WO2023024284A1 - 智能化油泵及变压器强迫油循环冷却系统 - Google Patents

智能化油泵及变压器强迫油循环冷却系统 Download PDF

Info

Publication number
WO2023024284A1
WO2023024284A1 PCT/CN2021/132098 CN2021132098W WO2023024284A1 WO 2023024284 A1 WO2023024284 A1 WO 2023024284A1 CN 2021132098 W CN2021132098 W CN 2021132098W WO 2023024284 A1 WO2023024284 A1 WO 2023024284A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
control circuit
speed
assembly
speed control
Prior art date
Application number
PCT/CN2021/132098
Other languages
English (en)
French (fr)
Inventor
谢栋
黎贤钛
张其强
俞钧
龚智旭
吴善行
Original Assignee
浙江尔格科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江尔格科技股份有限公司 filed Critical 浙江尔格科技股份有限公司
Publication of WO2023024284A1 publication Critical patent/WO2023024284A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0245Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling

Definitions

  • the application relates to the technical field of oil pumps for transformers, and in particular provides an intelligent oil pump and a forced oil circulation cooling system for transformers constructed with the intelligent oil pump.
  • the transformer oil pump generally adopts a three-phase asynchronous motor direct shaft driven axial flow vane pump with a fully sealed structure and built-in submersible oil operation. It is a fluid machine specially used to transport transformer insulating oil medium. Axial flow transformer oil pumps are suitable for transformer fin radiators. For transformer oil pumps, in order to improve the operating life of transformer oil pump bearings, the current domestic power grids and bureaus generally change the original high-speed oil pumps (such as 1500r/min) to low-speed oil pumps (such as 1000r/min the following).
  • the transformer oil pump of a low-speed motor wants to achieve the flow rate and lift of a high-speed motor oil pump, it must be solved by increasing the diameter of the impeller.
  • the increased diameter of the rotating machine will lead to a decrease in running stability.
  • the size and cost of the matching structure are unbearable for some old cooler installation dimensions to be replaced with new ones.
  • the application provides an intelligent oil pump.
  • the intelligent oil pump of the application can monitor oil temperature, winding temperature, bearing vibration, and bearing rotation times, thereby increasing the service life and safety of the oil pump.
  • the present application also provides a transformer forced oil circulation cooling system constructed by using the intelligent oil pump of the present application.
  • the intelligent oil pump includes a housing, an impeller and a motor.
  • the motor is sealed and installed in the housing.
  • the impeller is fixedly connected to the end of the motor shaft and used to drive the flow of oil.
  • the motor also includes a circuit assembly , a control assembly and a stator coaxially arranged outside the rotating shaft, the circuit assembly is electrically connected to the stator, the circuit assembly includes a high-speed control circuit and a low-speed control circuit connected to the stator, and the control assembly is electrically connected to the circuit components and control switching between the high-speed control circuit and the low-speed control circuit.
  • the rotating shaft of the motor is controlled to perform high-speed/low-speed rotation through the high-speed control circuit and the low-speed control circuit respectively.
  • the default is to operate in the mode with high heat dissipation efficiency at high speed. If there are problems affecting stable operation or excessive energy consumption/loss during high-speed operation, switch to low-speed operation under the low-speed control circuit to reduce Run the load and protect the normal operation of the oil pump.
  • the stator is provided with a high-speed winding group and a low-speed winding group, the high-speed winding group is electrically connected to the high-speed control circuit, and the low-speed winding group is electrically connected to the low-speed winding group. Control circuit.
  • the high-speed control circuit is a double-Y connection mode
  • the low-speed control circuit is a delta connection mode
  • a temperature sensor is provided in the casing, and the temperature sensor is electrically connected to the control assembly.
  • the temperature control logic is added through the temperature sensor, and the oil temperature is sampled through it.
  • the oil temperature exceeds the set value, it will operate at a high speed and work with high heat dissipation efficiency; when the oil temperature is lower than When the value is set, the load (loss) is low and the speed is small.
  • an alarm can be issued and/or the operation of the oil pump can be disconnected to remind the operator to perform troubleshooting and troubleshooting.
  • a vibration sensing component is provided in the housing, and the vibration sensing component is electrically connected to the control component.
  • the condition for judging the running stability is added to the overall running logic through the vibration sensing component. It is used to detect the stability of the rotation of the shaft. If the detected vibration exceeds the set value, it will issue an alarm and/or disconnect the oil pump to remind the operator to troubleshoot and eliminate, so as to avoid unstable work with high vibration severe damage to the environment.
  • the vibration sensing assembly includes a bearing sleeved on the outside of the rotating shaft and a vibration sensor connected to the outside of the bearing.
  • the vibration index is detected by detecting the vibration of the bearing housing through the vibration sensor.
  • the outer shell of the bearing and the vibration sensor are in a relatively static contact state, which is not easily affected by the rotation of the rotating shaft, and the detection accuracy of vibration is higher.
  • the vibration sensing components include at least two vibration sensing components respectively connected to the two ends of the rotating shaft.
  • a counting sensor is sheathed on the rotating shaft, and the counting sensor is electrically connected to the control assembly.
  • the counting sensor is used to detect the number of rotations of the rotating shaft, and then used to detect the life of itself or the bearings at both ends. For example, when the life of the number of rotations of the bearing is reached, it can prompt to replace the bearing.
  • the counting sensor is a magnetic counting sensor, and a magnetic component corresponding to the counting sensor is embedded on the rotating shaft.
  • the housing includes at least one connecting portion extending outward, and the connecting portion is used for connecting an external pipeline.
  • the retrofit installation of the housing and the motor inside it in the existing substation is provided through the connecting part, that is, there is no need to replace the impeller and the pipeline where the impeller is located, and only the housing is installed in the pipeline through the connecting part.
  • the axial-flow pump structure reduces the transformation cost while ensuring the realization of the goal of prolonging the life of the oil pump, and does not affect the stability of the parameters of the oil pumped by the impeller, which facilitates the control of its speed switching.
  • the transformer forced oil circulation cooling system includes an oil pump; the oil pump is the aforementioned intelligent oil pump of the present application.
  • the transformer forced oil circulation cooling system of the present application is constructed by adopting the aforementioned intelligent oil pump of the present application, which increases the service life and safety of the oil pump.
  • the intelligent oil pump provides an operating mode that improves the operating life of the bearing without changing the size of the impeller.
  • the intelligent oil pump can monitor the oil temperature, winding temperature, bearing vibration, and bearing rotation times, and adjust its operation mode in real time according to the detection results, which greatly increases the safety and life of the oil pump.
  • the design of the smart oil pump enables fewer parts to be replaced when updating the old oil pump, reducing update costs and waste.
  • Fig. 1 is the structural representation of the present application
  • Fig. 2 is the schematic circuit diagram of the circuit assembly and the control assembly of the present application
  • Fig. 3 is the high-speed control circuit and the low-speed control circuit wiring comparison schematic diagram of the present application
  • Fig. 4 is the structure diagram of the high-speed winding group and the low-speed winding group of the stator of the present application;
  • 1-motor 11-circuit assembly, 111-high-speed control circuit, 112-low-speed control circuit, 12-control assembly, 13-stator, 131-high-speed winding group, 132-low-speed winding group 14-rotating shaft, 2-LCD panel, 3-vibration sensor assembly, 31-bearing, 32-vibration sensor, 4-counting sensor, 5-temperature sensor, 6-impeller, 7-housing, 71-connection, 8-external pipeline .
  • the intelligent oil pump of the present application includes a housing 7, an impeller 6 and a motor 1, the motor 1 is sealed and installed in the housing 7, and the impeller 6 is fixedly connected to the end of the rotating shaft 14 of the motor 1 The part is used to drive the flow of oil, and the entire casing 7 together with the motor 1 and the impeller 6 is installed in the external pipeline 8 to present an axial flow oil pump structure.
  • the motor 1 also includes a circuit assembly 11 , a control assembly 12 and a stator 13 coaxially arranged outside the rotating shaft 14 .
  • the circuit component 11 and the control component 12 are also connected with a liquid crystal panel 2, so as to visually display the motor running status and various parameters detected by them, which is convenient for operators to identify and observe.
  • the circuit assembly 11 is electrically connected to the stator 13 and supplies power.
  • the circuit assembly 11 includes a high-speed control circuit 111 and a low-speed control circuit 112 connected to the stator 13.
  • the control assembly 12 is electrically connected to the circuit assembly 11 and controls the high-speed control circuit 111 and the low-speed control circuit 112. switch.
  • the rotating shaft 14 of the motor 1 is controlled by the high-speed control circuit 111 and the low-speed control circuit 112 to perform high-speed/low-speed rotation. In the general operation process, it is defaulted to operate in a mode with high heat dissipation efficiency at high speed.
  • the stator 13 is provided with a high-speed winding group 131 and a low-speed winding group 132 , the high-speed winding group 131 is electrically connected to the high-speed control circuit 111 , and the low-speed winding group 132 is electrically connected to the low-speed control circuit 112 .
  • the speed control of the motor 1 is realized, thereby reducing the complexity of the overall structure , Improve control efficiency and convenience.
  • the high-speed control circuit 111 is a double-Y connection mode
  • the low-speed control circuit 112 is a delta connection mode
  • two different wiring modes are also used to realize high-speed/low-speed switching in the same circuit, which reduces structural complexity and improves control switching efficiency.
  • the housing 7 is provided with a temperature sensor 5 .
  • the temperature sensor 5 includes two groups disposed on the surface of the housing 7 and on the stator 13 .
  • the temperature sensor 5 is electrically connected to the control assembly 12 .
  • the temperature control logic of the oil pump control is added through the temperature sensor 5, and the oil temperature is sampled through it.
  • the oil temperature exceeds the set value, it will operate at a high speed and work with a higher heat dissipation efficiency; when the oil temperature is low When it is at the set value, it operates at a low speed with less load loss.
  • an alarm can be issued and/or the operation of the oil pump can be disconnected to remind the operator to perform troubleshooting and troubleshooting.
  • the housing 7 is provided with a vibration sensing component 3 , and the vibration sensing component 3 is electrically connected to the control component 12 .
  • the operation stability judgment condition is added to the overall operation logic through the vibration sensing component 3 . It is used to detect the stability of the rotation of the rotating shaft 14. If the detected vibration frequency or amplitude exceeds the set value, an alarm will be issued and/or the operation of the oil pump will be disconnected to remind the operator to perform troubleshooting and troubleshooting to avoid high vibration. Serious damage may occur in an unstable working environment.
  • the vibration sensor assembly 3 includes a bearing 31 sleeved on the outside of the rotating shaft 14 and a vibration sensor 32 connected to the outside of the bearing 31 .
  • Vibration indicators are detected by detecting the vibration of the outer shell of the bearing 31 through the vibration sensor 32 .
  • the outer shell of the bearing 31 and the vibration sensor 32 are in a relatively static contact state, which is not easily affected by the rotation of the rotating shaft 14 , and the detection accuracy of the vibration is higher.
  • the vibration sensing components 3 include at least two vibration sensing components respectively connected to the two ends of the rotating shaft 14 .
  • the cross comparison is realized through the vibration induction detection at both ends of the rotating shaft 14 , and the possible bending of the rotating shaft 14 in the axial direction may cause errors in vibration detection due to tolerance and bearing.
  • the counting sensor 4 is sheathed on the rotating shaft 14 , and the counting sensor 4 is electrically connected to the control assembly 12 .
  • the counting sensor 4 is used to detect the number of rotations of the rotating shaft 14, and then used to detect the life of itself or the bearings 31 at both ends.
  • the counting sensor 4 is a magnetic counting sensor, and the magnetic assembly corresponding to the counting sensor 4 is embedded on the rotating shaft 14 (not shown in the figure), and the magnetic assembly is embedded on the surface of the rotating shaft 14 in this embodiment. magnetic particles. High-efficiency and less-error rotation detection is achieved by cutting the magnetic induction line, reducing the possible influence of turbid and constantly stirring oil.
  • the housing 7 includes a connecting portion 71 extending outwards in the form of an annular flange structure, and the connecting portion 71 is used for connecting the external pipeline 8 .
  • the housing 7 and the motor 1 in the existing substation are retrofitted and installed through the connecting part 71, that is, there is no need to replace the impeller 6 and the pipeline where the impeller 6 is located, and only the housing 7 needs to be installed on the pipeline through the connecting part 71
  • the inside is an axial-flow pump structure (that is, the connection with the inner wall of the external pipeline 8 is realized through the flanging structure of the connecting part 71, corresponding to different external pipelines 8, connecting parts 71 of different diameters can be installed by welding or other means
  • the connecting part 71 is provided with an opening for the oil to pass through), while reducing the transformation cost, it can ensure the realization of the goal of prolonging the life of the oil pump, and it will not affect the stability of the parameters and indicators of the oil pumped by the impeller 6, which is convenient for further Control its speed
  • the intelligent oil pump is applied in the forced oil circulation cooling system of the transformer to drive the circulation of the oil, and the oil performs heat exchange in the cooler to achieve the purpose of cooling.
  • the button SB2 is closed, the SB2 dynamic break contact is opened, the high-speed control circuit 111 is opened, and the mechanical interlock is realized, the KM1 coil is energized, the KM1 dynamic break auxiliary contact is opened, the high-speed running circuit is disconnected, and the interlock is realized , the KM1 moving-closing auxiliary contact is closed to realize self-locking, the KM1 moving-closing main contact is closed, and the circuit components are connected in a triangle (the low-speed control circuit 112 is connected to the low-speed winding group 132 to work), and the low-speed winding group 132 is shown in Fig. 4 is to connect three contacts of 6W, 6V and 6U, and the rotating shaft 14 drives the impeller 6 to run at a low speed.
  • the button SB3 is closed, the SB3 dynamic-break contact is disconnected, the low-speed control circuit 112 is disconnected to realize interlocking, the SB3 movable-close contact is closed, the KM2 and KM3 coils are energized, the KM2 and KM3 dynamic-break auxiliary contacts are disconnected, and the operation is performed at low speed
  • the circuit is disconnected to realize interlocking, KM2 and KM3 moving-closing auxiliary contacts are closed to realize self-locking, KM2 and KM3 moving-closing main contacts are closed, and the circuit components are connected in double Y shape (the high-speed control circuit 111 is connected to the high-speed winding group 131 work), high-speed winding group 131 is to connect 4W, 4V, 4U three contacts in Fig. 4, and rotating shaft 14 drives impeller 6 high-speed operation.
  • Vibration sensor 32, counting sensor 4 and temperature sensor 5 are connected to SB1, when one of them reaches and exceeds the safe value (safety value is the vibration frequency/amplitude, number of running circles and temperature value that the smart oil pump can operate normally), SB1 Closed, motor 1 stops working.
  • safe value is the vibration frequency/amplitude, number of running circles and temperature value that the smart oil pump can operate normally
  • the temperature sensor 5 is also connected to SB2 and SB3.
  • SB2 When the temperature detected by the temperature sensor 5 is lower than the set value, SB2 is closed, and the entire operating state is a low-speed operating mode; when the temperature is higher than the set value, SB3 is closed, and the entire operating state is High-speed operation mode.
  • the intelligent oil pump of this application is developed for the needs of the transformer cooling system, but it is not limited to use in transformers, and it can also be applied to other occasions that require the use of oil pumps to transport oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

智能化油泵,包括壳体、叶轮和电机,壳体内密封安装电机,叶轮固定连接于电机转轴的端部并用于驱动油液的流动,电机还包括电路组件、控制组件和同轴设于转轴外的定子,电路组件电连接定子,电路组件包括连接定子的高速控制电路和低速控制电路,控制组件电连接电路组件并控制高速控制电路和低速控制电路间的切换。该智能油泵提供了在不改变叶轮尺寸的情况下,提高轴承运转寿命的运行模式。可以对油温、绕组温度、轴承振动、轴承旋转次数进行监测,并根据检测结果实时调节其运行模式,增加了油泵的安全性和寿命。对应的,本申请还提供了采用本申请的智能化油泵构建的变压器强迫油循环冷却系统。

Description

智能化油泵及变压器强迫油循环冷却系统 技术领域
本申请涉及变压器用油泵技术领域,特别是提供了智能化油泵,以及用该智能化油泵构建的变压器强迫油循环冷却系统。
背景技术
变压器油泵一般采用全密封结构、内置潜油运行的三相异步电动机直轴驱动轴流式叶片泵,是专门用于输送变压器绝缘油介质的流体机械。轴流式变压器油泵适用于变压器片式散热器。对于变压器油泵,目前国内各电力网、局根据不断提升的工作需求,为提高变压器油泵轴承运转寿命,一般将原高转速的油泵(如1500r/min),改为低转速的油泵(如1000r/min以下)。
低速电机的变压器油泵想要达到高速电机油泵的流量、扬程,势必要靠增加叶轮直径解决。而旋转机械的直径增加则会使得运行稳定性下降。在代替过程当中,一些老旧冷却器安装尺寸想要换新存在配合结构的尺寸、成本等方面的难以承受性。
技术问题
针对现有技术的不足之处,本申请提供了智能化油泵,本申请的智能化油泵可以对油温、绕组温度、轴承振动、轴承旋转次数进行监测,增加了油泵的使用寿命和安全性。对应的,本申请还提供了采用本申请的智能化油泵构建的变压器强迫油循环冷却系统。
技术解决方案
对于油泵,本申请的具体技术方案如下:
智能化油泵,包括壳体、叶轮和电机,所述壳体内密封安装所述电机,所述叶轮固定连接于所述电机转轴的端部并用于驱动油液的流动,所述电机还包括电路组件、控制组件和同轴设于所述转轴外的定子,所述电路组件电连接所述定子,所述电路组件包括连接所述定子的高速控制电路和低速控制电路,所述控制组件电连接所述电路组件并控制所述高速控制电路和低速控制电路间的切换。
由此,在油泵的运行过程中,分别通过高速控制电路和低速控制电路控制电机的转轴做高速/低速的转动运行。在一般运行过程中默认为在高速下以散热效率高的模式运行,若在高速运行过程中发生影响稳定运行或能耗/损耗过高的问题,则切换至低速控制电路下的低速运行来减少运行载荷,保护油泵的正常运转。在这一可切换转速的运行模式下,对于现有变压器的冷却器中已有的高速油泵,无需更换叶轮及匹配该型号叶轮的管路,只需更换本申请电机中的定子及其电路组件、控制组件即可以实现延长运转寿命的目的,同时节约设备更新成本,提高运行工作的效果和稳定性。
有益效果
作为本申请的进一步优选技术方案,所述定子上设有高速绕线组和低速绕线组,所述高速绕线组电连接所述高速控制电路,所述低速绕线组电连接所述低速控制电路。
由此,通过在定子上设置不同绕线组并以高速控制电路/低速控制电路分别控制对应绕线组改变定子的运行参数的形式实现对于电机的转速控制,从而减少整体结构的复杂性,提高控制效率和便利性。
作为本申请的进一步优选技术方案,所述高速控制电路为双Y型接线模式,所述低速控制电路为三角形接线模式。
由此,在电路组件一侧,同样采用两种不同的接线模式实现在同一块电路中进行高速/低速的切换,减少结构复杂性,提高控制切换的效率。
作为本申请的进一步优选技术方案,所述壳体内设有温度传感器,所述温度传感器电连接所述控制组件。
由此,通过温度传感器加入温度控制逻辑,通过其进行油液的温度采样,当油液温度超出设定值时,即采用高转速运行,以较高的散热效率工作;当油液温度低于设定值时,即采用载荷(损耗)较小的低转速运行。进一步的,当油液温度超过安全值时可以通过发出警报和/或断开油泵运行的方式提醒操作人员进行故障检修和排除。
作为本申请的进一步优选技术方案,所述壳体内设有振动传感组件,所述振动传感组件电连接所述控制组件。
由此,通过振动传感组件在整体运行逻辑中加入运行稳定性判断条件。其用于检测转轴转动工作的稳定性,若其检测的振动超过设定值则采取发出警报和/或断开油泵运行的方式提醒操作人员进行故障检修和排除,避免在高振动的不稳定工作环境下发生严重损坏。
作为本申请的进一步优选技术方案,所述振动传感组件包括套设于所述转轴外侧的轴承和连接于所述轴承外侧的振动传感器。
由此,通过振动传感器检测轴承壳体的振动实现对振动指标的检测。轴承的外壳体与振动传感器之间为相对静止的接触状态,不易受到转轴转动动作的影响,对于振动的检测准确性更高。
作为本申请的进一步优选技术方案,所述振动传感组件至少包括分别连接于所述转轴两端方向的两个。
由此,通过转轴两端的振动感应检测实现交叉对比,减少转轴在轴向方向上可能存在的弯曲(可能因公差、承载导致)造成振动检测的误差。
作为本申请的进一步优选技术方案,所述转轴上套设有计数传感器,所述计数传感器电连接所述控制组件。
由此,计数传感器用于检测转轴转动的圈数,进而用于检测其本身或其两端的轴承的寿命,例如当轴承的转动圈数寿命到达后,即可以提示更换轴承。
作为本申请的进一步优选技术方案,所述计数传感器为磁性计数传感器,所述转轴上嵌设有与所述计数传感器对应的磁性组件。
由此,通过磁力作用实现高效、误差少的转数检测,减少浑浊、不断搅动的油液可能造成的影响。
作为本申请的进一步优选技术方案,所述壳体包括至少一个向外延伸的连接部,所述连接部用于连接外部管路。
由此,通过连接部提供壳体及其内的电机在既有的变电站中的改造安装,即不需更换叶轮以及叶轮所在的管道,只需通过连接部将壳体安装在管道内即呈现为轴流式的泵结构,减少改造费用的同时,保证延长油泵寿命的目标实现,且不会影响叶轮泵送油液的参数指标稳定,便于进而控制其转速切换。
对于变压器冷却系统,本申请提供如下技术方案:
变压器强迫油循环冷却系统,包括油泵;所述油泵为前述本申请的智能化油泵。
本申请的变压器强迫油循环冷却系统采用前述本申请的智能化油泵构建,增加了油泵的使用寿命和安全性。
综上所述,本申请具有以下有益效果:
本申请的技术方案中,智能化油泵,提供了在不改变叶轮尺寸的情况下,提高轴承运转寿命的运行模式。同时该智能油泵可以对油温、绕组温度、轴承振动、轴承旋转次数进行监测,并根据检测结果实时调节其运行模式,大大增加了油泵的安全性和寿命。进一步的,该智能油泵的设计使得在更新旧有的油泵时可以少更换零部件,降低更新成本,减少浪费。
附图说明
图1为本申请的结构示意图;
图2为本申请的电路组件和控制组件的电路示意图;
图3为本申请的高速控制电路和低速控制电路接线对比示意图;
图4为本申请定子的高速绕线组和低速绕线组结构示意图;
图中,1-电机,11-电路组件,111-高速控制电路,112-低速控制电路,12-控制组件,13-定子,131-高速绕线组,132-低速绕线组14-转轴,2-液晶面板,3-振动传感组件,31-轴承,32-振动传感器,4-计数传感器,5-温度传感器,6-叶轮,7-壳体,71-连接部,8-外部管路。
本发明的实施方式
下面将结合附图,通过具体实施例对本申请的技术方案作进一步的说明。
实施例:
如图1、2、3、4所示,本申请的智能化油泵,包括壳体7、叶轮6和电机1,壳体7内密封安装电机1,叶轮6固定连接于电机1转轴14的端部并用于驱动油液的流动,整个壳体7连带电机1和叶轮6安装在外部管路8内呈现为轴流式油泵结构。电机1还包括电路组件11、控制组件12和同轴设于转轴14外的定子13。其中电路组件11和控制组件12还连接有液晶面板2,从而将它们检测到的电机运行状态、检测的各项参数进行可视化的展示,便于操作人员识别观察。电路组件11电连接定子13并进行供电,电路组件11包括连接至定子13的高速控制电路111和低速控制电路112,控制组件12电连接电路组件11并控制高速控制电路111和低速控制电路112间的切换。在油泵的运行过程中,分别通过高速控制电路111和低速控制电路112控制电机1的转轴14做高速/低速的转动运行。在一般运行过程中默认为在高速下以散热效率高的模式运行,若在高速运行过程中发生影响稳定运行或能耗/损耗过高的问题,则切换至低速控制电路112下的低速运行来减少运行载荷,保护油泵的正常运转。在这一可切换转速的运行模式下,对于现有变压器的冷却器中已有的高速油泵,无需更换叶轮6及匹配该型号叶轮6的管路,只需更换本申请电机1中的定子13及其电路组件11、控制组件12即可以实现延长运转寿命的目的,同时节约设备更新成本,提高运行工作的效果和稳定性。
本实施例中,定子13上设有高速绕线组131和低速绕线组132,高速绕线组131电连接高速控制电路111,低速绕线组132电连接低速控制电路112。通过在定子13上设置不同绕线组并以高速控制电路111/低速控制电路112分别控制对应绕线组改变定子13的运行参数的形式实现对于电机1的转速控制,从而减少整体结构的复杂性,提高控制效率和便利性。
本实施例中,高速控制电路111为双Y型接线模式,低速控制电路112为三角形接线模式。在电路组件11一侧,同样采用两种不同的接线模式实现在同一块电路中进行高速/低速的切换,减少结构复杂性,提高控制切换的效率。
本实施例中,壳体7内设有温度传感器5,温度传感器5在本实施例中包括设于壳体7表面以及设于定子13上的两组,温度传感器5电连接控制组件12。通过温度传感器5加入油泵控制的温度控制逻辑,通过其进行油液的温度采样,当油液温度超出设定值时,即采用高转速运行,以较高的散热效率工作;当油液温度低于设定值时,即采用载荷损耗较小的低转速运行。进一步的,当油液温度超过安全值时可以通过发出警报和/或断开油泵运行的方式提醒操作人员进行故障检修和排除。
本实施例中,壳体7内设有振动传感组件3,振动传感组件3电连接控制组件12。通过振动传感组件3在整体运行逻辑中加入运行稳定性判断条件。其用于检测转轴14转动工作的稳定性,若其检测的振动频率或振幅超过设定值则采取发出警报和/或断开油泵运行的方式提醒操作人员进行故障检修和排除,避免在高振动的不稳定工作环境下发生严重损坏。
本实施例中,振动传感组件3包括套设于转轴14外侧的轴承31和连接于轴承31外侧的振动传感器32。通过振动传感器32检测轴承31外壳体的振动实现对振动指标的检测。轴承31的外壳体与振动传感器32之间为相对静止的接触状态,不易受到转轴14转动动作的影响,对于振动的检测准确性更高。
本实施例中,振动传感组件3至少包括分别连接于转轴14两端方向的两个。通过转轴14两端的振动感应检测实现交叉对比,减少转轴14在轴向方向上可能存在的弯曲可能因公差、承载导致造成振动检测的误差。
本实施例中,转轴14上套设有计数传感器4,计数传感器4电连接控制组件12。计数传感器4用于检测转轴14转动的圈数,进而用于检测其本身或其两端的轴承31的寿命,例如当轴承31的转动圈数寿命到达后,即可以提示更换轴承31。
本实施例中,计数传感器4为磁性计数传感器,转轴14上嵌设有与计数传感器4对应的磁性组件(图中未示出),磁性组件在本实施例中为嵌装在转轴14表面的磁颗粒。通过切割磁感线的作用实现高效、误差少的转数检测,减少浑浊、不断搅动的油液可能造成的影响。
本实施例中,壳体7包括一个向外延伸的呈现为环形翻边结构的连接部71,连接部71用于连接外部管路8。通过连接部71提供壳体7及其内的电机1在既有的变电站中的改造安装,即不需更换叶轮6以及叶轮6所在的管道,只需通过连接部71将壳体7安装在管道内即呈现为轴流式的泵结构(即通过连接部71的翻边结构实现与外部管路8内壁的连接,对应不同的外部管路8,可以通过焊接等方式安装不同直径的连接部71实现适配,连接部71上设有供油液通过的开口),在减少改造费用的同时,保证延长油泵寿命的目标实现,且不会影响叶轮6泵送油液的参数指标稳定,便于进而控制其转速切换。
本实施例中,智能化油泵应用于变压器强迫油循环冷却系统中,用于驱动油液循环流动,油液在冷却器中进行热交换,实现降温目的。
请参考图2、3、4,以下介绍本智能化油泵在变压器强迫油循环冷却系统中工作时的控制原理。
在低速运行模式下:
闭合QS,按钮SB2闭合,SB2动断触点断开,高速控制电路111断开,实现机械互锁,KM1线圈得电,KM1动断辅助触点断开,高速运行电路断开,实现互锁,KM1动合辅助触点闭合,实现自锁,KM1动合主触点闭合,电路组件呈三角形连接(低速控制电路112接通低速绕线组132工作),低速绕线组132即为在图4中为连接6W、6V、6U三个触点,转轴14带动叶轮6低速运行。
在高速运行模式下:
按钮SB3闭合,SB3动断触点断开,低速控制电路112断开,实现互锁,SB3动合触点闭合,KM2、KM3线圈得电,KM2、KM3动断辅助触点断开,低速运行电路断开,实现互锁,KM2、KM3动合辅助触点闭合,实现自锁,KM2、KM3动合主触点闭合,电路组件呈双Y型连接(高速控制电路111接通高速绕线组131工作),高速绕线组131即为在图4中为连接4W、4V、4U三个触点,转轴14带动叶轮6高速运行。
受控停止工作时:
按钮SB1按下,电路组件11的供电断开,停止工作。
传感器控制方式:
振动传感器32、计数传感器4和温度传感器5连接至SB1,当其中之一达到并超过安全值时(安全值为本智能油泵可正常运行的振动频率/振幅、运行圈数和温度值),SB1闭合,电机1停止工作。
温度传感器5还连接至SB2和SB3,当温度传感器5检测的温度低于设定值时,SB2闭合,整个运行状态为低速运行模式;温度高于设定值时,SB3闭合,整个运行状态为高速运行模式。
需要指出的是,本申请的智能化油泵针对变压器冷却系统的需求研发,但其并不限于在变压器中使用,其也可以应用于其它需要使用油泵输送油液的场合。
上面所述的实施例仅是对本申请技术方案的优选实施方式进行描述,并非对本申请技术方案的构思和范围进行限定。在不脱离本申请技术方案设计构思的前提下,本领域普通人员对本申请的技术方案做出的各种变型和改进,均应落入到本专利的保护范围,本申请请求保护的技术内容,已经全部记载在权利要求书中。

Claims (10)

  1. 智能化油泵,其特征在于: 包括壳体(7)、叶轮(6)和电机(1),所述壳体(7)内密封安装所述电机(1),所述叶轮(6)固定连接于所述电机(1)转轴(14)的端部并用于驱动油液的流动,所述电机(1)还包括电路组件(11)、控制组件(12)和同轴设于所述转轴(14)外的定子(13),所述电路组件(11)电连接所述定子(13),所述电路组件(11)包括连接所述定子(13)的高速控制电路(111)和低速控制电路(112),所述控制组件(12)电连接所述电路组件(11)并控制所述高速控制电路(111)和低速控制电路(112)间的切换。
  2. 根据权利要求1所述的智能化油泵,其特征在于: 所述定子(13)上设有高速绕线组(131)和低速绕线组(132),所述高速绕线组(131)电连接所述高速控制电路(111),所述低速绕线组(132)电连接所述低速控制电路(112)。
  3. 根据权利要求2所述的智能化油泵,其特征在于:所述高速控制电路(111)为双Y型接线模式,所述低速控制电路(112)为三角形接线模式。
  4. 根据权利要求3所述的智能化油泵,其特征在于:所述壳体(7)内设有温度传感器(5),所述温度传感器(5)电连接所述控制组件(12)。
  5. 根据权利要求1所述的智能化油泵,其特征在于:所述壳体(7)内设有振动传感组件(3),所述振动传感组件(3)电连接所述控制组件(12)。
  6. 根据权利要求5所述的智能化油泵,其特征在于:所述振动传感组件(3)包括套设于所述转轴(14)外侧的轴承(31)和连接于所述轴承(31)外侧的振动传感器(32)。
  7. 根据权利要求6所述的智能化油泵,其特征在于:所述振动传感组件(3)至少包括分别连接于所述转轴(14)两端方向的两个。
  8. 根据权利要求1所述的智能化油泵,其特征在于:所述转轴(14)上套设有计数传感器(4),所述计数传感器(4)电连接所述控制组件(12)。
  9. 根据权利要求8所述的智能化油泵,其特征在于:所述计数传感器(4)为磁性计数传感器,所述转轴(14)上嵌设有与所述计数传感器(4)对应的磁性组件。
  10. 变压器强迫油循环冷却系统,包括油泵,其特征在于:所述油泵为权利要求1所述的智能化油泵。
PCT/CN2021/132098 2021-08-24 2021-11-22 智能化油泵及变压器强迫油循环冷却系统 WO2023024284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110973599.7 2021-08-24
CN202110973599.7A CN113586465A (zh) 2021-08-24 2021-08-24 智能化油泵及变压器强迫油循环冷却系统

Publications (1)

Publication Number Publication Date
WO2023024284A1 true WO2023024284A1 (zh) 2023-03-02

Family

ID=78239109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132098 WO2023024284A1 (zh) 2021-08-24 2021-11-22 智能化油泵及变压器强迫油循环冷却系统

Country Status (2)

Country Link
CN (1) CN113586465A (zh)
WO (1) WO2023024284A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586465A (zh) * 2021-08-24 2021-11-02 浙江尔格科技股份有限公司 智能化油泵及变压器强迫油循环冷却系统
CN114093626B (zh) * 2021-11-22 2024-09-27 山东电工电气集团常州东智变压器有限公司 一种适应性强的变压器
CN114352546B (zh) * 2022-01-11 2023-08-29 浙江尔格科技股份有限公司 可调速变压器用油泵及用于该油泵的调速系统控制电路
CN116214478A (zh) * 2023-02-20 2023-06-06 青岛港国际股份有限公司 一种泵站无人巡检系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020181A1 (en) * 2011-08-10 2013-02-14 Poolrite Research Pty Ltd A swimming pool pump
CN205064293U (zh) * 2015-08-06 2016-03-02 株洲市荣达铁路机电有限公司 高速动车变压器用管式油泵
CN206874535U (zh) * 2017-07-05 2018-01-12 武安市宏泰机械泵业有限公司 一种监测轴承温度和振动的热油泵轴承体
CN109416058A (zh) * 2016-07-04 2019-03-01 阿莫泰克有限公司 水泵
CN110112989A (zh) * 2018-01-31 2019-08-09 北京金风慧能技术有限公司 油泵电机的控制方法、控制器及控制系统
CN209638046U (zh) * 2019-01-21 2019-11-15 中车株洲电机有限公司 一种低噪声的牵引变压器冷却风机
CN212690380U (zh) * 2020-07-17 2021-03-12 宁波东川游泳池设备有限公司 一种双速泵
CN113586465A (zh) * 2021-08-24 2021-11-02 浙江尔格科技股份有限公司 智能化油泵及变压器强迫油循环冷却系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034946A1 (en) * 1994-06-10 1995-12-21 Westinghouse Electric Corporation Speed control and bootstrap technique for high voltage motor control
CN104716806B (zh) * 2015-03-16 2017-11-10 南京奥特佳新能源科技有限公司 汽车电动/汽油模式快速切换用无刷直流电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013020181A1 (en) * 2011-08-10 2013-02-14 Poolrite Research Pty Ltd A swimming pool pump
CN205064293U (zh) * 2015-08-06 2016-03-02 株洲市荣达铁路机电有限公司 高速动车变压器用管式油泵
CN109416058A (zh) * 2016-07-04 2019-03-01 阿莫泰克有限公司 水泵
CN206874535U (zh) * 2017-07-05 2018-01-12 武安市宏泰机械泵业有限公司 一种监测轴承温度和振动的热油泵轴承体
CN110112989A (zh) * 2018-01-31 2019-08-09 北京金风慧能技术有限公司 油泵电机的控制方法、控制器及控制系统
CN209638046U (zh) * 2019-01-21 2019-11-15 中车株洲电机有限公司 一种低噪声的牵引变压器冷却风机
CN212690380U (zh) * 2020-07-17 2021-03-12 宁波东川游泳池设备有限公司 一种双速泵
CN113586465A (zh) * 2021-08-24 2021-11-02 浙江尔格科技股份有限公司 智能化油泵及变压器强迫油循环冷却系统

Also Published As

Publication number Publication date
CN113586465A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023024284A1 (zh) 智能化油泵及变压器强迫油循环冷却系统
WO2011018009A1 (zh) 一种可调节永磁扭矩的筒型永磁耦合联轴器
CN100491740C (zh) 一种球床高温气冷堆离心式氦气压缩机
CN101997397B (zh) 可调节气隙磁场耦合间距和面积的筒型传动轴永磁耦合器
WO2019127097A1 (zh) 一种大功率电磁调速电机
CN101713412B (zh) 一种冷却塔风机智能驱动装置
WO2021227262A1 (zh) 一种具有水冷循环结构的永磁直驱渣浆泵
CN108270324A (zh) 一种新型磁悬浮压缩机用冷却装置
US20210332821A1 (en) High-lift shielded permanent magnet multistage pump and control method
CN202228390U (zh) 一种无位置传感器驱动的一体化离心式风机
CN211370792U (zh) 一种磁悬浮鼓风机装置
CN113217402A (zh) 一种水冷智能泵
CN110336434B (zh) 一种双面传动永磁涡流磁滞联轴器
JP2021090256A (ja) 電動機システムおよびそれを備えたターボ圧縮機
CN201461446U (zh) 一种空调机组用屏蔽电泵
CN114352546B (zh) 可调速变压器用油泵及用于该油泵的调速系统控制电路
CN207251435U (zh) 兆瓦级永磁涡流柔性传动装置
WO2019037523A1 (zh) 一种吸尘器电机及吸尘器
CN105798073A (zh) 一种同步电机拉丝机
CN205370894U (zh) 变频半封闭制冷压缩机
CN204131364U (zh) 在线控制式永磁调速装置
CN210273781U (zh) 一种双面传动永磁涡流磁滞联轴器
CN217405228U (zh) 一种抗短路能力好的节能变压器
CN111734872A (zh) 一种带有非接触式力矩检测单元的电动执行器
CN207475377U (zh) 一种吸尘器电机及吸尘器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21954803

Country of ref document: EP

Kind code of ref document: A1