂元素为铝元素。
可选地,所述第一掺杂元素和所述第二掺杂元素均包含铝元素,所述第一准金属层中铝元素的浓度沿远离所述第一子电池的方向、所述第二准金属层中铝元素的浓度沿远离所述第二子电池的方向均呈梯度增加。
可选地,在所述第一准金属层和所述第二准金属层之间设置有非掺杂准金属层。
可选地,在所述第二准金属层和所述第二子电池之间设置有氧化硅隧穿层。
可选地,所述第一光吸收体包括钙钛矿材料或III-V族化合物半导体;
所述第二光吸收体为硅基底。
第七方面,本公开实施例提供了一种光伏组件,所述光伏组件包括前述任一所述的太阳能电池。
基于上述太阳能电池及生产方法、光伏组件,本申请存在以下有益效果:本申请中太阳能电池包括:第一子电池和第二子电池,以及设置在第一子电池和第二子电池之间的隧穿复合结;隧穿复合结包括第一准金属层和第二准金属层,第一准金属层和第二准金属层具有不同的载流子选择性,第一准金属层具有的载流子选择性为电子选择性或空穴选择性;第一子电池的光吸收 体为第一光吸收体,第二子电池的光吸收体为第二光吸收体,第一光吸收体的带隙大于第二光吸收体的带隙。本申请中,第一子电池和第二子电池之间的隧穿复合结包括第一准金属层和第二准金属层,由于第一准金属层和第二准金属层具有不同的载流子选择性,使得在第一子电池的第一光吸收体和第二子电池的第二光吸收体中产生的载流子,在与隧穿复合结接触的表面上的复合率降低,并确保在该表面上一种类型的载流子被有效地提取,使得第一子电池和第二子电池能很好地电连接,形成转化效率较高的叠层电池;同时,由于准金属材料具有优异的导电性和热稳定性,因而第一准金属层和第二准金属层减小了子电池之间的电阻损耗,提高了叠层太阳能电池的转换效率,且准金属材料的沉积温度较低,沉积方式也较多,从而可以降低制备叠层电池的工艺复杂度和成本。
附图简述
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开实施例中的一种太阳能电池的结构示意图;
图2示出了本公开实施例中的一种太阳能电池的俯视图;
图3示出了本公开实施例中的一种太阳能电池的生产方法的步骤流程图;
图4示出了本公开实施例中的第一种制备太阳能电池中间过程的结构示意图;
图5示出了本公开实施例中的第二种制备太阳能电池中间过程的结构示意图;
图6示出了本公开实施例中的第三种制备太阳能电池中间过程的结构示意图;
图7示出了本公开实施例中的第四种制备太阳能电池中间过程的结构示意图;
图8示出了本公开实施例中的第一种太阳能电池的结构示意图;
图9示出了本公开实施例中的第二种太阳能电池的结构示意图;
图10示出了本公开实施例中的第三种太阳能电池的结构示意图;
图11示出了本公开实施例中的第四种太阳能电池的结构示意图;
图12示出了本公开实施例中的一种太阳能电池的生产方法的步骤流程图;
图13示出了本公开实施例中的第一种太阳能电池的结构示意图;
图14示出了本公开实施例中的第二种太阳能电池的结构示意图;
图15示出了本公开实施例中的第三种太阳能电池的结构示意图。
附图编号说明:
10-硅基底,20-第一半导体层,30-载流子复合层,40-第二半导体层,50-第一电极,60-第二电极,70-第一本征半导体层,80-第二本征半导体层,90-掩膜;
210-硅基底,220-第一氮化钛层,230-第一载流子选择传输层,240-第一电极,250-第二氮化钛层,260-第二载流子选择传输层,270-第二电极,280-第一透明导电层,290-第二透明导电层,2100-界面钝化层,2110-钝化减反层;
310-第一子电池,311-第一光吸收体,312-第一电子传输层,313-第一空穴传输层,320-第二子电池,321-第二光吸收体,322-第二电子传输层,323-第二空穴传输层,330-隧穿复合结,331-第一准金属层,332-第二准金属层,333-非掺杂准金属层,340-氧化硅隧穿层,350-钝化减反层,360-第一电极,370-钝化层,380-第二电极。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面通过列举几个具体的实施例详细介绍本公开提供的一种太阳能电池及生产方法、光伏光伏组件。
图1示出了本公开实施例提供的第一种太阳能电池的结构示意图,参照图1,太阳能电池可以包括:硅基底10、第一半导体层20、载流子复合层30、第二半导体层40、第一电极50和第二电极60。
其中,硅基底10的一侧表面区分为第一区域和第二区域,第一半导体层 20设置在硅基底10的一侧表面的第一区域,载流子复合层30设置在第一半导体层20远离硅基底10的一面,第二半导体层40设置在载流子复合层30远离第一半导体层20的一面,且第二半导体层40同时覆盖第一区域和第二区域,第一电极50和第二电极60设置在第二半导体层40远离硅基底10的一面,且第一电极50位于第一区域内,第二电极60位于第二区域内。
此外,第一半导体层和第二半导体层的导电类型互不相同,设置在第一半导体层和第二半导体层之间的载流子复合层包含准金属材料形成的隧穿PN结。
在本公开实施例中,上述硅基底可以为由单晶硅或多晶硅构成的n型硅基底,即硅基底的掺杂类型为n型掺杂,对应的掺杂物可以包括V族元素中的磷元素(P)、砷元素(As)、铋元素(Bi)和锑元素(Sb)中的任意一种或多种,n型硅基底对污染物有更高的抵抗能力,可以减少污染物对寿命的影响,从而具有更高的寿命,并且,由于n型硅基底没有硼氧缺陷,从而可以避免性能退化。所述硅基底也可以为p型硅基底,即硅基底的掺杂类型为p型掺杂,对应的掺杂物可以包括III族元素中的硼元素(B)、铝元素(Al)、镓元素(Ga)和铟元素(In)中的任意一种或多种。
在本公开实施例中,上述第一半导体层和第二半导体层的导电类型可以互不相同,例如,在第一半导体层为p型半导体层的情况下,第二半导体层为n型半导体层;在第一半导体层为n型半导体层的情况下,第二半导体层为p型半导体层。其中,p型半导体层具有p型导电类型,其多数载流子为空穴,有利于空穴的选择和传输,n型半导体层具有n型导电类型,其多数载流子为电子,有利于电子的选择和传输。
其中,第一半导体层和第二半导体层可以均设置在硅基底的一侧表面,所述硅基底的一侧表面可以为硅基底的背光面,即形成背接触型太阳能电池,以降低由于对太阳光的遮蔽而产生阴影损失,从而提高太阳能电池的转换效率。传统的背接触型太阳能电池,将硅基底的一侧表面区分为第一区域和第二区域,使得第一半导体层和第二半导体层分别位于第一区域和第二区域,构成指状交叉结构的形式,在制备这种形式的背接触型太阳能电池时,需要使用光刻技术或多道掩膜,例如,在硅基底背光面的第一区域制备第一半导体层之后,使用掩膜在硅基底背光面的第二区域制备第二半导体层,使得太 阳能电池的制备过程步骤繁多、可控性差,而且成本较高,难以大规模生产。
在本公开实施例中,第一半导体层可以设置在硅基底的一侧表面的第一区域,并且在第一半导体层远离硅基底的一面设置载流子复合层,在载流子复合层远离所述第一半导体层的一面设置第二半导体层,其厚度可以为10纳米,且第二半导体层同时覆盖所述第一区域和第二区域,使得第二半导体不仅设置在第二区域用于构成背表面场,以抑制硅基底的背光面和半导体层界面上少数载流子的复合,从而提高电池效率,同时还设置在第一区域,即第二半导体层是整面设置的,因而,在制备第二半导体层时无需利用掩膜对位于第一区域的第一半导体层进行遮挡,而是直接在整面沉积制备第二半导体层,工序简单,从而简化了太阳能电池的生产过程。
进一步的,在第二半导体层远离硅基底的一面设置第一电极和第二电极设置,使得第一电极位于第一区域内,从而与第一半导体层相对应,使得第二电极位于第二区域内,从而与第二半导体层相对应。
例如,在第二半导体层为n型半导体层的情况下,第二电极对应的可以为n型电极,硅基底在光照条件下产生的空穴-电子对中的电子载流子可以被n型半导体层选择并传输至n型电极,并通过n型电极完成电子的收集;在第一半导体层为p型半导体层的情况下,第一电极对应的可以为p型电极,硅基底在光照条件下产生的空穴-电子对中的空穴载流子可以被p型半导体层选择并传输至p型电极,并通过p型电极完成电子的收集。图2示出了本公开实施例中的一种太阳能电池的俯视图,参照图2,作为n型电极的第一电极50和作为p型电极的第二电极60呈指状交叉排列,并沿同一方向形成为线状。n型电极和p型电极作为太阳能电池用于收集载流子并产生电流的栅线,可以为单层构造,也可以为多层的叠层构造。
但是,由于n型半导体是整面设置的,不仅设置在第二区域,同时还设置在第一区域,使得p型半导体层与p型电极之间设置有n型半导体,阻碍了空穴载流子的传输。因此,可以在p型半导体层与n型半导体之间设置载流子复合层,即在p型半导体层远离硅基底的一面设置载流子复合层,由于载流子复合层包含准金属材料形成的隧穿PN结,从而可以实现p型半导体层与p型电极之间的低电阻化,使得p型电极能够很好收集和提取空穴载流子,从而降低载流子收集损耗,提升太阳能电池的性能。
在本公开实施例中,一种太阳能电池,包括:硅基底、第一半导体层、载流子复合层、第二半导体层、第一电极和第二电极;硅基底的一侧表面区分为第一区域和第二区域;第一半导体层设置在硅基底的一侧表面的第一区域,载流子复合层设置在第一半导体层远离硅基底的一面;第二半导体层设置在载流子复合层远离第一半导体层的一面,且第二半导体层同时覆盖第一区域和第二区域;第一电极和第二电极设置在第二半导体层远离硅基底的一面,且第一电极位于第一区域内,第二电极位于第二区域内;其中,第一半导体层和第二半导体层的导电类型互不相同,载流子复合层包含准金属材料形成的隧穿PN结。本申请中,由于在第一半导体层和第二半导体层之间设置有包含准金属材料形成的隧穿PN结的载流子复合层,由准金属材料形成的隧穿PN结电阻较低,可以用于第一半导体层和第二半导体层之间的连接,使得在硅基底的第一区域中制备得到第一半导体层之后,无需仅在硅基底的第二区域中制备第二半导体层,而是在包含第一区域和第二区域的整面中制备第二半导体,因而无需使用掩膜覆盖第一半导体层,从而简化了太阳能电池的生产过程。
可选地,参照图1,太阳能电池还可以包括:第一本征半导体层70和第二本征半导体层80,其中,第一本征半导体层70设置在第一半导体层20和硅基底10之间,第二本征半导体层80设置在第二半导体层40和硅基底10之间以及第二半导体层40与载流子复合层30之间。
具体的,第一本征半导体层70和第二本征半导体层80用于钝化硅基底10的表面缺陷,从而提高太阳能电池性能,第一本征半导体层70设置在第一半导体层20和硅基底10之间,即第一本征半导体层70仅设置在第一区域,第二本征半导体层80设置在第二半导体层40和硅基底10之间以及第二半导体层40与载流子复合层30之间,即第二本征半导体层80设置在包括第一区域和第二区域的整面上,因而,在制备第二本征半导体层80时无需利用掩膜对第一区域进行遮挡,而是直接在整面沉积制备第二本征半导体层80,工序简单,从而简化了太阳能电池的生产过程。
相应的,载流子复合层30则位于第一半导体层20和第二本征半导体层80之间。通过设置载流子复合层30,不仅可以实现在第一电极和第一半导体层20之间的低电阻化,能够使载流子收集损失降低,提升太阳能电池的性能。
可选地,上述第一本征半导体层和第二本征半导体层均为本征非晶硅,厚度为1-10纳米。
具体的,第一本征半导体层可以在硅基底一侧表面上沿着平行于硅基底一侧表面的方向而形成,第一本征半导体层可以为本征非晶硅层,本征非晶硅层可以钝化硅基底的表面缺陷,提高太阳电池性能,第一本征半导体层的厚度可以为1-10纳米。第二本征半导体层可以为本征非晶硅层,第二本征半导体层从硅基底的一侧表面跨越到第一半导体层上而形成,使得第二本征半导体层覆盖硅基底一侧表面的整个表面,设置在第二区域,即硅基底与第二半导体层之间的第二本征半导体层,能够钝化第二半导体层对应的硅基底第二区域的表面,提高太阳电池性能,第二本征半导体层的厚度也可以为1-10纳米。
可选地,太阳能电池还可以包括:第一透明导电层和第二透明导电层,其中,第一透明导电层位于第一区域内,设置在第二半导体层和第一电极之间,第二透明导电层位于第二区域内,设置在第二半导体层和第二电极之间。
具体的,其中,第一透明导电层和第二透明导电层可以辅助进行载流子的传输,有利于更好的收集,具体的,若为了提高导电能力,采用较大面积的第一电极或第二电极铺设于第二半导体层之上,则会造成遮光严重,从而影响电池的性能,因而,可以设置第一透明导电层和第二透明导电层,以有效的辅助电流的传输,降低电池内部电阻造成的电能损耗。
需要说明的是,第一透明导电层和第二透明导电层的厚度、大小、材料可以根据实际需要进行确定,第一透明导电层和第二透明导电层可以只设置其中一个,或者两者都设置。
可选地,第一透明导电层和第二透明导电层可以包括:氧化铟、氧化锡和氧化锌等透明导电性氧化物中的任意一种,上述材料均具有良好的透光性,且横向导电能力较强。
可选地,上述载流子复合层中包含的准金属材料可以包括氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种,载流子复合层中的准金属材料可以形成的隧穿PN结,上述准金属材料可以为具有n型功函数的n型准金属,以及具有p型的功函数的p型准金属,在使用不同极性准金属材料构成隧穿PN结时,即便在第一半导体层的表面形成载流子复合层,第一半导体层和载流 子复合层的接触也近似低电阻,即欧姆接触,上述n型准金属和p型准金属的元素组成可以相同,也可以不同。为了抑制电阻成分的增大,载流子复合层的厚度可以为1-10纳米。
可选地,上述第一半导体层和第二半导体层的厚度均可以为5-15纳米。
可选地,准金属材料具有的导电性能和适宜的功函数,载流子复合层可以与电极使用相同的材料,例如,载流子复合层中的准金属材料为氮化钛时,第一电极和第二电极也可以为氮化钛。且第一电极与载流子复合层的极性相反,例如,在所述载流子复合层为由n型氮化钛和p型氮化钛构成隧穿PN结为p型时,第一电极为n型,可以由n型氮化钛构成,第二电极为p型,可以由p型氮化钛构成。
此外,由准金属材料构成的载流子复合层,由于电阻低、厚度薄,可以形成透明的隧穿PN结,也可以用于叠层电池之间的连接,而不会产生寄生吸收。
本公开还提供了一种太阳能电池的生产方法,参见图3,示出了本公开实施例提供的一种太阳能电池的生产方法的步骤流程图,该方法可以包括如下步骤:
步骤101,提供一硅基底,所述硅基底的一侧表面区分为第一区域和第二区域。
在该步骤中,可以首先获取硅基底,进而将硅基底的一侧表面区分为第一区域和第二区域,所述硅基底的一侧表面可以为硅基底的背光面,即形成背接触型太阳能电池,以降低由于对太阳光的遮蔽而产生阴影损失,从而提高太阳能电池的转换效率。
具体的,所述第一区域用于制备第一半导体层和第一电极,以完成一类载流子的选择、传输和收集,第二区域用于制备第二半导体层和第二电极,以完成另一类载流子的选择、传输和收集。
步骤102、在所述硅基底的一侧表面的第一区域制备第一半导体层。
在该步骤中,可以在硅基底的一侧表面的第一区域制备第一半导体层。
在本公开实施例中,可以采用化学气相沉积法(Chemical Vapor Deposition,CVD)在轨迹的一侧表面的第一区域制备第一半导体层。
步骤103、在所述第一半导体层远离所述硅基底的一面制备载流子复合层。
在该步骤中,在硅基底的一侧表面制备第一半导体层之后,可以进一步在第一半导体层远离硅基底的一面制备载流子复合层,所述载流子复合层也位于第一区域内。
其中,上述载流子复合层可以包含准金属材料形成的隧穿PN结。
可选地,上述载流子复合层中的准金属材料可以包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种,可以与第一半导体层进行欧姆接触。
在本公开实施例中,可以采用溅射法、CVD法或热原子沉积法制备载流子复合层。
可选地,在硅基底的一侧表面的第一区域制备第一半导体层的步骤,可以包括:在硅基底的一侧表面的第一区域形成第一本征半导体层,然后在第一本征半导体层远离硅基底的一面制备第一半导体层,使得第一半导体层和硅基底之间设置有第一本征半导体层,所述第一本征半导体层可以为本征非晶硅,厚度为1-10纳米,用于钝化硅基底的表面缺陷,从而提高太阳能电池性能。
图4示出了本公开实施例中的第一种制备太阳能电池中间过程的结构示意图,图5示出了本公开实施例中的第二种制备太阳能电池中间过程的结构示意图,参照图4和图5,在本公开实施例中,在硅基底10的一侧表面的第一区域制备第一本征半导体层70、第一半导体层20和载流子复合层30的过程,具体可以为首先在硅基底10的一侧表面的整个表面上使用CVD法,依次形成整面的第一本征半导体层70、第一半导体层20和载流子复合层30,然后在载流子复合层30远离第一半导体层20的一面中第一区域对应的位置设置规定图案的掩膜90,所述掩膜90的位置对应第一电极的位置,进一步对设置有掩膜90的中间过程的太阳能电池实施刻蚀法处理,图6示出了本公开实施例中的第三种制备太阳能电池中间过程的结构示意图,参照图6,使得第一本征半导体层70、第一半导体层20和载流子复合层30进行图案化,保留第一区域内的第一本征半导体层70、第一半导体层20和载流子复合层30,去除第二区域内的第一本征半导体层70、第一半导体层20和载流子复合层30。
步骤104、在所述载流子复合层远离所述第一半导体层的一面形成第二半导体层,所述第二半导体层同时覆盖所述第一区域和第二区域。
在该步骤中,可以进一步在载流子复合层远离第一半导体层的一面形成第二半导体层,使得第二半导体层同时覆盖第一区域和第二区域,其中第一半导体层和第二半导体层的导电类型互不相同。
可选地,在载流子复合层远离第一半导体层的一面形成第二半导体层的步骤,可以包括:在载流子复合层远离第一半导体层的一面上形成第二本征半导体层,使得第二本征半导体覆盖所述第一区域和第二区域,然后在第二本征半导体层远离硅基底的一面制备第二半导体层,图7示出了本公开实施例中的第四种制备太阳能电池中间过程的结构示意图,参照图7,使得在第一区域中,载流子复合层30和第二半导体层40之间设置有第二本征半导体层80,在第二区域中,硅基底10和第二半导体层40之间设置有第二本征半导体层80。所述第二本征半导体层可以为本征非晶硅,厚度为1-10纳米,用于钝化硅基底的表面缺陷,从而提高太阳能电池性能。
例如,可以使用CVD法在n型硅基底的第一区域制备第一本征半导体层、p型半导体层和载流子复合层之后,从n型硅基底的背光面跨越到载流子复合层上,依次形成第二本征半导体层和n型半导体层,无需再次使用掩膜,从而能够提升太阳能电池的生产简便性。
步骤105、在所述第二半导体层远离所述硅基底的一面制备第一电极和第二电极,所述第一电极位于所述第一区域内,所述第二电极位于所述第二区域内。
在该步骤中,可以进一步在第二半导体层远离硅基底的一面制备第一电极和第二电极,其中,第一电极位于第一区域内,第二电极位于第二区域内。
可选地,上述在第二半导体层远离硅基底的一面制备第一电极和第二电极的步骤,可以包括:首先在第二半导体层远离硅基底的一面制备第一透明导电层和第二透明导电层,使得第一透明导电层位于第一区域内,第二透明导电层位于第二区域内;然后,在第一透明导电层远离第二半导体层的一面制备第一电极,在第二透明导电层远离第二半导体层的一面制备第二电极。使得在第一电极和第二半导体层之间设置有第一透明导电层,在第二电极和第二半导体层之间设置有第二透明导电层,以有效的辅助电流的传输,降低电池内部电阻造成的电能损耗。
例如,可以使用CVD法、溅射法、蒸镀法、电镀法或者印刷法等,在上 述制备得到的n型半导体层上,按照规定的图案形成p型电极作为第一电极,形成n型电极作为第二电极。p型电极和n型电极可以为相同的金属电极材料,比如银;也可以为不同的金属电极材料,比如p型电极为铝,n型电极为银;或p型电极和n型电极为相同的电极材料,但是具有不同的功函数,例如,第一电极可以为n型氮化钛,第二电极可以为p型氮化钛。n型氮化钛和p型氮化钛可以使用不同的沉积方法或前驱体形成,或通过相同的沉积方法形成后进行不同的离子注入而形成。
图8示出了本公开实施例提供的第一种太阳能电池的结构示意图,参照图8,太阳能电池可以包括:硅基底210、第一氮化钛层220、第一载流子选择传输层230和第一电极240,第一氮化钛层220设置在硅基底210的第一表面,第一载流子选择传输层230设置在第一氮化钛层220远离硅基底210的一面,第一电极240设置在第一载流子选择传输层230远离第一氮化钛层220的一面。
其中,第一载流子选择传输层为电子选择传输材料或空穴选择传输材料中的一种,第一氮化钛层为电子传输材料或空穴传输材料中的一种,且第一氮化钛层和第一载流子选择传输层的多数载流子类型相同。
在本公开实施例中,设置在硅基底第一表面的第一氮化钛层可以为电子传输材料或空穴传输材料,所述第一表面可以为硅基底的向光面,也可以为硅基底的背光面,第一氮化钛层可以显著提高太阳能电池的开路电压和填充因子。若第一氮化钛层为电子传输材料,则第一氮化钛层中的多数载流子为电子,其功函数较低,第一氮化钛层可以实现硅基底中产生的电子的传输;若第一氮化钛层为空穴传输材料,则第一氮化钛层中的多数载流子为空穴,其功函数较高,第一氮化钛层可以实现硅基底中产生的空穴的传输。因此,太阳能电池中的硅基底在太阳光的照射下生成载流子,载流子中的空穴或电子向第一氮化钛层移动,从而有效的分离和提取载流子。
在本公开实施例中,在第一氮化钛层远离硅基底的一面设置有第一载流子选择传输层,可以避免第一载流子选择传输层与硅基底直接接触而发生表面反应。若第一载流子选择传输层直接与硅基底接触,例如,第一载流子选择传输层为氧化钼(MoOx),则由于MoOx的性能不稳定,第一载流子选择传输层会与硅基底的表面发生反应生成非晶态氧化硅(SiOx)界面层,一方 面,SiOx界面层会分散硅基底/MoOx界面的电位差,另一方面,SiOx界面层会产生氧空位,使得MoOx的空穴选择性显著下降,从而降低了太阳能电池的电池效率。同时,为保证第一载流子选择传输层载流子的选择传输性能,需要设置厚度较大的MoOx层,由于较厚的MoOx层可以提供更多的氧原子,使得SiOx界面层变得更厚,导致MoOx层中产生更多的氧空位,MoOx与硅基底的反应加剧,从而进一步降低太阳能电池的电池效率,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。
因而,在第一载流子选择传输层和硅基底之间设置第一氮化钛层,使得第一载流子选择传输层不会与硅基底直接接触,从而提高了阳能电池的电池效率。同时,由于第一氮化钛层和第一载流子选择传输层的多数载流子类型相同,则第一载流子选择传输层的厚度可以适当的减小,从而避免了因第一载流子选择传输层的厚度过大导致的与硅基底表面的反应加剧的问题,提高了太阳能电池的效率。
此外,采用第一氮化钛层,可以显著提高太阳能电池的开路电压和填充因子,但是当第一氮化钛层的厚度超过50纳米时,第一氮化钛层具有较强的紫外光吸收特性,这不利于太阳能电池的短路电流。由于第一氮化钛层和第一载流子选择传输层的多数载流子类型相同,则无需设置厚度较大的第一氮化钛层,使得第一氮化钛层的厚度可以处于适宜的范围内,例如,小于50纳米,从而避免了因第一氮化钛层的厚度过大引起的紫外光吸收,导致的太阳能电池短路电流低的缺点。
具体的,第一载流子选择传输层可以为电子选择传输材料或空穴选择传输材料,若第一载流子选择传输层为电子选择传输材料,则第一载流子选择传输层可以通过费米能级的脱钉降低第一电极的功函数,从而使电子输运的势垒高度变小,第一载流子选择传输层中的多数载流子为电子,第一载流子选择传输层可以实现硅基底中产生的电子的传输和收集,如果加工得当,第一载流子选择传输层不仅可以降低接触电阻率,还可以降低表面复合;若第一载流子选择传输层为空穴选择传输材料,则第一载流子选择传输层会在硅基底中引起向上的能带弯曲,有利于空穴的传输,第一载流子选择传输层中的多数载流子为空穴,第一载流子选择传输层可以实现硅基底中产生的空穴的选择和传输。
在本公开实施例中,设置在第一载流子选择传输层远离第一氮化钛层的一面的第一电极,用于收集第一氮化钛层和第一载流子选择传输层选择和传输的载流子。在受到光照的情况下,硅基底作为光吸收层,产生电子-空穴对,由于第一载流子选择传输层为电子选择传输材料或空穴选择传输材料,第一氮化钛层为电子传输材料或空穴传输材料,且第一氮化钛层和第一载流子选择传输层的多数载流子类型相同,因此,硅基底中产生的电子或空穴被传输至第一氮化钛层中,进一步被选择和传输至第一载流子选择传输层,然后被与第一载流子选择传输层连接的第一电极导出,使得电子和空穴被太阳电池分离,第一电极和硅基底之间产生电势差,即产生电压,从而将光能转换为电能。
因而,硅基底上无需进行掺杂以形成用于分离载流子的空穴选择性接触和电子选择性接触,从而避免了掺杂技术引起的俄歇复合、禁带变窄、体/表面复合和自由载流子吸收等不利因素,同时,由于第一氮化钛层的生产工艺通常小于或等于500℃,温度较低,减少了杂质,从而减少了由于杂质带入的额外的复合中心,增加了少数载流子的寿命,降低了太阳能电池的复合速率,从而提高了太阳电池的效率,也免去了太阳电池工艺过程中的高温处理过程,从而提高了电池的性能。
在本公开实施例中,一种太阳能电池,包括:硅基底、第一氮化钛层、第一载流子选择传输层和第一电极;其中,第一氮化钛层设置在硅基底的第一表面,第一载流子选择传输层设置在第一氮化钛层远离硅基底的一面,第一电极设置在第一载流子选择传输层远离第一氮化钛层的一面;第一载流子选择传输层为电子选择传输材料或空穴选择传输材料中的一种;第一氮化钛层为电子传输材料或空穴传输材料中的一种;第一氮化钛层和第一载流子选择传输层的多数载流子类型相同。本申请中,在第一载流子选择传输层和硅基底之间设置了第一氮化钛层,避免了第一载流子选择传输层与硅基底直接接触而发生表面反应,同时,由于第一氮化钛层与第一载流子选择传输层的多数载流子类型相同,即第一氮化钛层也能够作为载流子选择性接触,因此,同时采用第一氮化钛层和第一载流子选择传输层作为载流子选择性接触,使得第一氮化钛层和第一载流子选择传输层的厚度均处于适宜的范围内,避免了因第一氮化钛层的厚度过大引起的紫外光吸收,导致的太阳能电池短路电 流低的缺点,也避免了因第一载流子选择传输层的厚度过大导致的与硅基底表面的反应加剧的问题,从而提高了太阳能电池的效率。
可选地,上述第一载流子选择传输层厚度为0.5-10纳米。
可选地,图9示出了本公开实施例提供的第二种太阳能电池的结构示意图,参照图9,太阳能电池还可以包括:第一透明导电层280,第一透明导电层280设置在第一载流子选择传输层230和第一电极240之间。
其中,第一透明导电层可以辅助进行载流子的传输,有利于更好的收集,具体的,若为了提高导电能力,采用较大面积的第一电极铺设于第一载流子选择传输层之上,则会造成遮光严重,从而影响电池的性能,因而,可以设置第一透明导电层,以有效的辅助电流的传输,降低电池内部电阻造成的电能损耗。
需要说明的是,第一透明导电层的厚度、大小、材料可以根据实际需要进行确定。
可选地,上述空穴选择传输材料可以包括:氧化钼(MoOx)、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)、氧化钒(VOx)、氧化钨(WOx)、硫氰酸亚铜(CuSCN)和酞氰铜(CuPc)中的任意一种。其中,MoOx、Vox和WOx由于具有相对较大的功函数(大于5.5电子伏特),因而可以被用作空穴选择传输材料,由于可以在硅基底中引起向上的能带弯曲,从而有利于空穴的选择和传输,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。在所述第一载流子选择传输层为空穴选择传输材料时,第一载流子选择传输层的厚度可以为0.5-10纳米。
可选地,上述电子选择传输材料可以包括:氟化锂(LiF)、氧化镁(MgOx)、氟化镁(MgF2)、氟化铯(CsFx)、氟化钾(KFx)、氧化铯(CsOx)和碳酸铯(CsCO3)中的任意一种。其中,LiF、MgF2、MgOx和CsCO3能产生偶极矩,通过费米能级的脱钉降低第一电极的功函数,从而使电子输运的势垒高度变小,有利于电子的选择和传输,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。在所述第一载流子选择传输层为电子选择传输材料时,第一载流子选择传输层的厚度可以为0.5-5纳米。
可选地,上述电子传输材料的功函数可以小于预设功函数阈值,上述空穴传输材料的功函数可以大于预设功函数阈值,其中,预设功函数阈值可以 为5.5电子伏特。
可选地,图10示出了本公开实施例提供的第三种太阳能电池的结构示意图,参照图10,太阳能电池还可以包括:界面钝化层2100,其中,界面钝化层2100设置在第一氮化钛层220与硅基底210之间,所述界面钝化层可以包括:氢化非晶硅(a-Si:H)、氧化钛(TiOx)、二氧化硅(SiO2)、三氧化二铝(Al2O3)和二氧化铪(HfO2)中的任意一种或多种,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。
具体的,界面钝化层可以钝化硅基底表面的缺陷,从而降低缺陷态密度,实现表面钝化,提高太阳能电池的效率。
可选地,参照图8,太阳能电池还可以包括:第二氮化钛层250、第二载流子选择传输层260和第二电极270,第二氮化钛层250设置在硅基底210与第一表面相对的第二表面,形成双面太阳能电池,或者,图11示出了本公开实施例提供的第四种太阳能电池的结构示意图,参照图11,第一氮化钛层220和第二氮化钛层250位于硅基底210的第一表面的第一区域和第二区域,从而形成背接触式太阳能电池,所述第一表面为硅基底的背光面。
其中,第二载流子选择传输层为电子选择传输材料或空穴选择传输材料中不同于第一载流子选择传输层的另一种;第二氮化钛层为电子传输材料或空穴传输材料中不同于第一氮化钛层的另一种。
例如,第一氮化钛层可以为空穴传输材料,相应的,第一载流子选择传输层为空穴选择传输材料,利于硅基底中产生的空穴的选择和传输,第一电极也可以为具有高功函数的金属电极,如铝电极或铝/银电极,有利于空穴的收集,空穴传输材料/空穴选择传输材料/高功函数的金属电极的结构,可以作为太阳能电池的发射极,使的空穴选择性明显增加。第二氮化钛层可以为电子传输材料,相应的,第二载流子选择传输层为电子选择传输材料,利于硅基底中产生的电子的选择和传输,第二电极也可以为具有低功函数的金属电极,如银电极、金电极、钯电极和铂电极中的任意一种,有利于电子的收集,还能降低电阻,电子传输材料/电子选择传输材料/低功函数的金属电极的结构,使的电子选择性明显增加。硅基底上无需进行掺杂以形成用于分离载流子的空穴选择性接触和电子选择性接触,从而避免了掺杂技术引起的俄歇复合、禁带变窄、体/表面复合和自由载流子吸收等不利因素,同时,由于第一氮化 钛层的生产工艺通常小于或等于500℃,温度较低,减少了杂质,从而减少了由于杂质带入的额外的复合中心,增加了少数载流子的寿命,降低了太阳能电池的复合速率,从而提高了太阳电池的效率,也免去了太阳电池工艺过程中的高温处理过程,避免了高温工艺的热预算,提高了电池的性能,简化了太阳电池生产工艺流程。
可选地,上述第二载流子选择传输层厚度可以为0.5-10纳米。
可选地,在第一氮化钛层和第二氮化钛层位于硅基底的第一表面的第一区域和第二区域的情况下,第一氮化钛层和第二氮化钛层之间电学绝缘。
参照图11,第一氮化钛层220和第二氮化钛层250在硅基底210的背光面间隔分布,第一氮化钛层220和第二氮化钛层250之间电学绝缘,该电学绝缘可以通过设置空隙、介电层或绝缘层等方式实现。进而,不易漏电,可以减少载流子复合,以提升光电转换效率。具体的隔离方法包括使用激光隔离,化学方法隔离等,也可以使用图形化的掩膜等的方式辅助进行隔离。
此外,参见图11,硅基底210的向光面可以设置有绒面结构,以增加太阳能电池的陷光,增加太阳能电池的光吸收,第一氮化钛层220和第二氮化钛层250均设置在硅基底210的背光面时,硅基底的向光面可以设置钝化减反层2110,从而对硅基底210的向光面进行钝化和减反射,提高太阳能电池的效率。此外,也可以在硅基底210的两面同时设置绒面结构,硅基底210上的其余结构层的形状适应硅基底210的向光面、背光面的绒面结构进行设置,使得电池的背面也可以吸收光能,提高光线利用率。
在本公开实施例中,在第一氮化钛层和第二氮化钛层分别位于硅基底的第一表面的第一区域和第二区域的情况下,上述第一区域和第二区域的大小不作具体限定,例如,第一氮化钛层和第二氮化钛层两者中具有少数载流子选择性的氮化钛层对应的区域,比具有多数载流子选择性的氮化钛层对应的区域的尺寸大。
在本公开实施例中,若第一氮化钛层为电子传输材料,则第一氮化钛层包含的掺杂原子或离子可以包括:氧原子或离子、碳原子或离子、磷原子或离子、砷原子或离子、铝原子或离子和锌原子或离子中的至少两种。掺杂原子或离子使得第一氮化钛层具有良好的电子选择性,从而可以作为电子传输层,第一氮化钛层中的氮原子和钛原子的原子比也不作具体的限定,氧原子 或离子、碳原子或离子、磷原子或离子、砷原子或离子、铝原子或离子和锌原子或离子分别对应的原子/离子比也不做具体的限定。
相应的,若第二氮化钛层为空穴传输材料,则第二氮化钛层包含的掺杂原子或离子可以包括:氮原子或离子、硼原子或离子的任意一种或多种。掺杂原子或离子使得第二氮化钛层具有良好的空穴选择性,从而可以作为空穴传输层,第二氮化钛层中的氮原子和钛原子的原子比也不作具体的限定。
在本公开实施例中,可通过离子注入的方式进行掺杂,例如,离子注入磷原子或离子可以通过界面反应形成磷诱导的偶极子,显著降低氮化钛层的功函数;氮离子注入可以提高氮化钛层的氮钛比,提高氮化钛层的功函数。
可选地,参照图9,太阳能电池还可以包括:第二透明导电层290,第二透明导电层290设置在第二载流子选择传输层260和第二电极270之间。
其中,第二透明导电层可以辅助进行载流子的传输,有利于更好的收集,具体的,若为了提高导电能力,采用较大面积的第二电极铺设于第二载流子选择传输层之上,则会造成遮光严重,从而影响电池的性能,因而,可以设置第二透明导电层,以有效的辅助电流的传输,降低电池内部电阻造成的电能损耗。
需要说明的是,第二透明导电层的厚度、大小、材料可以根据实际需要进行确定,第一透明导电层和第二透明导电层可以只设置其中一个,或者两者都设置。
可选地,第一透明导电层和第二透明导电层可以包括:金属透明导电薄膜、透明导电氧化物(TCO)薄膜、非氧化物透明导电薄膜、高分子透明导电薄膜、石墨烯薄膜和碳纳米管薄膜中的任意一种,上述材料均具有良好的透光性,且横向导电能力较强。
上述金属透明导电薄膜可以包括银(Ag)薄膜、金(Au)薄膜、铝(Al)薄膜、铜(Cu)薄膜、钯(Pd)薄膜中的至少一种。TCO薄膜可以包括二氧化锡(SnO2),三氧化二铟(In2O3)以及氧化锌(ZnO)基的各类材料,以及其他的含氧金属化合物。SnO2基类例如:TCO导电玻璃(FTO)和掺铅氧化锡(SnO:Pb)等,例如掺氟氧化锡(SnO:F)。In2O3基类例如:掺锡氧化铟(ITO)、掺钨氧化铟(IWO)、掺钼氧化铟(IMO)、掺钛氧化铟(In2O3:Ti)、掺氢氧化铟(In2O3:H,IOH)等。ZnO基类如:铝掺杂氧化锌(AZO)、掺 镓氧化锌(ZnO:Ga,GZO)。TCO薄膜还包括其他的TCO材料,如:氧化镉(CdO)、掺铌氧化钛(TIO2:Nb,TNO)、锡酸镉(Cd2SnO4,CTO)、a-锡酸锌(a-Zn2SnO4,ZTO)等。TCO由于导电性高,在可见光的范围内透光率好,且横向导电能力强,因此可以提高电池的性能。显然地,此处的TCO可以是多种薄膜的复合结构。非氧化物透明导电薄膜可以包括氮化钛(TiN)薄膜、氮化铪(HfN)薄膜、硼化镧(LaB4)薄膜中的一种。高分子透明导电薄膜可以包括聚苯胺,聚吡咯-聚乙烯醇复合材料(PPY-PVA)等。
可选地,第一电极和第二电极的材料可以为银,金,铜,镍,铝,锡,铬和钯中的任意一种或多种,因此,第一电极和第二电极可以包括:铝电极、银电极、铝/银复合电极、镍/铜/锡复合电极、铬/钯/银复合电极和镍/铜/银复合电极中的任意一种。
本公开还提供了一种太阳能电池的生产方法,参见图12,示出了本公开实施例提供的一种太阳能电池的生产方法的步骤流程图,该方法可以包括如下步骤:
步骤2101,在硅基底的第一表面制备第一氮化钛层。
在该步骤中,可以首先获取硅基底,进而在硅基底的第一表面上制备第一氮化钛层。
此外,还可以在硅基底与第一表面相对的第二表面上制备第二氮化钛层,或者,第一氮化钛层和第二氮化钛层位于硅基底的第一表面的第一区域和第二区域,其中,第一氮化钛层为电子传输材料或空穴传输材料中的一种,第二氮化钛层为电子传输材料或空穴传输材料中不同于所述第一氮化钛层的另一种。
在本公开实施例中,所述硅基底的掺杂类型可以为n型掺杂,也可以为p型掺杂,所述硅基底可以为经过表面去损伤、抛光或者制绒扩散后的硅片。
具体的,可以利用热原子沉积法制备第一氮化钛层和第二氮化钛层的步骤,可以为:采用钛的有机前体作为钛源,采用氨气作为氮源,在300-500摄氏度的温度范围内进行热原子沉积,生成所述第一氮化钛层,其中,钛的有机前体可以包括:TDMAT、TDEAT和TEMAT中的任意一种或多种。
例如,可以将经过制绒的n型硅片作为硅基底,在沉积第一氮化钛层之前,在200摄氏度下采用等离子体增强化学的气相沉积法(Plasma Enhanced  Chemical Vapor Deposition,PECVD),在硅基底的背光面上沉积6纳米厚度的氢化非晶硅薄膜作为界面钝化层。并采用热原子层沉积(ALD)方式,以不同的反应前驱体在硅基底的向光面和背光面分别沉积p型氮化钛和n型氮化钛,分别作为第一氮化钛层和第二氮化钛层。
步骤2102、在所述第一氮化钛层远离所述硅基底的一面制备第一载流子选择传输层。
在该步骤中,在制备得到第一氮化钛层后,可以在第一氮化钛层远离硅基底的一面制备第一载流子选择传输层。
此外,还可以在制备得到第二氮化钛层后,可以在第二氮化钛层远离硅基底的一面制备第二载流子选择传输层,其中,第一载流子选择传输层为电子选择传输材料或空穴选择传输材料中的一种,第二载流子选择传输层为电子选择传输材料或空穴选择传输材料中不同于第一载流子选择传输层的另一种。
在本公开实施例中,上述空穴选择传输材料可以包括:氧化钼(MoOx)、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)、氧化钒(VOx)、氧化钨(WOx)、硫氰酸亚铜(CuSCN)和酞氰铜(CuPc)中的任意一种;上述电子选择传输材料可以包括:氟化锂(LiF)、氧化镁(MgOx)、氟化镁(MgF2)、氟化铯(CsFx)、氟化钾(KFx)、氧化铯(CsOx)和碳酸铯(CsCO3)中的任意一种,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。
制备第一载流子选择传输层和第一载流子选择传输层的方法可以采用真空热蒸发法、热原子沉积法和旋涂中的任意一种。例如,若空穴选择传输材料或电子选择传输材料为LiF、KFx、CsFx或MoOx,则可以通过真空热蒸发粉末源(纯度大于3N)沉积制备得到,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。
步骤2103、在所述第一载流子选择传输层远离所述第一氮化钛层的一面制备第一电极。
在该步骤中,在制备得到第一载流子选择传输层之后,可以进一步在第一载流子选择传输层远离第一氮化钛层的一面制备第一电极。
此外,还可以在第二载流子选择传输层远离第二氮化钛层的一面制备第 二电极。
可选地,还可以在第一载流子选择传输层和第一电极之间制备第一透明导电层,在第二载流子选择传输层和第二电极之间制备第二透明导电层。
例如,可以在硅基底向光面的第一氮化钛层上,热蒸发制备10纳米厚度的MoOx作为第一载流子选择传输层,并在第一载流子选择传输层上于室温下溅射制备由55纳米的氢化氧化铟和约10纳米的ITO组成的双层膜作为第一透明导电层,并丝网印刷5%接触分数的银前栅极,作为第一电极,并在130摄氏度下烘烤固化。在硅基底背光面的第二氮化钛层上蒸发制备1纳米的LiFx作为第二载流子选择传输层,并在第二载流子选择传输层制备100纳米的铝层作为第二电极。或者,在硅基底向光面溅射第一透明导电层后,不印刷银电极,通过电镀同时在硅基底向光面和背光面沉积银层作为第一电极和第二电极,透明导电层和铝层均可作为电镀的种子层,电镀前可以在硅基底向光面和背光面通过掩膜形成电镀电极的图形化区域。
图13示出了本公开实施例提供的第一种太阳能电池的结构示意图,参照图13,太阳能电池可以包括:第一子电池310和第二子电池320,以及设置在第一子电池310和第二子电池320之间的隧穿复合结330。其中,第一子电池310的光吸收体为第一光吸收体311,第二子电池320的光吸收体为第二光吸收体321,第一光吸收体311的带隙大于所述第二光吸收体321的带隙,从而在太阳光照射在太阳能电池时,具备第一光吸收体311的第一子电池310可以吸收较高能量太阳光线,在第一光吸收体311中产生载流子,具备第二光吸收体321的第二子电池320可以吸收较低能量太阳光线,在第二光吸收体321中产生载流子。
进一步的,由于设置在第一子电池310和第二子电池320之间的隧穿复合结330包括第一准金属层331和第二准金属层332,第一准金属层331和第二准金属层332具有不同的载流子选择性,第一准金属层331具有的载流子选择性为电子选择性或空穴选择性,相应的,第二准金属层332具有的载流子选择性为空穴选择性或电子选择性,使得在第一子电池310的第一光吸收体311和第二子电池320的第二光吸收体321中产生的载流子,在与隧穿复合结330接触的表面上的复合率降低,并确保在该表面上一种类型的载流子被有效地提取,使得第一子电池310和第二子电池320能很好地电连接,形 成转化效率较高的叠层太阳能电池。
在本公开实施例中,上述叠层太阳能电池中的第一子电池310可以设置在太阳能电池的向光面,第一子电池310还可以包括第一电子传输层312和第一空穴传输层313,第一电子传输层312设置在第一光吸收体311靠近隧穿复合结330的一面,第一空穴传输层313设置在第一光吸收体311远离隧穿复合结330的一面,此外,太阳能电池还可以包括设置在第一空穴传输层313远离第一光吸收体311一面的第一电极360。从而在太阳光照射在太阳能电池上时,太阳光中较高能量的太阳光线首先被第一子电池310中的第一光吸收体311吸收并产生载流子,第一光吸收体311中产生电子载流子被第一电子传输层312传输至第一子电池310与隧穿复合结330的表面,此时,隧穿复合结330中与第一电子传输层312连接的第一准金属层331可以具有电子选择性,从而选择和传输第一光吸收体311中产生的电子载流子;而第一光吸收体311中产生的空穴载流子被第一空穴传输层313传输至第一电极360,并被第一电极360收集。
同样的,第二子电池320还可以包括第二电子传输层322和第二电极380,第二电子传输层322设置在第二光吸收体321远离隧穿复合结330的一面,此外,太阳能电池还可以包括设置在第二电子传输层322远离第二光吸收体321一面的第二电极380,从而在太阳光照射在太阳能电池上时,太阳光中较低能量的太阳光线穿过第一子电池310,被第二子电池320中的第二光吸收体321吸收并产生载流子,第二光吸收体321中产生电子载流子被第二电子传输层322传输至第二电极380,并被第二电极380收集,从而实现载流子的分离和收集;此时,隧穿复合结330中与第二光吸收体321连接的第二准金属层332可以具有空穴选择性。
同时,叠层太阳能电池之间的电荷交换过程是复合,电池之间接触区的复合可以增加叠层电池的转换效率。只有当接触区中的复合几率达到最大,电池的效率才能达到最大。在本公开实施例中,第一子电池310中第一光吸收体311中产生电子载流子被第一电子传输层312传输至第一子电池与隧穿复合结330的表面,第二子电池320中第二光吸收体321中产生的空穴载流子,可以在第一子电池310和第二子电池320之间的隧穿复合结330中进行复合。
在本公开实施例中,一种太阳能电池,包括:第一子电池和第二子电池,以及设置在第一子电池和第二子电池之间的隧穿复合结;隧穿复合结包括第一准金属层和第二准金属层,第一准金属层和第二准金属层具有不同的载流子选择性,第一准金属层具有的载流子选择性为电子选择性或空穴选择性;第一子电池的光吸收体为第一光吸收体,第二子电池的光吸收体为第二光吸收体,第一光吸收体的带隙大于第二光吸收体的带隙。本申请中,第一子电池和第二子电池之间的隧穿复合结包括第一准金属层和第二准金属层,由于第一准金属层和第二准金属层具有不同的载流子选择性,使得在第一子电池的第一光吸收体和第二子电池的第二光吸收体中产生的载流子,在与隧穿复合结接触的表面上的复合率降低,并确保在该表面上一种类型的载流子被有效地提取,使得第一子电池和第二子电池能很好地电连接,形成转化效率较高的叠层电池;同时,由于准金属材料具有优异的导电性和热稳定性,因而第一准金属层和第二准金属层减小了子电池之间的电阻损耗,提高了叠层太阳能电池的转换效率,且准金属材料的沉积温度较低,沉积方式也较多,从而可以降低制备叠层电池的工艺复杂度和成本。
可选地,上述第一准金属层和第二准金属层可以包括:氮化钛(TiN)、碳化钛(TiC)、碳化铝钛(TiAlC)和碳化铝钽(TaAlC)中的任意一种。
此外,第一准金属层和第二准金属层可以是上述TiN、TiC、TiAlC或TaAlC进行高浓度掺杂后获得的具有电子选择性或空穴选择性的准金属层。
可选地,上述第一准金属层和第二准金属层中包含至少一种相同的元素,从而可以提高第一准金属层和第二准金属层之间的匹配性。例如,在第一准金属层为氮化钛的情况下,第二准金属层可以为碳化钛或碳化铝钛,使得第一准金属层和第二准金属层中具有相同的钛元素。
可选地,上述第一准金属层和第二准金属层的厚度均可以为5-100纳米。
具体的,由于准金属层的电导率先随厚度的增大而增大,但是当准金属层的厚度达到一定值之后保持不变,同时,准金属层厚度的增大会导致透光率下降,因而需要综合考虑厚度对电导率和透光率的影响,以确定第一准金属层和第二准金属层的厚度。
可选地,上述第一准金属层和第二准金属层可以分别为n型氮化钛和p型氮化钛,即第一准金属层和第二准金属层可以是氮化钛、碳化钛、碳化铝 钛和碳化铝钽中不同的材料制备得到的准金属层,也可以是相同的一种材料制备得到的具有不同载流子选择性的准金属层。例如,第一准金属层和第二准金属层可以均为氮化钛,但第一准金属层可以为具有电子选择性(功函数较低)的氮化钛层,即n型氮化钛构成的准金属层,第二准金属层可以为具有空穴选择性(功函数较高)的氮化钛层,即p型氮化钛构成的准金属层。
因而,n型氮化钛和p型氮化钛直接接触形成具有隧穿效应的隧穿复合结,使第一光吸收体和第二光吸收体之间形成低电阻的串联连接,并使串联连接的电压损失最小。隧穿复合结就像叠层装置中的电流源,在装置的工作电流密度下,通过隧穿复合结的电压降取决于其性能。
在本公开实施例中,可以采用不同的制备方法或掺杂方法制备得到具有不同功函数的n型氮化钛和p型氮化钛作为第一准金属层和第二准金属层。
具体的,n型氮化钛和p型氮化钛的沉积方式可以相同也可以不同,例如,n型氮化钛和p型氮化钛均可以采用物理气相沉积(Physical Vapor Deposition,PVD)溅射沉积而成,PVD溅射沉积制备得到的氮化钛具有中间带隙,进一步对PVD溅射沉积制备得到的氮化钛分别进行掺杂,可以获得p型氮化钛和n型氮化钛。或者,都采用热原子沉积方法制备n型氮化钛和p型氮化钛,但是使用不同的前驱体,从而制备得到n型氮化钛和p型氮化钛。例如,可以采用四氯化钛和氨气分别作为钛源和氮源,在300-500摄氏度的温度范围内进行沉积,可以获得p型氮化钛;而采用四(二甲基氨基)钛(TDMAT)、四(二乙基氨基)钛(TDEAT)或四(乙基甲基氨基)钛(TEMAT)作为钛源,氨气作为氮源,在100-300摄氏度的温度范围内进行沉积,可以获得n型氮化钛。其中,由于采用TDMAT生成的氮化钛具有较高的氧含量和碳含量,因而使得制备得到的氮化钛具有n型金属行为。
可选地,上述n型氮化钛可以为掺杂有第一掺杂元素的掺杂氮化钛,其中,第一掺杂元素可以包括:铝元素、砷元素和磷元素中的任意一种或多种,第一掺杂元素的浓度可以大于10×10 18/cm3,使得n型氮化钛的功函数得到有效降低,更有利于电子的提取和传输,即若第一准金属层为n型氮化钛,则第一准金属层具有电子选择性。
上述p型氮化钛可以为掺杂有第二掺杂元素的掺杂氮化钛,其中,第二掺杂元素可以为铝元素,使得p型氮化钛的功函数得到有效提升,更有利于 空穴的提取和传输,即若第二准金属层为p型氮化钛,则第二准金属层具有空穴选择性。
可选地,在第一掺杂元素和第二掺杂元素均包含铝元素的情况下,第一准金属层中铝元素的浓度可以沿远离第一子电池的方向呈梯度增加,第二准金属层中铝元素的浓度可以沿远离第二子电池的方向均呈梯度增加,使得铝元素在n型氮化钛和p型氮化钛中渐变分布,得到渐变铝组分隧穿复合结,从而可以利用渐变组分调控能带倾斜,增强载流子扩散—漂移联合运动方式,有助于增强载流子在隧穿复合结内的迁移隧穿机率,其隧穿概率可以提升1-2个数量级。
图14示出了本公开实施例中的第二种太阳能电池的结构示意图,参照图14,太阳能电池可以包括:第一子电池310和第二子电池320,以及设置在第一子电池310和第二子电池320之间的隧穿复合结330。其中,第一子电池310包括第一光吸收体311、第一电子传输层312和第一空穴传输层313,第一电子传输层312设置在第一光吸收体311远离隧穿复合结330的一面,第一空穴传输层313设置在第一光吸收体311靠近隧穿复合结330的一面。此时,隧穿复合结330中与第一空穴传输层313连接的第一准金属层331可以具有空穴选择性,从而选择和传输第一光吸收体311中产生的空穴载流子,而第一光吸收体311中产生的电子载流子被第一电子传输层312传输至第一电极360,并被第一电极360收集,从而实现载流子的分离和收集。
同样的,第二子电池320包括第二光吸收体321、第二空穴传输层323,第二空穴传输层323设置在第二光吸收体321远离隧穿复合结330的一面。此时,隧穿复合结330中与第二光吸收体321连接的第二准金属层332可以具有电子选择性,从而选择和传输第二光吸收体321中产生的电子载流子,而第二光吸收体321中产生的空穴载流子被第二空穴传输层323传输至第二电极380,并被第二电极380收集,从而实现载流子的分离和收集。
在本公开实施例中,由于氮化钛的高导电性和高电子浓度以及易于沉积,因而可以采用具有低功函数的n型氮化钛作为第二准金属层332,采用n型硅基底作为第二光吸收体321,使得n型氮化钛/n型硅基底的界面具有较小的导带偏移和较大的价带偏移,进一步的,可以在第二准金属层332与第二光吸收层之间设置包含二氧化硅的氧化硅隧穿层340时,n型氮化钛/二氧化硅/n 型硅基底的载流子选择性接触结构对于电子载流子比对于空穴载流子更易透过,具有更低的接触电阻和更简单的结构。使得第二光吸收体321中产生的电子可以有效地传递到太阳能电池的其他子电池中。而第二光吸收体321中产生的空穴被阻挡在第二光吸收体321和第二准金属层332的界面附近或该界面处,不能进入其他子电池中,从而得第二光吸收体321表面上的复合损失最小化。
此外,第二空穴传输层323可以是在硅基底的表面掺杂形成的p+层,或是在硅基底的表面沉积的p型非晶硅、部分结晶硅、纳米晶硅或多晶硅层,沉积方式可以是等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)或低压力化学气相沉积法(Low Pressure Chemical Vapor Deposition,LPCVD),硅基底的表面掺杂可以是在沉积过程中或随后原位进行,例如气相热扩散、离子注入或通过印刷或旋涂工艺,并且可以在随后的掺杂过程中进行热推进的掺杂剂施加等工艺。
在本公开实施例中,第二空穴传输层也可以是非掺杂或非扩散的过渡金属氧化物,如氧化钼(MoOx)、氧化钒(VOx)或氧化钨(WOx)中的任意一种,由于其相对较大的功函数(大于5.5电子伏特)可以被用作空穴选择接触,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。当设置在硅基底的表面时,第二空穴传输层可以在硅基底中引起向上的能带弯曲,从而有利于空穴传输。此外,氧化镍(NiOx)是另一种空穴选择性接触的候选材料,由于氧化镍与硅有很大的导带差异,可以选择性地阻挡电子。
可选地,在第二空穴传输层与硅基底的第二光吸收体之间还可以设有一层钝化层,其中,钝化层可以为二氧化硅、二氧化钛、三氧化二铝和氢化非晶硅(a-Si:H)中的任意一种,其厚度可以为1-15纳米,该钝化层可以消除由于第二光吸收体和作为发射极层的第二空穴传输层之间的直接接触而导致的性能劣化,钝化层如超薄氧化硅可用作隧穿层,改善第二光吸收体的界面特性,并平滑地传输由隧穿效应产生的载流子。
可选地,图15示出了本公开实施例中的第三种太阳能电池的结构示意图,参照图15,在第一准金属层331和第二准金属层332之间设置有非掺杂准金属层333。
具体的,可以通过变化非掺杂准金属层的厚度以提高隧穿空穴注入,其 中,非掺杂准金属层可以是中间带隙,与第一准金属层和第二准金属层的组成可以相同,也可以不同。
可选地,参照图13,在第二准金属层332和第二子电池320之间可以设置有氧化硅隧穿层340。
具体的,氧化硅隧穿层340可以改善第二准金属层332与第二光吸收体321之间的接触,为第二光吸收体321提供表面钝化效果。例如,在第二子电池320的第二光吸收体321为硅基底时,由于第二准金属层332中的准金属与硅基底直接接触的效果不好,势垒较大,在第二准金属层332和第二子电池320之间设置氧化硅隧穿层340,可以作为界面介质层,从而有效的降低势垒,实现表面钝化效果。
可选地,上述第一光吸收体可以包括钙钛矿材料或III-V族化合物半导体,上述第二光吸收体可以为硅基底。
其中,硅基底的带隙为1.12电子伏特,采用硅基底作为第二光吸收体,则可以采用除硅基底之外的,带隙高于硅基底的带隙,即带隙位于1.12-2.2电子伏特的光吸收材料作为第一光吸收体,优选1.5-1.8电子伏特,例如采用钙钛矿材料的有机和/或无机物质的混合物或III-V族化合物半导体作为第一光吸收体,以使光子最大程度上透射到太阳能电池底部的第二光吸收体,并且有效地吸收更高光子能量的太阳光以产生电子-空穴对。
在本公开实施例中,若第一光吸收体为直接带隙的III-V族化合物半导体,则第一光吸收体的厚度可以为0.5-5微米,若第一光吸收体为钙钛矿材料,则第一光吸收体的厚度可以为0.1-2微米。
在本公开实施例中,第二光吸收体可以为硅基底,即由晶体硅构成的光吸收体,特别是单晶硅或多晶硅制成的硅片,晶体硅吸收体的厚度可以在50-300微米的范围内,晶体硅吸收体可以是p型掺杂的或n型掺杂的晶体硅。晶体硅吸收体的向光面可以是平面的或是织构化的绒面,晶体硅的背光面也可以是平面的或是织构化的绒面。
可选地,可以在太阳能电池的背光面直接采用氮化钛层作为电极,并在太阳能电池的背光面应用整面的氮化钛接触,大大简化了电池结构和工艺流程。而在太阳能电池的向光面,由于氮化钛接触的器件在近红外范围内表现出强的寄生吸收,从而限制了受光面的电流密度,为了降低氮化钛的寄生吸 收,向光面可以采用超薄氮化钛层(如<5纳米)和接触区金属的复合薄膜作为电极,一方面可以利用氮化钛对硅基底表面的钝化效应,抑制载流子表面复合;另一方面可以有效分离和提取载流子,提高电池效率。
可选地,参照图13-15,在太阳能电池的向光面,即第一子电池310远离第二子电池320的一面设置钝化减反层360,第一电极310穿过钝化减反层360与第一子电池310接触,从而对太阳能电池的向光面进行钝化和减反射,提高太阳电池的效率。在太阳能电池的背光面,即第二子电池320远离第一子电池310的一面设置钝化层370,第二电极320穿过钝化层370与第二子电池320接触,以增强太阳能电池的钝化效果。
在本公开实施例中,由于在第一准金属层或第二准金属层沉积过程中,第一准金属层或第二准金属层与大气接触会在表面氧化生成一层很薄的绝缘层,该绝缘层会消耗叠层太阳能电池的电流,因而,在制备上述太阳能电池的过程中,在沉积第一准金属层或第二准金属层之后,可以对第一准金属层或第二准金属层的表面采用氢对表面进行氢气处理,有利于减少甚至消除由氧化物构成的绝缘层,从而去除第一准金属层或第二准金属层表面的氧化物层。但是,若氢气处理时间过长,会导致第一准金属层或第二准金属层表面刻蚀过多,从而破坏太阳能电池的隧穿复合结,因此,氢气处理时间优选不超过20秒。此外,也可以采用其他的气体或方式进行第一准金属层或第二准金属层表面处理,以提升叠层太阳能电池的性能。
需要说明的是,上述太阳能电池和太阳能电池的生产方法对应的部分两者可以参照,且具有相同或相似的有益效果。
此外,本公开实施例还提供了一种光伏组件,包括前述任一所述的太阳能电池,太阳能电池的两侧可以设置有封装胶膜、盖板、背板等。具有与前述的太阳能电池相同或相似的有益效果。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。

Claims (36)

  1. 一种太阳能电池,其特征在于,所述太阳能电池包括:
    硅基底、第一半导体层、载流子复合层、第二半导体层、第一电极和第二电极;
    所述硅基底的一侧表面区分为第一区域和第二区域;
    所述第一半导体层设置在所述硅基底的一侧表面的第一区域,所述载流子复合层设置在所述第一半导体层远离所述硅基底的一面;
    所述第二半导体层设置在所述载流子复合层远离所述第一半导体层的一面,且所述第二半导体层同时覆盖所述第一区域和第二区域;
    所述第一电极和所述第二电极设置在所述第二半导体层远离所述硅基底的一面,且所述第一电极位于所述第一区域内,所述第二电极位于所述第二区域内;
    其中,所述第一半导体层和第二半导体层的导电类型互不相同,所述载流子复合层包含准金属材料形成的隧穿PN结。
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述太阳能电池还包括:第一本征半导体层和第二本征半导体层;
    所述第一本征半导体层设置在所述第一半导体层和所述硅基底之间,所述第二本征半导体层设置在所述第二半导体层和所述硅基底之间以及所述第二半导体层与所述载流子复合层之间。
  3. 根据权利要求2所述的太阳能电池,其特征在于,所述第一本征半导体层和所述第二本征半导体层均为本征非晶硅,厚度为1-10纳米。
  4. 根据权利要求1所述的太阳能电池,其特征在于,所述太阳能电池还包括:第一透明导电层和第二透明导电层;
    所述第一透明导电层位于所述第一区域内,设置在所述第二半导体层和所述第一电极之间;
    所述第二透明导电层位于所述第二区域内,设置在所述第二半导体层和所述第二电极之间。
  5. 根据权利要求4所述的太阳能电池,其特征在于,所述第一透明导电层和所述第二透明导电层均包括:氧化铟、氧化锡和氧化锌中的任意一种。
  6. 根据权利要求1-5中任一项所述的太阳能电池,其特征在于,所述准金属材料包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种。
  7. 根据权利要求1-5中任一项所述的太阳能电池,其特征在于,所述第 一半导体层和所述第二半导体层的厚度均为5-15纳米。
  8. 一种太阳能电池的生产方法,其特征在于,所述方法包括:
    提供一硅基底,所述硅基底的一侧表面区分为第一区域和第二区域;
    在所述硅基底的一侧表面的第一区域制备第一半导体层;
    在所述第一半导体层远离所述硅基底的一面制备载流子复合层;
    在所述载流子复合层远离所述第一半导体层的一面形成第二半导体层,所述第二半导体层同时覆盖所述第一区域和第二区域;
    在所述第二半导体层远离所述硅基底的一面制备第一电极和第二电极,所述第一电极位于所述第一区域内,所述第二电极位于所述第二区域内;
    其中,所述第一半导体层和第二半导体层的导电类型互不相同,所述载流子复合层包含准金属材料形成的隧穿PN结。
  9. 根据权利要求8所述的方法,其特征在于,在所述硅基底的一侧表面的第一区域制备第一半导体层的步骤,包括:
    在所述硅基底的一侧表面的第一区域形成第一本征半导体层;
    在所述第一本征半导体层远离所述硅基底的一面制备所述第一半导体层;
    所述第一本征半导体层为本征非晶硅,厚度为1-10纳米。
  10. 根据权利要求8所述的方法,其特征在于,在所述载流子复合层远离所述第一半导体层的一面形成第二半导体层的步骤,包括:
    在所述载流子复合层远离所述第一半导体层的一面上形成第二本征半导体层,所述第二本征半导体覆盖所述第一区域和第二区域;
    在所述第二本征半导体层远离所述硅基底的一面制备所述第二半导体层;
    所述第二本征半导体层为本征非晶硅,厚度为1-10纳米。
  11. 根据权利要求8所述的方法,其特征在于,在所述第二半导体层远离所述硅基底的一面制备第一电极和第二电极的步骤,包括:
    在所述第二半导体层远离所述硅基底的一面制备第一透明导电层和第二透明导电层,所述第一透明导电层位于所述第一区域内,所述第二透明导电层位于所述第二区域内;
    在所述第一透明导电层远离所述第二半导体层的一面制备所述第一电极,在所述第二透明导电层远离所述第二半导体层的一面制备所述第二电极。
  12. 根据权利要求8所述的方法,其特征在于,所述准金属材料包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种。
  13. 一种光伏组件,其特征在于,包括权利要求1-7中任一项所述的太 阳能电池。
  14. 一种太阳能电池,其特征在于,所述太阳能电池包括:
    硅基底、第一氮化钛层、第一载流子选择传输层和第一电极;
    其中,所述第一氮化钛层设置在所述硅基底的第一表面,所述第一载流子选择传输层设置在所述第一氮化钛层远离所述硅基底的一面,所述第一电极设置在所述第一载流子选择传输层远离所述第一氮化钛层的一面;
    所述第一载流子选择传输层为电子选择传输材料或空穴选择传输材料中的一种;
    所述第一氮化钛层为电子传输材料或空穴传输材料中的一种;
    所述第一氮化钛层和所述第一载流子选择传输层的多数载流子类型相同。
  15. 根据权利要求14所述的太阳能电池,其特征在于,所述第一载流子选择传输层厚度为0.5-10纳米。
  16. 根据权利要求14所述的太阳能电池,其特征在于,所述太阳能电池还包括:第一透明导电层;
    所述第一透明导电层设置在所述第一载流子选择传输层和所述第一电极之间。
  17. 根据权利要求14所述的太阳能电池,其特征在于,
    所述空穴选择传输材料包括:氧化钼、聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐、氧化钨、硫氰酸亚铜和酞氰铜中的任意一种;
    所述电子选择传输材料包括:氟化锂、氧化镁、氟化镁、氟化铯、氟化钾、氧化铯和碳酸铯中的任意一种。
  18. 根据权利要求14所述的太阳能电池,其特征在于,
    所述电子传输材料的功函数小于预设功函数阈值,所述空穴传输材料的功函数大于所述预设功函数阈值;
    所述预设功函数阈值为5.5电子伏特。
  19. 根据权利要求14所述的太阳能电池,其特征在于,所述太阳能电池还包括:界面钝化层;
    所述界面钝化层设置在所述第一氮化钛层与所述硅基底之间;
    所述界面钝化层包括:氢化非晶硅、氧化钛、二氧化硅、三氧化二铝和二氧化铪中的任意一种或多种。
  20. 根据权利要求14-19中任一项所述的太阳能电池,其特征在于, 所述太阳能电池还包括:第二氮化钛层、第二载流子选择传输层和第二电极;
    所述第二氮化钛层设置在所述硅基底与所述第一表面相对的第二表面,或,所述第一氮化钛层和所述第二氮化钛层位于所述硅基底的第一表面的第一区域和第二区域;
    所述第二载流子选择传输层为电子选择传输材料或空穴选择传输材料中不同于所述第一载流子选择传输层的另一种;
    所述第二氮化钛层为电子传输材料或空穴传输材料中不同于所述第一氮化钛层的另一种。
  21. 根据权利要求20所述的太阳能电池,其特征在于,所述第二载流子选择传输层厚度为0.5-10纳米。
  22. 根据权利要求20所述的太阳能电池,其特征在于,所述第一氮化钛层和所述第二氮化钛层位于所述硅基底的第一表面的第一区域和第二区域,所述第一氮化钛层和所述第二氮化钛层之间电学绝缘。
  23. 根据权利要求20所述的太阳能电池,其特征在于,所述太阳能电池还包括:第二透明导电层;
    所述第二透明导电层设置在所述第二载流子选择传输层和所述第二电极之间。
  24. 根据权利要求23所述的太阳能电池,其特征在于,所述第一透明导电层和第二透明导电层包括:金属透明导电薄膜、透明导电氧化物薄膜、非氧化物透明导电薄膜、高分子透明导电薄膜、石墨烯薄膜和碳纳米管薄膜中的任意一种。
  25. 一种光伏组件,其特征在于,包括权利要求14-24中任一项所述的太阳能电池。
  26. 一种太阳能电池,其特征在于,所述太阳能电池包括:
    第一子电池和第二子电池,以及设置在所述第一子电池和所述第二子电池之间的隧穿复合结;
    所述隧穿复合结包括第一准金属层和第二准金属层,所述第一准金属层和所述第二准金属层具有不同的载流子选择性,所述第一准金属层具有的载流子选择性为电子选择性或空穴选择性;
    所述第一子电池的光吸收体为第一光吸收体,所述第二子电池的光吸 收体为第二光吸收体,所述第一光吸收体的带隙大于所述第二光吸收体的带隙。
  27. 根据权利要求26所述的太阳能电池,其特征在于,所述第一准金属层和所述第二准金属层中包含至少一种相同的元素。
  28. 根据权利要求26所述的太阳能电池,其特征在于,所述第一准金属层和所述第二准金属层包括:氮化钛、碳化钛、碳化铝钛和碳化铝钽中的任意一种。
  29. 根据权利要求26所述的太阳能电池,其特征在于,所述第一准金属层和所述第二准金属层的厚度均为5-100纳米。
  30. 根据权利要求26-29中任一项所述的太阳能电池,其特征在于,所述第一准金属层和所述第二准金属层分别为n型氮化钛和p型氮化钛。
  31. 根据权利要求30所述的太阳能电池,其特征在于,
    所述n型氮化钛为掺杂有第一掺杂元素的掺杂氮化钛,所述第一掺杂元素包括:铝元素、砷元素和磷元素中的任意一种或多种,所述第一掺杂元素的浓度大于10×10 18/cm3;
    所述p型氮化钛为掺杂有第二掺杂元素的掺杂氮化钛,所述第二掺杂元素为铝元素。
  32. 根据权利要求31所述的太阳能电池,其特征在于,所述第一掺杂元素和所述第二掺杂元素均包含铝元素,所述第一准金属层中铝元素的浓度沿远离所述第一子电池的方向、所述第二准金属层中铝元素的浓度沿远离所述第二子电池的方向均呈梯度增加。
  33. 根据权利要求26-29中任一项所述的太阳能电池,其特征在于,在所述第一准金属层和所述第二准金属层之间设置有非掺杂准金属层。
  34. 根据权利要求26-29中任一项所述的太阳能电池,其特征在于,在所述第二准金属层和所述第二子电池之间设置有氧化硅隧穿层。
  35. 根据权利要求26-29中任一项所述的太阳能电池,其特征在于,所述第一光吸收体包括钙钛矿材料或III-V族化合物半导体;
    所述第二光吸收体为硅基底。
  36. 一种光伏组件,其特征在于,包括权利要求26-35中任一项所述的太阳能电池。
PCT/CN2021/132482 2020-12-23 2021-11-23 太阳能电池及生产方法、光伏组件 WO2022134991A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202011541852.3A CN114744052B (zh) 2020-12-23 2020-12-23 太阳能电池及光伏组件
CN202011541852.3 2020-12-23
CN202011541833.0A CN114744063B (zh) 2020-12-23 2020-12-23 太阳能电池及生产方法、光伏组件
CN202011541833.0 2020-12-23
CN202011555985.6 2020-12-24
CN202011555985.6A CN114678438B (zh) 2020-12-24 2020-12-24 太阳能电池及光伏组件

Publications (1)

Publication Number Publication Date
WO2022134991A1 true WO2022134991A1 (zh) 2022-06-30

Family

ID=82158783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132482 WO2022134991A1 (zh) 2020-12-23 2021-11-23 太阳能电池及生产方法、光伏组件

Country Status (1)

Country Link
WO (1) WO2022134991A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101632A (zh) * 2022-07-18 2022-09-23 扬州大学 一种新型hbc太阳能电池的制备方法
CN115312624A (zh) * 2022-08-09 2022-11-08 扬州大学 一种背接触太阳能电池的制备方法
CN115584483A (zh) * 2022-09-23 2023-01-10 隆基绿能科技股份有限公司 二氧化锡薄膜及其制备方法和应用
CN116525708A (zh) * 2023-07-05 2023-08-01 福建金石能源有限公司 正面宽带隙掺杂的联合钝化背接触太阳电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422434A (zh) * 2009-02-26 2012-04-18 三洋电机株式会社 太阳能电池
CN104362193A (zh) * 2014-10-24 2015-02-18 新奥光伏能源有限公司 一种异质结太阳能电池及其制作方法
WO2019116031A1 (en) * 2017-12-15 2019-06-20 Oxford Photovoltaics Limited Multi-junction photovoltaic device
CN111653674A (zh) * 2019-03-04 2020-09-11 夏普株式会社 混合粒子、光电转换元件、感光体及图像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422434A (zh) * 2009-02-26 2012-04-18 三洋电机株式会社 太阳能电池
CN104362193A (zh) * 2014-10-24 2015-02-18 新奥光伏能源有限公司 一种异质结太阳能电池及其制作方法
WO2019116031A1 (en) * 2017-12-15 2019-06-20 Oxford Photovoltaics Limited Multi-junction photovoltaic device
CN111653674A (zh) * 2019-03-04 2020-09-11 夏普株式会社 混合粒子、光电转换元件、感光体及图像形成装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101632A (zh) * 2022-07-18 2022-09-23 扬州大学 一种新型hbc太阳能电池的制备方法
CN115101632B (zh) * 2022-07-18 2023-06-23 扬州大学 一种新型hbc太阳能电池的制备方法
CN115312624A (zh) * 2022-08-09 2022-11-08 扬州大学 一种背接触太阳能电池的制备方法
CN115312624B (zh) * 2022-08-09 2024-02-09 扬州大学 一种背接触太阳能电池的制备方法
CN115584483A (zh) * 2022-09-23 2023-01-10 隆基绿能科技股份有限公司 二氧化锡薄膜及其制备方法和应用
CN115584483B (zh) * 2022-09-23 2024-06-07 隆基绿能科技股份有限公司 二氧化锡薄膜及其制备方法和应用
CN116525708A (zh) * 2023-07-05 2023-08-01 福建金石能源有限公司 正面宽带隙掺杂的联合钝化背接触太阳电池及其制备方法
CN116525708B (zh) * 2023-07-05 2023-09-12 福建金石能源有限公司 正面宽带隙掺杂的联合钝化背接触太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
CN108604615B (zh) 混合串联太阳能电池
WO2022134991A1 (zh) 太阳能电池及生产方法、光伏组件
KR101918738B1 (ko) 태양 전지
US20190131472A1 (en) Solar cell
Raza et al. Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives
CN111081878A (zh) 一种钙钛矿/硅基异质结叠层太阳能电池及其制备方法
EP4106021A1 (en) Tandem photovoltaic device and production method
US20190355860A1 (en) Solar cell
US20190334048A1 (en) Multi-junction photovoltaic cell having wide bandgap oxide conductor between subcells and method of making same
WO2020059053A1 (ja) 太陽電池、多接合型太陽電池、太陽電池モジュール及び太陽光発電システム
TW201725746A (zh) 串接式太陽電池及其製造方法以及太陽面板
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
CN111430494A (zh) 一种串联型钙钛矿晶硅太阳能电池及其制备方法
CN115148838B (zh) 太阳电池及生产方法、光伏组件
KR20160085121A (ko) 태양 전지
CN114744052B (zh) 太阳能电池及光伏组件
CN111987183A (zh) 一种基于双极性SnOX的晶硅太阳电池
KR102218417B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
CN217719655U (zh) 一种钙钛矿/晶体硅叠层电池结构
WO2022134994A1 (zh) 太阳电池及生产方法、光伏组件
CN214176064U (zh) 一种双面入射叠层太阳能电池
CN112349801A (zh) 叠层电池的中间串联层及生产方法、叠层电池
CN211980627U (zh) 一种串联型钙钛矿晶硅太阳能电池
CN114744063B (zh) 太阳能电池及生产方法、光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908990

Country of ref document: EP

Kind code of ref document: A1