WO2023022088A1 - Sheathing material for all-solid-state battery and all-solid-state battery - Google Patents

Sheathing material for all-solid-state battery and all-solid-state battery Download PDF

Info

Publication number
WO2023022088A1
WO2023022088A1 PCT/JP2022/030551 JP2022030551W WO2023022088A1 WO 2023022088 A1 WO2023022088 A1 WO 2023022088A1 JP 2022030551 W JP2022030551 W JP 2022030551W WO 2023022088 A1 WO2023022088 A1 WO 2023022088A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
layer
heat
state battery
gas barrier
Prior art date
Application number
PCT/JP2022/030551
Other languages
French (fr)
Japanese (ja)
Inventor
輝利 熊木
大介 中嶋
Original Assignee
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工パッケージング株式会社 filed Critical 昭和電工パッケージング株式会社
Priority to JP2023542371A priority Critical patent/JPWO2023022088A1/ja
Priority to KR1020247005076A priority patent/KR20240034810A/en
Priority to CN202280055735.7A priority patent/CN117813717A/en
Publication of WO2023022088A1 publication Critical patent/WO2023022088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an exterior material for an all-solid-state battery and an all-solid-state battery used as high-power batteries such as batteries for vehicles, batteries for portable devices such as mobile electronic devices, and batteries for storing regenerative energy.
  • Lithium-ion secondary batteries which have been widely used in the past, use a liquid electrolyte as the electrolyte, so there is a risk that the separator will be destroyed due to liquid leakage or dentrites, and in some cases, ignition due to short circuit may occur. rice field.
  • an all-solid-state battery uses a solid electrolyte, so there is no liquid leakage or dendrites, and the separator is not destroyed. Therefore, there is no fear of ignition due to breakage of the separator, and it has attracted much attention from the standpoint of safety.
  • a normal all-solid-state battery is configured by enclosing a solid-state battery body such as an electrode active material and a solid electrolyte inside an exterior material as a casing.
  • a solid-state battery body such as an electrode active material
  • a solid electrolyte inside an exterior material as a casing.
  • the performance required of the exterior material is different from the exterior material of batteries using conventional liquid electrolytes.
  • Various cladding materials have been proposed to meet the performance requirements of the vehicle.
  • the exterior material for an all-solid-state battery as a basic structure, includes a metal foil layer and a heat-sealing layer (sealant layer) laminated inside it, and the solid-state battery body is formed by heat-sealing the sealant layer. It is enclosed.
  • the exterior material for an all-solid-state battery shown in Patent Document 1 below has a protective film interposed between a metal foil layer and a sealant layer, and a sealant layer with high hydrogen sulfide gas permeability is used. Furthermore, in the exterior material for an all-solid-state battery disclosed in Patent Document 2, a sealant layer having a high hydrogen sulfide gas permeability is used. In addition, the exterior material for an all-solid-state battery disclosed in Patent Document 3 uses a sealant layer that absorbs gas. Furthermore, the exterior material for an all-solid-state battery disclosed in Patent Document 4 is configured by laminating a deposited film layer on the inner surface of the sealant layer.
  • Patent No. 6777276 Patent No. 6747636 JP 2020-187855 A Japanese Patent Application Laid-Open No. 2020-187835
  • Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
  • the present invention has been made in view of the above problems, and provides an exterior material for an all-solid-state battery and an all-solid-state battery that can prevent defects such as breakage even in a high-temperature environment. intended to provide
  • the present invention has the following means.
  • a total body for encapsulating a solid battery body comprising a base material layer, a metal foil layer laminated on the inner surface side of the base material layer, and a sealant layer laminated on the inner surface side of the metal foil layer.
  • An exterior material for a solid battery A resin heat-resistant gas barrier layer is provided between the metal foil layer and the sealant layer, The heat-resistant gas barrier layer has a Young's modulus at 90° C. of 1 GPa or more in both MD and TD.
  • An all-solid-state battery characterized in that a solid-state battery main body is enclosed in the all-solid-state battery exterior material according to any one of the preceding items 1 to 4.
  • the exterior material for an all-solid-state battery of the invention [1] since a heat-resistant gas barrier layer having a high Young's modulus at high temperature is interposed between the metal foil layer and the sealant layer, it can be used not only at room temperature but also in a high temperature environment. Even so, it is possible to reliably prevent the occurrence of defects such as breakage in the heat-resistant gas barrier layer and thus in the entire exterior material.
  • the exterior material for an all-solid-state battery of the inventions [2] and [3] even if the exterior material expands due to an increase in internal pressure due to high temperature in a state where the solid battery body is enclosed, the exterior material is more reliably damaged. can be prevented.
  • a predetermined thickness can be secured while preventing the heat-resistant gas barrier layer from melting and flowing out even by thermal bonding of the sealant layer. can be obtained more reliably.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view showing an exterior material used in the all-solid-state battery of the embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view showing an exterior material 1 used in the all-solid-state battery.
  • the exterior material 1 that constitutes the casing of the all-solid-state battery of this embodiment is composed of a laminate such as a laminate sheet.
  • the exterior material 1 includes a base material layer 11 disposed on the outermost side, a metal foil layer 12 laminated on the inner surface side of the base material layer 11, and a heat-resistant gas barrier layer 21 laminated on the inner surface side of the metal foil layer 12. and a sealant layer 13 laminated on the inner surface side of the heat-resistant gas barrier layer 21, and in the present embodiment, each layer 11 to 13, 21 of the exterior material 1 is filled with an adhesive by a dry lamination method or a heat lamination method. (adhesive layer).
  • the exterior material 1 of the present embodiment is composed of a laminate consisting of the base material layer 11/adhesive layer/metal foil layer 12/adhesive layer/heat-resistant gas barrier layer 21/adhesive layer/sealant layer 13.
  • an all-solid-state battery is produced by encapsulating the solid-state battery main body 5 with the exterior material 1 configured as described above so as to cover it. That is, the two rectangular exterior materials 1, 1 are superimposed one on the other with the solid battery main body 5 interposed therebetween, and the sealant layers 13, 13 at the outer peripheral edges of the two (a pair of) exterior materials 1, 1
  • an all-solid-state battery is manufactured in which the solid-state battery main body 5 is housed in a bag-shaped casing made of the exterior materials 1, 1. It is a thing.
  • the all-solid-state battery of this embodiment is provided with a tab lead for extracting electricity.
  • One end (inner end) of this tab lead is adhesively fixed to the solid battery main body 5, and the intermediate portion passes between the outer peripheral edges of the two exterior bodies 1, 1, and the other end side (outer end side) extends to the outside. arranged to be pulled out.
  • the casing is formed by pasting two planar exterior materials 1, 1 together, but the present invention is not limited to this, and at least one of the two exterior materials may be One of them may be molded in advance into a tray shape, and one tray-shaped exterior material may be attached to the other tray-shaped or planar exterior material to form a casing.
  • the base material layer 11 of the exterior material 1 is composed of a heat-resistant resin film with a thickness of 5 ⁇ m to 50 ⁇ m.
  • Polyamide, polyester (PET, PBT, PEN), polyolefin (PE, PP), or the like can be suitably used as the resin constituting the base material layer 11 .
  • the thickness of the metal foil layer 12 is set to 5 ⁇ m to 120 ⁇ m, and has the function of blocking the intrusion of oxygen and moisture from the surface (outer surface) side.
  • metal foil layer 12 aluminum foil, SUS foil (stainless steel foil), copper foil, nickel foil, or the like can be suitably used.
  • the terms "aluminum”, “copper” and “nickel” are used to include their alloys.
  • the metal foil layer 12 when the metal foil layer 12 is plated, the risk of pinholes is reduced, and the function of blocking the intrusion of oxygen and moisture can be further improved.
  • the corrosion resistance is further improved, so that defects such as chipping can be prevented more reliably, and adhesion to the resin is improved.
  • the durability can be further improved.
  • the sealant layer 13 has a thickness of 10 ⁇ m to 100 ⁇ m, and is made of a thermally adhesive (thermally fusible) resin film.
  • the resin constituting the sealant layer 13 includes polyethylene (LLDPE, LDPE, HDPE), polyolefins such as polypropylene, olefinic copolymers, acid-modified products thereof and ionomers, such as unstretched polypropylene (CPP , IPP) and the like can be preferably used.
  • sealant layer 13 taking into account the use of tab leads to extract electricity, that is, taking into account sealing properties and adhesiveness with tab leads, it is preferable to use a polypropylene resin (unstretched polypropylene film (CPP, IPP)). preferable.
  • a polypropylene resin unstretched polypropylene film (CPP, IPP)
  • the heat-resistant gas barrier layer 21 is composed of a heat-resistant and insulating resin film. Resins constituting the heat-resistant gas barrier layer 21 include polyamide (6-nylon, 66-nylon, MXD nylon, etc.), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), cellophane, poly It is preferred to use vinylidene chloride, etc. (PVDC).
  • the resin film that constitutes the heat-resistant gas barrier layer 21 has a Young's modulus at 90° C. that is 1 GPa or more in both the machine direction MD and the direction perpendicular to the MD, and preferably 5 GPa or more. It is preferable to have That is, by adopting this configuration, the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 can be secured with a predetermined hardness not only at room temperature but also in a high temperature environment, so that defects such as breakage can be prevented. can be prevented.
  • the heat-resistant gas barrier layer 21 has a Young's modulus of 1.5 GPa or more at normal temperature (25° C.).
  • the heat-resistant gas barrier layer 21 preferably has a tensile breaking strength at 90°C of 100 MPa or more and 400 MPa or less in both MD and TD. That is, when adopting this configuration, even if the internal pressure increases due to the expansion of the solid battery main body 5 at a high temperature and the exterior material 1 expands, damage to the exterior material 1 can be reliably prevented.
  • the heat-resistant gas barrier layer 21 has a structure in which both the tensile elongation at break MD and TD at 90°C are 50% to 200%. That is, with this configuration, even if the exterior material 1 expands and elongates due to an increase in internal pressure at high temperatures, damage to the exterior material 1 can be prevented more reliably.
  • the heat-resistant gas barrier layer 21 has a tensile strength at break of 150 MPa and a tensile elongation at break of 50% to 150% at room temperature (25°C).
  • the resin forming the heat-resistant gas barrier layer 21 preferably has a predetermined hydrogen sulfide (H 2 S) gas permeability.
  • the heat-resistant gas barrier layer 21 is preferably made of a resin having a hydrogen sulfide gas permeability of 15 ⁇ cc ⁇ mm/(m 2 ⁇ D ⁇ MPa) ⁇ or less as measured according to JIS K7126-1. preferably 10 ⁇ cc ⁇ mm/(m 2 ⁇ D ⁇ MPa) ⁇ or less resin, more preferably 4.0 ⁇ cc ⁇ mm/(m 2 ⁇ D ⁇ MPa) ⁇ or less is preferably made of resin.
  • the heat-resistant gas barrier layer 21 prevents the solid electrolyte material from reacting with moisture in the outside air to generate hydrogen sulfide gas. Hydrogen sulfide gas can be prevented from leaking to the outside. In other words, if the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is too high, the generated hydrogen sulfide gas may leak outside through the exterior material 1 (heat-resistant gas barrier layer 21), which is not preferable.
  • the resin constituting the heat-resistant gas barrier layer 21 has a water vapor gas permeability of 50 (g/m 2 /day) or less, more preferably 40 (g/m 2 /day) or less, and even more preferably 20 (g/m 2 /day) or less. That is, hydrogen sulfide gas is generated when external moisture permeates the exterior material 1 and reacts with the solid electrolyte material.
  • the gas barrier function of the metal foil layer 12 can prevent the intrusion of moisture. Therefore, it is possible to more reliably prevent hydrogen sulfide gas from leaking to the outside.
  • the thickness of the heat-resistant gas barrier layer 21 is preferably set to 3 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m. That is, when the thickness of the heat-resistant gas barrier layer 21 is set within this range, it is possible to reliably obtain the above-described effect of preventing the occurrence of defects, and even if the sealant layer 13 melts and flows out due to thermal adhesion, the heat-resistant gas barrier layer 21 can be prevented. The effect of the layer 21 for preventing the occurrence of defects can be maintained. In other words, if the heat-resistant gas barrier layer 21 is too thin, the effect of generating defects may not be obtained, which is not preferable. Conversely, if the heat-resistant gas barrier layer 21 is too thick, not only is it impossible to reduce the thickness of the exterior material 1, but the effect of making it thicker than necessary cannot be obtained sufficiently, which is not preferable.
  • the heat-resistant gas barrier layer 21 it is preferable to use a resin film as the heat-resistant gas barrier layer 21 . That is, since the entire film serves as a barrier layer, barrier cracks do not occur unlike vapor deposition films and the like, and barrier properties can be improved.
  • a non-stretched film or a slightly stretched film can be used, and it is particularly preferable to use a non-stretched film. That is, when a non-stretched film is used, moldability and gas barrier properties can be further improved.
  • the heat-resistant gas barrier layer 21 it is preferable to use a resin that has a melting point higher than that of the resin that forms the sealant layer 13 by 10° C. or more as the resin that forms the heat-resistant gas barrier layer 21 . That is, when the heat-resistant gas barrier layer 21 has a high melting point, even if the sealant layer 13 is melted when the exterior material 1 is thermally bonded, the melt-outflow of the heat-resistant gas barrier layer 21 can be prevented. Therefore, it is possible to reliably obtain the effect of preventing the occurrence of defective portions.
  • the adhesive for bonding between the layers 11 to 13, 21 of the exterior material 1
  • an energy ray (UV, X-ray, etc.) curable type or the like is used as the adhesive (adhesive layer) for bonding between the layers 11 to 13, 21 of the exterior material 1.
  • an energy ray (UV, X-ray, etc.) curable type or the like is used as the adhesive (adhesive layer) for bonding between the layers 11 to 13, 21 of the exterior material 1.
  • urethane-based adhesives, olefin-based adhesives, acrylic-based adhesives, epoxy-based adhesives, etc. can be preferably used.
  • the thickness of the adhesive layer is preferably set to 2 ⁇ m to 5 ⁇ m.
  • the unique heat-resistant gas barrier layer 21 is interposed between the metal foil layer 12 and the sealant layer 13 in the exterior material 1, it can be used not only at room temperature but also in a high temperature environment. Even so, the heat-resistant gas barrier layer 21 and thus the exterior material 1 can be reliably prevented from being damaged, and the all-solid-state battery product has excellent operational reliability especially in high-temperature environments. can provide.
  • Example 1 Fabrication of exterior material On both sides of a 40 ⁇ m thick aluminum foil (A8021-O) as the metal foil layer 12, a chemical compound consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol was applied. After applying the treatment liquid, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
  • a two-liquid curable urethane adhesive (3 ⁇ m) was applied as the base layer 11 to form two layers having a thickness of 15 ⁇ m.
  • An axially oriented 6 nylon (ONy) film was dry laminated.
  • a PET film having a thickness of 9 ⁇ m is applied to the other surface (inner surface) of the aluminum foil after the dry lamination, and a two-liquid curing type urethane adhesive (3 ⁇ m) is applied. pasted together through
  • a 40 ⁇ m-thick CPP film containing a lubricant (erucamide, etc.) is sandwiched through a two-component curable urethane adhesive (3 ⁇ m) after the dry lamination.
  • Laminate constituting the exterior material 1 by being superimposed on the inner surface of the PET film (heat-resistant gas barrier layer 21) and sandwiched between a rubber nip roll and a lamination roll heated to 100° C. for dry lamination. got
  • this laminate was wound around a roll shaft and then aged at 40°C for 10 days to obtain an exterior material sample of Example 1.
  • the PET film (heat-resistant gas barrier layer 21) used to prepare the exterior material sample of Example 1 was subjected to both MD and TD in accordance with JIS K7127-1999. , Young's modulus at 90° C., tensile strength at break and tensile elongation at break were measured respectively. That is, a PET film for a heat-resistant gas barrier layer was cut into a size of 15 mm in width and 100 mm in length to prepare a test piece. C.
  • a tensile test was performed at a tensile speed of 200 mm/min to measure Young's modulus (MPa), tensile strength at break (MPa), and tensile elongation at break (%).
  • MPa Young's modulus
  • MPa tensile strength at break
  • % tensile elongation at break
  • Table 1 in the heat-resistant gas barrier layer PET film of Example 1, the Young's modulus was 3.6 GPa in MD and 3.2 GPa in TD, and the tensile strength at break was 190 MPa in MD and 210 MPa in TD. and the tensile elongation at break is 120% in MD and 110% in TD.
  • the piercing strength of the exterior material sample of Example 1 was measured in an atmosphere of 90°C in accordance with JIS Z1707:1997.
  • the measurement method penetration strength test method
  • An exterior material sample of a predetermined size is fixed as a test piece, and a semicircular needle with a diameter of 1.0 mm and a tip shape radius of 0.5 mm is pierced at a speed of 50 ⁇ 5 mm per minute, and the maximum stress until the needle penetrates. was measured. The number of test pieces was 5, and the average value was taken as the puncture strength. The results are also shown in Table 1.
  • Example 1 The exterior material sample of Example 1 was cut into a size of 100 mm ⁇ 100 mm to obtain a sample for formability evaluation. A deep drawing test was performed on this formability evaluation sample using a deep drawing mold attached to a 25t press machine while changing the forming height (drawing depth) in increments of 0.5 mm. .
  • Example 2 The heat-resistant gas barrier layer 21 is biaxially oriented with a Young's modulus of MD: 1.5 GPa, TD: 1.2 GPa, a tensile strength at break of MD: 210 MPa, TD: 240 MPa, and a tensile elongation at break of MD: 140%, TD: 120%.
  • a sample of Example 2 was prepared in the same manner as in Example 1 except that a 6 nylon film (ONY-6 film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 3 A sample of Example 3 was prepared in the same manner as in Example 2 except that a film having a thickness of 15 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 4 A sample of Example 4 was prepared in the same manner as in Example 2 except that a film having a thickness of 25 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 5 As the heat-resistant gas barrier layer 21, a PET film having Young's modulus MD: 3.4 GPa, TD: 3.1 GPa, tensile strength at break MD: 200 MPa, TD: 220 MPa, and tensile elongation at break MD: 130%, TD: 125%.
  • a sample of Example 5 was prepared in the same manner as in Example 1, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 5 the Young's modulus, tensile strength at break, and tensile elongation at break of the PET film were made different from those in Example 1 by adjusting the conditions during film production and changing the degree of crystallinity.
  • Example 6> The heat-resistant gas barrier layer 21 is biaxially stretched with a Young's modulus of MD: 1.1 GPa, TD: 1.6 GPa, a tensile strength at break of MD: 90 MPa, TD: 160 MPa, and a tensile elongation at break of MD: 140%, TD: 80%.
  • a sample of Example 6 was prepared in the same manner as in Example 1 except that a polypropylene film (OPP film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 7 A sample of Example 7 was prepared in the same manner as in Example 1 except that a CPP film having a thickness of 10 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 8 A sample of Example 8 was prepared in the same manner as in Example 1 except that a CPP film having a thickness of 100 ⁇ m was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 9 The sample of Example 9 was prepared in the same manner as in Example 1 except that a polyvinylidene chloride (PVDC) film having a thickness of 10 ⁇ m was used as the heat-resistant gas barrier layer 21 and a CPP film having a thickness of 30 ⁇ m was used as the sealant layer 13. was prepared, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • PVDC polyvinylidene chloride
  • Example 10 A sample of Example 10 was prepared in the same manner as in Example 9 except that a PVDC film having a thickness of 15 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 11 A sample of Example 11 was prepared in the same manner as in Example 9 except that a PVDC film having a thickness of 25 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 12 A sample of Example 12 was prepared in the same manner as in Example 9 except that the other surface (inner surface) of the aluminum foil for the metal foil layer was coated with PVDC to a thickness of 2 ⁇ m to form the heat-resistant gas barrier layer 21. Then, the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Example 13 A sample of Example 13 was prepared in the same manner as in Example 9 except that a PVDC film having a thickness of 50 ⁇ m was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Comparative Example 1 As the heat-resistant gas barrier layer 21, an OPP film having Young's modulus MD: 0.9 GPa, TD: 1.5 GPa, tensile strength at break MD: 80 MPa, TD: 150 MPa, and tensile elongation at break MD: 150%, TD: 80%. A sample of Comparative Example 1 was prepared in the same manner as in Example 6, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
  • Comparative Example 1 the Young's modulus, tensile strength at break, and tensile elongation at break of the OPP film were made different from those in Example 6 by adjusting the conditions during film production and changing the degree of crystallinity.
  • Comparative Example 1 which deviates from the gist of the present invention, is inferior in piercing resistance at 90° C., and is damaged in a high-temperature environment compared to Examples 1 to 8. It is thought that such defects are likely to occur.
  • the all-solid-state battery exterior material of the present invention can be suitably used as a casing material for housing the solid-state battery main body.
  • Exterior material 11 Base material layer 12: Metal foil layer 13: Sealant layer 21: Heat resistant gas barrier layer 5: Solid battery body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

The present invention provides a sheathing material for an all-solid-state battery that makes it possible to prevent the occurrence of defects such as damage. The present invention is directed to a sheathing material for an all-solid-state battery in which a solid-state battery body 5 is to be enclosed and which comprises: a base material layer 11; a metal foil layer 12 laminated on the inner surface side of the base material layer 11; and a sealant layer 13 laminated on the inner surface side of the metal foil layer 12. A heat-resistant gas barrier layer 21 made of resin is provided between the metal foil layer 12 and the sealant layer 13, and the heat-resistant gas barrier layer 21 has a Young's modulus of 1 GPa or more at 90°C in the MD and the TD.

Description

全固体電池用外装材および全固体電池Exterior materials for all-solid-state batteries and all-solid-state batteries
 この発明は、車載用電池等のハイパワーバッテリー、モバイル電子機器等のポータブル機器用電池、回生エネルギーの蓄電用電池等として用いられる全固体電池用の外装材および全固体電池に関する。 The present invention relates to an exterior material for an all-solid-state battery and an all-solid-state battery used as high-power batteries such as batteries for vehicles, batteries for portable devices such as mobile electronic devices, and batteries for storing regenerative energy.
 従来多く用いられているリチウムイオン2次電池は、電解質として液体電解質を使用しているため、液漏れやデントライトの発生によりセパレータが破壊され場合によっては、短絡による発火等が発生するおそれがあった。 Lithium-ion secondary batteries, which have been widely used in the past, use a liquid electrolyte as the electrolyte, so there is a risk that the separator will be destroyed due to liquid leakage or dentrites, and in some cases, ignition due to short circuit may occur. rice field.
 これに対し、全固体電池は、固体電解質を使用した電池であるため、液漏れやデンドライトが発生せずセパレータが破壊されることもない。従ってセパレータの破壊による発火等も懸念されることがなく、安全性の面等から大いに注目されている。 On the other hand, an all-solid-state battery uses a solid electrolyte, so there is no liquid leakage or dendrites, and the separator is not destroyed. Therefore, there is no fear of ignition due to breakage of the separator, and it has attracted much attention from the standpoint of safety.
 通常の全固体電池は、ケーシングとしての外装材の内部に、電極活物質や固体電解質等の固体電池本体が封入されて構成されている。この全固体電池においては、固体電解質の研究が進むにつれて、外装材に求められる性能が、従来の液体電解質を用いた電池の外装材とは異なる部分が徐々に顕現されてきており、全固体電池用の性能を満たすために種々の外装材が提案されている。 A normal all-solid-state battery is configured by enclosing a solid-state battery body such as an electrode active material and a solid electrolyte inside an exterior material as a casing. In this all-solid-state battery, as research on solid electrolytes progresses, it has gradually become apparent that the performance required of the exterior material is different from the exterior material of batteries using conventional liquid electrolytes. Various cladding materials have been proposed to meet the performance requirements of the vehicle.
 全固体電池用の外装材は、基本構造として、金属箔層と、その内側に積層された熱融着層(シーラント層)とを含み、シーラント層を熱融着することによって、固体電池本体を封入するものである。 The exterior material for an all-solid-state battery, as a basic structure, includes a metal foil layer and a heat-sealing layer (sealant layer) laminated inside it, and the solid-state battery body is formed by heat-sealing the sealant layer. It is enclosed.
 例えば下記特許文献1に示す全固体電池用外装材は、金属箔層とシーラント層との間に保護膜が介在されるとともに、シーラント層として硫化水素ガス透過度が高いものが用いられている。さらに特許文献2に示す全固体電池用外装材は、シーラント層として硫化水素ガス透過度が高いものが用いられている。また特許文献3に示す全固体電池用外装材は、シーラント層としてガスを吸収するものが用いられている。さらに特許文献4に示す全固体電池用外装材は、シーラント層の内面に蒸着膜層が積層されて構成されている。 For example, the exterior material for an all-solid-state battery shown in Patent Document 1 below has a protective film interposed between a metal foil layer and a sealant layer, and a sealant layer with high hydrogen sulfide gas permeability is used. Furthermore, in the exterior material for an all-solid-state battery disclosed in Patent Document 2, a sealant layer having a high hydrogen sulfide gas permeability is used. In addition, the exterior material for an all-solid-state battery disclosed in Patent Document 3 uses a sealant layer that absorbs gas. Furthermore, the exterior material for an all-solid-state battery disclosed in Patent Document 4 is configured by laminating a deposited film layer on the inner surface of the sealant layer.
特許第6777276号Patent No. 6777276 特許第6747636号Patent No. 6747636 特開2020-187855号JP 2020-187855 A 特開2020-187835号Japanese Patent Application Laid-Open No. 2020-187835
 しかしながら、特許文献1~4に示すような全固体電池では、ケーシング(外装材)内に残存するガス等を、電解質に置換することができないため、固体電池本体を外装材に封入する際に、減圧下で行うことにより、外装材内にガスが残留しないようにしており、外装材が固体電池本体に密着した状態となる。その一方、固体電解質は、液体電解質のようなクッション性もないため、外装材内に、異物や固体電池本体に突起状の部分があると、その突起状部の外装材に対する密着部に応力が集中し、その部分が後発の欠陥部例えば、外装材の破損等の欠陥部が発生するという課題があった。特に全固体電池が優位性を持つ高温環境下においては欠陥部の発生確率が高くなるため、常温に限らず高温環境下であっても、欠陥部の発生を防止することができる技術の開発が切望されるところである。 However, in the all-solid-state battery as shown in Patent Documents 1 to 4, the gas remaining in the casing (exterior material) cannot be replaced with the electrolyte, so when the solid battery main body is enclosed in the exterior material, By carrying out under reduced pressure, gas is prevented from remaining in the exterior material, and the exterior material is brought into a state of being in close contact with the solid battery main body. On the other hand, since the solid electrolyte does not have the cushioning properties of the liquid electrolyte, if there is a foreign matter in the exterior material or a projecting portion on the solid battery body, stress will be applied to the portion where the projecting portion adheres to the exterior material. There has been a problem that a defective portion, such as a damaged portion of the exterior material, is generated in that portion. In particular, in high-temperature environments where all-solid-state batteries are superior, the probability of defects occurring is high. It is coveted.
 本発明の好ましい実施形態は、関連技術における上述した及び/又は他の問題点に鑑みてなされたものである。本発明の好ましい実施形態は、既存の方法及び/又は装置を著しく向上させることができるものである。 Preferred embodiments of the present invention have been made in view of the above and/or other problems in the related art. Preferred embodiments of the present invention can significantly improve existing methods and/or apparatus.
 この発明は、上記の課題に鑑みてなされたものであり、高温環境下であっても、破損等の欠陥部が発生するのを防止することができる全固体電池用外装材および全固体電池を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an exterior material for an all-solid-state battery and an all-solid-state battery that can prevent defects such as breakage even in a high-temperature environment. intended to provide
 本発明のその他の目的及び利点は、以下の好ましい実施形態から明らかであろう。 Other objects and advantages of the present invention will be apparent from the following preferred embodiments.
 上記課題を解決するため、本発明は、以下の手段を備えるものである。 In order to solve the above problems, the present invention has the following means.
 [1]基材層と、前記基材層の内面側に積層された金属箔層と、前記金属箔層の内面側に積層されたシーラント層とを備え、固体電池本体を封入するための全固体電池用外装材であって、
 前記金属箔層と前記シーラント層との間に樹脂製の耐熱ガスバリア層が設けられ、
 前記耐熱ガスバリア層は、90℃におけるヤング率がMDおよびTD共に1GPa以上であることを特徴とする全固体電池用外装材。
[1] A total body for encapsulating a solid battery body, comprising a base material layer, a metal foil layer laminated on the inner surface side of the base material layer, and a sealant layer laminated on the inner surface side of the metal foil layer. An exterior material for a solid battery,
A resin heat-resistant gas barrier layer is provided between the metal foil layer and the sealant layer,
The heat-resistant gas barrier layer has a Young's modulus at 90° C. of 1 GPa or more in both MD and TD.
 [2]前記耐熱ガスバリア層は、90℃における引張破断強度がMDおよびTD共に100MPa以上である前項1に記載の全固体電池用外装材。 [2] The exterior material for an all-solid-state battery according to the preceding item 1, wherein the heat-resistant gas barrier layer has a tensile breaking strength of 100 MPa or more in both MD and TD at 90°C.
 [3]前記耐熱ガスバリア層は、90℃における引張破断伸びがMDおよびTD共に50%~200%である前項1または2に記載の全固体電池用外装材。 [3] The exterior material for an all-solid-state battery according to the preceding item 1 or 2, wherein the heat-resistant gas barrier layer has a tensile elongation at break of 50% to 200% in both MD and TD at 90°C.
 [4]前記耐熱ガスバリア層は、前記シーラント層よりも10℃以上融点が高い樹脂によって構成され、厚さが3μm~50μmに設定されている前項1~3のいずれか1項に記載の全固体電池用外装材。 [4] The all solid according to any one of the preceding items 1 to 3, wherein the heat-resistant gas barrier layer is made of a resin having a melting point higher than that of the sealant layer by 10° C. or more, and has a thickness of 3 μm to 50 μm. Exterior material for batteries.
 [5]前項1~4のいずれか1項に記載の全固体電池用外装材に、固体電池本体が封入されていることを特徴とする全固体電池。 [5] An all-solid-state battery, characterized in that a solid-state battery main body is enclosed in the all-solid-state battery exterior material according to any one of the preceding items 1 to 4.
 発明[1]の全固体電池用外装材によれば、金属箔層およびシーラント層間に、高温下で高いヤング率を有する耐熱ガスバリア層を介在しているため、常温に限られず高温環境下であっても、耐熱ガスバリア層、ひいては外装材全域に破損等の欠陥部が発生するのを確実に防止することができる。 According to the exterior material for an all-solid-state battery of the invention [1], since a heat-resistant gas barrier layer having a high Young's modulus at high temperature is interposed between the metal foil layer and the sealant layer, it can be used not only at room temperature but also in a high temperature environment. Even so, it is possible to reliably prevent the occurrence of defects such as breakage in the heat-resistant gas barrier layer and thus in the entire exterior material.
 発明[2][3]の全固体電池用外装材によれば、固体電池本体を封入した状態において、高温による内圧上昇よって外装材が膨張して伸びたとしても、外装材の破損をより確実に防止することができる。 According to the exterior material for an all-solid-state battery of the inventions [2] and [3], even if the exterior material expands due to an increase in internal pressure due to high temperature in a state where the solid battery body is enclosed, the exterior material is more reliably damaged. can be prevented.
 発明[4]の全固体電池用外装材によれば、シーラント層の熱接着によっても耐熱ガスバリア層の溶融流出を防止しつつ所定の厚みを確保できるため、耐熱ガスバリア層による欠陥部発生防止効果をより一層確実に得ることができる。 According to the exterior material for an all-solid-state battery of the invention [4], a predetermined thickness can be secured while preventing the heat-resistant gas barrier layer from melting and flowing out even by thermal bonding of the sealant layer. can be obtained more reliably.
 発明[5]によれば、上記発明[1]~[4]の外装材を用いた全固体電池を特定するものであるため、上記と同様の効果を得ることができる。 According to the invention [5], since it specifies an all-solid-state battery using the exterior material of the above inventions [1] to [4], it is possible to obtain the same effects as above.
図1はこの発明の実施形態である全固体電池を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the invention. 図2は実施形態の全固体電池に用いられた外装材を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an exterior material used in the all-solid-state battery of the embodiment.
 図1はこの発明の実施形態である全固体電池を示す概略断面図、図2はその全固体電池に用いられた外装材1を示す概略断面図である。両図に示すように、本実施形態の全固体電池のケーシングとして構成される外装材1は、ラミネートシート等の積層体によって構成されている。 FIG. 1 is a schematic cross-sectional view showing an all-solid-state battery that is an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing an exterior material 1 used in the all-solid-state battery. As shown in both figures, the exterior material 1 that constitutes the casing of the all-solid-state battery of this embodiment is composed of a laminate such as a laminate sheet.
 この外装材1は、最外側に配置される基材層11と、基材層11の内面側に積層される金属箔層12と、金属箔層12の内面側に積層される耐熱ガスバリア層21と、耐熱ガスバリア層21の内面側に積層されるシーラント層13とを備え、本実施形態では、外装材1の各層11~13,21の各間は、ドライラミネート法やヒートラミネート法による接着剤(接着剤層)を介して接着されている。換言すると、本実施形態の外装材1は、基材層11/接着剤層/金属箔層12/接着剤層/耐熱ガスバリア層21/接着剤層/シーラント層13からなる積層体によって構成されている。 The exterior material 1 includes a base material layer 11 disposed on the outermost side, a metal foil layer 12 laminated on the inner surface side of the base material layer 11, and a heat-resistant gas barrier layer 21 laminated on the inner surface side of the metal foil layer 12. and a sealant layer 13 laminated on the inner surface side of the heat-resistant gas barrier layer 21, and in the present embodiment, each layer 11 to 13, 21 of the exterior material 1 is filled with an adhesive by a dry lamination method or a heat lamination method. (adhesive layer). In other words, the exterior material 1 of the present embodiment is composed of a laminate consisting of the base material layer 11/adhesive layer/metal foil layer 12/adhesive layer/heat-resistant gas barrier layer 21/adhesive layer/sealant layer 13. there is
 本実施形態においては図1に示すように、上記構成の外装材1によって、固体電池本体5を被覆するように封入して全固体電池を作製するものである。すなわち矩形状の2枚の外装材1,1が固体電池本体5を介して上下に重ね合わされて、2枚の(一対の)外装材1,1における外周縁部のシーラント層13,13同士が熱接着(ヒートシール)によって気密状態(封止状態)に接合一体化されることにより、外装材1,1からなる袋状のケーシング内に固体電池本体5が収容された全固体電池が製作されるものである。 In this embodiment, as shown in FIG. 1, an all-solid-state battery is produced by encapsulating the solid-state battery main body 5 with the exterior material 1 configured as described above so as to cover it. That is, the two rectangular exterior materials 1, 1 are superimposed one on the other with the solid battery main body 5 interposed therebetween, and the sealant layers 13, 13 at the outer peripheral edges of the two (a pair of) exterior materials 1, 1 By joining and integrating in an airtight state (sealed state) by thermal bonding (heat sealing), an all-solid-state battery is manufactured in which the solid-state battery main body 5 is housed in a bag-shaped casing made of the exterior materials 1, 1. It is a thing.
 本実施形態の全固体電池においては、図示は省略するが、電気取出用にタブリードが設けられている。このタブリードは、その一端(内端)が固体電池本体5に接着固定されて、中間部が2枚の外装体1,1の外周縁部間を通じて、他端側(外端側)が外部に引き出されるように配置されている。 Although not shown, the all-solid-state battery of this embodiment is provided with a tab lead for extracting electricity. One end (inner end) of this tab lead is adhesively fixed to the solid battery main body 5, and the intermediate portion passes between the outer peripheral edges of the two exterior bodies 1, 1, and the other end side (outer end side) extends to the outside. arranged to be pulled out.
 なお本実施形態においては、2枚の平面状の外装材1,1を貼り合わせてケーシングを形成するようにしているが、それだけに限られず、本発明においては、2枚の外装材のうち少なくともいずれか一方を予めトレイ状に成形しておいて、その一方のトレイ状の外装材を、トレイ状または平面状の他方の外装材に貼り合わせてケーシングを形成するようにしても良い。 In the present embodiment, the casing is formed by pasting two planar exterior materials 1, 1 together, but the present invention is not limited to this, and at least one of the two exterior materials may be One of them may be molded in advance into a tray shape, and one tray-shaped exterior material may be attached to the other tray-shaped or planar exterior material to form a casing.
 以下に、本実施形態の全固体電池の外装材1における詳細な構成について説明する。 The detailed configuration of the exterior material 1 of the all-solid-state battery of this embodiment will be described below.
 外装材1の基材層11は、厚さが5μm~50μmの耐熱性樹脂のフィルムによって構成されている。この基材層11を構成する樹脂としては、ポリアミド、ポリエステル(PET、PBT、PEN)、ポリオレフィン(PE、PP)等を好適に用いることができる。 The base material layer 11 of the exterior material 1 is composed of a heat-resistant resin film with a thickness of 5 μm to 50 μm. Polyamide, polyester (PET, PBT, PEN), polyolefin (PE, PP), or the like can be suitably used as the resin constituting the base material layer 11 .
 金属箔層12は、厚さが5μm~120μmに設定されており、表面(外面)側から酸素や水分の侵入をブロックする機能を有している。この金属箔層12としては、アルミニウム箔、SUS箔(ステンレス箔)、銅箔、ニッケル箔等を好適に用いることができる。なお本実施形態において、「アルミニウム」「銅」「ニッケル」という用語は、それらの合金も含む意味で用いられている。 The thickness of the metal foil layer 12 is set to 5 μm to 120 μm, and has the function of blocking the intrusion of oxygen and moisture from the surface (outer surface) side. As the metal foil layer 12, aluminum foil, SUS foil (stainless steel foil), copper foil, nickel foil, or the like can be suitably used. In the present embodiment, the terms "aluminum", "copper" and "nickel" are used to include their alloys.
 また金属箔層12にメッキ処理等を行うと、ピンホールが発生するリスクが少なくなり、より一層、酸素や水分の侵入をブロックする機能を向上させることができる。 In addition, when the metal foil layer 12 is plated, the risk of pinholes is reduced, and the function of blocking the intrusion of oxygen and moisture can be further improved.
 さらに金属箔層12にクロメート処理のような化成処理等を行うと、耐腐食性が一層向上するため、欠損等の不具合が発生するのをより確実に防止でき、また樹脂との接着性を向上できて耐久性を一段と向上させることができる。 Further, when the metal foil layer 12 is subjected to a chemical conversion treatment such as chromate treatment, the corrosion resistance is further improved, so that defects such as chipping can be prevented more reliably, and adhesion to the resin is improved. The durability can be further improved.
 シーラント層13は、厚さが10μm~100μmに設定されており、熱接着性(熱融着性)樹脂のフィルムによって構成されている。このシーラント層13を構成する樹脂としては、ポリエチレン(LLDPE、LDPE、HDPE)や、ポリプロピレンのようなポリオレフィン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群、例えば無延伸ポリプロピレン(CPP、IPP)等を好適に用いることができる。 The sealant layer 13 has a thickness of 10 μm to 100 μm, and is made of a thermally adhesive (thermally fusible) resin film. The resin constituting the sealant layer 13 includes polyethylene (LLDPE, LDPE, HDPE), polyolefins such as polypropylene, olefinic copolymers, acid-modified products thereof and ionomers, such as unstretched polypropylene (CPP , IPP) and the like can be preferably used.
 シーラント層13としては、タブリードを使って電気を取り出すことを考慮すると、つまりタブリードとのシール性や接着性等を考慮すると、ポリプロピレン系樹脂(無延伸ポリプロピレンフィルム(CPP、IPP))を用いるのが好ましい。 As the sealant layer 13, taking into account the use of tab leads to extract electricity, that is, taking into account sealing properties and adhesiveness with tab leads, it is preferable to use a polypropylene resin (unstretched polypropylene film (CPP, IPP)). preferable.
 耐熱ガスバリア層21は、耐熱性および絶縁性を有する樹脂のフィルムによって構成されている。この耐熱ガスバリア層21を構成する樹脂としては、ポリアミド(6-ナイロン、66-ナイロン、MXDナイロン等)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、セロハン、ポリ塩化ビニリデン等(PVDC)を用いるのが好ましい。 The heat-resistant gas barrier layer 21 is composed of a heat-resistant and insulating resin film. Resins constituting the heat-resistant gas barrier layer 21 include polyamide (6-nylon, 66-nylon, MXD nylon, etc.), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), cellophane, poly It is preferred to use vinylidene chloride, etc. (PVDC).
 本実施形態において、耐熱ガスバリア層21を構成する樹脂フィルムは、90℃におけるヤング率が、流れ方向であるMD、MDに直交する方向であるTD共に、1GPa以上であり、好ましくは共に5GPa以上であるのが好ましい。すなわちこの構成を採用することによって、常温に限られず高温環境下であっても、耐熱ガスバリア層21、ひいては外装材1に所定の硬さを確保できるため、破損等の欠陥部が発生するのを防止することができる。 In the present embodiment, the resin film that constitutes the heat-resistant gas barrier layer 21 has a Young's modulus at 90° C. that is 1 GPa or more in both the machine direction MD and the direction perpendicular to the MD, and preferably 5 GPa or more. It is preferable to have That is, by adopting this configuration, the heat-resistant gas barrier layer 21 and, in turn, the exterior material 1 can be secured with a predetermined hardness not only at room temperature but also in a high temperature environment, so that defects such as breakage can be prevented. can be prevented.
 なお本実施形態では、耐熱ガスバリア層21において常温(25℃)でのヤング率は1.5GPa以上である。 Note that in the present embodiment, the heat-resistant gas barrier layer 21 has a Young's modulus of 1.5 GPa or more at normal temperature (25° C.).
 また本実施形態においては、耐熱ガスバリア層21が、90℃における引張破断強度がMDおよびTD共に100MPa以上、400MPa以下であるのが好ましい。すなわちこの構成を採用する場合には、高温下で固体電池本体5の膨張により内圧が高くなって外装材1が膨張したとしても、外装材1の破損を確実に防止することができる。 In addition, in the present embodiment, the heat-resistant gas barrier layer 21 preferably has a tensile breaking strength at 90°C of 100 MPa or more and 400 MPa or less in both MD and TD. That is, when adopting this configuration, even if the internal pressure increases due to the expansion of the solid battery main body 5 at a high temperature and the exterior material 1 expands, damage to the exterior material 1 can be reliably prevented.
 さらに本実施形態において、耐熱ガスバリア層21が、90℃における引張破断伸びMDおよびTD共に50%~200%である構成を採用するのが好ましい。すなわちこの構成を場合には、高温下での内圧上昇により外装材1が膨張して伸長したとしても、外装材1の破損をより確実に防止することができる。 Furthermore, in the present embodiment, it is preferable that the heat-resistant gas barrier layer 21 has a structure in which both the tensile elongation at break MD and TD at 90°C are 50% to 200%. That is, with this configuration, even if the exterior material 1 expands and elongates due to an increase in internal pressure at high temperatures, damage to the exterior material 1 can be prevented more reliably.
 なお本実施形態では、耐熱ガスバリア層21において常温(25℃)における引張破断強度は、150MPaであり、引張破断伸びは、50%~150%である。 In this embodiment, the heat-resistant gas barrier layer 21 has a tensile strength at break of 150 MPa and a tensile elongation at break of 50% to 150% at room temperature (25°C).
 本実施形態では、耐熱ガスバリア層21を構成する樹脂は、所定の硫化水素(HS)ガス透過度を備えるのが好ましい。具体的には、耐熱ガスバリア層21は、JIS K7126-1に準拠する測定値において硫化水素ガス透過度が15{cc・mm/(m・D・MPa)}以下の樹脂によって構成するのが良く、好ましくは10{cc・mm/(m・D・MPa)}以下の樹脂によって構成するのが良く、より好ましくは4.0{cc・mm/(m・D・MPa)}以下の樹脂によって構成するのが良い。すなわち耐熱ガスバリア層21の硫化水素ガス透過度を上記の特定値以下に設定した場合には、固体電解質材料と外気の水分とが反応して硫化水素ガスが発生した際に、耐熱ガスバリア層21によって硫化水素ガスが外部に漏出するのを防止することができる。換言すると、耐熱ガスバリア層21の硫化水素ガス透過度が大き過ぎる場合には、発生した硫化水素ガスが外装材1(耐熱ガスバリア層21)を通って外部に漏出するおそれがあり、好ましくない。 In this embodiment, the resin forming the heat-resistant gas barrier layer 21 preferably has a predetermined hydrogen sulfide (H 2 S) gas permeability. Specifically, the heat-resistant gas barrier layer 21 is preferably made of a resin having a hydrogen sulfide gas permeability of 15 {cc·mm/(m 2 ·D·MPa)} or less as measured according to JIS K7126-1. preferably 10 {cc·mm/(m 2 ·D·MPa)} or less resin, more preferably 4.0 {cc·mm/(m 2 ·D·MPa)} or less is preferably made of resin. That is, when the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is set to the specific value or less, the heat-resistant gas barrier layer 21 prevents the solid electrolyte material from reacting with moisture in the outside air to generate hydrogen sulfide gas. Hydrogen sulfide gas can be prevented from leaking to the outside. In other words, if the hydrogen sulfide gas permeability of the heat-resistant gas barrier layer 21 is too high, the generated hydrogen sulfide gas may leak outside through the exterior material 1 (heat-resistant gas barrier layer 21), which is not preferable.
 なお参考までに、硫化水素ガス透過度の単位に含まれる「D」は、「Day(24h)」に相当するものである。 For reference, "D" included in the unit of hydrogen sulfide gas permeability corresponds to "Day (24h)".
 また本実施形態においては、耐熱ガスバリア層21を構成する樹脂としては、JIS K7129-1(感湿センサー法 40℃ 90%Rh)に準拠して測定された水蒸気ガス透過率が50(g/m/day)以下に設定するのが良く、より好ましくは40(g/m/day)以下が良く、さらに好ましくは20(g/m/day)以下のものを採用するのが良い。すなわち、硫化水素ガスは、外部の水分が外装材1を透過して固体電解質材料と反応することによって発生するが、耐熱ガスバリア層21の水蒸気ガス透過率を上記の特定値以下に設定した場合には、耐熱ガスバリア層21による水分の浸入を防止できる上さらに、金属箔層12のガスバリア機能も相俟って、水分の浸入をより一層確実に防止できて、硫化水素ガス自体の発生を確実に防止でき、ひいては硫化水素ガスが外部に漏出するのをより確実に防止することができる。 In the present embodiment, the resin constituting the heat-resistant gas barrier layer 21 has a water vapor gas permeability of 50 (g/m 2 /day) or less, more preferably 40 (g/m 2 /day) or less, and even more preferably 20 (g/m 2 /day) or less. That is, hydrogen sulfide gas is generated when external moisture permeates the exterior material 1 and reacts with the solid electrolyte material. In addition to the heat-resistant gas barrier layer 21, the gas barrier function of the metal foil layer 12 can prevent the intrusion of moisture. Therefore, it is possible to more reliably prevent hydrogen sulfide gas from leaking to the outside.
 本実施形態においては、耐熱ガスバリア層21の厚さを3μm~50μmに設定するのが良く、より好ましくは10μm~40μmに設定するのが良い。すなわち耐熱ガスバリア層21の厚さをこの範囲に設定した場合には、上記した欠陥部の発生防止効果を確実に得ることができるとともに、熱接着によりシーラント層13が溶融流出したとしても、耐熱ガスバリア層21による欠陥部発生防止効果を維持することができる。換言すると、耐熱ガスバリア層21が薄過ぎる場合には、欠陥部発生効果を得ることができないおそれがあり、好ましくない。逆に耐熱ガスバリア層21が厚過ぎる場合には、外装材1の薄肉化を図ることができないばかりか、必要以上に厚くすることの効果も十分に得られないため、好ましくない。 In this embodiment, the thickness of the heat-resistant gas barrier layer 21 is preferably set to 3 μm to 50 μm, more preferably 10 μm to 40 μm. That is, when the thickness of the heat-resistant gas barrier layer 21 is set within this range, it is possible to reliably obtain the above-described effect of preventing the occurrence of defects, and even if the sealant layer 13 melts and flows out due to thermal adhesion, the heat-resistant gas barrier layer 21 can be prevented. The effect of the layer 21 for preventing the occurrence of defects can be maintained. In other words, if the heat-resistant gas barrier layer 21 is too thin, the effect of generating defects may not be obtained, which is not preferable. Conversely, if the heat-resistant gas barrier layer 21 is too thick, not only is it impossible to reduce the thickness of the exterior material 1, but the effect of making it thicker than necessary cannot be obtained sufficiently, which is not preferable.
 本実施形態において、耐熱ガスバリア層21として樹脂フィルムを用いるのが好ましい。すなわちフィルム全体がバリア層となるので、蒸着フィルム等とは異なり、バリアクラックが発生せず、バリア性を向上させることができる。 In this embodiment, it is preferable to use a resin film as the heat-resistant gas barrier layer 21 . That is, since the entire film serves as a barrier layer, barrier cracks do not occur unlike vapor deposition films and the like, and barrier properties can be improved.
 さらに耐熱ガスバリア層21を構成する樹脂フィルムとしては、無延伸フィルムまたは少し延伸したフィルムを用いることができ、特に無延伸フィルムを用いるのが好ましい。すなわち無延伸フィルムを用いる場合には、成形性およびガスバリア性をより一層向上させることができる。 Furthermore, as the resin film constituting the heat-resistant gas barrier layer 21, a non-stretched film or a slightly stretched film can be used, and it is particularly preferable to use a non-stretched film. That is, when a non-stretched film is used, moldability and gas barrier properties can be further improved.
 また本実施形態においては、耐熱ガスバリア層21を構成する樹脂として、シーラント層13を構成する樹脂よりも融点が10℃以上高いものを採用するのが好ましい。すなわち耐熱ガスバリア層21を高融点とした場合には、外装材1を熱接着する際に、シーラント層13を溶融させたとしても、耐熱ガスバリア層21の溶融流出を防止できるため、耐熱ガスバリア層21による、欠陥部発生防止効果等を確実に得ることができる。 In addition, in this embodiment, it is preferable to use a resin that has a melting point higher than that of the resin that forms the sealant layer 13 by 10° C. or more as the resin that forms the heat-resistant gas barrier layer 21 . That is, when the heat-resistant gas barrier layer 21 has a high melting point, even if the sealant layer 13 is melted when the exterior material 1 is thermally bonded, the melt-outflow of the heat-resistant gas barrier layer 21 can be prevented. Therefore, it is possible to reliably obtain the effect of preventing the occurrence of defective portions.
 一方、本実施形態においては、外装材1の各層11~13,21の各間を貼り付けるための接着剤(接着剤層)としては、エネルギー線(UV、X線等)硬化型等の硬化タイプを用いることができ、中でも、ウレタン系接着剤、オレフィン系接着剤、アクリル系接着剤、エポキシ系接着剤等を好適に用いることができる。さらに本実施形態において接着剤層の厚さは、2μm~5μmに設定するのが好ましい。 On the other hand, in the present embodiment, as the adhesive (adhesive layer) for bonding between the layers 11 to 13, 21 of the exterior material 1, an energy ray (UV, X-ray, etc.) curable type or the like is used. Among them, urethane-based adhesives, olefin-based adhesives, acrylic-based adhesives, epoxy-based adhesives, etc. can be preferably used. Furthermore, in this embodiment, the thickness of the adhesive layer is preferably set to 2 μm to 5 μm.
 以上のように本実施形態の全固体電池によれば、外装材1における金属箔層12およびシーラント層13間に上記特有の耐熱ガスバリア層21を介在しているため、常温に限られず高温環境下であっても、耐熱ガスバリア層21、ひいては外装材1に破損等の欠陥部が発生するのを確実に防止することができ、特に高温環境下での動作信頼性に優れた全固体電池製品を提供することができる。 As described above, according to the all-solid-state battery of the present embodiment, since the unique heat-resistant gas barrier layer 21 is interposed between the metal foil layer 12 and the sealant layer 13 in the exterior material 1, it can be used not only at room temperature but also in a high temperature environment. Even so, the heat-resistant gas barrier layer 21 and thus the exterior material 1 can be reliably prevented from being damaged, and the all-solid-state battery product has excellent operational reliability especially in high-temperature environments. can provide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例1>
 1.外装材の作製
 金属箔層12としての厚さ40μmのアルミニウム箔(A8021-O)の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/mであった。
<Example 1>
1. Fabrication of exterior material On both sides of a 40 μm thick aluminum foil (A8021-O) as the metal foil layer 12, a chemical compound consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol was applied. After applying the treatment liquid, drying was performed at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion film was 10 mg/m 2 per side.
 次に、上記化成処理済みアルミニウム箔(金属箔層12)の一方の面(外面)に、2液硬化型のウレタン系接着剤(3μm)を介して、基材層11として厚さ15μmの二軸延伸6ナイロン(ONy)フィルムをドライラミネートした(貼り合わせた)。 Next, on one surface (outer surface) of the chemically treated aluminum foil (metal foil layer 12), a two-liquid curable urethane adhesive (3 μm) was applied as the base layer 11 to form two layers having a thickness of 15 μm. An axially oriented 6 nylon (ONy) film was dry laminated.
 次に表1に示すように、耐熱ガスバリア樹脂層21として、9μm厚のPETフィルムを上記ドライラミネート後のアルミニウム箔の他方の面(内面)に2液硬化型のウレタン系接着剤(3μm)を介して貼り合わせた。 Next, as shown in Table 1, as the heat-resistant gas barrier resin layer 21, a PET film having a thickness of 9 μm is applied to the other surface (inner surface) of the aluminum foil after the dry lamination, and a two-liquid curing type urethane adhesive (3 μm) is applied. pasted together through
 次に表1に示すように、シーラント層13として、滑剤(エルカ酸アミド等)を含有した40μm厚のCPPフィルムを2液硬化型のウレタン系接着剤(3μm)を介して上記ドライラミネート後のPETフィルム(耐熱ガスバリア層21)の内面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートして、外装材1を構成する積層体を得た。 Next, as shown in Table 1, as the sealant layer 13, a 40 μm-thick CPP film containing a lubricant (erucamide, etc.) is sandwiched through a two-component curable urethane adhesive (3 μm) after the dry lamination. Laminate constituting the exterior material 1 by being superimposed on the inner surface of the PET film (heat-resistant gas barrier layer 21) and sandwiched between a rubber nip roll and a lamination roll heated to 100° C. for dry lamination. got
 次にこの積層体を、ロール軸に巻き取り、しかる後、40℃で10日間エージングして、実施例1の外装材試料を得た。 Next, this laminate was wound around a roll shaft and then aged at 40°C for 10 days to obtain an exterior material sample of Example 1.
 2.ヤング率、引張破断強度および引張破断伸びの測定
 実施例1の外装材試料を作製する際に使用したPETフィルム(耐熱ガスバリア層21)に対し、JIS K7127-1999に準拠して、MDおよびTD共に、90℃でのヤング率、引張破断強度および引張破断伸びをそれぞれ測定した。すなわち耐熱ガスバリア層用のPETフィルムを、幅15mm×長さ100mmの大きさに切り出して試験片を作製し、その試験片に対して、島津製作所製ストログラフ(AGS-5kNX)を使用して90℃雰囲気下で、引張速度200mm/分で引張試験を行ってヤング率(MPa)、引張破断強度(MPa)、引張破断伸び(%)を測定した。表1に示すように、実施例1の耐熱ガスバリア層用のPETフィルムにおいて、ヤング率は、MDが3.6GPa、TDが3.2GPaであり、引張破断強度は、MDが190MPa、TDが210MPaであり、引張破断伸びは、MDが120%、TDが110%である。
2. Measurement of Young's modulus, tensile strength at break and tensile elongation at break The PET film (heat-resistant gas barrier layer 21) used to prepare the exterior material sample of Example 1 was subjected to both MD and TD in accordance with JIS K7127-1999. , Young's modulus at 90° C., tensile strength at break and tensile elongation at break were measured respectively. That is, a PET film for a heat-resistant gas barrier layer was cut into a size of 15 mm in width and 100 mm in length to prepare a test piece. C. atmosphere, a tensile test was performed at a tensile speed of 200 mm/min to measure Young's modulus (MPa), tensile strength at break (MPa), and tensile elongation at break (%). As shown in Table 1, in the heat-resistant gas barrier layer PET film of Example 1, the Young's modulus was 3.6 GPa in MD and 3.2 GPa in TD, and the tensile strength at break was 190 MPa in MD and 210 MPa in TD. and the tensile elongation at break is 120% in MD and 110% in TD.
 3.高温突き刺し性の評価
 実施例1の外装材試料の突刺し強さをJIS Z1707:1997に準拠して90℃雰囲気下で測定した。その測定方法(突刺し強さ試験方法)は次のとおりである。
3. Evaluation of high-temperature piercing resistance The piercing strength of the exterior material sample of Example 1 was measured in an atmosphere of 90°C in accordance with JIS Z1707:1997. The measurement method (penetration strength test method) is as follows.
 所定の大きさの外装材試料を試験片として固定し、直径1.0mm、先端形状半径0.5mmの半円形の針を毎分50±5mmの速度で突き刺し、針が貫通するまでの最大応力を測定した。試験片の数は5個であり、その平均値を突刺し強さとした。その結果を表1に併せて示す。 An exterior material sample of a predetermined size is fixed as a test piece, and a semicircular needle with a diameter of 1.0 mm and a tip shape radius of 0.5 mm is pierced at a speed of 50 ± 5 mm per minute, and the maximum stress until the needle penetrates. was measured. The number of test pieces was 5, and the average value was taken as the puncture strength. The results are also shown in Table 1.
 4.成形性の評価
 実施例1の外装材試料を、100mm×100mmの大きさに切り出して成形性評価用試料を得た。この成形性評価用試料に対し、25tのプレス機に取り付けた深絞り成形用金型を用いて、成形高さ(絞り深さ)を0.5mm単位で変化させて深絞り成形試験を行った。
4. Evaluation of Formability The exterior material sample of Example 1 was cut into a size of 100 mm×100 mm to obtain a sample for formability evaluation. A deep drawing test was performed on this formability evaluation sample using a deep drawing mold attached to a 25t press machine while changing the forming height (drawing depth) in increments of 0.5 mm. .
 そして成形高さが7mm以上でも所定の成形性が得られた場合には「◎」と評価し、7mm以上では所定成形性が得られなかったものの、5mm以上、7mm未満の範囲で所定の成形性が得られた場合には「〇」と評価し、5mm未満で所定の成形性が得られなかった場合には「×」と評価した。その結果を表1に併せて示す。 When the desired moldability was obtained even when the molding height was 7 mm or more, it was evaluated as "◎". When the moldability was obtained, it was evaluated as "O", and when it was less than 5 mm and the predetermined moldability was not obtained, it was evaluated as "X". The results are also shown in Table 1.
 5.シール強度の測定
 実施例1の外装材試料を、幅15mm×長さ150mmの大きさに2枚切り出した後、これら一対の試料を互いの内側シーラント層同士で接触するように重ね合わせた状態で、テスター産業株式会社製のヒートシール装置(TP-701-A)を用いて、ヒートシール温度:200℃、シール圧:0.2MPa(ゲージ表示圧)、シール時間:2秒の条件にて片面加熱によりヒートシール(熱接着)を行い、実施例1のシール強度評価用試料を得た。
5. Measurement of Seal Strength After cutting out two pieces of the exterior material sample of Example 1 to a size of 15 mm in width and 150 mm in length, the pair of samples were superimposed so that the inner sealant layers were in contact with each other. , Using a heat sealing device (TP-701-A) manufactured by Tester Sangyo Co., Ltd., heat sealing temperature: 200 ° C., sealing pressure: 0.2 MPa (gauge display pressure), sealing time: 2 seconds One side Heat-sealing (thermal adhesion) was performed by heating, and a sample for evaluating seal strength of Example 1 was obtained.
 このシール強度評価用試料について、JIS Z0238-1998に準拠して島津アクセス社製ストログラフ(AGS-5kNX)を使用して、当該シール強度評価用試料をシール部分の内側シーラント層同士で引張速度100mm/分でT字剥離させたときの剥離強度を測定し、これをシール強度(N/15mm幅)とした。その結果を表1に併せて示す。 For this seal strength evaluation sample, a strograph (AGS-5kNX) manufactured by Shimadzu Access Co., Ltd. was used in accordance with JIS Z0238-1998, and the seal strength evaluation sample was pulled between the inner sealant layers of the seal portion at a tensile speed of 100 mm. The peel strength at the time of T-shaped peeling was measured at 1/min, and this was defined as the seal strength (N/15 mm width). The results are also shown in Table 1.
 <実施例2>
 耐熱ガスバリア層21として、ヤング率がMD:1.5GPa、TD:1.2GPa、引張破断強度がMD:210MPa、TD:240MPa、引張破断伸びがMD:140%、TD:120%の二軸延伸6ナイロンフィルム(ONY-6フィルム)を用いた以外は、上記実施例1と同様にして実施例2の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 2>
The heat-resistant gas barrier layer 21 is biaxially oriented with a Young's modulus of MD: 1.5 GPa, TD: 1.2 GPa, a tensile strength at break of MD: 210 MPa, TD: 240 MPa, and a tensile elongation at break of MD: 140%, TD: 120%. A sample of Example 2 was prepared in the same manner as in Example 1 except that a 6 nylon film (ONY-6 film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例3>
 耐熱ガスバリア層21として、厚さ15μmのフィルムを用いた以外は、上記実施例2と同様にして実施例3の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 3>
A sample of Example 3 was prepared in the same manner as in Example 2 except that a film having a thickness of 15 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例4>
 耐熱ガスバリア層21として、厚さ25μmのフィルムを用いた以外は、上記実施例2と同様にして実施例4の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 4>
A sample of Example 4 was prepared in the same manner as in Example 2 except that a film having a thickness of 25 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例5>
 耐熱ガスバリア層21として、ヤング率がMD:3.4GPa、TD:3.1GPa、引張破断強度がMD:200MPa、TD:220MPa、引張破断伸びがMD:130%、TD:125%のPETフィルムを用いた以外は、上記実施例1と同様にして実施例5の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 5>
As the heat-resistant gas barrier layer 21, a PET film having Young's modulus MD: 3.4 GPa, TD: 3.1 GPa, tensile strength at break MD: 200 MPa, TD: 220 MPa, and tensile elongation at break MD: 130%, TD: 125%. A sample of Example 5 was prepared in the same manner as in Example 1, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 なお実施例5において、PETフィルムのヤング率、引張破断強度および引張破断伸びは、フィルム作成時の条件を調整し、結晶化度を変えることで実施例1と異ならせるようにした。 In Example 5, the Young's modulus, tensile strength at break, and tensile elongation at break of the PET film were made different from those in Example 1 by adjusting the conditions during film production and changing the degree of crystallinity.
 <実施例6>
 耐熱ガスバリア層21として、ヤング率がMD:1.1GPa、TD:1.6GPa、引張破断強度がMD:90MPa、TD:160MPa、引張破断伸びがMD:140%、TD:80%の2軸延伸ポリプロピレンフィルム(OPPフィルム)を用いた以外は、上記実施例1と同様にして実施例6の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 6>
The heat-resistant gas barrier layer 21 is biaxially stretched with a Young's modulus of MD: 1.1 GPa, TD: 1.6 GPa, a tensile strength at break of MD: 90 MPa, TD: 160 MPa, and a tensile elongation at break of MD: 140%, TD: 80%. A sample of Example 6 was prepared in the same manner as in Example 1 except that a polypropylene film (OPP film) was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例7>
 シーラント層13として、厚さ10μmのCPPフィルムを用いた以外は、上記実施例1と同様にして実施例7の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 7>
A sample of Example 7 was prepared in the same manner as in Example 1 except that a CPP film having a thickness of 10 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例8>
 シーラント層13として、厚さ100μmのCPPフィルムを用いた以外は、上記実施例1と同様にして実施例8の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 8>
A sample of Example 8 was prepared in the same manner as in Example 1 except that a CPP film having a thickness of 100 μm was used as the sealant layer 13, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例9>
 耐熱ガスバリア層21として、厚さ10μmのポリ塩化ビニリデン(PVDC)フィルムを用い、シーラント層13として、厚さ30μmのCPPフィルムを用いた以外は、上記実施例1と同様にして実施例9の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 9>
The sample of Example 9 was prepared in the same manner as in Example 1 except that a polyvinylidene chloride (PVDC) film having a thickness of 10 μm was used as the heat-resistant gas barrier layer 21 and a CPP film having a thickness of 30 μm was used as the sealant layer 13. was prepared, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例10>
 耐熱ガスバリア層21として、厚さ15μmのPVDCフィルムを用いた以外は、上記実施例9と同様にして実施例10の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 10>
A sample of Example 10 was prepared in the same manner as in Example 9 except that a PVDC film having a thickness of 15 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例11>
 耐熱ガスバリア層21として、厚さ25μmのPVDCフィルムを用いた以外は、上記実施例9と同様にして実施例11の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 11>
A sample of Example 11 was prepared in the same manner as in Example 9 except that a PVDC film having a thickness of 25 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例12>
 金属箔層用のアルミニウム箔の他面(内面)に、PVDCを2μmの厚さでコートして耐熱ガスバリア層21を形成した以外は、上記実施例9と同様にして実施例12の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 12>
A sample of Example 12 was prepared in the same manner as in Example 9 except that the other surface (inner surface) of the aluminum foil for the metal foil layer was coated with PVDC to a thickness of 2 μm to form the heat-resistant gas barrier layer 21. Then, the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <実施例13>
 耐熱ガスバリア層21として、厚さ50μmのPVDCフィルムを用いた以外は、上記実施例9と同様にして実施例13の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Example 13>
A sample of Example 13 was prepared in the same manner as in Example 9 except that a PVDC film having a thickness of 50 μm was used as the heat-resistant gas barrier layer 21, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 <比較例1>
 耐熱ガスバリア層21として、ヤング率がMD:0.9GPa、TD:1.5GPa、引張破断強度がMD:80MPa、TD:150MPa、引張破断伸がMD:150%、TD:80%のOPPフィルムを用いた以外は、上記実施例6と同様にして比較例1の試料を作製し、同様の測定(評価)を行った。その結果を表1に併せて示す。
<Comparative Example 1>
As the heat-resistant gas barrier layer 21, an OPP film having Young's modulus MD: 0.9 GPa, TD: 1.5 GPa, tensile strength at break MD: 80 MPa, TD: 150 MPa, and tensile elongation at break MD: 150%, TD: 80%. A sample of Comparative Example 1 was prepared in the same manner as in Example 6, except that it was used, and the same measurement (evaluation) was performed. The results are also shown in Table 1.
 なお比較例1において、OPPフィルムのヤング率、引張破断強度および引張破断伸びは、フィルム作成時の条件を調整し、結晶化度を変えることで実施例6と異ならせるようにした。 In Comparative Example 1, the Young's modulus, tensile strength at break, and tensile elongation at break of the OPP film were made different from those in Example 6 by adjusting the conditions during film production and changing the degree of crystallinity.
 <総評>
 表1から明らかなように、本発明に関連した実施例1~13の外装材試料は、90℃での突き刺し性に優れており、高温環境下で破損等の欠陥部が生じ難いと考え、特に実施例13の外装材試料は、突き刺し性に優れていた。
<General comments>
As is clear from Table 1, the exterior material samples of Examples 1 to 13 related to the present invention are excellent in puncture resistance at 90 ° C., and it is considered that defects such as breakage are unlikely to occur in high temperature environments. In particular, the exterior material sample of Example 13 was excellent in puncture resistance.
 これに対し、本発明の要旨を逸脱する比較例1の外装材試料は、90℃での突き刺し性に劣っており、高温環境下においては、実施例1~8のものと比較して、破損等の欠陥部が発生し易いと考えられる。 On the other hand, the exterior material sample of Comparative Example 1, which deviates from the gist of the present invention, is inferior in piercing resistance at 90° C., and is damaged in a high-temperature environment compared to Examples 1 to 8. It is thought that such defects are likely to occur.
 本願は、2021年8月17日付で出願された日本国特許出願の特願2021-132728号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims the priority of Japanese Patent Application No. 2021-132728 filed on August 17, 2021, and the disclosure of which constitutes a part of this application as it is. .
 ここに用いられた用語及び表現は、説明のために用いられたものであって限定的に解釈するために用いられたものではなく、ここに示され且つ述べられた特徴事項の如何なる均等物をも排除するものではなく、この発明のクレームされた範囲内における各種変形をも許容するものであると認識されなければならない。 The terms and expressions used herein are used as terms of description and not of limitation, as any equivalent of the features shown and described herein. are not to be excluded, and variations within the claimed scope of the invention are permissible.
 この発明の全固体電池用外装材は、固体電池本体を収容するためのケーシングの材料として好適に用いることができる。 The all-solid-state battery exterior material of the present invention can be suitably used as a casing material for housing the solid-state battery main body.
1:外装材
11:基材層
12:金属箔層
13:シーラント層
21:耐熱ガスバリア層
5:固体電池本体
1: Exterior material 11: Base material layer 12: Metal foil layer 13: Sealant layer 21: Heat resistant gas barrier layer 5: Solid battery body

Claims (5)

  1.  基材層と、前記基材層の内面側に積層された金属箔層と、前記金属箔層の内面側に積層されたシーラント層とを備え、固体電池本体を封入するための全固体電池用外装材であって、
     前記金属箔層と前記シーラント層との間に樹脂製の耐熱ガスバリア層が設けられ、
     前記耐熱ガスバリア層は、90℃におけるヤング率がMDおよびTD共に1GPa以上であることを特徴とする全固体電池用外装材。
    A base material layer, a metal foil layer laminated on the inner surface side of the base material layer, and a sealant layer laminated on the inner surface side of the metal foil layer, for enclosing a solid battery main body. As an exterior material,
    A resin heat-resistant gas barrier layer is provided between the metal foil layer and the sealant layer,
    The heat-resistant gas barrier layer has a Young's modulus at 90° C. of 1 GPa or more in both MD and TD.
  2.  前記耐熱ガスバリア層は、90℃における引張破断強度がMDおよびTD共に100MPa以上である請求項1に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 1, wherein the heat-resistant gas barrier layer has a tensile breaking strength of 100 MPa or more at 90°C in both MD and TD.
  3.  前記耐熱ガスバリア層は、90℃における引張破断伸びがMDおよびTD共に50%~200%である請求項1または2に記載の全固体電池用外装材。 The exterior material for an all-solid-state battery according to claim 1 or 2, wherein the heat-resistant gas barrier layer has a tensile elongation at break of 50% to 200% in both MD and TD at 90°C.
  4.  前記耐熱ガスバリア層は、前記シーラント層よりも10℃以上融点が高い樹脂によって構成され、厚さが3μm~50μmに設定されている請求項1~3のいずれか1項に記載の全固体電池用外装材。 The all-solid-state battery according to any one of claims 1 to 3, wherein the heat-resistant gas barrier layer is made of a resin having a melting point higher than that of the sealant layer by 10°C or more, and has a thickness of 3 µm to 50 µm. Exterior material.
  5.  請求項1~4のいずれか1項に記載の全固体電池用外装材に、固体電池本体が封入されていることを特徴とする全固体電池。 An all-solid-state battery, wherein a solid-state battery main body is enclosed in the all-solid-state battery exterior material according to any one of claims 1 to 4.
PCT/JP2022/030551 2021-08-17 2022-08-10 Sheathing material for all-solid-state battery and all-solid-state battery WO2023022088A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023542371A JPWO2023022088A1 (en) 2021-08-17 2022-08-10
KR1020247005076A KR20240034810A (en) 2021-08-17 2022-08-10 Exterior materials for all-solid-state batteries and all-solid-state batteries
CN202280055735.7A CN117813717A (en) 2021-08-17 2022-08-10 All-solid-state battery exterior member and all-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132728 2021-08-17
JP2021132728 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023022088A1 true WO2023022088A1 (en) 2023-02-23

Family

ID=85240757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030551 WO2023022088A1 (en) 2021-08-17 2022-08-10 Sheathing material for all-solid-state battery and all-solid-state battery

Country Status (4)

Country Link
JP (1) JPWO2023022088A1 (en)
KR (1) KR20240034810A (en)
CN (2) CN117813719A (en)
WO (1) WO2023022088A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026438A (en) * 2013-07-24 2015-02-05 興人フィルム&ケミカルズ株式会社 Battery case packaging material for cold molding
JP2017017014A (en) * 2015-07-01 2017-01-19 昭和電工パッケージング株式会社 Sheath material for power storage device and power storage device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477276U (en) 1990-11-20 1992-07-06
WO2020153458A1 (en) 2019-01-23 2020-07-30 大日本印刷株式会社 Exterior material for all-solid-state battery, method for manufacturing same, and all-solid-state battery
JP7356257B2 (en) 2019-05-10 2023-10-04 共同印刷株式会社 Laminate sheet for sulfide-based all-solid-state batteries and laminate pack using the same
JP2020187835A (en) 2019-05-10 2020-11-19 昭和電工パッケージング株式会社 Outer packaging material for power storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026438A (en) * 2013-07-24 2015-02-05 興人フィルム&ケミカルズ株式会社 Battery case packaging material for cold molding
JP2017017014A (en) * 2015-07-01 2017-01-19 昭和電工パッケージング株式会社 Sheath material for power storage device and power storage device

Also Published As

Publication number Publication date
CN117813719A (en) 2024-04-02
CN117813717A (en) 2024-04-02
JPWO2023022088A1 (en) 2023-02-23
KR20240034810A (en) 2024-03-14

Similar Documents

Publication Publication Date Title
KR102195195B1 (en) Outer casing material for battery and battery
JP7381528B2 (en) Exterior material for power storage devices and power storage devices
CN107204406B (en) Outer packaging material for electricity storage device and electricity storage device
JP2010086831A (en) Packing material for electrochemical cell
KR20180103723A (en) Exterior material for electricity storage device and electricity storage device
JP2024026062A (en) Outer packaging material for all-solid-state battery
JP7394949B2 (en) Exterior material for power storage devices
KR102351865B1 (en) Exterior material for electrical storage device and electrical storage device
KR20200024808A (en) Outer casing material for battery and battery
WO2023022088A1 (en) Sheathing material for all-solid-state battery and all-solid-state battery
JP5889045B2 (en) Laminated metal foil for laser welding
WO2023017683A1 (en) Outer package material for all-solid-state batteries, and all-solid-state battery
JP6574366B2 (en) Sealant film for exterior material of electricity storage device, exterior material for electricity storage device, and electricity storage device
WO2023017837A1 (en) Outer package material for all-solid-state batteries, and all-solid-state battery
WO2023022087A1 (en) All-solid-state battery sheathing material and all-solid-state battery
JP2023026915A (en) Sheath material for all-solid battery, and all-solid battery
JP2023026910A (en) Sheath material for all-solid battery, and all-solid battery
KR102282604B1 (en) Secondary battery pouch film containing graphene
US20220399621A1 (en) Resin film for terminal, and power storage device using the same
JP2017143084A (en) Battery jacket material and battery
JP2002289157A (en) Adhesive film for tab of lithium cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542371

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280055735.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247005076

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005076

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE