WO2023024216A1 - 空调控制系统 - Google Patents

空调控制系统 Download PDF

Info

Publication number
WO2023024216A1
WO2023024216A1 PCT/CN2021/122017 CN2021122017W WO2023024216A1 WO 2023024216 A1 WO2023024216 A1 WO 2023024216A1 CN 2021122017 W CN2021122017 W CN 2021122017W WO 2023024216 A1 WO2023024216 A1 WO 2023024216A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor units
intersection
wire controller
states
wire
Prior art date
Application number
PCT/CN2021/122017
Other languages
English (en)
French (fr)
Inventor
曹秀霞
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Priority to CN202180096480.4A priority Critical patent/CN117083490A/zh
Publication of WO2023024216A1 publication Critical patent/WO2023024216A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning, in particular to an air conditioning control system.
  • Air conditioning is controlled.
  • This application proposes an air conditioning control system, including:
  • At least one outdoor unit At least one outdoor unit
  • At least two indoor units each indoor unit connected to each outdoor unit;
  • each wire controller controls the work of the at least two indoor units and has a wire controller identification bit;
  • Gateway equipment which communicates with each outdoor unit and indoor unit
  • a cloud platform which communicates with the gateway device, and the cloud platform calculates the intersection of the states of all indoor units according to the wire controller identification bits of all wire controllers and the states of all indoor units connected to each wire controller;
  • FIG. 1 is a functional block diagram of an air conditioning control system according to some embodiments
  • Fig. 2 is a flowchart of the output intersection state of the APP side of the air conditioning system according to some embodiments
  • Fig. 3 is a flow chart of the output intersection state of the APP side of the air conditioning system according to other embodiments.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. connected, or integrally connected. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations. In the description of the above embodiments, specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in an appropriate manner.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality” means two or more.
  • the refrigeration cycle of an air conditioner includes a compressor, a condenser, an expansion valve, and an evaporator.
  • the refrigeration cycle consists of a series of processes involving compression, condensation, expansion, and evaporation, and supplies refrigerant to air that has been conditioned and heat exchanged.
  • the compressor compresses refrigerant gas in a high-temperature and high-pressure state and discharges the compressed refrigerant gas.
  • the discharged refrigerant gas flows into the condenser.
  • the condenser condenses the compressed refrigerant into a liquid phase, and the heat is released to the surrounding environment through the condensation process.
  • the expansion valve expands the high-temperature and high-pressure liquid-phase refrigerant condensed in the condenser into a low-temperature and low-pressure liquid-phase refrigerant.
  • the evaporator evaporates the refrigerant expanded in the expansion valve, and returns the refrigerant gas in a low-temperature and low-pressure state to the compressor.
  • the evaporator can realize the cooling effect by using the latent heat of refrigerant evaporation to exchange heat with the material to be cooled.
  • the air conditioner regulates the temperature of the interior space.
  • the air conditioner outdoor unit refers to a part including a compressor of a refrigeration cycle and includes an outdoor heat exchanger, the air conditioner indoor unit includes an indoor heat exchanger, and an expansion valve may be provided in the air conditioner indoor unit or the outdoor unit.
  • the indoor heat exchanger and the outdoor heat exchanger are used as condensers or evaporators.
  • the air conditioner is used as a heater in heating mode
  • the indoor heat exchanger is used as an evaporator
  • the air conditioner is used as a cooler in cooling mode.
  • the air conditioner includes at least one outdoor unit, at least two indoor units, at least one wire controller, a gateway device, a cloud platform and an APP side.
  • Fig. 1 it shows an outdoor unit, two indoor units (1# indoor unit and 2# indoor unit), a wire controller, gateway device, cloud platform and APP side.
  • Each outdoor unit is communicatively connected to each indoor unit through a communication bus.
  • Each outdoor unit and indoor unit has its own address number.
  • An outdoor unit and a corresponding indoor unit form an air conditioner and perform the function of air conditioning.
  • the state of the air conditioner may include on/off, (cooling/heating/dehumidification) mode, air volume, and additional functions.
  • the additional functions may include energy saving, mute, sleep, health, Self-cleaning, forest wind, auxiliary heating, humidification and other functions.
  • the wire controller is used to control the work of the indoor unit.
  • the wired controller can be a wireless wired controller with a communication module (for example, a WiFi wired controller), or a wired wired controller without a communication module.
  • each wire controller has a wire controller identification bit.
  • wired controllers there are two wired controllers: 1# wired controller and 2# wired controller, 1# wired controller has the wired controller flag1; 2# wired controller has the wired controller flag2.
  • Each wire controller can control at least two indoor units.
  • 1# wired controller controls two indoor units: 11# indoor unit and 12# indoor unit; 2# wired controller controls three indoor units: 21# indoor unit, 22# indoor unit and 23# indoor unit .
  • 11# indoor unit has the following states: power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep), recorded as 11# state set.
  • the 12# indoor unit has the following states: on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, silent, self-cleaning), recorded as the 12# state set.
  • the switch (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute) should be displayed.
  • the 21# indoor unit has the following states: on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, health), recorded as the 21# state set.
  • the 22# indoor unit has the following states: on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, self-cleaning, forest wind), recorded as 22# state set.
  • the 23# indoor unit has the following states: on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, auxiliary heating, humidification), recorded as 23# state set.
  • the switch (cooling/heating/dehumidification) mode, air volume, and additional functions (energy saving, mute, sleep) should be displayed on the 2# wire controller.
  • the gateway device has a communication module, which is not limited to WiFi/NB-IOT and other communication methods, and is used to report the status of the air conditioner to the cloud platform.
  • the gateway device may be an NB-IOT adapter configured on an outdoor unit, and the NB-IOT adapter includes a main control chip and a communication chip connected to the main control chip.
  • the main control chip is used to obtain the operation information of the internal and external units in the air conditioning system, and transmit the status changes to the communication chip.
  • the communication chip is used to receive the state change, and feed back the state of the internal and external units in the current air conditioning system to the cloud platform.
  • the gateway device can also be a WiFi gateway, which can be independent of the air-conditioning system and connected to the communication bus, and can report the above-mentioned information related to the air-conditioning system to the cloud platform.
  • the cloud platform interacts with the outdoor unit and indoor unit through the gateway device.
  • the cloud platform in this application can The status of all indoor units, calculate the intersection of the statuses of all indoor units, and interact with the APP side, and output it on the APP side.
  • the cloud platform can store the status of the air conditioner reported by the gateway device, the address number of the indoor unit and the wire controller identification bit of each wire controller.
  • the address number of the indoor unit is used to receive the control strategy sent by the APP side.
  • FIG. 2 it shows a flow chart of calculating the intersection of states of all indoor units and the intersection of APP side outputs.
  • S21 The cloud platform identifies the wire controller according to the wire controller identification bit.
  • the 1# wire controller is identified according to the wire controller identification bit flag1; the 2# wire controller is identified according to the wire controller identification bit flag2.
  • S221 Acquire the status of the indoor unit controlled by the 1# wire controller according to the identified 1# wire controller.
  • the 11# indoor unit and the 12# indoor unit connected to the 1# wire controller are recognized.
  • the state of the 11# indoor unit is acquired: power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep), that is, 11# state set.
  • the status of the 12# indoor unit is obtained: power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep), that is, the 12# status set.
  • S222 Acquire the state of the indoor unit controlled by the 2# wire controller according to the identified 2# wire controller.
  • 21# indoor unit power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, self-cleaning, health), that is, 21# status set.
  • the indoor units have their own address numbers, and the wire controller identification bits of the wire controllers are bound to the address numbers of the indoor units.
  • S231 Calculate the intersection of the states of the 11# indoor unit and the 12# indoor unit under the 1# wire controller.
  • intersection of the 11# state set of 11# indoor unit and the 12# state set of 12# indoor unit ⁇ On/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep) ⁇ .
  • S232 Calculate the intersection of the states of the 21# indoor unit, the 22# indoor unit and the 23# indoor unit under the 2# wire controller.
  • the intersection of the 21# state set of the 21# indoor unit, the 22# state set of the 22# indoor unit, and the 23# state set of the 23# indoor unit ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume , additional functions (energy saving, mute, sleep, self-cleaning) ⁇ .
  • the intersection under the 2# wire controller ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, self-cleaning) ⁇ is recorded as the 2# state set.
  • the intersection of the state under the 1# wire controller and the state under the 2# wire controller is the intersection of the 1# state set and the 2# state set, that is, ⁇ power on/off, (cooling/heating/dehumidification) mode, Air volume, additional functions (energy saving, mute, sleep) ⁇ .
  • the state in the intersection set on the cloud platform is pulled, and the state control interface is displayed on the APP side.
  • the output intersection is ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep) ⁇ , therefore, the APP side outputs power on/off, (cooling/heating/dehumidification) mode , air volume, additional functions (energy saving, mute, sleep), and generate a control interface for the intersection state on the APP side.
  • the 1# wire controller displays the following intersecting states: ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep) ⁇ ; 2# wire controller Display the status in the following intersection: ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, self-cleaning) ⁇ ; the APP side displays the status in the following intersection: power on/off, ( Cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep).
  • any state displayed on the APP side is included in the state displayed on any wire controller.
  • the command sent by the APP side to the control state of any wire controller can be responded by the wire controller, and the purpose of controlling the air conditioner through the APP is realized.
  • the APP side represents a smart device installed with an APP, including a mobile phone, a tablet computer (PAD), or a computer.
  • This APP is an application that can monitor and control the air conditioner.
  • FIG. 3 shows a flow chart of calculating the intersection of states of all indoor units and the intersection of APP side outputs.
  • S31 The cloud platform identifies the wire controller according to the wire controller identification bit.
  • the 1# wire controller is identified according to the wire controller identification bit flag1; the 2# wire controller is identified according to the wire controller identification bit flag2.
  • S321 Acquire the status of the indoor unit controlled by the 1# wire controller according to the identified 1# wire controller.
  • the 11# indoor unit and the 12# indoor unit connected to the 1# wire controller are recognized.
  • the state of the 11# indoor unit is acquired: power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep), that is, 11# state set.
  • the status of the 12# indoor unit is obtained: power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep), that is, the 12# status set.
  • S322 Acquire the state of the indoor unit controlled by the 2# wire controller according to the identified 2# wire controller.
  • 21# indoor unit power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep, self-cleaning, health), that is, 21# status set.
  • the indoor units have their own address numbers, and the wire controller identification bits of the wire controllers are bound to the address numbers of the indoor units.
  • the state in the intersection set on the cloud platform is pulled, and the state control interface is displayed on the APP side.
  • the output intersection is ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep) ⁇ , so the APP side outputs power on/off, (cooling/heating/dehumidification) mode, Air volume, additional functions (energy saving, mute, sleep), and generate a control interface for the intersection state on the APP side.
  • the 1# wire controller controls multiple indoor units, for example, 11# indoor unit and 12# indoor unit, by calculating the intersection of the states of all indoor units as described above , the intersection of the states displayed on the APP side is consistent with the intersection of the states displayed by the wire controller. In this way, the consistency of the state control of the air conditioner through the APP is realized.
  • the wire controller #1 is identified according to the wire controller identification bit flag1.
  • the identified 1# wire controller obtain the status of the 11# indoor unit and the status of the 12# indoor unit controlled by the 1# wire controller.
  • the state of the 11# indoor unit on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep), that is, the 11# state set.
  • intersection of the 11# state set of 11# indoor unit and the 12# state set of 12# indoor unit ⁇ On/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep) ⁇ .
  • the state in the intersection set on the cloud platform is pulled, and the state control interface is displayed on the APP side.
  • the output intersection is ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, silent, sleep) ⁇ , therefore, the APP side outputs power on/off, (cooling/heating/dehumidification) mode , air volume, additional functions (energy saving, mute, sleep), and generate a control interface for the intersection state on the APP side.
  • the 1# wire controller displays the following intersection status: ⁇ power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep) ⁇ ;
  • the APP side displays the following intersection Status: power on/off, (cooling/heating/dehumidification) mode, air volume, additional functions (energy saving, mute, sleep).
  • the command sent by the APP side to the control state of the 1# wire controller can be responded by the 1# wire controller, and the purpose of controlling the air conditioner through the APP is realized.
  • the air conditioner control system of the present application does not have the problem that the wire controller is under centralized control due to the control command issued by the APP, and there is never a situation where the air conditioner cannot be controlled through the APP, so the user experience is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制系统,包括:至少一个室外机;至少两个室内机,各室内机通过通信总线与各室外机通信连接;至少一个线控器,每个线控器控制至少两个室内机工作且均具有线控器标识位;网关设备,其与各室外机及室内机通信连接;云平台,其根据所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算所有室内机的状态的交集;APP侧,其与云平台交互,且能够输出交集中的状态。

Description

空调控制系统
相关申请交叉引用
本申请要求于2021年08月24日提交中国专利局、申请号为202110976259.X、申请名称为“中央空调控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,尤其涉及空调控制系统。
背景技术
随着WIFI网络、智能手机的普及,空调开始走智能化的道路,对物联网智能家电的兴趣越来越高涨,通过应用App客户端来控制家电设备的方式成为一种趋势。
现有空调应用场景越来越广泛,空调系统下存在多台室内机,如果在多个系统的场景下,室内机数量会更多,为了便捷地管理这些空调,同一线控器会对多个空调进行控制。
发明内容
本申请提出一种空调控制系统,包括:
至少一个室外机;
至少两个室内机,各室内机与各室外机连接;
至少一个线控器,每个线控器控制所述至少两个室内机工作且均具有线控器标识位;
网关设备,其与各室外机及室内机通信连接;
云平台,其与所述网关设备通信连接,所述云平台根据所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算所有室内机的状态的交集;
APP侧,其与所述云平台交互,且能够输出所述交集中的状态。
附图说明
图1是根据一些实施例的空调控制系统的原理框图;
图2是根据一些实施例的空调系统APP侧输出交集状态的流程图;
图3是根据另一些实施例的空调系统APP侧输出交集状态的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
[空调的基本运行原理]
空调的制冷循环包括压缩机、冷凝器、膨胀阀和蒸发器。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机压缩形成高温高压状态的制冷剂气体并排出压缩后的制冷剂气 体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低温低压的液相制冷剂。
蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。
蒸发器可以通过利用制冷剂蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调可以调节室内空间的温度。
空调室外机是指包括制冷循环的压缩机的部分以及包括室外热交换器,空调室内机包括室内热交换器,并且膨胀阀可以提供在空调室内机或室外机中。
室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调用作制热模式的加热器,当室内热交换器用作蒸发器时,空调用作制冷模式的冷却器。
空调器
空调器包括至少一个室外机、至少两个室内机、至少一个线控器、网关设备、云平台和APP侧。
参见图1,其示出了一个室外机、两个室内机(1#室内机和2#室内机)、一个线控器、网关设备、云平台和APP侧。
各室外机与各室内机通过通信总线通信连接。
各室外机和室内机均具有各自的地址号。
一个室外机和对应一个室内机形成空调设备,执行调节空气的功能。
在本申请中,空调设备的状态(即,室内机的状态)可以包括开关机、(制冷/制热/除湿)模式、风量以及附加功能,该附加功能可以包括节能、静音、睡眠、健康、自清洁、森林风、辅热、加湿等功能。
线控器用于控制室内机工作。
线控器可以为带有通信模块的无线线控器(例如WiFi线控器),也可以为不带有通信模块的有线线控器。
在本申请中,设置至少一个线控器,且每个线控器分别具有线控器标识位。
例如,具有两个线控器:1#线控器和2#线控器,1#线控器具有线控器标识位flag1;2#线控器具有线控器标识位flag2。
每个线控器下能够控制至少两个室内机。
例如,1#线控器下控制两个室内机:11#室内机和12#室内机;2#线控器下控制三个室内机:21#室内机、22#室内机和23#室内机。
例如,11#室内机具有如下状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),记为11#状态集。
12#室内机具有如下状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、自清洁),记为12#状态集。
此时,在1#线控器上应显示开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音)。
21#室内机具有如下状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、健康),记为21#状态集。
22#室内机具有如下状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、森林风),记为22#状态集。
23#室内机具有如下状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、辅热、加湿),记为23#状态集。
此时,在2#线控器上应显示开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)。
网关设备具有通信模块,不限于WiFi/NB-IOT等方式的通信,用于上报空调设备的状态至云平台。
该网关设备可以是配置在室外机上的NB-IOT适配器,该NB-IOT适配器包括主控芯片和连接于主控芯片的通讯芯片。
主控芯片用于获取空调系统中内外机组的运行信息,并将状态变化传输至通讯芯片。
通讯芯片用于接收该状态变化,并向云平台反馈当前空调系统中内外机组的状态。
该网关设备还可以为WiFi网关,其可以独立于空调系统、连接于通信总线上,能够向云平台上报如上所述的空调系统相关的信息。
云平台通过网关设备与室外机及室内机实现交互。
为了在同一个线控器控制多个室内机时,能够通过APP侧实现对空调设备的控制,本申请中云平台能够根据所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算所有室内机的状态的交集,并与APP侧交互后,在APP侧输出。
云平台能够存储通过网关设备上报的空调设备的状态、室内机的地址号及各线控器的线控器标识位。
室内机的地址号用于接收APP侧下发的控制策略。
APP侧输出状态的方式I
参见图2,其给出了计算所有室内机的状态的交集及APP侧输出交集的流程图。
S21:云平台根据线控器标识位识别线控器。
例如,如上所述的,根据线控器标识位flag1识别1#线控器;根据线控器标识位flag2识别2#线控器。
S22:获取各线控器所连接的室内机的状态。
S221:根据所识别到的1#线控器,获取1#线控器所控制的室内机的状态。
识别到1#线控器连接的11#室内机和12#室内机。
获取到11#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),即,11#状态集。
获取到12#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),即,12#状态集。
S222:根据所识别到的2#线控器,获取2#线控器所控制的室内机的状态。
识别2#线控器连接的21#室内机、22#室内机和23#室内机。
获取到21#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、健康),即,21#状态集。
获取到22#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、森林风),即,22#状态集。
获取到23#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、辅热、加湿),即,23#状态集。
需要说的是,室内机具有各自的地址号,且线控器的线控器标识位是与室内机的地址号绑定的。
S23:计算各线控器所连接的所有室内机的状态的交集。
S231:计算1#线控器下11#室内机和12#室内机的状态的交集。
即,11#室内机的11#状态集和12#室内机的12#状态集的交集:{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)}。
S232:计算2#线控器下21#室内机、22#室内机和23#室内机的状态的交集。
即,21#室内机的21#状态集、22#室内机的22#状态集、和23#室内机的23#状态集的交集:{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁)}。
S24:计算所有线控器下的状态的交集。
根据S23获知,1#线控器下的交集{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)},记为1#状态集。
2#线控器下的交集{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁)},记为2#状态集。
因此,1#线控器下的状态和2#线控器下的状态的交集为1#状态集和2#状态集的交集,即,{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)}。
S25:APP侧输出交集中的状态。
APP启动后,拉取云平台上的交集中的状态,在APP侧展示状态控制界面。
在S24中输出交集为{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)},因此,APP侧输出开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),并在APP侧生成交集中状态的控制界面。
如上所述,1#线控器上显示如下交集中的状态:{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)};2#线控器上显示如下交集中的状态:{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁)};APP侧显示如下交集中的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)。
可知,APP侧显示的任一状态均包含在任一线控器上显示的状态中。
因此,APP侧下发至任一线控器的控制状态的指令都能被线控器响应,实现通过APP达到控制空调的目的。
需要说明的是,该APP侧表示安装有APP的智能类设备,包括手机、平板电脑(PAD)或电脑等。
该APP是能够监控并控制空调器的应用程序。
APP侧输出状态的方式II
参见图3,其给出了计算所有室内机的状态的交集及APP侧输出交集的流程图。
S31:云平台根据线控器标识位识别线控器。
例如,如上所述的,根据线控器标识位flag1识别1#线控器;根据线控器标识位flag2识别2#线控器。
S32:获取各线控器所连接的室内机的状态。
S321:根据所识别到的1#线控器,获取1#线控器所控制的室内机的状态。
识别到1#线控器连接的11#室内机和12#室内机。
获取到11#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),即,11#状态集。
获取到12#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),即,12#状态集。
S322:根据所识别到的2#线控器,获取2#线控器所控制的室内机的状态。
识别2#线控器连接的21#室内机、22#室内机和23#室内机。
获取到21#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、健康),即,21#状态集。
获取到22#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、森林风),即,22#状态集。
获取到23#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠、自清洁、辅热、加湿),即,23#状态集。
需要说的是,室内机具有各自的地址号,且线控器的线控器标识位是与 室内机的地址号绑定的。
S33:计算所有线控器所连接的所有室内机的状态的交集。
计算11#室内机的11#状态集、12#室内机的12#状态集、21#室内机的21#状态集、22#室内机的22#状态集、和23#室内机的23#状态集的交集。
即,{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)}。
S34:APP侧输出交集中的状态。
APP启动后,拉取云平台上的交集中的状态,在APP侧展示状态控制界面。
在S33中输出交集为{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)},因此APP侧输出开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),并在APP侧生成交集中状态的控制界面。
如上同样能够实现在APP侧下发至任一线控器的控制状态的指令都能被线控器响应,实现通过APP达到控制空调的目的。
APP侧输出状态的方式II
在空调系统中存在一个1#线控器,且1#线控器控制多个室内机,例如,11#室内机和12#室内机,通过如上所述计算所有室内机的状态的交集的方式,APP侧显示的状态的交集与线控器显示的状态的交集是一致的,如此,实现通过APP对空调器的状态控制一致性。
S21':云平台线控器标识位识别线控器。
例如,如上所述的,根据线控器标识位flag1识别1#线控器。
S22':获取线控器所连接的室内机的状态。
根据所识别到的1#线控器,获取1#线控器所控制的11#室内机的状态和12#室内机的状态。
11#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),即,11#状态集。
12#室内机的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),即,12#状态集。
S23':计算线控器所连接的所有室内机的状态的交集。
即,11#室内机的11#状态集和12#室内机的12#状态集的交集:{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)}。
S24':APP侧输出交集中的状态。
APP启动后,拉取云平台上的交集中的状态,在APP侧展示状态控制界面。
在S23中输出交集为{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)},因此,APP侧输出开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠),并在APP侧生成交集中状态的控制界面。
如上所述,1#线控器上显示如下交集中的状态:{开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)};APP侧显示如下交集中的状态:开关机、(制冷/制热/除湿)模式、风量、附加功能(节能、静音、睡眠)。
可知,APP侧显示的状态与1#线控器上显示的状态一致。
因此,APP侧下发至1#线控器的控制状态的指令都能被1#线控器响应,实现通过APP达到控制空调的目的。
本申请的空调控制系统,不会出现通过APP下发控制指令而产生线控器处于集中控制的问题,从不会出现通过APP不能控制空调器的情况,因此用户体验度好。
以上实施例仅用以说明本申请的技术方案,而非对其进行限制;尽管参照前述实施例对本申请进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请所要求保护的技术方案的精神和范围。

Claims (7)

  1. 一种空调控制系统,其特征在于,包括:
    至少一个室外机;
    至少两个室内机,各室内机通过通信总线与各室外机通信连接;
    至少一个线控器,每个线控器控制至少两个室内机工作且均具有线控器标识位;
    网关设备,其与各室外机及室内机通信连接;
    云平台,其与所述网关设备通信连接,所述云平台根据所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算所有室内机的状态的交集;
    APP侧,其与所述云平台交互,且能够输出所述交集中的状态。
  2. 根据权利要求1所述的空调控制系统,其特征在于,所述云平台根据所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算所有室内机的状态的交集,具体为:
    所述云平台接收所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算各线控器所连接的所有室内机的状态的交集;
    根据各线控器的交集,计算所有线控器的交集,作为所有室内机的状态的交集。
  3. 根据权利要求1所述的空调控制系统,其特征在于,所述云平台根据所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,计算所有室内机的状态的交集,具体为:
    所述云平台接收所有线控器的线控器标识位及各线控器所连接的所有室内机的状态,直接计算所有线控器所连接的所有室内机的状态的交集。
  4. 根据权利要求1所述的空调控制系统,其特征在于,所述网关设备还获取所有室内机的状态及地址号,并上传至所述云平台。
  5. 根据权利要求1所述的空调控制系统,其特征在于,
    所述网关设备为无线网关设备。
  6. 根据权利要求5所述的空调控制系统,其特征在于,
    所述无线网关设备为配置在所述室外机上的NB-IoT适配器、或连接于所述通信总线的WiFi网关。
  7. 根据权利要求1所述的空调控制系统,其特征在于,
    所述APP侧为安装有能够控制空调的APP的手机、PAD或电脑。
PCT/CN2021/122017 2021-08-24 2021-09-30 空调控制系统 WO2023024216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180096480.4A CN117083490A (zh) 2021-08-24 2021-09-30 空调控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110976259.X 2021-08-24
CN202110976259.XA CN113701314B (zh) 2021-08-24 2021-08-24 中央空调控制系统

Publications (1)

Publication Number Publication Date
WO2023024216A1 true WO2023024216A1 (zh) 2023-03-02

Family

ID=78654400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122017 WO2023024216A1 (zh) 2021-08-24 2021-09-30 空调控制系统

Country Status (2)

Country Link
CN (2) CN113701314B (zh)
WO (1) WO2023024216A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025210A1 (zh) * 2021-08-24 2023-03-02 青岛海信日立空调系统有限公司 空调系统的控制方法及空调系统
CN114087750A (zh) * 2021-12-03 2022-02-25 湖北未知信息技术有限公司 一种分布式中央空调的主机与温控器无线联动系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322672A (zh) * 2011-08-08 2012-01-18 青岛海信日立空调系统有限公司 一种单个线控器控制多台空调室内机的方法
CN103615789A (zh) * 2013-12-13 2014-03-05 青岛海信日立空调系统有限公司 基于室内机编组的空调集中控制方法及多联机空调系统
CN105207863A (zh) * 2015-08-31 2015-12-30 青岛海尔智能家电科技有限公司 一种控制异构智能家电设备的方法、云平台及家庭网关
US20160223215A1 (en) * 2015-01-30 2016-08-04 Paul Robert Buda Interior Comfort HVAC User-Feedback Control System And Apparatus
CN105897755A (zh) * 2016-06-06 2016-08-24 广东美的暖通设备有限公司 多联机空调系统中的通信方法、通信装置、内机和外机
CN106453011A (zh) * 2016-11-30 2017-02-22 海信集团有限公司 智能家居设备的网络连接方法及智能家居网关

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349940A (ja) * 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 空気調和システム
JP5804009B2 (ja) * 2013-09-13 2015-11-04 ダイキン工業株式会社 空気調和装置
CN107560092B (zh) * 2017-09-25 2019-10-22 珠海格力电器股份有限公司 多联机运行状态控制方法、系统及热泵多联机
CN108036475A (zh) * 2017-11-21 2018-05-15 青岛海尔空调电子有限公司 用于空调的控制方法和空调
CN108592349A (zh) * 2018-04-28 2018-09-28 四川虹美智能科技有限公司 一种空调控制系统
CN109724206A (zh) * 2019-01-11 2019-05-07 青岛海信日立空调系统有限公司 空调机组
CN109764483B (zh) * 2019-01-31 2020-10-30 奥克斯空调股份有限公司 一种空调器集中控制方法、装置及客户端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102322672A (zh) * 2011-08-08 2012-01-18 青岛海信日立空调系统有限公司 一种单个线控器控制多台空调室内机的方法
CN103615789A (zh) * 2013-12-13 2014-03-05 青岛海信日立空调系统有限公司 基于室内机编组的空调集中控制方法及多联机空调系统
US20160223215A1 (en) * 2015-01-30 2016-08-04 Paul Robert Buda Interior Comfort HVAC User-Feedback Control System And Apparatus
CN105207863A (zh) * 2015-08-31 2015-12-30 青岛海尔智能家电科技有限公司 一种控制异构智能家电设备的方法、云平台及家庭网关
CN105897755A (zh) * 2016-06-06 2016-08-24 广东美的暖通设备有限公司 多联机空调系统中的通信方法、通信装置、内机和外机
CN106453011A (zh) * 2016-11-30 2017-02-22 海信集团有限公司 智能家居设备的网络连接方法及智能家居网关

Also Published As

Publication number Publication date
CN117083490A (zh) 2023-11-17
CN113701314B (zh) 2022-11-29
CN113701314A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2023024216A1 (zh) 空调控制系统
CN111189296B (zh) 制冷系统的控制方法、制冷系统、制冷设备和存储介质
CN112815406A (zh) 室外机
CN113587393B (zh) 中央空调控制系统
JP2011220608A (ja) 空気調和システム
WO2014115318A1 (ja) 空気調和制御システム
KR101192347B1 (ko) 공기조화기 및 그 주소설정방법
CN112393381B (zh) 空调监测系统
CN113339951A (zh) 多联机运维系统
KR101991561B1 (ko) 공기 조화 시스템의 제어 방법 및 장치
CN113587391A (zh) 一种基于蓝牙通信的多联机系统
KR101964626B1 (ko) 공기 조화기 및 이의 주소 분배 방법
KR20150029196A (ko) 공기조화기 시스템 및 그 동작방법
CN214620001U (zh) 多联机空调系统
KR20160010197A (ko) 공기조화기 및 그 제어방법
CN113701250B (zh) 中央空调系统
WO2023138118A1 (zh) 空调控制系统和控制方法
CN114484813A (zh) 一种空气调节系统及空气调节设备
KR20150049530A (ko) 공기조화기 시스템 및 그 동작방법
CN115264769A (zh) 空调控制系统
CN206257756U (zh) 一种多功能多联式空调系统
JPWO2020165992A1 (ja) 空気調和システム、空気調和装置、運転制御方法およびプログラム
CN113339953A (zh) 空调控制系统
CN113339955A (zh) 空调控制系统
CN113587392B (zh) 中央空调控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096480.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE