WO2023022195A1 - 把持装置及び把持装置の制御方法 - Google Patents

把持装置及び把持装置の制御方法 Download PDF

Info

Publication number
WO2023022195A1
WO2023022195A1 PCT/JP2022/031208 JP2022031208W WO2023022195A1 WO 2023022195 A1 WO2023022195 A1 WO 2023022195A1 JP 2022031208 W JP2022031208 W JP 2022031208W WO 2023022195 A1 WO2023022195 A1 WO 2023022195A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
value
unit
force
gripping
Prior art date
Application number
PCT/JP2022/031208
Other languages
English (en)
French (fr)
Inventor
俊輝 木村
友佑 青木
玲治 山▲崎▼
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to CN202280056580.9A priority Critical patent/CN117836100A/zh
Publication of WO2023022195A1 publication Critical patent/WO2023022195A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present disclosure relates to a gripping device and a gripping device control method.
  • a gripping device called a manipulator or gripper is used to grip objects to be gripped, such as mechanical and electrical parts.
  • Patent Document 1 an article gripping position of an article gripped by a hand portion of an assembly robot is detected, and the article gripping position is compared with a preset reference article gripping reference position to determine both positions.
  • a control method for driving and controlling the article assembling robot based on the amount of deviation is disclosed.
  • Japanese Patent Laid-Open No. 2002-200002 includes a comparison means that compares the detection result of the force information detection means in the work state during normal assembly operation in advance with the current force information detected by the force information detection means.
  • a force control system for an assembly robot is disclosed.
  • Patent document 2 discloses that when the current force information does not match the target value of the corresponding stage as a comparison result of a comparison means, a correction signal is generated to move the assembly robot in the direction of making them match, and the robot is controlled. It is disclosed to provide a correction means that outputs to the means.
  • Patent document 3 discloses control for detecting the actual contact position with respect to the object based on the output of a fingertip force sensor of a multi-fingered hand unit, and correcting the position information of the object based on the detected contact position information.
  • a robotic device is disclosed that includes a unit.
  • the present disclosure provides a gripping device capable of gripping a gripping object without crushing it.
  • a drive unit including a motor and a detection unit that detects the position and speed of a rotating shaft of the motor; a motor drive unit for detecting a current value of a current supplied to the motor, a first finger, and a second finger; A gripping portion that grips an object with the first finger portion and the second finger portion at different intervals, and when the object is gripped with the first finger portion and the second finger portion, the first finger portion and the second finger portion grip the object.
  • a force detection unit for detecting a gripping force with which the first finger and the second finger grip the object; a control unit for outputting the current operation value to the control unit, the control unit including a force control calculation unit, a position command value generation unit, a contact determination unit, a switching unit, a position/speed calculation unit, and a current calculation wherein the force control calculation unit converts the force command value into a first position command value, the position command value generation unit generates a second position command value, and the contact determination unit
  • the switching unit detects that the first finger or the second finger touches the object, and the switching unit determines whether the contact determination unit determines whether the first finger or the second finger touches the object.
  • the gripping device is provided in which the control unit sets the first position command value to the position detection value detected by the detection unit when switching from the second position command value to the first position command value.
  • the gripping target can be gripped without being crushed.
  • FIG. 1 is a diagram showing a configuration example of a grasping device according to the first embodiment.
  • FIG. 2 is a diagram for explaining the functional configuration of the grasping device according to the first embodiment.
  • FIG. 3 is a diagram illustrating the functional configuration of an arithmetic processing unit included in the control unit of the gripping device according to the first embodiment;
  • FIG. 4 is a diagram illustrating a functional configuration of an operation value calculation section of an arithmetic processing section included in the control section of the gripping device according to the first embodiment.
  • FIG. 5 is a diagram illustrating a functional configuration of an admittance control calculation section of a calculation processing section included in the control section of the gripping apparatus according to the first embodiment.
  • FIG. 6 is a diagram for explaining the functional configuration of the position/velocity calculation section of the calculation processing section of the control section of the gripping apparatus according to the first embodiment.
  • FIG. 7 is a diagram for explaining the functional configuration of a current calculation section of a calculation processing section included in the control section of the gripping device according to the first embodiment.
  • FIG. 8 is a diagram for explaining the functional configuration of a position command value generation unit of an arithmetic processing unit included in the control unit of the gripping device according to the first embodiment.
  • FIG. 9 is a diagram for explaining the operation of the grasping device according to the first embodiment.
  • FIG. 10 is a diagram for explaining the operation of the gripping device of the comparative example.
  • FIG. 11 is a diagram for explaining the operation of the gripping device according to the first embodiment and the gripping device of the comparative example.
  • FIG. 12 is a diagram for explaining the operation of the gripping device according to the first embodiment and the gripping device of the comparative example.
  • FIG. 13 is a diagram illustrating a functional configuration of an arithmetic processing unit included in a control unit of a gripping device according to the second embodiment;
  • FIG. 14 is a flowchart for explaining the processing of the force command generation unit of the arithmetic processing unit of the control unit of the gripping device according to the second embodiment.
  • 15A and 15B are diagrams for explaining the operation of the grasping device according to the second embodiment.
  • FIG. 16 is a flowchart for explaining the processing of the force command generation unit of the arithmetic processing unit of the control unit of the gripping device according to the third embodiment.
  • 17A and 17B are diagrams for explaining the operation of the grasping device according to the third embodiment.
  • FIG. 18 is a flowchart for explaining the processing of the force command generation unit of the arithmetic processing unit of the control unit of the gripping device according to the fourth embodiment.
  • 19A and 19B are diagrams for explaining the operation of the gripping device according to the fourth embodiment.
  • FIG. 1 is a diagram showing a configuration example of a gripping device 1 according to this embodiment.
  • FIG. 2 is a diagram illustrating the functional configuration of the gripping device 1 according to this embodiment.
  • FIG. 1 is set with a virtual three-dimensional coordinate system (XYZ orthogonal coordinate system) consisting of mutually orthogonal X-, Y-, and Z-axes (XYZ axes).
  • XYZ orthogonal coordinate system consisting of mutually orthogonal X-, Y-, and Z-axes (XYZ axes).
  • the coordinate system is defined for explanation and does not limit the orientation of the gripping device 1 .
  • the X-axis direction is the direction in which the first finger portion 21a and the second finger portion 21b extend.
  • the Y-axis direction is the direction in which the first finger portion 21a and the second finger portion 21b move.
  • the Z-axis is a direction perpendicular to the X-axis and the Y-axis.
  • the gripping device 1 for example, is attached to the tip of the arm of the robot and grips the gripping target TGT. Specifically, the gripping device 1 grips the gripping target TGT between the first finger portion 21a and the second finger portion 21b.
  • the gripping device 1 includes a driving section 10 , a gripping section 20 , a force detecting section 30 , a motor driving section 40 and a control section 50 . Each element of the gripping device 1 will be described in detail.
  • control unit 50 and the motor driving unit 40 are connected by a wiring Lm1. Further, the motor driving section 40 and the driving section 10, more specifically, the motor driving section 40 and the power section 11 (motor 11m) of the driving section 10 are connected by a wiring Lm2. Furthermore, the control unit 50 and the driving unit 10, more specifically, the power unit 11 (encoder 11e) of the driving unit 10 are connected by a wiring Lm3.
  • the drive unit 10 changes the distance between the first finger 21a and the second finger 21b. Specifically, the drive unit 10 moves the first finger 21a and the second finger 21b in opposite directions in the Y-axis direction.
  • the drive unit 10 includes a power unit 11 and a motion conversion unit 12. Details of each of the power unit 11 and the motion conversion unit 12 will be described.
  • the power unit 11 rotates the rotary shaft based on electric power supplied from the motor drive unit 40 via the wiring Lm2.
  • the power unit 11 converts the electric power into rotational motion and transmits it to the motion conversion unit 12 .
  • the power unit 11 includes a motor 11m and an encoder 11e.
  • the motor 11m is, for example, an AC (Alternating Current) motor or a stepping motor.
  • the motor 11m rotates the rotating shaft based on the electric power (supplied power Pd) supplied from the motor driving section 40 .
  • the supplied power Pd is determined based on the current manipulation value MVi. Therefore, the motor 11m rotates based on the current manipulation value MVi.
  • the motor 11m has a configuration known as a motor such as a rotating shaft, a stator, and a rotor.
  • the encoder 11e detects the position and rotation speed of the rotating shaft of the motor 11m.
  • the encoder 11e outputs the detected result to the control section 50 via the wiring Lm3.
  • the encoder 11e is an example of a detection unit.
  • the motion converter 12 converts the rotational motion transmitted from the motor 11m into linear motion in the Y-axis direction.
  • the motion conversion unit 12 is configured by mechanical parts such as gears, worm gears, and cams, for example.
  • the motion converting section 12 includes a moving section 12a and a moving section 12b protruding from the housing 12c. Each of the moving part 12a and the moving part 12b is movable with respect to the housing 12c.
  • the motion conversion unit 12 converts the rotary motion transmitted from the motor 11m into linear motion for moving the moving units 12a and 12b in the Y-axis direction with respect to the housing 12c.
  • the moving part 12a moves in the +Y direction in the Y-axis direction.
  • the moving part 12a moves in the -Y direction in the Y-axis direction.
  • the moving portion 12b moves in the -Y direction in the Y-axis direction.
  • the moving part 12b moves in the +Y direction in the Y-axis direction.
  • the moving parts 12a and 12b move in opposite directions in the Y-axis direction, specifically, in directions away from each other in the Y-axis direction. Therefore, when the motor 11m rotates in one direction, the distance between the moving parts 12a and 12b increases. Further, when the motor 11m rotates in the opposite direction, the moving parts 12a and 12b move in opposite directions in the Y-axis direction, specifically, in directions in which they approach each other in the Y-axis direction. Therefore, when the motor 11m rotates in the opposite direction, the distance between the moving parts 12a and 12b is narrowed.
  • the driving section 10 can change the distance between the moving section 12a and the moving section 12b by rotating the motor 11m.
  • the gripping part 20 grips the gripping target TGT between the first finger part 21a and the second finger part 21b by the driving part 10 .
  • the grip portion 20 includes a first finger portion 21a and a first holding portion 22a that holds the first finger portion 21a on the +Y side in the Y-axis direction with respect to the central axis Ac.
  • the first finger portion 21a is fixed to the first holding portion 22a.
  • the first holding portion 22a is fixed to the moving portion 12a via a first force sensor 31a, which will be described later.
  • the gripping device 1 includes a fixing portion 15a for fixing the first force sensor 31a to the moving portion 12a.
  • the grip portion 20 includes a second finger portion 21b and a second holding portion 22b that holds the second finger portion 21b on the -Y side in the Y-axis direction with respect to the central axis Ac.
  • the second finger portion 21b is fixed to the second holding portion 22b.
  • the second holding portion 22b is fixed to the moving portion 12b via a second force sensor 31b, which will be described later.
  • the gripping device 1 includes a fixing portion 15b for fixing the second force sensor 31b to the moving portion 12b.
  • the first finger portion 21a moves in the Y-axis direction together with the movement of the moving portion 12a in the Y-axis direction.
  • the second finger 21b moves in the Y-axis direction together with the movement of the moving part 12b in the Y-axis direction. Therefore, when the distance between the moving parts 12a and 12b changes, the distance D between the first finger part 21a and the second finger part 21b changes. By narrowing the distance D between the first finger portion 21a and the second finger portion 21b, the gripping portion 20 grips the gripping target TGT with the first finger portion 21a and the second finger portion 21b.
  • the gripping of the gripping target TGT by the gripping portion 20 is not limited to the case of sandwiching the gripping target TGT between the first finger portion 21a and the second finger portion 21b.
  • a ring-shaped object to be grasped may be grasped by inserting fingers inside the ring and opening the fingers from the inside to the outside.
  • the force detection unit 30 detects the force (gripping force) applied between the first finger portion 21a and the second finger portion 21b when the gripping portion 20 grips the gripping target TGT.
  • the force detection unit 30 includes a first force sensor 31a and a second force sensor 31b.
  • Each of the first force sensor 31a and the second force sensor 31b is, for example, a six-axis force sensor.
  • the first force sensor 31a is connected to the control unit 50 via wiring La. Also, the second force sensor 31b is connected to the control unit 50 via the wiring Lb.
  • the force detection unit 30 uses the detection result regarding the force in the Y-axis direction in the output of the 6-axis force sensor.
  • the first force sensor 31a is fixed to the first holding portion 22a that holds the first finger portion 21a. Further, the first force sensor 31a is fixed to the moving portion 12a via the fixing portion 15a. The first force sensor 31a detects the force with which the gripping object TGT presses the first finger portion 21a when the gripping portion 20 grips the gripping object TGT.
  • the second force sensor 31b is fixed to the second holding portion 22b that holds the second finger portion 21b. Also, the second force sensor 31b is fixed to the moving portion 12b via the fixing portion 15b. The second force sensor 31b detects the force with which the gripping object TGT presses the second finger portion 21b when the gripping portion 20 grips the gripping object TGT.
  • the gripping device 1 includes the force detection unit 30 between the driving unit 10 and the gripping unit 20.
  • the force detection unit 30 is provided between the driving unit 10 and the gripping unit 20 is not limited to
  • the gripping device 1 may include the first force sensor 31a and the second force sensor 31b at the tips of the first finger portion 21a and the second finger portion 21b, respectively.
  • the type of force sensor is not limited as long as it can detect the gripping force applied between the first finger portion 21a and the second finger portion 21b.
  • a MEMS (Micro Electro Mechanical Systems) sensor capable of detecting force may be used, or a piezoelectric element or a strain gauge may be used.
  • a MEMS sensor or a strain gauge a strain-generating body that generates strain by an external force may be used in order to detect the sense of force, or a part of the grip part 20 may be used as the strain-generating body.
  • the force detection unit 30 includes the first force sensor 31a and the second force sensor 31b, but only one of the first force sensor 31a and the second force sensor 31b is used. You may prepare. That is, only one of the first finger portion 21a and the second finger portion 21b may be provided with the force sensor.
  • the motor drive unit 40 supplies power (supplied power Pd) to the drive unit 10, more specifically, the motor 11m based on an operation command (current control signal Ip) from the control unit 50.
  • the driving section 10 is driven by electric power supplied from the motor driving section 40 .
  • the drive unit 10 is driven by the electric power supplied from the motor drive unit 40 , so that the drive unit 10 operates according to the operation command from the control unit 50 .
  • the motor driving unit 40 outputs the current value (driving current value Im) of the power supplied to the driving unit 10 to the control unit 50 .
  • the control unit 50 controls the driving unit 10 using the current value of the current supplied to the driving unit 10 by the motor driving unit 40 .
  • Control unit 50 controls the driving unit 10 so that the gripping force (the first gripping force value Fma and the second gripping force value Fmb) detected by the force detection unit 30 becomes a desired gripping force. Further, the control unit 50 uses the position (position information ⁇ m) and rotation speed (speed information vm) of the rotary shaft detected by the encoder 11e and the current signal (drive current value Im) from the motor drive unit 40. to control.
  • the control unit 50 is composed of, for example, a microprocessing unit including a CPU (Central Processing Unit), RAM (Random Access Memory), and ROM (Read Only Memory).
  • the control unit 50 performs processing by having the CPU expand a program recorded in the ROM into the RAM and execute the program.
  • the control unit 50 includes an arithmetic processing unit 51, a motor control unit 52, a motor operation data acquisition unit 53, and a force measurement data acquisition unit 54.
  • the arithmetic processing unit 51 outputs the current manipulation value MVi to the motor control unit 52 .
  • the motor operation data acquisition unit 53 obtains a current detection value PVi that is the current value of the drive current supplied from the motor drive unit 40 to the power unit 11 (motor 11m), a position detection value PV ⁇ of the rotating shaft of the motor 11m, and a position of the rotating shaft
  • the speed detection value PVv is output to the arithmetic processing unit 51 .
  • the force measurement data acquisition unit 54 outputs the gripping force detection value PVf of the gripping force F received from the gripping object TGT detected by the force detection unit 30 to the arithmetic processing unit 51 . Details of each element are described below.
  • the arithmetic processing unit 51 calculates an operation value for operating the driving unit 10 so that the control value becomes the target value. Specifically, the arithmetic processing unit 51 calculates the current manipulation value MVi so that the gripping force detection value PVf, which is the control value, becomes the gripping force value of the target value. Details of the arithmetic processing unit 51 will be described later. In addition, in the arithmetic processing unit 51 according to the present embodiment, the current manipulation value MVi is output as the manipulation value.
  • the motor control unit 52 outputs an operation value for operating the power unit 11, specifically the motor 11m, to the motor drive unit 40.
  • the motor control unit 52 may output an analog signal such as a voltage signal or a current signal, or may output a digital signal as long as it can be input to the motor driving unit 40. .
  • the motor driving section 40 supplies the power supply Pd to the motor 11m of the power section 11 based on the current control signal Ip.
  • the motor operation data acquisition unit 53 acquires motor operation data regarding the operating state of the power unit 11 from the power unit 11 and the motor drive unit 40 . Specifically, the motor operation data acquisition unit 53 acquires from the motor drive unit 40 the drive current value Im of the supply power Pd supplied to the power unit 11 by the motor drive unit 40 . Further, the motor operation data acquisition unit 53 acquires position information ⁇ m and speed information vm of the rotation shaft of the motor 11m from the encoder 11e.
  • the motor operation data acquisition unit 53 may acquire the drive current value Im from the motor drive unit 40, for example, as an analog signal or as a digital signal. Similarly, the motor operation data acquisition unit 53 may acquire each of the position information ⁇ m and the speed information vm from the encoder 11e using, for example, analog signals or digital signals.
  • the motor operation data acquisition unit 53 outputs the current detection value PVi to the arithmetic processing unit 51 based on the acquired driving current value Im. Further, the motor operation data acquisition unit 53 outputs the position detection value PV ⁇ to the arithmetic processing unit 51 based on the acquired position information ⁇ m. Furthermore, the motor operation data acquisition unit 53 outputs the speed detection value PVv to the arithmetic processing unit 51 based on the acquired speed information vm.
  • the force measurement data acquisition unit 54 acquires measurement data of the gripping force F from the force detection unit 30 . Specifically, the force measurement data acquisition unit 54 acquires the first gripping force value Fma from the first force sensor 31a. The force measurement data acquisition unit 54 also acquires the second gripping force value Fmb from the second force sensor 31b.
  • the force measurement data acquisition unit 54 may acquire the first gripping force value Fma from the first force sensor 31a, for example, as an analog signal or as a digital signal. Similarly, the force measurement data acquisition unit 54 may acquire the second gripping force value Fmb from the second force sensor 31b as an analog signal or a digital signal, for example.
  • the force measurement data acquisition unit 54 outputs the gripping force detection value PVf to the arithmetic processing unit 51 based on the acquired first gripping force value Fma and second gripping force value Fmb. For example, the force measurement data acquisition unit 54 may output an average gripping force value of the first gripping force value Fma and the second gripping force value Fmb as the detected gripping force value PVf.
  • FIG. 3 is a diagram illustrating the functional configuration of the arithmetic processing section 51 included in the control section 50 of the gripping device 1 according to the first embodiment.
  • constituent elements outside the arithmetic processing unit 51 are collectively shown as an object OBJ controlled by the arithmetic processing unit 51 .
  • the controlled object OBJ includes, for example, the drive unit 10, the force detection unit 30, the motor drive unit 40, the motor control unit 52, the motor operation data acquisition unit 53, and the force measurement data acquisition unit .
  • the gripping apparatus 1 performs position/speed control until the gripping target TGT is contacted in order to perform high-speed operations until the gripping target TGT is contacted. After contact, control is performed by force control.
  • the arithmetic processing unit 51 determines the force command value SVf of the gripping force F. Further, the arithmetic processing unit 51 calculates the current manipulation value MVi so that the gripping force detection value PVf becomes the force command value SVf. Note that the arithmetic processing unit 51 uses the current detection value PVi, the position detection value PV ⁇ , and the speed detection value PVv to calculate the current manipulation value MVi.
  • the calculation processing unit 51 includes an operation value calculation unit 51a and a force command generation unit 51b.
  • the operation value calculation unit 51a calculates the current operation value MVi so that the gripping force detection value PVf becomes the force command value SVf set by the force command generation unit 51b.
  • FIG. 4 is a diagram illustrating the functional configuration of the operation value calculation section 51a of the calculation processing section 51 included in the control section 50 of the gripping device 1 according to the first embodiment.
  • "1/s" means integration.
  • the operation value calculation unit 51a includes an admittance control calculation unit 51a1, an integration calculation unit 51a2, a position/speed calculation unit 51a3, a current calculation unit 51a4, a position command value generation unit 51a5, a contact determination unit 51a6, and a switching unit 51a7. and a value holding unit 51a8.
  • the operation value calculator 51a further includes an addition/subtraction block A61. Each calculation unit will be described.
  • FIG. 5 is a diagram illustrating the functional configuration of the admittance control calculation section 51a1 of the calculation processing section 51 of the control section 50 of the gripping device 1 according to the first embodiment.
  • the admittance control calculation unit 51a1 adjusts the parameters of the virtual spring-mass-damper system by solving the differential equation shown in Equation 1.
  • ⁇ F is the difference between the force command value SVf and the gripping force detection value PVf
  • M (gain K11) is the mass
  • C (gain K12) is the damper damping coefficient
  • K (gain K13) is the spring constant
  • x is the displacement.
  • the admittance control calculation unit 51a1 calculates the difference between the force command value SVf and the gripping force detection value PVf using the addition/subtraction block A11. Then, the result calculated by the calculated integration block B11 (gain K11) is calculated by the gain block B13 (gain K12) and fed back to the addition/subtraction block A13. Further, the result calculated by the integration block B11 is calculated by the integration block B12, the calculated result is calculated by the gain block B14 (gain K13), and fed back to the addition/subtraction block A12. Then, the calculated result is output as the displacement command value SVd.
  • force control that uses only the spring constant K to calculate the displacement command value SVd from the gripping force detection value PVf may be performed.
  • the admittance control calculator 51a1 is an example of a force control calculator that converts the force command value SVf into the displacement command value SVd.
  • the method of converting the force command value SVf into the displacement command value SVd in the force control calculation section is not limited to the admittance control calculation section 51a1, and various methods can be applied.
  • the integration calculation section 51a2 integrates the displacement command value SVd output from the admittance control calculation section 51a1 and converts it into a position command value SV ⁇ .
  • the positions of the first finger portion 21a and the second finger portion 21b are adjusted by the admittance control calculation section 51a1 and the integration calculation section 51a2 so that the gripping force detection value PVf balances with the force command value SVf.
  • the position/velocity calculator 51a3 calculates and outputs a current command value SVi such that the first finger 21a and the second finger 21b are placed at the position of the position command value SV ⁇ i output from the addition/subtraction block A1.
  • the position/velocity calculator 51a3 calculates (generates) the current command value SVi such that the position detection value PV ⁇ matches the position command value SV ⁇ i.
  • the position/velocity calculator 51a3 performs P (Proportional) control on position and PI (Proportional-Integral) control on velocity.
  • FIG. 6 is a diagram for explaining the functional configuration of the position/velocity calculation section 51a3 of the calculation processing section 51 of the control section 50 of the gripping device 1 according to the first embodiment.
  • the position/velocity calculation unit 51a3 obtains the difference between the position command value SV ⁇ i and the position detection value PV ⁇ using the addition/subtraction block A21. Then, the position/velocity calculator 51a3 performs calculation with the gain block B21 (gain K21) and calculates the difference from the speed detection value PVv with the addition/subtraction block A22. Then, the position/velocity calculator 51a3 calculates the obtained difference in a gain block B22 (gain K22) and an integration block B23 (gain K23), and adds the calculated results in an addition/subtraction block A23. Then, the position/velocity calculator 51a3 outputs the current command value SVi. Note that gains such as the gain K21 are appropriately determined in consideration of system response and the like.
  • the current calculator 51a4 converts the current command value SVi output from the position/velocity calculator 51a3 into a current manipulation value MVi.
  • the current calculator 51a4 calculates (generates) the current manipulation value MVi such that the current detection value PVi matches the current command value SVi.
  • the current calculator 51a4 performs PI control on the current.
  • FIG. 7 is a diagram illustrating the functional configuration of the current calculation section 51a4 of the calculation processing section 51 included in the control section 50 of the gripping device 1 according to the first embodiment.
  • the current calculation unit 51a4 obtains the difference between the current command value SVi and the current detection value PVi using the addition/subtraction block A31. Then, the current calculator 51a4 calculates the obtained difference in the gain block B31 (gain K31) and the integration block B32 (gain K32), and adds the calculated results in the addition/subtraction block A32. Then, the current calculator 51a4 outputs the current manipulated value MVi.
  • FIG. 8 is a diagram illustrating the functional configuration of the position command value generation section 51a5 of the operation value calculation section 51a included in the control section of the gripping device according to the second embodiment.
  • the position command value generator 51a5 calculates a position command value SV ⁇ 2 from the position displacement command value SVd ⁇ .
  • the positional displacement command value SVd.theta. corresponds to differentiation of the positional command value SV.theta.2.
  • Position command value SV ⁇ 2 increases in proportion to time.
  • the position command value SV ⁇ 2 represents the distance between the first finger portion 21a and the second finger portion 21b. As the position command value SV ⁇ 2 increases, the distance between the first finger portion 21a and the second finger portion 21b becomes narrower. The value changes until the first finger 21a and the second finger 21b finally come into contact with each other, that is, until the distance between the first finger 21a and the second finger 21b becomes zero.
  • the position command value generator 51a5 integrates the position displacement command value SVd ⁇ in the integration block B41. Then, the limit block B42 is set to a certain value or less, specifically, a value at which the first finger portion 21a and the second finger portion 21b come into contact with each other. Then, the position command value SV ⁇ 2 is output.
  • the method of generating the position command value SV ⁇ 2 in the position command value generation unit 51a5 described above is an example of the method of generating the position command value SV ⁇ 2, and the position command value SV ⁇ 2 may be generated using another method.
  • the contact determination unit 51a6 determines whether or not the gripping object TGT is in contact with the first finger 21a and the second finger 21b based on the gripping force detection value PVf. Then, the determination result is output as the switch signal SW to the switching section 51a7 and the value holding section 51a8.
  • switching portion 51a7 Based on the switch signal SW, the switching unit 51a7 outputs either the position command value SV ⁇ or the position command value SV ⁇ 2 as the position command value SV ⁇ i to the position/velocity calculation unit 51a3.
  • One of the inputs of the switching unit 51a7 is connected to the integration calculation unit 51a2, and the other is connected to the position command value generation unit 51a5.
  • the output of the switching unit 252a7 is connected to the position/velocity calculation unit 51a3.
  • the contact determination section 51a6 and the switching section 51a7 switch control before and after the first finger portion 21a and the second finger portion 21b come into contact with the gripping object TGT. Specifically, until the first finger portion 21a and the second finger portion 21b come into contact with the gripping object TGT, the switching portion 51a7 changes the position command value SV ⁇ 2 output by the position command value generating portion 51a5 to the position command value SV ⁇ i. is input to the position/velocity calculator 51a3. Therefore, until the first finger portion 21a and the second finger portion 21b contact the gripped object TGT, the gripping device 1 according to the first embodiment controls the driving portion 10 by position/speed control.
  • the gripping device 1 controls the drive unit 10 by position/speed control until the first finger 21a and the second finger 21b come into contact with the gripping object TGT. 21a and the second finger 21b can be moved.
  • the gripping device 1 controls the driving portion 10 by force control.
  • the gripping device 1 controls the drive unit 10 by force control after the first finger portions 21a and the second finger portions 21b contact the gripped object TGT. By slowly moving the second finger portion 21b, the grip target TGT can be delicately gripped.
  • the value holding unit 51a8 Based on the switch signal SW, the value holding unit 51a8 outputs the position detection value PV ⁇ when the gripping object TGT contacts the first finger portion 21a and the second finger portion 21b as the position command value SV ⁇ 0.
  • the addition/subtraction block A61 adds the position command value SV ⁇ output from the integral calculation unit 51a2 and the position command value SV ⁇ 0 output from the value holding unit 51a8, and outputs the position command value SV ⁇ i to the position/velocity calculation unit 51a3.
  • the force command generator 51b outputs a constant force command value SVf.
  • FIG. 9 is a diagram for explaining the operation of the gripping device 1 according to the first embodiment.
  • the vertical axis in FIG. 9 represents position values such as the position command value SV ⁇ and the position detection value PV ⁇ . The same applies to the vertical axes in FIGS. 10, 11 and 12.
  • FIG. The horizontal axis in FIG. 9 represents time after the start of the operation. The same applies to the horizontal axes of FIGS. 10, 11 and 12.
  • FIG. 9 is a diagram for explaining the operation of the gripping device 1 according to the first embodiment.
  • the vertical axis in FIG. 9 represents position values such as the position command value SV ⁇ and the position detection value PV ⁇ . The same applies to the vertical axes in FIGS. 10, 11 and 12.
  • FIG. 9 represents time after the start of the operation. The same applies to the horizontal axes of FIGS. 10, 11 and 12.
  • the line Lsv indicates the position command value SV ⁇ i input to the position/speed calculator 51a3, and the line Lpv indicates the detected position value PV ⁇ .
  • a time td indicates a time during which the first finger portion 21a and the second finger portion 21b are in contact with the gripping object TGT.
  • the operation value calculation unit 51a changes the position command value SV ⁇ to the position detection value PV ⁇ at time td at time td when the first finger 21a and second finger 21b contact the gripping object TGT. That is, as indicated by arrow A in FIG. 9, position command value SV ⁇ is changed to position detection value PV ⁇ at time td.
  • the operation value calculator 51a By changing the position command value SV ⁇ at time td to the position detection value PV ⁇ at time td by the operation value calculator 51a, the fluctuation of the position detection value PV ⁇ can be reduced as shown by Ra. Also, the convergence of the detected position value PV ⁇ can be hastened.
  • the position command value SV ⁇ is not changed.
  • the line Lsvz indicates the position command value SV ⁇ i input to the position/velocity calculator 51a3 of the gripping device of the comparative example
  • the line Lpvz indicates the position detection value PV ⁇ of the gripping device of the comparative example.
  • FIG. 11 shows a graph summarizing the position command values SV ⁇ of the gripping device 1 according to the first embodiment and the gripping device of the comparative example.
  • FIG. 12 shows a graph summarizing the position detection values PV ⁇ of the gripping device 1 according to the first embodiment and the gripping device of the comparative example.
  • the gripping device 1 according to the first embodiment it is possible to suppress hunting when switching control compared to the gripping device of the comparative example. By suppressing hunting, the gripping device 1 according to the first embodiment can grip the gripping target TGT without crushing it significantly after gripping the gripping target TGT. Further, according to the gripping device 1 according to the first embodiment, convergence after switching control can be made faster than the gripping device of the comparative example.
  • ⁇ Action/effect> According to the grasping apparatus 1 according to the first embodiment, control having both high-speed position/speed control and delicacy of force control can be performed. According to the gripping device 1 according to the first embodiment, when the first finger portion 21a and the second finger portion 21b contact the gripping object TGT, the position detection value PV ⁇ when the position command value SV ⁇ i is touched. By doing so, it is possible to prevent the gripping target TGT from being crushed when the gripping target TGT is gripped.
  • the gripping device 1 by performing control using the gripping force detection value PVf detected by the force detection unit 30, it is possible to stably grip the gripping target TGT with a constant gripping force. . Further, according to the gripping device 1 according to the first embodiment, by performing control using the gripping force detection value PVf detected by the force detection unit 30, it is possible to stably grip with a low gripping force.
  • the change in the gripping positions of the first finger portion 21a and the second finger portion 21b becomes large, and the influence of the cogging torque that depends on the position of the magnet and the iron core of the motor is reduced. Even if it is greatly affected, the influence of the cogging torque of the motor, which is a position-dependent disturbance, can be compensated for by controlling using the admittance control calculation unit 51a1.
  • the position command value SV ⁇ is an example of the first position command value
  • the position command value SV ⁇ 2 is an example of the second position command value.
  • the gripping device according to the second embodiment includes an arithmetic processing unit 251 instead of the arithmetic processing unit 51 of the gripping device 1 according to the first embodiment. Further, the gripping apparatus according to the second embodiment includes a force command generating section 251b instead of the force command generating section 51b of the gripping apparatus 1 according to the first embodiment.
  • FIG. 13 is a diagram illustrating the functional configuration of the arithmetic processing section 251 included in the control section of the gripping device according to the second embodiment.
  • the force command generation unit 251b generates a force command value SVf based on the gripping force detection value PVf.
  • FIG. 14 is a flow chart for explaining the processing of the force command generation section 251b of the arithmetic processing section 251 of the control section of the gripping device according to the second embodiment.
  • 15A and 15B are diagrams for explaining the operation of the gripping device 1 according to the second embodiment.
  • the vertical axis in FIG. 15 represents the force value of the force command value SVf or the gripping force detection value PVf.
  • the horizontal axis of FIG. 15 represents the time after contact is detected.
  • Step S10 the force command generation unit 251b determines whether contact of the first finger 21a and the second finger 21b of the gripping unit 20 to the gripping object TGT has been detected.
  • the force command generator 251b determines that the first finger 21a and the second finger 21b of the grip 20 have come into contact, for example, when the gripping force detection value PVf is greater than a predetermined value.
  • step S10 When the force command generator 251b detects that the first finger 21a and the second finger 21b are in contact with the grasped object TGT (Yes in step S10), the force command generator 251b proceeds to step S20. If the force command generator 251b does not detect contact of the first finger 21a and the second finger 21b with the grasped object TGT (No in step S10), the force command generator 251b repeats step S10. .
  • Step S20 Next, the force command generator 251b outputs the reference command value F0 to the operation value calculator 51a as the force command value SVf.
  • the manipulated value calculator 51a calculates the current manipulated value MVi using the reference command value F0 as the force command value SVf.
  • Step S30 the force command generator 251b starts time measurement. It is desirable that step S30 be performed at the same time as step S20 or as soon as possible after step S20 is performed.
  • the force command generator 251b determines whether the absolute value of the difference between the gripping force detection value PVf and the reference response value is less than the threshold.
  • the reference response value is the gripping force detection value PVf with respect to the time from contact when gripping the gripping object TGT having the reference hardness.
  • the reference response value may be an actually measured value or a theoretically obtained value. Any value may be set as the reference response value.
  • FIG. 15 shows the value of the reference response value with respect to time by the line Lpn. If the grip force detection value PVf is larger than the line Lpn, it is estimated that the grip target TGT is harder than the reference hardness. Also, if the grip force detection value PVf is smaller than the line Lpn, it is estimated that the grip target TGT is softer than the reference hardness.
  • the line Lph represents the gripping force detection value PVf when gripping the gripping target TGT having a hardness higher than the reference hardness.
  • a line Lps represents the gripping force detection value PVf when the gripping target TGT having a softer hardness than the reference hardness is gripped.
  • step S40 When the absolute value of the difference between the grip force detection value PVf and the reference response value is less than the threshold (Yes in step S40), the force command generation unit 251b proceeds to step S50. When the absolute value of the difference between the gripping force detection value PVf and the reference response value is equal to or greater than the threshold (No in step S40), the force command generation unit 251b proceeds to step S60.
  • Step S50 the force command generation unit 251b determines whether or not the elapsed time from detection of the contact is equal to or longer than the threshold time ta. If the elapsed time from detection of the contact is equal to or longer than the threshold time ta (Yes in step S50), the force command generator 251b ends the process. When the elapsed time from detection of contact is less than the threshold time ta (No in step S50), the force command generation unit 251b returns to step S40 and repeats the process.
  • Step S60 If the absolute value of the difference between the gripping force detection value PVf and the reference response value is equal to or greater than the threshold value (No in step S40), the force command generation unit 251b changes the force command value SVf to an update command value and outputs it. .
  • the force command generation unit 251b increases the update command value in the case of the gripping target TGT that is harder than the reference gripping target TGT.
  • the force command generation unit 251b lowers the update command value in the case of the gripping target object TGT that is softer than the reference gripping target object TGT. By setting the update command value lower than the reference command value, the gripping device 1 can gently grip the soft gripping target TGT.
  • Line Lpn shows the time response of the reference response values.
  • the line Lph represents the gripping force detection value PVf when the gripping target TGT harder than the standard is gripped
  • the line Lps represents the gripping force detection value PVf when the gripping target TGT softer than the standard is gripped.
  • a line Lsn represents the reference command value.
  • the line Lsh represents the force command value SVf when gripping the gripping target TGT harder than the standard
  • the line Lss represents the force command value SVf when gripping the gripping target TGT softer than the standard. Note that the line Lsh and the line Lss are shown shifted up and down in order to clarify the difference from the line Lsn at the reference command value F0.
  • the gripping force detection value PVf increases as time passes.
  • the gripping force detection value PVf increases faster than the reference response value (line Lph).
  • the gripping force detection value PVf is smaller than the reference response value (line Lps).
  • the force command generator 251b changes the force command value SVf from the reference command value F0 to the update command value F1 in step S60, as indicated by the line Lsh.
  • force command generator 251b changes force command value SVf from reference command value F0 to update command value F2 in step S60, as indicated by line Lss.
  • the threshold time ta may be determined in consideration of processing time, response, and the like.
  • a value may be set for each case of being harder and softer than the reference, or may be changed according to the time until the difference exceeds the threshold.
  • the gripping force can be changed according to the hardness of the gripping target TGT.
  • a hard gripping target TGT can be strongly gripped, and a soft gripping target TGT can be gripped gently. Therefore, according to the gripping device 1 according to the second embodiment, it is possible to accurately and stably hold gripping objects having different hardnesses.
  • the gripping device according to the second embodiment is suitable for gripping a gripping target TGT having a large difference in hardness.
  • the gripping device according to the third embodiment differs from the gripping device according to the second embodiment in the processing in the force command generation unit 251b.
  • FIG. 16 is a flow diagram for explaining the processing of the force command generation section 251b of the arithmetic processing section 251 of the control section of the gripping device according to the third embodiment.
  • 17A and 17B are diagrams for explaining the operation of the grasping device according to the third embodiment.
  • FIG. 16 is a flow diagram for explaining the processing of the force command generation section 251b of the arithmetic processing section 251 of the control section of the gripping device according to the third embodiment.
  • 17A and 17B are diagrams for explaining the operation of the grasping device according to the third embodiment.
  • the vertical axis in FIG. 17 represents the force value of the force command value SVf or the gripping force detection value PVf.
  • the horizontal axis of FIG. 17 represents the time after contact is detected.
  • Steps S10, S20, and S30 are the same as the processing in the force command generation unit 251b of the gripping device according to the second embodiment, so description thereof will be omitted.
  • Step S140 The force command generator 251b determines whether or not the elapsed time from detection of contact is equal to or greater than the threshold time tb. In other words, the force command generator 251b determines whether or not the predetermined time has passed.
  • the force command generation unit 251b proceeds to step S150. In other words, the force command generation unit 251b proceeds to step S150 after a predetermined time has elapsed since the contact was detected. If the elapsed time from detection of the contact is less than the threshold time tb (No in step S140), the force command generator 251b repeats the process of step S140.
  • the threshold time tb may be appropriately determined within a range that can be determined.
  • Step S150 The force command generator 251b outputs an update command value based on the gripping force detection value PVf at the threshold time. For example, when the grip force detection value PVf in the threshold time is large, it is determined that the grip target TGT is hard. Then, the force command generator 251b sets the update command value higher than the reference command value as the force command value SVf. Also, when the grip force detection value PVf in the threshold time is small, it is determined that the grip target TGT is softer than the reference hardness. Then, the force command generation unit 251b sets the update command value lower than the standard command value as the force command value SVf. When the process of step S150 ends, the force command generator 251b ends the process.
  • a line Lpn1 indicates the gripping force detection value PVf when the gripping target TGT with standard hardness is gripped. Further, the line Lph represents the gripping force detection value PVf when the gripping target TGT harder than the standard is gripped, and the line Lps represents the gripping force detection value PVf when the gripping target TGT softer than the standard is gripped.
  • a line Lsn represents the reference command value. The line Lsh represents the force command value SVf when gripping the gripping target TGT harder than the standard, and the line Lss represents the force command value SVf when gripping the gripping target TGT softer than the standard. Note that the line Lsh and the line Lss are shown shifted up and down in order to clarify the difference from the line Lsn at the reference command value F0.
  • the gripping force detection value PVf increases as time passes.
  • the gripping force detection value PVf increases faster than the reference response value (line Lph).
  • the gripping force detection value PVf is smaller than the reference response value (line Lps).
  • the force command generator 251b changes the force command value SVf to an updated command value according to the gripping force detection value PVf at the threshold time tb. For example, when gripping an object TGT that is harder than the standard hardness, the gripping force detection value PVf increases during the threshold time tb. Therefore, the force command generator 251b updates the force command value SVf from the reference command value F0 to an update command value F11 larger than the reference command value F0. For example, when gripping an object TGT that is softer than the standard hardness, the gripping force detection value PVf decreases at the threshold time tb. Therefore, the force command generator 251b updates the force command value SVf from the reference command value F0 to an update command value F12 smaller than the reference command value F0.
  • the first update command value is 0.4 times the reference command value F0. If it is twice or less, it may be set as the second update command value. If it is more than 0.4 times the reference command value F0 and less than 0.8 times, the reference command value F0 may be used as the update command value without being changed.
  • the value of the update command value may be calculated according to the gripping force detection value PVf at the threshold time tb, for example.
  • the value of the update command value may be calculated using Equation 2.
  • F0 represents the value of the reference command value
  • PVf represents the value of the gripping force detection value PVf at the threshold time tb.
  • the gripping device according to the fourth embodiment differs from the gripping devices according to the second and third embodiments in the processing in the force command generation unit 251b.
  • FIG. 18 is a flow diagram for explaining the processing of the force command generation section 251b of the arithmetic processing section 251 of the control section of the gripping device according to the fourth embodiment.
  • 19A and 19B are diagrams for explaining the operation of the gripping device according to the fourth embodiment.
  • the vertical axis in FIG. 19 represents the force value of the force command value SVf or the gripping force detection value PVf.
  • the horizontal axis of FIG. 19 represents the time after contact is detected.
  • Steps S10, S20, and S30 are the same as the processing in the force command generation unit 251b of the gripping device according to the second embodiment, so description thereof will be omitted.
  • step S20 as the reference command value, the reference command value F20, which is the gripping force detection value PVf when gripping the gripping target TGT (first gripping target) which is assumed to be the hardest among the assumed gripping targets, is used.
  • Step S240 The force command generator 251b determines whether or not the elapsed time from detection of the contact is equal to or greater than the threshold time tc. In other words, the force command generator 251b determines whether or not the predetermined time has passed.
  • the force command generation unit 251b proceeds to step S250. In other words, the force command generation unit 251b proceeds to step S250 after a predetermined time has elapsed since the contact was detected. If the elapsed time from detection of the contact is less than the threshold time tc (No in step S240), the force command generator 251b repeats the process of step S240.
  • the threshold time tc may be appropriately determined within a range that can be determined.
  • Step S250 The force command generator 251b outputs the gripping force detection value PVf at the threshold time tc as an update command value.
  • the force command generator 251b ends the process.
  • a line Lp1 indicates the gripping force detection value PVf when gripping the gripping target TGT (first gripping target) assumed to be the hardest. Further, the line Lp2 is the gripping force detection value PVf when the gripping target TGT (second gripping target) that is softer than the first gripping target is gripped, and the line Lp3 is the gripping target that is softer than the second gripping target. It represents a gripping force detection value PVf when the TGT (third gripping target) is gripped.
  • the line Ls1 is the force command value SVf when the first gripping object is gripped
  • the line Ls2 is the force command value SVf when the second gripping object is gripped
  • the line Ls3 is the force command value SVf when the third gripping object is gripped. represents the force command value SVf of .
  • the line Ls2 is shifted between the reference command value F20 and the threshold time tc to clarify the difference between the lines.
  • the reference command value F20 is shifted to clarify the difference between the lines.
  • the gripping force detection value PVf increases as time passes.
  • the force command generator 251b outputs the gripping force detection value PVf at the threshold time tc as an update command value of the force command value SVf.
  • the gripping force detection value PVf is substantially equal to the reference command value F20 at the threshold time tc, so the force command generation unit 251b updates the reference command value F20. Output as a command value.
  • the force command generator 251b outputs an update command value F21 that is the gripping force detection value PVf at the threshold time tc.
  • the force command generator 251b outputs an update command value F22 that is the gripping force detection value PVf at the threshold time tc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

モータと、前記モータの回転軸の位置及び速度を検出する検出部と、を備える駆動部と、電流操作値に応じて前記モータを駆動する電力を供給し、前記モータに供給する電流の電流値を検出するモータ駆動部と、第1指部と、第2指部と、を備え把持部と、前記第1指部と前記第2指部とで前記対象物を把持した時に、前記第1指部及び前記第2指部が前記対象物を把持する把持力を検出する力検出部と、前記力検出部が検出した把持力検出値が力指令値と一致するように前記モータ駆動部に前記電流操作値を出力する制御部と、を備え、前記制御部は、前記第1指部又は前記第2指部が前記対象物に接触したことを検出したときに、位置指令値を、前記検出部が検出した位置検出値とする把持装置。

Description

把持装置及び把持装置の制御方法
 本開示は、把持装置及び把持装置の制御方法に関する。
 製品の製造ラインをロボット等により自動化する際に、機械部品や電気部品等の把持対象物を把持するために、マニピュレータ又はグリッパと呼ばれる把持装置が用いられる。
 特許文献1には、組付ロボットのハンド部に把持された物品の物品把持位置を検出し、該物品把持位置と、予め設定された基準となる物品把持基準位置とを比較して、両位置のずれ量に基づいて上記物品組付ロボットを駆動制御する制御方法が開示されている。
 特許文献2には、予め正常な組立動作時における作業状態時の力覚情報検出手段の検出結果と、前記力覚情報検出手段によって検出された現在の力覚情報とを比較する比較手段を備える組立用ロボットの力制御装置が開示されている。特許文献2には、比較手段の比較結果として現在の力覚情報が対応する段階の目標値と一致しないときに、それらを一致させる方向に組立用ロボットを動作させる補正信号を作出し、ロボット制御手段に出力する補正手段を備えることが開示されている。
 特許文献3には、多指ハンド部の指先力センサの出力に基づいて前記対象物に対する実際の接触位置を検出し、検出した前記接触位置の情報に基づいて対象物の位置情報を修正する制御部を備えるロボット装置が開示されている。
特開平06-277959号公報 特許第3287151号公報 特許第5505138号公報
 把持装置で特に柔らかい把持対象物を把持する際に、把持対象物を潰さずに把持することが求められている。
 本開示は、把持対象物を潰さずに把持可能な把持装置を提供する。
 本開示の一態様では、モータと、前記モータの回転軸の位置及び速度を検出する検出部と、を備える駆動部と、電流操作値に応じて前記モータを駆動する電力を供給し、前記モータに供給する電流の電流値を検出するモータ駆動部と、第1指部と、第2指部と、を備え、前記モータの回転に応じて前記第1指部と前記第2指部との間隔を変えて、前記第1指部と前記第2指部とで対象物を把持する把持部と、前記第1指部と前記第2指部とで前記対象物を把持した時に、前記第1指部及び前記第2指部が前記対象物を把持する把持力を検出する力検出部と、前記力検出部が検出した把持力検出値が力指令値と一致するように前記モータ駆動部に前記電流操作値を出力する制御部と、を備え、前記制御部は、力制御演算部と、位置指令値生成部と、接触判定部と、切替部と、位置速度演算部と、電流演算部と、を備え、前記力制御演算部は、前記力指令値を第1位置指令値に変換し、前記位置指令値生成部は、第2位置指令値を生成し、前記接触判定部は、前記第1指部又は前記第2指部が前記対象物に接触したことを検出し、前記切替部は、前記接触判定部が前記第1指部又は前記第2指部が前記対象物に接触したことを検出したときに、前記第2位置指令値から前記第1位置指令値に切り替えて、前記位置速度演算部に出力し、前記位置速度演算部は、前記切替部から入力された前記第1位置指令値又は前記第2位置指令値のいずれかを、電流指令値に変換し、前記電流演算部は、前記電流値が前記電流指令値に一致するように、前記電流操作値を出力し、前記制御部は、前記第2位置指令値から前記第1位置指令値に切り替えるときに、前記第1位置指令値を、前記検出部が検出した位置検出値とする把持装置が提供される。
 本開示の把持装置によれば、把持対象物を潰さずに把持できる。
図1は、第1実施形態に係る把持装置の構成例を示す図である。 図2は、第1実施形態に係る把持装置の機能構成を説明する図である。 図3は、第1実施形態に係る把持装置の制御部が有する演算処理部の機能構成を説明する図である。 図4は、第1実施形態に係る把持装置の制御部が有する演算処理部の操作値演算部の機能構成を説明する図である。 図5は、第1実施形態に係る把持装置の制御部が有する演算処理部のアドミタンス制御演算部の機能構成を説明する図である。 図6は、第1実施形態に係る把持装置の制御部が有する演算処理部の位置速度演算部の機能構成を説明する図である。 図7は、第1実施形態に係る把持装置の制御部が有する演算処理部の電流演算部の機能構成を説明する図である。 図8は、第1実施形態に係る把持装置の制御部が有する演算処理部の位置指令値生成部の機能構成を説明する図である。 図9は、第1実施形態に係る把持装置の動作を説明する図である。 図10は、比較例の把持装置の動作を説明する図である。 図11は、第1実施形態に係る把持装置及び比較例の把持装置の動作を説明する図である。 図12は、第1実施形態に係る把持装置及び比較例の把持装置の動作を説明する図である。 図13は、第2実施形態に係る把持装置の制御部が有する演算処理部の機能構成を説明する図である。 図14は、第2実施形態に係る把持装置の制御部が有する演算処理部の力指令生成部の処理を説明するフロー図である。 図15は、第2実施形態に係る把持装置の動作を説明する図である。 図16は、第3実施形態に係る把持装置の制御部が有する演算処理部の力指令生成部の処理を説明するフロー図である。 図17は、第3実施形態に係る把持装置の動作を説明する図である。 図18は、第4実施形態に係る把持装置の制御部が有する演算処理部の力指令生成部の処理を説明するフロー図である。 図19は、第4実施形態に係る把持装置の動作を説明する図である。
 <<第1実施形態>>
 <把持装置1>
 以下、図面を参照して、本実施形態に係る把持装置について詳細に説明する。図1は、本実施形態に係る把持装置1の構成例を示す図である。図2は、本実施形態に係る把持装置1の機能構成を説明する図である。
 なお、図1には、説明の便宜のため、互いに直交するX軸、Y軸及びZ軸(XYZ軸)からなる仮想三次元座標系(XYZ直交座標系)が設定される。ただし、当該座標系は、説明のために定めるものであって、把持装置1の姿勢について限定するものではない。
 図1では、X軸方向は第1指部21a及び第2指部21bのそれぞれの延びる方向とする。また、Y軸方向は第1指部21a及び第2指部21bのそれぞれが移動する方向とする。Z軸は、X軸及びY軸に垂直な方向とする。
 把持装置1は、例えば、ロボットのアームの先端に取り付けられ把持対象物TGTを把持する。具体的には、把持装置1は、第1指部21aと第2指部21bの間に把持対象物TGTを把持する。把持装置1は、駆動部10と、把持部20と、力検出部30と、モータ駆動部40と、制御部50と、を備える。把持装置1の各要素について詳細を説明する。
 なお、制御部50とモータ駆動部40とは、配線Lm1により接続されている。また、モータ駆動部40と駆動部10とは、より具体的には、モータ駆動部40と駆動部10の動力部11(モータ11m)とは、配線Lm2により接続されている。さらに、制御部50と駆動部10とは、より具体的には、制御部50と駆動部10の動力部11(エンコーダ11e)とは、配線Lm3により接続されている。
 [駆動部10]
 駆動部10は、第1指部21aと第2指部21bとの間の間隔を変更する。具体的には、駆動部10は、第1指部21a及び第2指部21bのそれぞれを、Y軸方向であって互いに逆向きに移動させる。
 駆動部10は、動力部11と、運動変換部12と、を備える。動力部11及び運動変換部12のそれぞれの詳細について説明する。
 (動力部11)
 動力部11は、モータ駆動部40から配線Lm2を介して供給される電力に基づいて回転軸を回転する。動力部11は、電力を回転運動に変換して、運動変換部12に伝達する。
 動力部11は、モータ11mと、エンコーダ11eを備える。モータ11mは、例えば、AC(Alternating Current)モータやステッピングモータである。モータ11mは、モータ駆動部40から供給される電力(供給電力Pd)に基づいて、回転軸を回転させる。後述するように、供給電力Pdは、電流操作値MViに基づいて定められる。したがって、モータ11mは、電流操作値MViに基づいて回転する。具体的には、モータ11mは、回転軸、ステータ及びロータ等のモータとして周知の構成を備える。
 エンコーダ11eは、モータ11mの回転軸の位置及び回転速度を検出する。エンコーダ11eは、検出した結果を、配線Lm3を介して制御部50に出力する。なお、エンコーダ11eは、検出部の一例である。
 (運動変換部12)
 運動変換部12は、モータ11mから伝達された回転運動を、Y軸方向の直線運動に変換する。運動変換部12は、例えば、歯車、ウォームギヤ、カム等の機構部品により構成される。運動変換部12は、筐体12cから突き出た移動部12a及び移動部12bを備える。移動部12a及び移動部12bのそれぞれは、筐体12cに対して移動可能になっている。運動変換部12は、モータ11mから伝達された回転運動を、筐体12cに対してY軸方向に移動部12a及び移動部12bを移動させる直線運動に変換する。
 モータ11mが一方の方向に回ると、例えば、移動部12aがY軸方向における+Y向きに移動する。モータ11mが逆の方向に回ると、例えば、移動部12aがY軸方向における-Y向きに移動する。また、モータ11mが一方の方向に回ると、例えば、移動部12bがY軸方向における-Y向きに移動する。モータ11mが逆の方向に回ると、例えば、移動部12bがY軸方向における+Y向きに移動する。
 すなわち、モータ11mが一方の方向に回ると、移動部12a及び移動部12bのそれぞれは、Y軸方向における互いに逆の向き、具体的には、Y軸方向に互いに離れる向き、に移動する。したがって、モータ11mが一方の方向に回ると、移動部12aと移動部12bとの間隔は広がる。また、モータ11mが逆の方向に回ると、移動部12a及び移動部12bのそれぞれは、Y軸方向における互いに逆の向き、具体的には、Y軸方向に互いに近づく向き、に移動する。したがって、モータ11mが逆の方向に回ると、移動部12aと移動部12bとの間隔は狭まる。
 上述のように、駆動部10は、モータ11mが回転することにより、移動部12aと移動部12bとの間隔を変更できる。
 [把持部20]
 把持部20は、駆動部10により、第1指部21aと第2指部21bとの間に把持対象物TGTを把持する。
 把持部20は、中心軸Acに対してY軸方向の+Y側に、第1指部21aと、第1指部21aを保持する第1保持部22aと、を備える。第1指部21aは、第1保持部22aに固定される。第1保持部22aは、後述する第1力覚センサ31aを介して、移動部12aに固定される。なお、把持装置1では、移動部12aに第1力覚センサ31aを固定するために、固定部15aを備える。
 把持部20は、中心軸Acに対してY軸方向の-Y側に、第2指部21bと、第2指部21bを保持する第2保持部22bと、を備える。第2指部21bは、第2保持部22bに固定される。第2保持部22bは、後述する第2力覚センサ31bを介して、移動部12bに固定される。なお、把持装置1では、移動部12bに第2力覚センサ31bを固定するために、固定部15bを備える。
 第1指部21aは、移動部12aがY軸方向に移動すると、一緒にY軸方向に移動する。同様に、第2指部21bは、移動部12bがY軸方向に移動すると、一緒にY軸方向に移動する。したがって、移動部12a及び移動部12bの間隔が変化すると、第1指部21aと第2指部21bとの間隔Dが変化する。第1指部21aと第2指部21bとの間隔Dを狭くすることにより、把持部20は、把持対象物TGTを第1指部21a及び第2指部21bにより把持する。
 なお、把持部20により把持対象物TGTを把持する場合には、第1指部21aと第2指部21bとの間に把持対象物TGTを挟む場合に限らない。例えば、リング状の把持対象物において、リング内側に指部を挿入し、内側から外側に向かって指部を開くことで把持してもよい。
 [力検出部30]
 力検出部30は、把持部20が把持対象物TGTを把持した時における第1指部21aと第2指部21bとの間にかかる力(把持力)を検出する。力検出部30は、第1力覚センサ31a及び第2力覚センサ31bを備える。第1力覚センサ31a及び第2力覚センサ31bのそれぞれは、例えば、6軸の力覚センサである。
 第1力覚センサ31aは、配線Laを介して制御部50に接続される。また、第2力覚センサ31bは、配線Lbを介して制御部50に接続される。力検出部30においては、6軸の力覚センサの出力におけるY軸方向の力に関する検出結果を用いる。
 第1力覚センサ31aは、第1指部21aを保持する第1保持部22aに固定される。また、第1力覚センサ31aは、固定部15aを介して移動部12aに固定される。第1力覚センサ31aは、把持部20が把持対象物TGTを把持する際に、把持対象物TGTが第1指部21aを押す力を検出する。
 第2力覚センサ31bは、第2指部21bを保持する第2保持部22bに固定される。また、第2力覚センサ31bは、固定部15bを介して移動部12bに固定される。第2力覚センサ31bは、把持部20が把持対象物TGTを把持する際に、把持対象物TGTが第2指部21bを押す力を検出する。
 なお、本実施形態に係る把持装置1は、駆動部10と把持部20との間に力検出部30を備えるが、力検出部30を備える場所は、駆動部10と把持部20との間に限らない。例えば、把持装置1は、第1力覚センサ31a及び第2力覚センサ31bを、それぞれ第1指部21a及び第2指部21bのそれぞれの先端に備えてもよい。
 また、力覚センサの種類は、第1指部21aと第2指部21bとの間にかかる把持力を検出できれば限定されない。力覚センサとして、例えば、力覚を検出可能なMEMS(Micro Electro Mechanical Systems)センサを用いてもよいし、圧電素子又はひずみゲージを用いてもよい。なお、例えば、MEMSセンサ又はひずみゲージを用いる場合は、力覚を検出するために、外力により歪を発生させる起歪体を用いてもよいし、把持部20の一部を起歪体として用いてもよい。
 なお、本実施形態に係る力検出部30は、第1力覚センサ31a及び第2力覚センサ31bを備えるが、第1力覚センサ31a及び第2力覚センサ31bのいずれか一方をのみを備えるようにしてもよい。すなわち、第1指部21a及び第2指部21bのいずれか一方のみに力覚センサを備えるようにしてもよい。
 [モータ駆動部40]
 モータ駆動部40は、制御部50からの動作指令(電流制御信号Ip)に基づいて、駆動部10、より具体的にはモータ11m、に電力(供給電力Pd)を供給する。駆動部10は、モータ駆動部40から供給された電力により駆動される。駆動部10がモータ駆動部40から供給された電力により駆動されることにより、駆動部10は、制御部50からの動作指令にそった動作を行う。
 モータ駆動部40は、駆動部10に供給した電力の電流値(駆動電流値Im)を制御部50に出力する。制御部50は、モータ駆動部40が駆動部10に供給した電流の電流値を用いて、駆動部10の制御を行う。
 [制御部50]
 制御部50は、力検出部30で検出された把持力(第1把持力値Fma及び第2把持力値Fmb)が所望の把持力になるように、駆動部10を制御する。また、制御部50は、エンコーダ11eで検出された回転軸の位置(位置情報θm)及び回転速度(速度情報vm)と、モータ駆動部40からの電流信号(駆動電流値Im)と、を用いて制御する。
 制御部50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)及びROM(Read Only Memory)を備えるマイクロプロセッシングユニットにより構成される。制御部50は、CPUがROMに記録されているプログラムをRAMに展開して実行することにより処理を行う。
 制御部50は、演算処理部51と、モータ制御部52と、モータ稼働データ取得部53と、力計測データ取得部54と、を備える。演算処理部51は、モータ制御部52に電流操作値MViを出力する。モータ稼働データ取得部53は、モータ駆動部40から動力部11(モータ11m)に供給する駆動電流の電流値である電流検出値PViと、モータ11mの回転軸の位置検出値PVθ及び回転軸の速度検出値PVvを、演算処理部51に出力する。力計測データ取得部54は、力検出部30で検出した把持対象物TGTから受ける把持力Fの把持力検出値PVfを、演算処理部51に出力する。各要素の詳細について以下に説明する。
  (演算処理部51)
 演算処理部51は、制御値が目標値になるように、駆動部10を操作するための操作値を算出する。具体的には、演算処理部51は、制御値である把持力検出値PVfが、目標値の把持力値になるように、電流操作値MViを算出する。演算処理部51の詳細については、後述する。なお、本実施形態に係る演算処理部51においては、電流操作値MViを操作値として出力しているが、制御対象に応じて電流に限らず電力、電圧等を操作値としてもよい。
  (モータ制御部52)
 モータ制御部52は、動力部11、具体的には、モータ11m、を操作するための操作値をモータ駆動部40に出力する。具体的には、モータ制御部52は、演算処理部51が出力した電流操作値MViに基づいて、モータ駆動部40に入力可能な電流制御信号Ipに変換する。そして、モータ制御部52は、変換した電流制御信号Ipをモータ駆動部40に出力する。
 モータ制御部52は、電流制御信号Ipとして、モータ駆動部40に入力可能であれば、例えば、電圧信号、電流信号等のアナログ信号を出力してもよいし、デジタル信号を出力してもよい。モータ駆動部40は、電流制御信号Ipに基づいて、動力部11のモータ11mに供給電力Pdを供給する。
  (モータ稼働データ取得部53)
 モータ稼働データ取得部53は、動力部11及びモータ駆動部40から、動力部11の稼働状態に関するモータ稼働データを取得する。具体的には、モータ稼働データ取得部53は、モータ駆動部40から、モータ駆動部40が動力部11に供給した供給電力Pdの駆動電流値Imを取得する。また、モータ稼働データ取得部53は、エンコーダ11eからモータ11mの回転軸の位置情報θm及び速度情報vmのそれぞれを取得する。
 モータ稼働データ取得部53は、駆動電流値Imを、モータ駆動部40から、例えば、アナログ信号により取得してもよいし、デジタル信号により取得してもよい。同様に、モータ稼働データ取得部53は、位置情報θm及び速度情報vmのそれぞれを、エンコーダ11eから、例えば、アナログ信号により取得してもよいし、デジタル信号により取得してもよい。
 モータ稼働データ取得部53は、取得した駆動電流値Imに基づいて、電流検出値PViを演算処理部51に出力する。また、モータ稼働データ取得部53は、取得した位置情報θmに基づいて、位置検出値PVθを演算処理部51に出力する。さらに、モータ稼働データ取得部53は、取得した速度情報vmに基づいて、速度検出値PVvを演算処理部51に出力する。
  (力計測データ取得部54)
 力計測データ取得部54は、力検出部30から、把持力Fの計測データを取得する。具体的には、力計測データ取得部54は、第1力覚センサ31aから第1把持力値Fmaを取得する。また、力計測データ取得部54は、第2力覚センサ31bから第2把持力値Fmbを取得する。
 力計測データ取得部54は、第1把持力値Fmaを、第1力覚センサ31aから、例えば、アナログ信号により取得してもよいし、デジタル信号により取得してもよい。同様に、力計測データ取得部54は、第2把持力値Fmbを、第2力覚センサ31bから、例えば、アナログ信号により取得してもよいし、デジタル信号により取得してもよい。
 力計測データ取得部54は、取得した第1把持力値Fma及び第2把持力値Fmbに基づいて、把持力検出値PVfを演算処理部51に出力する。例えば、力計測データ取得部54は、第1把持力値Fmaと第2把持力値Fmbとの平均の把持力値を、把持力検出値PVfとして出力してもよい。
 <演算処理部51の処理の詳細>
 演算処理部51の処理、いいかえると、把持装置1の制御方法において実行される各工程の詳細について説明する。図3は、第1実施形態に係る把持装置1の制御部50が有する演算処理部51の機能構成を説明する図である。なお、図3では、演算処理部51の外部の構成要素をまとめて、演算処理部51の制御対象OBJとして示す。制御対象OBJは、例えば、駆動部10、力検出部30及びモータ駆動部40と、モータ制御部52、モータ稼働データ取得部53及び力計測データ取得部54と、を含む。
 第1実施形態に係る把持装置1は、把持対象物TGTを接触するまでの動作を高速に行うために、把持対象物TGTに接触するまでは位置速度制御により制御を行い、把持対象物TGTに接触後は、力制御により制御を行う。
 演算処理部51は、把持力Fの力指令値SVfを決定する。また、演算処理部51は、把持力検出値PVfが力指令値SVfとなるように、電流操作値MViを算出する。なお、演算処理部51は、電流操作値MViを算出するのに、電流検出値PVi、位置検出値PVθ及び速度検出値PVvを用いる。
 演算処理部51は、操作値演算部51aと、力指令生成部51bと、を備える。
  [操作値演算部51a]
 操作値演算部51aは、把持力検出値PVfが力指令生成部51bにより設定された力指令値SVfになるように、電流操作値MViを算出する。図4は、第1実施形態に係る把持装置1の制御部50が有する演算処理部51の操作値演算部51aの機能構成を説明する図である。なお、ブロック図のブロックにおいて、「1/s」は積分を意味する。
 操作値演算部51aは、アドミタンス制御演算部51a1と、積分演算部51a2と、位置速度演算部51a3と、電流演算部51a4と、位置指令値生成部51a5と、接触判定部51a6と、切替部51a7と、値保持部51a8と、を備える。また、操作値演算部51aは、加減算ブロックA61を更に備える。各演算部について説明する。
  (アドミタンス制御演算部51a1)
 アドミタンス制御演算部51a1は、力指令値SVfを変位指令値SVdに変換する。アドミタンス制御演算部51a1は、把持力検出値PVfが力指令値SVfと一致するように、変位指令値SVdを算出(生成)する。図5は、第1実施形態に係る把持装置1の制御部50が有する演算処理部51のアドミタンス制御演算部51a1の機能構成を説明する図である。
 アドミタンス制御演算部51a1は、式1に示す微分方程式を解くことにより、仮想バネ・マス・ダンパ系のパラメータを調整する。なお、ΔFは、力指令値SVfと把持力検出値PVfとの差分、M(ゲインK11)は質量、C(ゲインK12)はダンパの減衰係数、K(ゲインK13)はバネのばね定数、xは変位である。
Figure JPOXMLDOC01-appb-M000001
 アドミタンス制御演算部51a1は、加減算ブロックA11により力指令値SVfと把持力検出値PVfとの差分を算出する。そして、演算した積分ブロックB11(ゲインK11)で演算した結果を、ゲインブロックB13(ゲインK12)で演算して加減算ブロックA13にフィードバックする。また、積分ブロックB11で演算した結果を積分ブロックB12で演算し、演算した結果をゲインブロックB14(ゲインK13)で演算して加減算ブロックA12にフィードバックする。そして、演算した結果を変位指令値SVdとして出力する。なお、上述したアドミタンス制御演算部51a1によるアドミタンス制御以外にも、例えば、ばね定数Kのみを用いて把持力検出値PVfから変位指令値SVdを演算する力制御を行ってもよい。
 アドミタンス制御演算部51a1は、力指令値SVfを変位指令値SVdに変換する力制御演算部の一例である。力制御演算部における、力指令値SVfを変位指令値SVdに変換する方法については、アドミタンス制御演算部51a1に限らず、様々な方法を適用可能である。
  (積分演算部51a2)
 積分演算部51a2は、アドミタンス制御演算部51a1から出力された変位指令値SVdを積分して、位置指令値SVθに変換する。アドミタンス制御演算部51a1と積分演算部51a2により、把持力検出値PVfが力指令値SVfと釣り合うところに、第1指部21a及び第2指部21bの位置が調整される。
  (位置速度演算部51a3)
 位置速度演算部51a3は、加減算ブロックA1から出力された位置指令値SVθiの位置に第1指部21a及び第2指部21bが配置されるような電流指令値SViを演算して出力する。位置速度演算部51a3は、位置検出値PVθが位置指令値SVθiと一致するように電流指令値SViを算出(生成)する。具体的には、位置速度演算部51a3は、位置に関してP(Proportional)制御、速度に対してPI(Proportional-Integral)制御を行う。図6は、第1実施形態に係る把持装置1の制御部50が有する演算処理部51の位置速度演算部51a3の機能構成を説明する図である。
 位置速度演算部51a3は、加減算ブロックA21により、位置指令値SVθiと位置検出値PVθとの差分を求める。そして、位置速度演算部51a3は、ゲインブロックB21(ゲインK21)で演算して、加減算ブロックA22により、速度検出値PVvとの差分を演算する。そして、位置速度演算部51a3は、求めた差分をゲインブロックB22(ゲインK22)及び積分ブロックB23(ゲインK23)で演算し、演算した結果を加減算ブロックA23で加算する。そして、位置速度演算部51a3は、電流指令値SViを出力する。なお、ゲインK21等のゲインについては、システムの応答等を考慮して適宜定める。
  (電流演算部51a4)
 電流演算部51a4は、位置速度演算部51a3から出力された電流指令値SViを電流操作値MViに変換する。電流演算部51a4は、電流検出値PViが電流指令値SViと一致するように電流操作値MViを算出(生成)する。具体的には、電流演算部51a4は、電流に対してPI制御を行う。図7は、第1実施形態に係る把持装置1の制御部50が有する演算処理部51の電流演算部51a4の機能構成を説明する図である。
 電流演算部51a4は、加減算ブロックA31により、電流指令値SViと電流検出値PViとの差分を求める。そして、電流演算部51a4は、求めた差分をゲインブロックB31(ゲインK31)及び積分ブロックB32(ゲインK32)で演算し、演算した結果を加減算ブロックA32で加算する。そして、電流演算部51a4は、電流操作値MViを出力する。
  (位置指令値生成部51a5)
 位置指令値生成部51a5は、位置制御を行うための位置指令値SVθ2を生成する。位置指令値生成部51a5は、一定の値まで一定の変化率で変化する位置指令値SVθ2を算出(生成)する。図8は、第2実施形態に係る把持装置の制御部が有する操作値演算部51aの位置指令値生成部51a5の機能構成を説明する図である。
 位置指令値生成部51a5は、位置変位指令値SVdθから位置指令値SVθ2を算出する。位置変位指令値SVdθは、位置指令値SVθ2の微分に相当する。位置指令値SVθ2は、時間に対して比例して増加する。位置指令値SVθ2は、第1指部21aと第2指部21bとの間隔を表す。位置指令値SVθ2が増加すると、第1指部21aと第2指部21bとの間隔が狭くなる。そして、最終的は第1指部21aと第2指部21bとが接触するまで、すなわち、第1指部21aと第2指部21bとの間隔が零になるまで、値が変化する。
 位置指令値生成部51a5は、位置変位指令値SVdθを積分ブロックB41で積分する。そして、制限ブロックB42によって、一定の値以下、具体的には、第1指部21aと第2指部21bとが接触する値以下になるようにする。そして、位置指令値SVθ2を出力する。
 なお、上述の位置指令値生成部51a5における位置指令値SVθ2の生成方法は、位置指令値SVθ2の生成方法の一例であって、位置指令値SVθ2を別の方法を用いて生成してもよい。
  (接触判定部51a6)
 接触判定部51a6は、把持力検出値PVfの値に基づいて、把持対象物TGTが第1指部21a及び第2指部21bに接触したかどうかを判定する。そして、判定結果をスイッチ信号SWとして、切替部51a7及び値保持部51a8に出力する。
  (切替部51a7)
 切替部51a7は、スイッチ信号SWに基づいて、位置指令値SVθ及び位置指令値SVθ2のいずれかを位置指令値SVθiとして位置速度演算部51a3に出力する。切替部51a7は、入力の一方が積分演算部51a2に、他方が位置指令値生成部51a5に接続する。また、切替部252a7は、出力が位置速度演算部51a3に接続する。
 第1実施形態に係る把持装置1は、接触判定部51a6及び切替部51a7により、第1指部21aと第2指部21bが把持対象物TGTに接触する前後で制御が切り替わる。具体的には、第1指部21aと第2指部21bが把持対象物TGTに接触するまでは、切替部51a7により、位置指令値生成部51a5が出力した位置指令値SVθ2が位置指令値SVθiとして位置速度演算部51a3に入力される。したがって、第1指部21aと第2指部21bが把持対象物TGTに接触するまでは、第1実施形態に係る把持装置1は、位置速度制御により駆動部10を制御する。
 第1実施形態に係る把持装置1が、第1指部21aと第2指部21bが把持対象物TGTに接触するまで位置速度制御によって駆動部10を制御することにより、高速に第1指部21aと第2指部21bを移動することができる。
 また、第1指部21aと第2指部21bが把持対象物TGTに接触してからは、切替部51a7により、積分演算部51a2が出力した位置指令値SVθが位置指令値SVθiとして位置速度演算部51a3に入力される。したがって、第1指部21aと第2指部21bが把持対象物TGTに接触してからは、第1実施形態に係る把持装置1は、力制御により駆動部10を制御する。
 第1実施形態に係る把持装置1が、第1指部21aと第2指部21bが把持対象物TGTに接触してから力制御によって駆動部10を制御することにより、第1指部21aと第2指部21bをゆっくり移動させて、繊細に把持対象物TGTを把持できる。
  (値保持部51a8)
 値保持部51a8は、スイッチ信号SWに基づいて、把持対象物TGTが第1指部21a及び第2指部21bに接触したときの位置検出値PVθを位置指令値SVθ0として出力する。
  (加減算ブロックA61)
 加減算ブロックA61は、積分演算部51a2が出力した位置指令値SVθと、値保持部51a8が出力した位置指令値SVθ0と、を加算して、位置指令値SVθiを位置速度演算部51a3に出力する。
  [力指令生成部51b]
 力指令生成部51bは、一定の値の力指令値SVfを出力する。
 <第1実施形態に係る把持装置1の動作>
 第1実施形態に係る把持装置1の動作について説明する。図9は、第1実施形態に係る把持装置1の動作を説明する図である。図9の縦軸は、位置指令値SVθ、位置検出値PVθ等の位置の値を表す。なお、図10、図11及び図12の縦軸についても同様である。図9の横軸は、動作を開始してからの時間を表す。なお、図10、図11及び図12の横軸についても同様である。
 図9において、線Lsvは位置速度演算部51a3に入力される位置指令値SVθi、線Lpvは位置検出値PVθ、を示す。時間tdは、把持対象物TGTに、第1指部21a及び第2指部21bが接触した時間を示す。
 操作値演算部51aは、把持対象物TGTに、第1指部21a及び第2指部21bが接触した時間tdに、位置指令値SVθを時間tdにおける位置検出値PVθに変更する。すなわち、図9において、矢印Aに示すように、位置指令値SVθを時間tdにおける位置検出値PVθに変更する。操作値演算部51aが時間tdに位置指令値SVθを時間tdにおける位置検出値PVθに変更することにより、Raに示すように、位置検出値PVθの変動を小さくできる。また、位置検出値PVθの収束を早めることができる。
 一方、当該位置指令値SVθの変更を行わない場合について、図10の比較例の把持装置を用いて説明する。比較例の把持装置においては、位置指令値SVθの変更を行わない。図10において、線Lsvzは比較例の把持装置の位置速度演算部51a3に入力される位置指令値SVθi、線Lpvzは比較例の把持装置の位置検出値PVθ、を示す。
 第1実施形態に係る把持装置1と比較例の把持装置の位置指令値SVθをまとめたグラフを図11に示す。また、第1実施形態に係る把持装置1と比較例の把持装置の位置検出値PVθをまとめたグラフを図12に示す。
 比較例の把持装置においては、位置指令値SVθが時間tdにおいて大きくなっていることから、位置検出値PVθがRbに示すように大きくハンチングしている。また、位置検出値PVθの収束も遅くなる。
 第1実施形態に係る把持装置1によれば、比較例の把持装置と比較して、制御を切り替えたときのハンチングを抑えることができる。第1実施形態に係る把持装置1は、ハンチングを抑えることにより、把持対象物TGTを把持した後に、把持対象物TGTを大きく潰すことなく把持できる。また、第1実施形態に係る把持装置1によれば、比較例の把持装置と比較して、制御を切り替えた後の収束を早くできる。
 <作用・効果>
 第1実施形態に係る把持装置1によれば、位置速度制御の高速性と力制御の繊細さを併せ持つ制御ができる。そして、第1実施形態に係る把持装置1によれば、把持対象物TGTに第1指部21a及び第2指部21bが接触したときに、位置指令値SVθiを接触したときの位置検出値PVθにすることにより把持対象物TGTを把持した時に把持対象物TGTを潰すのを防止できる。
 また、第1実施形態に係る把持装置1によれば、力検出部30により検出した把持力検出値PVfを用いて制御することにより、一定の把持力によって安定して把持対象物TGTを把持できる。また、第1実施形態に係る把持装置1によれば、力検出部30により検出した把持力検出値PVfを用いて制御することにより、低い把持力で安定して把持できる。
 さらに、第1実施形態に係る把持装置1によれば、第1指部21a、第2指部21bの把持位置の変化が大きくなり、モータの磁石と鉄心の位置に依存するコギングトルクの影響を大きく受けることがあっても、アドミタンス制御演算部51a1を用いて制御することにより、位置依存の外乱であるモータのコギングトルクの影響を補償できる。
 なお、位置指令値SVθが第1位置指令値の一例、位置指令値SVθ2が第2位置指令値の一例である。
 <<第2実施形態>>
 第2実施形態に係る把持装置は、第1実施形態に係る把持装置1の演算処理部51に換えて、演算処理部251を備える。また、第2実施形態に係る把持装置は、第1実施形態に係る把持装置1の力指令生成部51bに換えて、力指令生成部251bを備える。図13は、第2実施形態に係る把持装置の制御部が有する演算処理部251の機能構成を説明する図である。
  [力指令生成部251b]
 力指令生成部251bは、把持力検出値PVfに基づいて、力指令値SVfを生成する。図14は、第2実施形態に係る把持装置の制御部が有する演算処理部251の力指令生成部251bの処理を説明するフロー図である。図15は、第2実施形態に係る把持装置1の動作を説明する図である。
 図15の縦軸は、力指令値SVf又は把持力検出値PVfの力の値を表す。図15の横軸は、接触を検出してからの時間を表す。
 (ステップS10)
 最初に、力指令生成部251bは、把持部20の第1指部21a及び第2指部21bの把持対象物TGTへの接触を検出したかどうかについて判断する。力指令生成部251bは、例えば、把持力検出値PVfが所定の値より大きい場合に、把持部20の第1指部21a及び第2指部21bが接触したと判断する。
 力指令生成部251bが第1指部21a及び第2指部21bの把持対象物TGTへの接触を検出した場合(ステップS10のYes)は、力指令生成部251bは、ステップS20に進む。力指令生成部251bが第1指部21a及び第2指部21bの把持対象物TGTへの接触を検出しなかった場合(ステップS10のNo)は、力指令生成部251bは、ステップS10を繰り返す。
 (ステップS20)
 次に、力指令生成部251bは、力指令値SVfとして、操作値演算部51aに基準指令値F0を出力する。操作値演算部51aは、基準指令値F0を力指令値SVfとして電流操作値MViを演算する。
 (ステップS30)
 次に、力指令生成部251bは、時間計測を開始する。なお、ステップS30は、ステップS20と同時又はステップS20を実行してから可能な範囲ですぐに行われることが望ましい。
 (ステップS40)
 次に、力指令生成部251bは、把持力検出値PVfと基準応答値との差分の絶対値が閾値未満であるかどうか判定する。ここで、基準応答値とは、基準の硬さの把持対象物TGTを把持するときの接触してからの時間に対する把持力検出値PVfである。例えば、基準応答値は、実際に測定した値を用いてもよいし、理論的に求めた値を用いてもよい。なお、基準応答値としては、任意の値を設定してもよい。
 図15は、基準応答値の時間に対する値を線Lpnで示す。線Lpnより把持力検出値PVfが大きければ、把持対象物TGTが基準の硬さより硬いと推定される。また、線Lpnより把持力検出値PVfが小さければ、把持対象物TGTが基準の硬さより柔らかいと推定される。
 例えば、図15において、線Lphは、基準の硬さより硬い把持対象物TGTを把持した時の把持力検出値PVfを表す。また、線Lpsは、基準の硬さより柔らかい把持対象物TGTを把持した時の把持力検出値PVfを表す。
 力指令生成部251bは、把持力検出値PVfと基準応答値との差分の絶対値が閾値未満である場合(ステップS40のYes)は、ステップS50に進む。力指令生成部251bは、把持力検出値PVfと基準応答値との差分の絶対値が閾値以上である場合(ステップS40のNo)は、ステップS60に進む。
 (ステップS50)
 次に、力指令生成部251bは、接触を検出してからの経過時間が閾値時間ta以上であるかどうか判定する。力指令生成部251bは、接触を検出してからの経過時間が閾値時間ta以上である場合(ステップS50のYes)は、処理を終了する。力指令生成部251bは、接触を検出してからの経過時間が閾値時間ta未満である場合(ステップS50のNo)は、ステップS40に戻って処理を繰り返す。
 (ステップS60)
 力指令生成部251bは、把持力検出値PVfと基準応答値との差分の絶対値が閾値以上である場合(ステップS40のNo)は、力指令値SVfを更新指令値に変更して出力する。例えば、力指令生成部251bは、更新指令値を、基準の把持対象物TGTより硬い把持対象物TGTの場合は高くする。更新指令値を、基準指令値より高くすることにより、把持装置1は、硬い把持対象物TGTを強く把持できる。また、力指令生成部251bは、更新指令値を基準の把持対象物TGTより柔らかい把持対象物TGTの場合は低くする。更新指令値を基準指令値より低くすることにより、把持装置1は、柔らかい把持対象物TGTを優しく把持できる。
 図15を用いて、第2実施形態に係る把持装置1の動作を説明する。線Lpnは、基準応答値の時間応答を示している。また、線Lphは、標準より硬い把持対象物TGTを把持した時の把持力検出値PVf、線Lpsは、標準より柔らかい把持対象物TGTを把持した時の把持力検出値PVf、を表す。また、線Lsnは、基準指令値を表す。線Lshは、標準より硬い把持対象物TGTを把持した時の力指令値SVf、線Lssは、標準より柔らかい把持対象物TGTを把持した時の力指令値SVf、を表す。なお、線Lsh及び線Lssについて、基準指令値F0において、線Lsnとの違いを明確にするために、上下にずらして示す。
 把持対象物TGTに第1指部21a及び第2指部21bが接触すると、把持力検出値PVfは、時間が経過するのにつれて大きくなる。ここで、基準の硬さより硬い把持対象物TGTの場合は、基準応答値に対して早く把持力検出値PVfが大きくなる(線Lph)。また、基準の硬さより柔らかい把持対象物TGTの場合は、基準応答値に対して把持力検出値PVfが小さくなる(線Lps)。
 ここで、時間t1において、線Lphと線Lpnとの差分の絶対値、すなわち、把持力検出値PVfと基準応答値との差分の絶対値が閾値Δf以上になったとする。すると、力指令生成部251bは、線Lshに示すように、ステップS60において、力指令値SVfを基準指令値F0から更新指令値F1に変更する。
 また、時間t2において、線Lpsと線Lpnとの差分の絶対値、すなわち、把持力検出値PVfと基準応答値との差分の絶対値が閾値Δf以上になったとする。すると、力指令生成部251bは、線Lssに示すように、ステップS60において、力指令値SVfを基準指令値F0から更新指令値F2に変更する。
 さらに、閾値時間taは、例えば、基準指令値F0の0.8倍の値である判定値Fa(=0.8×F0)として、基準応答値が判定値Faとなる時間とする。時間までに、把持力検出値PVfと基準応答値との差分の絶対値が閾値Δf以上にならなかった場合は、ステップS50において、力指令生成部251bは処理を終了して、力指令値SVfを基準指令値F0に保持する。なお、閾値時間taについては、処理時間や応答等を考慮して定めてよい。
 なお、更新指令値の値については、例えば、基準より硬い場合及び柔らかい場合でそれぞれ値を設定してもよいし、差分が閾値を超えるまでの時間に応じて変更してもよい。
 <作用・効果>
 第2実施形態に係る把持装置によれば、第1実施形態に係る把持装置の作用・効果に加えて把持対象物TGTの硬さに応じて、把持力を変えることができる。具体的には、第2実施形態に係る把持装置によれば、硬い把持対象物TGTは強く、柔らかい把持対象物TGTは優しく、把持できる。したがって、第2実施形態に係る把持装置1によれば、硬さの異なる把持対象物を正確に安定して保持できる。特に第2実施形態に係る把持装置は、硬さの違いが大きい把持対象物TGTを把持する場合に適している。
 <<第3実施形態>>
 第3実施形態に係る把持装置は、力指令生成部251bにおける処理が、第2実施形態に係る把持装置とは異なる。
 図16は、第3実施形態に係る把持装置の制御部が有する演算処理部251の力指令生成部251bの処理を説明するフロー図である。図17は、第3実施形態に係る把持装置の動作を説明する図である。
 図17の縦軸は、力指令値SVf又は把持力検出値PVfの力の値を表す。図17の横軸は、接触を検出してからの時間を表す。
 ステップS10、ステップS20及びステップS30については、第2実施形態に係る把持装置の力指令生成部251bにおける処理と同じであることから説明を省略する。
 (ステップS140)
 力指令生成部251bは、接触を検出してからの経過時間が閾値時間tb以上であるかどうかを判定する。いいかえると、力指令生成部251bは、定められた時間経過したがどうかを判断する。力指令生成部251bは、接触を検出してからの経過時間が閾値時間tb以上である場合(ステップS140のYes)は、ステップS150に進む。いいかえると、力指令生成部251bは、接触を検出してから定められた時間経過後にステップS150に進む。力指令生成部251bは、接触を検出してからの経過時間が閾値時間tb未満である場合(ステップS140のNo)は、ステップS140の処理を繰り返す。なお、閾値時間tbについては、判定できる範囲で適宜定めてよい。
 (ステップS150)
 力指令生成部251bは、閾値時間における把持力検出値PVfに基づいて、更新指令値を出力する。例えば、閾値時間における把持力検出値PVfが大きい場合は、把持対象物TGTが硬いと判定する。そして、力指令生成部251bは力指令値SVfとして基準指令値より高い更新指令値とする。また、閾値時間における把持力検出値PVfが小さい場合は、把持対象物TGTが基準の硬さより柔らかいと判定する。そして、力指令生成部251bは力指令値SVfとして標準指令値より低い更新指令値とする。ステップS150の処理が終了すると、力指令生成部251bは、処理を終了する。
 図17を用いて、第3実施形態に係る把持装置1の動作を説明する。線Lpn1は、標準的な硬さの把持対象物TGTを把持した時の把持力検出値PVfを示す。また、線Lphは、標準より硬い把持対象物TGTを把持した時の把持力検出値PVf、線Lpsは、標準より柔らかい把持対象物TGTを把持した時の把持力検出値PVf、を表す。また、線Lsnは、基準指令値を表す。線Lshは、標準より硬い把持対象物TGTを把持した時の力指令値SVf、線Lssは、標準より柔らかい把持対象物TGTを把持した時の力指令値SVf、を表す。なお、線Lsh及び線Lssについて、基準指令値F0において、線Lsnとの違いを明確にするために、上下にずらして示す。
 把持対象物TGTに第1指部21a及び第2指部21bが接触すると、把持力検出値PVfは、時間が経過するのにつれて大きくなる。ここで、基準の硬さより硬い把持対象物TGTの場合は、基準応答値に対して早く把持力検出値PVfが大きくなる(線Lph)。また、基準の硬さより柔らかい把持対象物TGTの場合は、基準応答値に対して把持力検出値PVfが小さくなる(線Lps)。
 力指令生成部251bは、閾値時間tbにおける把持力検出値PVfに応じて、力指令値SVfを更新指令値に変更する。例えば、標準の硬さより硬い把持対象物TGTを把持した時は、閾値時間tbにおいて把持力検出値PVfが大きくなる。したがって、力指令生成部251bは、力指令値SVfを基準指令値F0から基準指令値F0より大きい更新指令値F11に更新する。例えば、標準の硬さより柔らかい把持対象物TGTを把持した時は、閾値時間tbにおいて把持力検出値PVfが小さくなる。したがって、力指令生成部251bは、力指令値SVfを基準指令値F0から基準指令値F0より小さい更新指令値F12に更新する。
 なお、更新指令値の値については、例えば、閾値時間tbにおける把持力検出値PVfが、基準指令値F0の0.8倍以上であれば第1更新指令値、基準指令値F0の0.4倍以下であれば第2更新指令値としてもよい。そして、基準指令値F0の0.4倍より大きく0.8倍未満であれば変更せずに基準指令値F0を更新指令値としてもよい。
 また、更新指令値の値については、例えば、閾値時間tbにおける把持力検出値PVfに応じて算出してもよい。例えば、更新指令値の値を式2により算出してもよい。ただし、式2において、F0は基準指令値の値、PVfは閾値時間tbにおける把持力検出値PVfの値を表す。
  F0+係数×(PVf-0.5×F0)   ・・・(式2)
 <作用・効果>
 第3実施形態に係る把持装置によれば、第2実施形態に係る把持装置と同様の作用・効果が得られる。
 <<第4実施形態>>
 第4実施形態に係る把持装置は、力指令生成部251bにおける処理が、第2実施形態及び第3実施形態に係る把持装置とは異なる。
 図18は、第4実施形態に係る把持装置の制御部が有する演算処理部251の力指令生成部251bの処理を説明するフロー図である。図19は、第4実施形態に係る把持装置の動作を説明する図である。
 図19の縦軸は、力指令値SVf又は把持力検出値PVfの力の値を表す。図19の横軸は、接触を検出してからの時間を表す。
 ステップS10、ステップS20及びステップS30については、第2実施形態に係る把持装置の力指令生成部251bにおける処理と同じであることから説明を省略する。
 なお、ステップS20において、基準指令値としては、想定される中で最も硬いと想定される把持対象物TGT(第1把持対象物)を把持した時の把持力検出値PVfである基準指令値F20を用いる。
 (ステップS240)
 力指令生成部251bは、接触を検出してからの経過時間が閾値時間tc以上であるかどうかを判定する。いいかえると、力指令生成部251bは、定められた時間経過したがどうかを判断する。力指令生成部251bは、接触を検出してからの経過時間が閾値時間tc以上である場合(ステップS240のYes)は、ステップS250に進む。いいかえると、力指令生成部251bは、接触を検出してから定められた時間経過後にステップS250に進む。力指令生成部251bは、接触を検出してからの経過時間が閾値時間tc未満である場合(ステップS240のNo)は、ステップS240の処理を繰り返す。なお、閾値時間tcについては、判定できる範囲で適宜定めてよい。
 (ステップS250)
 力指令生成部251bは、閾値時間tcにおける把持力検出値PVfを更新指令値として出力する。ステップS250の処理が終了すると、力指令生成部251bは、処理を終了する。
 図19を用いて、第4実施形態に係る把持装置の動作を説明する。線Lp1は、想定される中で最も硬いと想定される把持対象物TGT(第1把持対象物)を把持した時の把持力検出値PVfを示す。また、線Lp2は、第1把持対象物より柔らかい把持対象物TGT(第2把持対象物)を把持した時の把持力検出値PVf、線Lp3は、第2把持対象物より更に柔らかい把持対象物TGT(第3把持対象物)を把持した時の把持力検出値PVf、を表す。また、線Ls1は第1把持対象物を把持した時の力指令値SVf、線Ls2は第2把持対象物を把持した時の力指令値SVf、線Ls3は第3把持対象物を把持した時の力指令値SVf、を表す。なお、線Ls2について、基準指令値F20と閾値時間tcにおいて、線の違いを明確にするためにずらして示す。線Ls3について、基準指令値F20において、線の違いを明確にするためにずらして示す。
 把持対象物TGTに第1指部21a及び第2指部21bが接触すると、把持力検出値PVfは、時間が経過するのにつれて大きくなる。力指令生成部251bは、閾値時間tcにおける把持力検出値PVfを、力指令値SVfの更新指令値として出力する。
 例えば、第1把持対象物を把持した時は、閾値時間tcにおいて把持力検出値PVfは、基準指令値F20とほぼ等しくなっていることから、力指令生成部251bは、基準指令値F20を更新指令値として出力する。第2把持対象物を把持した時は、力指令生成部251bは、閾値時間tcにおける把持力検出値PVfである更新指令値F21を出力する。第3把持対象物を把持した時は、力指令生成部251bは、閾値時間tcにおける把持力検出値PVfである更新指令値F22を出力する。
 <作用・効果>
 第4実施形態に係る把持装置によれば、第2実施形態に係る把持装置と同様の作用・効果が得られる。また、特に第4実施形態については、力指令生成部251bにおける処理が簡便となる。
 以上、把持装置を実施形態により説明したが、本発明は上記の実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 本願は、日本特許庁に2021年8月20日に出願された基礎特許出願2021-135160号の優先権を主張するものであり、その全内容を参照によりここに援用する。
1 把持装置
10 駆動部
11 動力部
11e エンコーダ
11m モータ
12 運動変換部
20 把持部
21a 第1指部
21b 第2指部
30 力検出部
31a 第1力覚センサ
31b 第2力覚センサ
40 モータ駆動部
50 制御部
51 演算処理部
51a 操作値演算部
51a1 アドミタンス制御演算部
51a2 積分演算部
51a3 位置速度演算部
51a4 電流演算部
51a5 位置指令値生成部
51a6 接触判定部
51a7 切替部
51a8 値保持部
51b 力指令生成部
52 モータ制御部
53 モータ稼働データ取得部
54 力計測データ取得部
151a 操作値演算部
251 演算処理部
251b 力指令生成部
252a7 切替部

Claims (5)

  1.  モータと、前記モータの回転軸の位置及び速度を検出する検出部と、を備える駆動部と、
     電流操作値に応じて前記モータを駆動する電力を供給し、前記モータに供給する電流の電流値を検出するモータ駆動部と、
     第1指部と、第2指部と、を備え、前記モータの回転に応じて前記第1指部と前記第2指部との間隔を変えて、前記第1指部と前記第2指部とで対象物を把持する把持部と、
     前記第1指部と前記第2指部とで前記対象物を把持した時に、前記第1指部及び前記第2指部が前記対象物を把持する把持力を検出する力検出部と、
     前記力検出部が検出した把持力検出値が力指令値と一致するように前記モータ駆動部に前記電流操作値を出力する制御部と、
    を備え、
     前記制御部は、力制御演算部と、位置指令値生成部と、接触判定部と、切替部と、位置速度演算部と、電流演算部と、を備え、
     前記力制御演算部は、前記力指令値を第1位置指令値に変換し、
     前記位置指令値生成部は、第2位置指令値を生成し、
     前記接触判定部は、前記第1指部又は前記第2指部が前記対象物に接触したことを検出し、
     前記切替部は、前記接触判定部が前記第1指部又は前記第2指部が前記対象物に接触したことを検出したときに、前記第2位置指令値から前記第1位置指令値に切り替えて、前記位置速度演算部に出力し、
     前記位置速度演算部は、前記切替部から入力された前記第1位置指令値又は前記第2位置指令値のいずれかを、電流指令値に変換し、
     前記電流演算部は、前記電流値が前記電流指令値に一致するように、前記電流操作値を出力し、
     前記制御部は、前記第2位置指令値から前記第1位置指令値に切り替えるときに、前記第1位置指令値を、前記検出部が検出した位置検出値とする、
    把持装置。
  2.  前記位置指令値生成部は、一定の値まで一定の変化率で変化する前記第2位置指令値を生成する、
    請求項1に記載の把持装置。
  3.  前記位置速度演算部は、前記検出部が検出した前記回転軸の位置検出値が前記切替部から入力された前記第1位置指令値又は前記第2位置指令値のいずれかと一致するように、前記電流指令値を生成する、
    請求項1又は請求項2のいずれかに記載の把持装置。
  4.  前記力制御演算部はアドミタンス制御演算部であり、前記アドミタンス制御演算部は前記把持力検出値が前記力指令値と一致するように、前記第1位置指令値を生成する、
    請求項1から請求項3のいずれか一項に記載の把持装置。
  5.  モータと、前記モータの回転軸の位置及び速度を検出する検出部と、を備える駆動部と、
     電流操作値に応じて前記モータを駆動する電力を供給し、前記モータに供給する電流の電流値を検出するモータ駆動部と、
     第1指部と、第2指部と、を備え、前記モータの回転に応じて前記第1指部と前記第2指部との間隔を変えて、前記第1指部と前記第2指部とで対象物を把持する把持部と、
     前記第1指部と前記第2指部とで前記対象物を把持した時に、前記第1指部及び前記第2指部が前記対象物を把持する把持力を検出する力検出部と、
    を備え、前記力検出部が検出した把持力検出値が力指令値と一致するように前記モータ駆動部に前記電流操作値を制御する把持装置の制御方法であって、
     力指令値を第1位置指令値に変換する工程と、
     第2位置指令値を生成する工程と、
     前記第1指部又は前記第2指部が前記対象物に接触したことを検出する工程と、
     前記第1位置指令値又は前記第2位置指令値のいずれかを、電流指令値に変換する工程であって、前記第1指部又は前記第2指部が前記対象物に接触したことを検出する前は、前記第2位置指令値を前記電流指令値に変換し、前記第1指部又は前記第2指部が前記対象物に接触したことを検出した後は、前記第1位置指令値を前記電流指令値に変換する工程と、
     前記電流値が前記電流指令値に一致するように、前記電流操作値を出力する工程と、
     前記第1指部又は前記第2指部が前記対象物に接触したことを検出したときに、前記第2位置指令値を、前記検出部が検出した位置検出値とする工程と、を含む、
    把持装置の制御方法。
PCT/JP2022/031208 2021-08-20 2022-08-18 把持装置及び把持装置の制御方法 WO2023022195A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280056580.9A CN117836100A (zh) 2021-08-20 2022-08-18 夹持装置和夹持装置的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021135160A JP2023029076A (ja) 2021-08-20 2021-08-20 把持装置及び把持装置の制御方法
JP2021-135160 2021-08-20

Publications (1)

Publication Number Publication Date
WO2023022195A1 true WO2023022195A1 (ja) 2023-02-23

Family

ID=85239878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031208 WO2023022195A1 (ja) 2021-08-20 2022-08-18 把持装置及び把持装置の制御方法

Country Status (3)

Country Link
JP (1) JP2023029076A (ja)
CN (1) CN117836100A (ja)
WO (1) WO2023022195A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040886A (ja) * 2006-08-08 2008-02-21 Fanuc Ltd 数値制御装置
JP2014108466A (ja) * 2012-11-30 2014-06-12 Fanuc Ltd 力センサ付き電動ハンド
JP2019202406A (ja) * 2018-05-25 2019-11-28 キヤノン株式会社 ロボットハンド、ロボットハンドの制御方法、ロボット装置、プログラム及び記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040886A (ja) * 2006-08-08 2008-02-21 Fanuc Ltd 数値制御装置
JP2014108466A (ja) * 2012-11-30 2014-06-12 Fanuc Ltd 力センサ付き電動ハンド
JP2019202406A (ja) * 2018-05-25 2019-11-28 キヤノン株式会社 ロボットハンド、ロボットハンドの制御方法、ロボット装置、プログラム及び記録媒体

Also Published As

Publication number Publication date
JP2023029076A (ja) 2023-03-03
CN117836100A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US10150215B2 (en) Robot control device and robot
JP6305673B2 (ja) ロボット制御システム、ロボットシステム及びロボット
Liaw et al. Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation
JP4947073B2 (ja) ロボット装置及びその制御方法
US20140012419A1 (en) Robot control apparatus and robot control method
Sun et al. Multilateral teleoperation with new cooperative structure based on reconfigurable robots and type-2 fuzzy logic
WO2012077335A1 (ja) ロボットの制御装置及び制御方法、ロボット、並びに、制御プログラム
JP2015015844A (ja) フィードフォワード制御を備えたモータ制御装置
JPWO2011080856A1 (ja) ロボット、ロボットの制御装置、制御方法、及び制御プログラム
CN110621446B (zh) 机器人系统以及机器人系统的控制方法
WO2014061681A1 (ja) 多関節ロボットのウィービング制御装置
US20150051735A1 (en) Control apparatus of robot, robot, and program thereof
WO2023022195A1 (ja) 把持装置及び把持装置の制御方法
WO2023022194A1 (ja) 把持装置及び把持装置の制御方法
JP2007043884A (ja) 多慣性共振系の振動抑制制御方法及び装置
JP2005186235A (ja) ロボットの制御装置
WO2018225689A1 (ja) 角度伝達誤差同定システム、角度伝達誤差同定方法及びロボットシステム
JP2013146792A (ja) ロボット制御装置、ロボットシステム、センサー情報処理装置及びロボット制御方法
JP2016221653A (ja) ロボット制御装置およびロボットシステム
CN107645979B (zh) 用于使机器人手臂的运动同步的机器人系统
Yashiro et al. Design of adaptive controller using object position for bilateral control system with communication delay
WO2023127652A1 (ja) 把持装置及び把持装置の制御方法
JP2023097120A (ja) 把持装置及び把持装置の制御方法
JP2009196040A (ja) ロボットシステム
JP6814441B2 (ja) 駆動機械の学習制御装置及び学習制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280056580.9

Country of ref document: CN