WO2023024323A1 - 一种薄膜太阳能电池结构、制备装置和设备 - Google Patents

一种薄膜太阳能电池结构、制备装置和设备 Download PDF

Info

Publication number
WO2023024323A1
WO2023024323A1 PCT/CN2021/136614 CN2021136614W WO2023024323A1 WO 2023024323 A1 WO2023024323 A1 WO 2023024323A1 CN 2021136614 W CN2021136614 W CN 2021136614W WO 2023024323 A1 WO2023024323 A1 WO 2023024323A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wall
substrate
back electrode
distance
Prior art date
Application number
PCT/CN2021/136614
Other languages
English (en)
French (fr)
Inventor
李新连
肖平
赵志国
赵东明
张赟
夏渊
秦校军
刘家梁
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023024323A1 publication Critical patent/WO2023024323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of thin film solar cells, in particular to a thin film solar cell structure, manufacturing device and equipment.
  • Battery edge cleaning refers to selectively removing all or part of the film layer on the edge of the battery to ensure the insulation of the edge of the battery.
  • the end of the battery that is, parallel
  • high-energy laser irradiation is usually used to remove the film layer at the same time. High, which will easily lead to the fusing of the film layer, causing lap short circuit between the film layers in the thin film solar cell, affecting the performance of the thin film solar cell.
  • the present application provides a thin film solar cell structure, preparation device and equipment, which can avoid overlapping short circuit between film layers in the thin film solar cell and improve the performance of the thin film solar cell.
  • the embodiment of the present application provides a thin film solar cell structure, including:
  • the distance between the first groove and the first substrate wall and the distance between the second groove and the second substrate wall are respectively greater than the width of the edge cleaning area.
  • the laminated layer includes a photoelectric conversion functional layer and a conductive layer.
  • the photoelectric conversion functional layer includes a battery absorption layer, a buffer layer and/or a transmission layer.
  • the material of the substrate is glass; the material of the back electrode layer is conductive metal or transparent conductive metal oxide material.
  • the material of the photoelectric conversion functional layer includes copper indium gallium selenide, cadmium telluride, amorphous silicon or perovskite; the material of the transparent conductive layer includes indium tin oxide, aluminum-doped zinc oxide or fluorine-doped tin hybrid oxide.
  • the groove has a width of 20-300um.
  • the embodiment of the present application provides a preparation device for a thin-film solar cell structure, including a high-energy laser source, and any one of a low-energy laser source and a mechanical stylus;
  • the high-energy laser source is used to emit high-energy laser to form the edge-clearing area
  • the low-energy laser source or the mechanical stylus is used to form the groove.
  • the material of the mechanical stylus is tungsten steel or diamond.
  • the pulse energy range of the high-energy laser emitted by the high-energy laser source is greater than 1mJ; the pulse energy range of the low-energy laser emitted by the low-energy laser source is 1-300uJ.
  • the embodiment of the present application provides a preparation device for a thin-film solar cell structure, including the device described above.
  • the present application provides a thin-film solar cell structure, preparation device and equipment, the structure comprising: a substrate; a back electrode layer located on the substrate; the substrate walls parallel to the direction of current flow are respectively the first substrate wall and the second substrate wall; The back electrode layer walls parallel to the current flow direction are respectively the first back electrode layer wall and the second back electrode layer wall; the distance between the first substrate wall and the first back electrode layer wall, and the distance between the second substrate wall and the second back electrode layer The distance between the layer walls is the width of the edge-clearing area; the stacked layer arranged on the side of the back electrode layer away from the substrate; the stacked layer walls parallel to the current flow direction are respectively the first stacked layer wall and the second stacked layer wall; The distance between the first substrate wall and the first laminated layer wall, and the distance between the second substrate wall and the second laminated layer wall are the width of the edge-clearing area; the first groove and the second groove that penetrate the laminated layer and contact the back electrode layer , and the first notch and the second notch run through
  • the distance from the first groove to the first substrate wall and the distance from the second groove to the second substrate wall are respectively greater than the width of the edge-clearing area, when the high-energy laser is used to form the edge-cleaning area, the distance between the groove and the edge-cleaning area There is still a certain layer barrier between layers, even if the part of the barrier layer is melted into the edge-clearing area by high-energy laser irradiation, there are still laminated layers and grooves as barriers between the edge-clearing area and the main part of the film layer, which can be Preventing the melted part from contacting the main part of the film layer, effectively avoiding the overlap short circuit between the film layers of the thin-film solar cell, and effectively improving the performance of the thin-film solar cell.
  • Figure 1 shows a cross-sectional view of the structure of a thin-film solar cell provided by an embodiment of the present application
  • Figure 2 shows a top view of the structure of a thin-film solar cell provided by an embodiment of the present application
  • FIG. 3 shows a cross-sectional view of a specific structure of stacked layers in a thin-film solar cell provided by an embodiment of the present application.
  • Battery edge cleaning refers to selectively removing all or part of the film layer on the edge of the battery to ensure the insulation of the edge of the battery.
  • the end of the battery that is, parallel At the edge of the substrate in the battery flow direction, it is necessary to remove all the film layers on the substrate surface.
  • high-energy laser irradiation is usually used to remove the film layer.
  • the heat in the process of cleaning is too high. High, which will easily lead to the fusing of the film layer, causing lap short circuit between the film layers in the thin film solar cell, affecting the performance of the thin film solar cell.
  • the application provides a thin-film solar cell structure, preparation device and equipment, the structure includes: a substrate; a back electrode layer located on the substrate; the substrate walls parallel to the current flow direction are respectively the first substrate walls and the second substrate wall; the back electrode layer walls parallel to the current flow direction are respectively the first back electrode layer wall and the second back electrode layer wall; the distance between the first substrate wall and the first back electrode layer wall, and the second substrate The distance between the wall and the wall of the second back electrode layer is respectively the width of the edge-clearing area; the stacked layer arranged on the side of the back electrode layer away from the substrate; the stacked layer wall parallel to the current flow direction is respectively the first stacked layer wall and the second stacked layer wall.
  • Two-layer laminated wall; the distance between the first substrate wall and the first laminated layer wall, and the distance between the second substrate wall and the second laminated layer wall are respectively the width of the edge-clearing area; through the first moment when the laminated layer is in contact with the back electrode layer
  • the groove and the second groove, and the first groove and the second groove penetrate the two ends of the layer stack perpendicular to the current flow direction; the distance between the first groove and the first substrate wall and the distance between the second groove and the second substrate wall The distances are greater than the width of the edge-clearing area.
  • the distance from the first groove to the first substrate wall and the distance from the second groove to the second substrate wall are respectively greater than the width of the edge-clearing area, when the high-energy laser is used to form the edge-cleaning area, the distance between the groove and the edge-cleaning area There is still a certain layer barrier between layers, even if the part of the barrier layer is melted into the edge-clearing area by high-energy laser irradiation, there are still laminated layers and grooves as barriers between the edge-clearing area and the main part of the film layer, which can be Preventing the melted part from contacting the main part of the film layer, effectively avoiding the overlap short circuit between the film layers of the thin-film solar cell, and effectively improving the performance of the thin-film solar cell.
  • FIG. 1 it is a cross-sectional view of a thin-film solar cell structure provided by an embodiment of the present application, the structure comprising:
  • the substrate 101 In the embodiment of the present application, the material of the substrate 101 can be glass. It should be noted that the embodiment of the present application does not specifically limit the material of the substrate here, which can be set by those skilled in the art according to the actual situation.
  • Fig. 1 shows the current flow direction
  • Fig. 2 shows a top view of a solar thin film battery structure provided by the embodiment of the application
  • I shows the current flow direction
  • the material of the back electrode layer may be conductive metal or transparent conductive metal oxide material.
  • the laminated layer 103 arranged on the side away from the substrate 101 of the back electrode layer 102; the laminated layer walls parallel to the current flow direction are respectively the first laminated layer wall 1031 and the second laminated layer wall 1032; the distance between the first substrate wall 1011 and the second laminated layer wall
  • the distance between the layer wall 1031 of one layer and the distance between the second substrate wall 1012 and the wall 1032 of the second layer are respectively the widths w0 and w1 of the edge cleaning area.
  • the stacked layer 103 may include a photoelectric conversion layer 103A and a conductive layer 103B.
  • the material of the photoelectric conversion layer 103A may be copper indium gallium selenide, cadmium telluride, amorphous silicon or calcium Titanium ore
  • the material of the conductive layer 103B can be gold, silver, copper, aluminum, indium tin oxide, aluminum doped zinc oxide or fluorine doped tin oxide. It should be noted that the embodiment of the present application does not specifically limit the material of each film layer here, and the above is only provided as an example, which can be set by those skilled in the art according to the actual situation.
  • the photoelectric conversion functional layer may include a battery absorption layer, a buffer layer and/or a transmission layer (not shown in the figure), for example, when the material of the battery absorption layer is copper indium gallium selenide, the photoelectric conversion functional layer It may also include a buffer layer made of cadmium sulfide; when the battery absorbing layer is made of perovskite, the photoelectric conversion functional layer may also include an electron transport layer and a hole transport layer.
  • the width of the first notch 1041 and the second notch 1042 may be equal, and may be 20-300um.
  • widths w0 and w1 of the edge cleaning area are only examples in the embodiment of the present application. Specifically, it illustrates the size relationship among w0, w1, w2 and w3, and the specific values of w0, w1, w2 and w3 are not specifically limited here, but can be defined by those skilled in the art according to the actual situation.
  • the film layer on the edge of the substrate parallel to the battery flow direction is edge-cleaned to form an edge-clearing area
  • the film layer on the four sides of the substrate can also be edge-cleaned removal to form a thin-film solar cell structure with edge-clearing regions at four ends on the substrate, which is not specifically limited in this embodiment of the present application, and can be operated by those skilled in the art according to the actual situation.
  • the distance w2 between the first notch 1041 and the first substrate wall 1011 and the distance w3 between the second notch 1042 and the second substrate wall 1012 may be equal.
  • the widths w0 and w1 of the edge-clearing area may be equal. Since the distance w2 between the first groove 1041 and the first substrate wall 1011 and the distance w3 between the second groove 1042 and the second substrate wall 1012 are respectively greater than the width w1 of the edge-clearing area, when the high-energy laser is used to form the edge-cleaning area, There is still a certain laminated barrier between the groove and the edge-clearing area.
  • the embodiment of the present application also provides a preparation device for a thin-film solar cell structure, including a high-energy laser source, and any one of a low-energy laser source and a mechanical stylus .
  • a low-energy laser source or a mechanical stylus is used to form a groove, wherein the use of a low-energy laser source or a mechanical stylus to form a groove will not cause fusing of the film layers in the stacked layers, and avoid short circuits caused by the fusing of the film layers.
  • the high-energy laser source is used to emit a high-energy laser to form the edge-clearing area. Since the distance between the first groove and the first substrate wall and the distance between the second groove and the second substrate wall are respectively greater than the width of the edge-clearing area, then When a high-energy laser is used to form the edge-clearing area, there is still a certain laminate layer blocking between the groove and the edge-clearing area. There are still laminated layers and grooves as barriers between the main parts of the film layer, which can prevent the melted part from contacting the main part of the film layer, effectively avoid the overlap short circuit between the film layers of the thin film solar cell, and effectively improve the performance of the thin film solar cell. performance.
  • the pulse energy range of the high-energy laser source provided in the embodiment of the present application may be greater than 1 mJ, and the single pulse energy range of the low-energy laser source may be 1-300 uJ.
  • the diameter of the mechanical stylus provided in the embodiment of the present application may be 20-300um, and the material of the mechanical stylus may be tungsten steel or diamond.
  • the thin-film solar cell processed and prepared by the preparation device will not have the problem of battery leakage caused by the overlapping short circuit of the conductive layer and the back electrode layer, thereby Ensure more reliable performance of solar cells.
  • This embodiment provides a preparation device for a thin-film solar cell structure, including a preparation device for a thin-film solar cell structure provided in the exemplary device.
  • the thin-film solar cells processed and prepared by the preparation equipment will not have the problem of battery leakage caused by the overlapping short circuit of the conductive layer and the back electrode layer, thereby Ensure more reliable performance of solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种薄膜太阳能电池结构,该结构包括:位于基板上的背电极层;第一基板壁距离第一背电极层壁的距离,和第二基板壁距离第二背电极层壁的距离分别为清边区域宽度;第一基板壁距离第一层叠层壁的距离,和第二基板壁距离第二层叠层壁的距离分别为清边区域宽度;第一刻槽距离第一基板壁的距离和第二刻槽距离第二基板壁的距离分别大于清边区域宽度。则在采用激光形成清边区域时,刻槽和清边区域之间有层叠层阻挡,即使作为阻挡的部分层叠层被激光融化进入清边区域,清边区域和膜层主体之间有作为阻挡的层叠层和刻槽在,可防止融化部分与膜层主体部分接触,避免薄膜太阳能电池膜层之间发生搭接短路,有效提高薄膜太阳能电池性能。

Description

一种薄膜太阳能电池结构、制备装置和设备
本申请要求于2021年08月23日提交中国专利局、申请号为202121986052.2、发明创造名称为“一种薄膜太阳能电池结构、制备装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及薄膜太阳能电池领域,尤其涉及一种薄膜太阳能电池结构、制备装置和设备。
背景技术
随着太阳能电池的不断发展,研发人员已开发出了各种各样的太阳能电池,其中薄膜太阳能电池由于具有光电转化率高、性能好、成本低等优点,受到了人们的关注。
在进行薄膜太阳能电池的制备时,需要进行电池清边,电池清边指的是选择性地去除电池边缘的全部或部分膜层,以保证电池边缘的绝缘,其中,对电池端部,即平行于电池流动方向的基底端边,需要进行清边去除基底表面的所有膜层,现阶段通常采用大能量激光照射的方式一并去除膜层,然而由于激光能量较大,清边过程中热量过高,从而容易导致膜层熔断,使薄膜太阳能电池中的膜层之间发生搭接短路,影响薄膜太阳能电池的性能。
发明内容
为了解决以上技术问题,本申请提供了一种薄膜太阳能电池结构、制备装置和设备,可以避免薄膜太阳能电池中的膜层之间发生搭接短路,提高薄膜太阳能电池的性能。
第一方面,本申请实施例提供了一种薄膜太阳能电池结构,包括:
基板;
位于所述基板上的背电极层;平行于电流流动方向的基板壁分别为第一基板壁和第二基板壁;平行于所述电流流动方向的背电极层壁分别为第一背电极层壁和第二背电极层壁;所述第一基板壁距离所述第一背电极层壁的距离,和所述第二基板壁距离所述第二背电极层壁的距离分别为清边区域宽度;
在所述背电极层的远离所述基板的一侧设置的层叠层;平行于所述电流流动方向的层叠层壁分别为第一层叠层壁和第二层叠层壁;所述第一基板壁距离所述第一层叠层壁的距离,和所述第二基板壁距离所述第二层叠层壁的距离分别为所述清边区域宽度;
贯穿所述层叠层与所述背电极层接触的第一刻槽和第二刻槽,且所述第一刻槽和第二刻槽贯穿所述层叠层垂直于所述电流流动方向的两端;所述第一刻槽距离所述第一基板壁的距离和所述第二刻槽距离所述第二基板壁的距离分别大于所述清边区域宽度。
可选地,所述层叠层包括光电转换功能层和导电层。
可选地,所述光电转换功能层包括电池吸收层、缓冲层和/或传输层。
可选地,所述基板的材料为玻璃;所述背电极层的材料为导电金属或透明导电金属氧化物材料。
可选地,所述光电转换功能层的材料包括铜铟镓硒、碲化镉、非晶硅或钙钛矿;所述透明导电层的材料包括氧化铟锡、铝掺杂氧化锌或氟掺杂氧化锡。
可选地,所述刻槽的宽度为20-300um。
第二方面,本申请实施例提供了一种薄膜太阳能电池结构的制备装置,包括高能量激光源,和,低能量激光源和机械刻针两者中的任意一个;
所述高能量激光源用于发射高能量激光以形成所述清边区域;
所述低能量激光源或所述机械刻针用于形成所述刻槽。
可选地,所述机械刻针的材料为钨钢材质或金刚石材质。
可选地,所述高能量激光源发射的高能量激光的脉冲能量范围为大于1mJ;所述低能量激光源发射的低能量激光的脉冲能量范围为1-300uJ。
第三方面,本申请实施例提供了一种薄膜太阳能电池结构的制备设备,包括上述记载的装置。
与现有技术相比,本申请至少具有以下优点:
本申请提供了一种薄膜太阳能电池结构、制备装置和设备,该结构包括:基板;位于基板上的背电极层;平行于电流流动方向的基板壁分别为第一基板壁和第二基板壁;平行于电流流动方向的背电极层壁分别为第一背电极层壁和第二背电极层壁;第一基板壁距离第一背电极层壁的距离,和第二基板壁距离 第二背电极层壁的距离分别为清边区域宽度;在背电极层的远离基板的一侧设置的层叠层;平行于电流流动方向的层叠层壁分别为第一层叠层壁和第二层叠层壁;第一基板壁距离第一层叠层壁的距离,和第二基板壁距离第二层叠层壁的距离别为清边区域宽度;贯穿层叠层与背电极层接触的第一刻槽和第二刻槽,且第一刻槽和第二刻槽贯穿层叠层垂直于电流流动方向的两端;第一刻槽距离第一基板壁的距离和第二刻槽距离第二基板壁的距离分别大于清边区域宽度。由于第一刻槽距离第一基板壁的距离和第二刻槽距离第二基板壁的距离分别大于清边区域宽度,则在采用高能量激光形成清边区域时,刻槽和清边区域之间仍有一定的层叠层阻挡,即使作为阻挡的部分层叠层被高能量激光照射融化进入清边区域,清边区域和膜层主体部分之间仍有作为阻挡的层叠层和刻槽存在,可以防止融化的部分与膜层主体部分接触,有效避免薄膜太阳能电池的膜层之间发生搭接短路,有效提高了薄膜太阳能电池的性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了本申请实施例提供的一种薄膜太阳能电池的结构的剖面图;
图2示出了本申请实施例提供的一种薄膜太阳能电池的结构的俯视图;
图3示出了本申请实施例提供的一种薄膜太阳能电池中层叠层的具体结构的剖视图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其它不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
正如背景技术中的描述,随着太阳能电池的不断发展,研发人员已开 发出了各种各样的太阳能电池,其中薄膜太阳能电池由于具有光电转化率高、性能好、成本低等优点,受到了人们的关注。
在进行薄膜太阳能电池的制备时,需要进行电池清边,电池清边指的是选择性地去除电池边缘的全部或部分膜层,以保证电池边缘的绝缘,其中,对电池端部,即平行于电池流动方向的基底端边,需要进行清边去除基底表面的所有膜层,现阶段通常采用高能量激光照射的方式一并去除膜层,然而由于激光能量较大,清边过程中热量过高,从而容易导致膜层熔断,使薄膜太阳能电池中的膜层之间发生搭接短路,影响薄膜太阳能电池的性能。
为了解决上述技术问题,本申请提供了一种薄膜太阳能电池结构、制备装置和设备,该结构包括:基板;位于基板上的背电极层;平行于电流流动方向的基板壁分别为第一基板壁和第二基板壁;平行于电流流动方向的背电极层壁分别为第一背电极层壁和第二背电极层壁;第一基板壁距离第一背电极层壁的距离,和第二基板壁距离第二背电极层壁的距离分别为清边区域宽度;在背电极层的远离基板的一侧设置的层叠层;平行于电流流动方向的层叠层壁分别为第一层叠层壁和第二层叠层壁;第一基板壁距离第一层叠层壁的距离,和第二基板壁距离第二层叠层壁的距离分别为清边区域宽度;贯穿层叠层与背电极层接触的第一刻槽和第二刻槽,且第一刻槽和第二刻槽贯穿层叠层垂直于电流流动方向的两端;第一刻槽距离第一基板壁的距离和第二刻槽距离第二基板壁的距离分别大于清边区域宽度。由于第一刻槽距离第一基板壁的距离和第二刻槽距离第二基板壁的距离分别大于清边区域宽度,则在采用高能量激光形成清边区域时,刻槽和清边区域之间仍有一定的层叠层阻挡,即使作为阻挡的部分层叠层被高能量激光照射融化进入清边区域,清边区域和膜层主体部分之间仍有作为阻挡的层叠层和刻槽存在,可以防止融化的部分与膜层主体部分接触,有效避免薄膜太阳能电池的膜层之间发生搭接短路,有效提高了薄膜太阳能电池的性能。
为了更好的理解本申请的技术方案和技术效果,以下将结合附图对具体的实施例进行详细的描述。
示例性结构
参见图1所示,为本申请实施例提供的一种薄膜太阳能电池的结构剖面图,该结构包括:
基板101,在本申请实施例中,基板101的材料可以为玻璃,需要说明的是,本申请实施例在此对基板材料不作具体限定,具体可由本领域技术人员根据实际情况进行设定。
位于基板101上的背电极层102;平行于电流流动方向的基板壁分别为第一基板壁1011和第二基板壁1012;平行于电流流动方向的背电极层壁分别为第一背电极层壁1021和第二背电极层壁1022;第一基板壁1011距离第一背电极层壁1021的距离,和第二基板壁1012距离第二背电极层壁1022的距离相等且分别为清边区域宽度w0和w1。
其中,图1中I示出了电流流动方向,具体的,可以参见图2所示,图2示出了本申请实施例提供的一种太阳能薄膜电池结构的俯视图,I示出了电流流动方向。可选地,背电极层的材料可以为导电金属或透明导电金属氧化物材料。
在背电极层102的远离基板101的一侧设置的层叠层103;平行于电流流动方向的层叠层壁分别为第一层叠层壁1031和第二层叠层壁1032;第一基板壁1011距离第一层叠层壁1031的距离,和第二基板壁1012距离第二层叠层壁1032的距离分别为清边区域宽度w0和w1。
可选地,参见图3所示,层叠层103可以包括光电转换层103A和导电层103B,可选地,光电转换层103A的材料可以为铜铟镓硒、碲化镉、非晶硅或钙钛矿,导电层103B的材料可以为金、银、铜、铝、氧化铟锡、铝掺杂氧化锌或氟掺杂氧化锡。需要说明的是,本申请实施例在此对各个膜层的材料不作具体限定,以上仅作为示例提供,具体可由本领域技术人员根据实际情况进行设置。
可选地,光电转换功能层可以包括电池吸收层、缓冲层和/或传输层(图中未示出),举例来说,当电池吸收层的材料为铜铟镓硒时,光电转换功能层还可以包括材料为硫化镉的缓冲层;当电池吸收层的材料为钙钛矿时,光电转换功能层还可以包括电子传输层和空穴传输层。
贯穿层叠层103与背电极层102接触的第一刻槽1041和第二刻槽1042,且第一刻槽1041和第二刻槽1042贯穿层叠层103垂直于电流流动方向的两端;第一刻槽1041距离第一基板壁1011的距离w2和第二刻槽1042距离第二基板壁1012的距离w3分别大于清边区域宽度w1。可选地,第一刻槽1041和第二刻槽1042的宽度可以相等,且为20-300um。
需要说明的是,上述清边区域宽度w0、w1、第一刻槽1041距离第一基板壁1011的距离w2和第二刻槽1042距离第二基板壁1012的距离w3,本申请实施例仅示例性说明了w0、w1、w2和w3之间的大小关系,w0、w1、w2和w3的具体数值在此不具体限定,具体可由本领域技术人员根据实际情况进行限定。
可选地,本申请实施例中仅对平行于电池流动方向的基板端边上的膜层进行了清边去除,形成了清边区域,还可以对基板四面端边上的膜层进行清边去除,形成基板上四端具有清边区域的薄膜太阳能电池结构,本申请实施例在此不作具体限定,具体可由本领域技术人员根据实际情况进行操作。
可选地,第一刻槽1041距离第一基板壁1011的距离w2和第二刻槽1042距离第二基板壁1012的距离w3可以相等。清边区域宽度w0和w1可以相等。由于第一刻槽1041距离第一基板壁1011的距离w2和第二刻槽1042距离第二基板壁1012的距离w3分别大于清边区域宽度w1,则在采用高能量激光形成清边区域时,刻槽和清边区域之间仍有一定的层叠层阻挡,即使作为阻挡的部分层叠层被高能量激光照射融化进入清边区域,清边区域和膜层主体部分之间仍有作为阻挡的层叠层和刻槽存在,可以防止融化的部分与膜层主体部分接触,有效避免薄膜太阳能电池的膜层之间发 生搭接短路,有效提高了薄膜太阳能电池的性能。
示例性装置
基于上述提供的一种薄膜太阳能电池结构,本申请实施例还提供了一种薄膜太阳能电池结构的制备装置,包括高能量激光源,和,低能量激光源和机械刻针两者中的任意一个。
低能量激光源或机械刻针用于形成刻槽,其中采用低能量激光源或机械刻针形成刻槽不会引起层叠层中的膜层的熔断,避免膜层熔断引起的短路。
高能量激光源用于发射高能量激光以形成所述清边区域,由于第一刻槽距离第一基板壁的距离和第二刻槽距离第二基板壁的距离分别大于清边区域宽度,则在采用高能量激光形成清边区域时,刻槽和清边区域之间仍有一定的层叠层阻挡,即使作为阻挡的部分层叠层被高能量激光照射融化进入清边区域,清边区域和膜层主体部分之间仍有作为阻挡的层叠层和刻槽存在,可以防止融化的部分与膜层主体部分接触,有效避免薄膜太阳能电池的膜层之间发生搭接短路,有效提高了薄膜太阳能电池的性能。
可选地,本申请实施例提供的高能量激光源的脉冲能量范围可以为大于1mJ,低能量激光源的单脉冲能量范围可以为为1-300uJ。可选地,本申请实施例提供的机械刻针的直径可以为20-300um,机械刻针的材料可以为钨钢材质或金刚石材质。
通过采用示例性装置中提供的一种薄膜太阳能电池结构的制备装置,能使该制备装置加工制备的薄膜太阳能电池不会出现导电层和背电极层搭接短路所导致的电池漏电的问题,从而确保太阳能电池的性能更可靠。
示例性设备
本实施例提供一种薄膜太阳能电池结构的制备设备,包括示例性装置中中提供的一种薄膜太阳能电池结构的制备装置。
通过采用示例性装置中提供的一种薄膜太阳能电池结构的制备装置,能使该制备设备加工制备的薄膜太阳能电池不会出现导电层和背电极层搭 接短路所导致的电池漏电的问题,从而确保太阳能电池的性能更可靠。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。
以上所述仅是本申请的优选实施方式,虽然本申请已以较佳实施例披露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (10)

  1. 一种薄膜太阳能电池结构,其特征在于,包括:
    基板;
    位于所述基板上的背电极层;平行于电流流动方向的基板壁分别为第一基板壁和第二基板壁;平行于所述电流流动方向的背电极层壁分别为第一背电极层壁和第二背电极层壁;所述第一基板壁距离所述第一背电极层壁的距离,和所述第二基板壁距离所述第二背电极层壁的距离分别为清边区域宽度;
    在所述背电极层的远离所述基板的一侧设置的层叠层;平行于所述电流流动方向的层叠层壁分别为第一层叠层壁和第二层叠层壁;所述第一基板壁距离所述第一层叠层壁的距离,和所述第二基板壁距离所述第二层叠层壁的距离分别为所述清边区域宽度;
    贯穿所述层叠层与所述背电极层接触的第一刻槽和第二刻槽,且所述第一刻槽和第二刻槽贯穿所述层叠层垂直于所述电流流动方向的两端;所述第一刻槽距离所述第一基板壁的距离和所述第二刻槽距离所述第二基板壁的距离分别大于所述清边区域宽度。
  2. 根据权利要求1所述的结构,其特征在于,所述层叠层包括光电转换功能层和导电层。
  3. 根据权利要求2所述的结构,其特征在于,所述光电转换功能层包括电池吸收层、缓冲层和/或传输层。
  4. 根据权利要求1-3任意一项所述的结构,其特征在于,所述基板的材料为玻璃;所述背电极层的材料为导电金属或透明导电金属氧化物材料。
  5. 根据权利要求2-3任意一项所述的结构,其特征在于,所述光电转换功能层的材料包括铜铟镓硒、碲化镉、非晶硅或钙钛矿;所述透明导电层的材料包括氧化铟锡、铝掺杂氧化锌或氟掺杂氧化锡。
  6. 根据权利要求1-3任意一项所述的结构,其特征在于,所述刻槽的宽度为20-300um。
  7. 一种薄膜太阳能电池结构的制备装置,其特征在于,包括高能量激光源,和,低能量激光源和机械刻针两者中的任意一个;
    所述高能量激光源用于发射高能量激光以形成所述清边区域;
    所述低能量激光源或所述机械刻针用于形成所述刻槽。
  8. 根据权利要求7所述的装置,其特征在于,所述机械刻针的材料为钨钢材质或金刚石材质。
  9. 根据权利要求7-8任意一项所述的装置,其特征在于,所述高能量激光源发射的高能量激光的脉冲能量范围为大于1mJ;所述低能量激光源发射的低能量激光的脉冲能量范围为1-300μJ。
  10. 一种薄膜太阳能电池结构的制备设备,其特征在于,包括如权利要求7-9任意一项所述的装置。
PCT/CN2021/136614 2021-08-23 2021-12-09 一种薄膜太阳能电池结构、制备装置和设备 WO2023024323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121986052.2U CN216145627U (zh) 2021-08-23 2021-08-23 一种薄膜太阳能电池结构
CN202121986052.2 2021-08-23

Publications (1)

Publication Number Publication Date
WO2023024323A1 true WO2023024323A1 (zh) 2023-03-02

Family

ID=80807270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136614 WO2023024323A1 (zh) 2021-08-23 2021-12-09 一种薄膜太阳能电池结构、制备装置和设备

Country Status (2)

Country Link
CN (1) CN216145627U (zh)
WO (1) WO2023024323A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985955B (zh) * 2022-08-03 2022-11-29 苏州光昛智能科技有限公司 一种双划线激光清边工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100021033A (ko) * 2008-08-14 2010-02-24 주성엔지니어링(주) 박막형 태양전지의 제조방법 및 제조장치
KR20110077750A (ko) * 2009-12-30 2011-07-07 주식회사 효성 박막 태양전지 모듈의 제조방법 및 그에 의해서 제조된 박막 태양전지 모듈
CN108767066A (zh) * 2018-06-04 2018-11-06 大族激光科技产业集团股份有限公司 薄膜太阳能电池制备方法及其边缘隔离方法
WO2020007420A1 (de) * 2018-07-06 2020-01-09 Solibro Hi-Tech Gmbh Dünnschichtsolarmodul und verfahren zur herstellung eines dünnschichtsolarmoduls

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100021033A (ko) * 2008-08-14 2010-02-24 주성엔지니어링(주) 박막형 태양전지의 제조방법 및 제조장치
KR20110077750A (ko) * 2009-12-30 2011-07-07 주식회사 효성 박막 태양전지 모듈의 제조방법 및 그에 의해서 제조된 박막 태양전지 모듈
CN108767066A (zh) * 2018-06-04 2018-11-06 大族激光科技产业集团股份有限公司 薄膜太阳能电池制备方法及其边缘隔离方法
WO2020007420A1 (de) * 2018-07-06 2020-01-09 Solibro Hi-Tech Gmbh Dünnschichtsolarmodul und verfahren zur herstellung eines dünnschichtsolarmoduls

Also Published As

Publication number Publication date
CN216145627U (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
JP5901656B2 (ja) 太陽電池およびその製造方法{solarcellandmanufacturingmethodofthesame}
JP4925724B2 (ja) 太陽電池およびその製造方法
TWI431792B (zh) An integrated multi-junction photoelectric conversion device, and a method of manufacturing the same
US20160380138A1 (en) Solar cell and method for manufacturing the same
US9508874B2 (en) Photovoltaic device and method of manufacture
JP2010282997A (ja) 太陽電池、太陽電池の製造方法
WO2019148733A1 (zh) 薄膜太阳能电池
JP2012530378A (ja) 太陽電池及びその製造方法
WO2023024323A1 (zh) 一种薄膜太阳能电池结构、制备装置和设备
WO2023060925A1 (zh) 一种钙钛矿太阳能电池结构
JPWO2010064549A1 (ja) 薄膜光電変換装置の製造方法
KR101243877B1 (ko) 태양전지 및 태양전지의 제조 방법
TW201316537A (zh) 用來製造穿透式太陽能電池模組的方法
WO2013057978A1 (ja) 光電変換装置およびその製造方法、光電変換モジュール
JP2010067752A (ja) 光起電力装置および光起電力装置の製造方法
KR20110035733A (ko) 태양전지 및 이의 제조방법
WO2019232904A1 (zh) 太阳能电池及其制备方法
JP2014503130A (ja) 太陽電池及びその製造方法
JP4127994B2 (ja) 光起電力装置の製造方法
WO2011093431A1 (ja) 光電変換装置およびその製造方法
JP5837941B2 (ja) 太陽電池及びその製造方法
KR20130136739A (ko) 태양전지 및 이의 제조방법
KR20120136982A (ko) 태양전지의 제조 방법 및 태양전지 생산 장비
CN113540281A (zh) 叠层光伏器件
JPH08107225A (ja) 薄膜太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE