WO2023022044A1 - 変速機用軸およびそれを用いた軸受装置 - Google Patents

変速機用軸およびそれを用いた軸受装置 Download PDF

Info

Publication number
WO2023022044A1
WO2023022044A1 PCT/JP2022/030282 JP2022030282W WO2023022044A1 WO 2023022044 A1 WO2023022044 A1 WO 2023022044A1 JP 2022030282 W JP2022030282 W JP 2022030282W WO 2023022044 A1 WO2023022044 A1 WO 2023022044A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission shaft
martensite
less
diffusion layer
base material
Prior art date
Application number
PCT/JP2022/030282
Other languages
English (en)
French (fr)
Inventor
直樹 中杤
佳祐 宮崎
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202280055210.3A priority Critical patent/CN117795211A/zh
Publication of WO2023022044A1 publication Critical patent/WO2023022044A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances

Definitions

  • the present invention relates to a transmission shaft and a bearing device using the same.
  • a bearing device In a transmission such as a transmission, a bearing device is used that is a set of a shaft having an outer diameter portion as a raceway surface and a needle roller bearing with a retainer arranged on the outer peripheral portion of the shaft.
  • This bearing device is used in a high-temperature environment with a large amount of foreign matter such as abrasion powder. For this reason, this bearing device requires parts that are resistant to surface damage due to foreign matter or poor lubrication.
  • the shaft since the shaft is a fixed part, it has a structure where the same part is always damaged, and it tends to be the weakest part.
  • a heat treatment (carbonitriding treatment) is performed on steel parts in a carbonitriding atmosphere containing ammonia (NH 3 ) to reduce the amount of retained austenite on the surface, carbon, Fortification methods that increase the concentration of nitrogen are generally known.
  • Patent Document 1 discloses a technique of providing recesses in a shaft or roller by shot peening and coating the recesses with a solid lubricant to reduce the coefficient of friction.
  • Patent Document 2 discloses a technique of forming a hardened layer (Hv850 or more and Hv10000 or less) on the surface layer by shot peening and applying a large compressive residual stress (absolute value of 600 MPa or more and 1700 MPa or less) for strengthening is disclosed in, for example, JP-A-2017-106534.
  • Patent Document 2 discloses a technique of providing recesses in a shaft or roller by shot peening and coating the recesses with a solid lubricant to reduce the coefficient of friction.
  • a transmission shaft of the present invention is used in a transmission and has a raceway surface on which needle rollers roll, and includes a base material and a triiron tetraoxide film.
  • the base material is made of any one of chromium steel, chromium molybdenum steel, and nickel chromium molybdenum steel, and has a diffusion layer containing at least one crystal grain of iron carbide, iron nitride, and iron carbonitride on the surface. have in The triiron tetraoxide film is formed on the surface of the base material and arranged at least on the raceway surface.
  • the transmission in the present invention may be either a speed reducer or a speed increaser.
  • the thickness of the triiron tetroxide film is 1 ⁇ m or more and 2 ⁇ m or less.
  • the base material is made of chromium molybdenum steel.
  • the average grain size of the prior austenite crystal grains on the surface of the base material is 8 ⁇ m or less.
  • the area ratio of compound grains containing at least one crystal grain in the diffusion layer is 3% or more, and the average grain size of the compound grains is 0.3 ⁇ m or less.
  • the diffusion layer includes a plurality of martensite blocks.
  • the martensite block has a maximum grain size of 3.8 ⁇ m or less.
  • a bearing device of the present invention includes the transmission shaft described above and a plurality of needle rollers that roll on the raceway surface of the transmission shaft.
  • a method of manufacturing a transmission shaft according to the present invention is a method of manufacturing a transmission shaft that is used in a transmission and has raceway surfaces on which needle rollers roll, and includes the following steps.
  • a steel material made of any one of chromium steel, chromium molybdenum steel, and nickel chromium molybdenum steel is prepared.
  • the steel material is carbonitrided.
  • a triiron tetroxide film is formed on the surface of the carbonitrided steel material.
  • the steel material is chromium molybdenum steel.
  • the step of carbonitriding the steel material includes a step of heating the steel material to 930° C. or more and 940° C. or less in a carbonitriding atmosphere containing ammonia. After heating the carbonitrided steel material to a primary quenching temperature of more than 850° C. and less than 930° C., the steel material is primary quenched by cooling to a temperature below the Ms point. After heating the primary hardened steel material to a secondary hardening temperature of A1 point or more and less than 850° C., the steel material is secondary hardened by cooling to a temperature of Ms point or less.
  • FIG. 1 is a partially broken perspective view showing a planetary gear and its supporting structure in a planetary transmission, with the planetary gear broken away;
  • FIG. 2 is a cross-sectional view of the planetary gear shown in FIG. 1 and its supporting structure;
  • FIG. 3 is an enlarged cross-sectional view showing an enlarged configuration of a transmission shaft in a region R of FIG. 2;
  • FIG. 4 is a flowchart showing a method of manufacturing a transmission shaft according to one embodiment;
  • FIG. 5 is a flow chart showing the subdivided steps of the carbonitriding heat treatment in FIG. 4 ;
  • 4 is a graph showing a heat pattern in a method of manufacturing a transmission shaft according to one embodiment;
  • FIG. 5 is a diagram showing the driving force of the needle rollers and the load distribution acting on the raceway surface in each of a straight raceway surface (A) and a bent raceway surface (B).
  • 4 is a graph showing measurement results of carbon concentration and nitrogen concentration by EPMA for Sample 1.
  • FIG. 4 is a graph showing measurement results of carbon concentration and nitrogen concentration by EPMA for Sample 2.
  • FIG. 3 is an electron microscopic image in the vicinity of the surface of sample 1.
  • FIG. 3 is an electron microscopic image in the vicinity of the surface of sample 2.
  • FIG. 4 is an optical microscope image of the vicinity of the surface of sample 1.
  • FIG. 4 is an optical microscope image of the vicinity of the surface of sample 2.
  • FIG. 4 is a graph showing average grain sizes of martensite blocks belonging to groups 3 and 5 in the vicinity of the surfaces of samples 1 and 2.
  • FIG. 4 is a graph showing average aspect ratios of martensite blocks belonging to groups 3 and 5 in the vicinity of the surfaces of samples 1 and 2;
  • FIG. 1 is a partially cutaway perspective view showing a planetary gear and its support structure in a planetary transmission with the planetary gear cut away.
  • FIG. 2 is a cross-sectional view of the planetary gear and its support structure shown in FIG.
  • a planetary transmission has a planetary gear device.
  • a planetary gear device has three systems of gears: a sun gear, a planetary gear, and an internal gear.
  • a required shift is executed by fixing or releasing either one of the other two systems of gears in response to an input to one system of gears.
  • the planetary gear 4 has a plurality of teeth 4a on its outer circumference.
  • the teeth 4a of the planetary gear 4 mesh with teeth provided on the outer peripheral side of a sun gear (not shown).
  • the planetary gear 4 rotates on the outer peripheral side of the sun gear.
  • the teeth 4a of the planetary gear 4 mesh with teeth provided on the inner peripheral side of an internal gear (not shown).
  • the planetary gear 4 rotates on the inner peripheral side of the internal gear.
  • the planetary gear 4 revolves around the sun gear axis between the sun gear and the internal gear.
  • the planetary transmission has a rolling bearing device 10 that rotatably supports the planetary gears 4 .
  • the rolling bearing device 10 has a transmission shaft 1 , a plurality of needle rollers 2 and a retainer 3 . Note that the rolling bearing device 10 may include the planetary gear 4 .
  • a through hole is provided in the central portion of the planetary gear 4 .
  • a wall surface 4 b that defines the through hole constitutes an inner peripheral surface of the planetary gear 4 .
  • the transmission shaft 1 is inserted into the through hole of the planetary gear 4 .
  • the planetary gear 4 surrounds the outer circumference of the transmission shaft 1 .
  • the transmission shaft 1 has, for example, a cylindrical shape.
  • the transmission shaft 1 has an oil passage 1a therein.
  • the transmission shaft 1 corresponds to the inner member of the rolling bearing device 10
  • the planetary gear 4 corresponds to the outer member of the rolling bearing device 10 .
  • a needle roller bearing with retainer is arranged between the outer peripheral surface (raceway surface 1b) of the transmission shaft 1 and the inner peripheral surface (raceway surface 4b) of the planetary gear 4 .
  • a needle roller bearing with retainer has a plurality of needle rollers 2 and a retainer 3 .
  • the retainer 3 has an annular shape and surrounds the outer peripheral surface of the transmission shaft 1 .
  • the retainer 3 has a plurality of pockets 3a.
  • a plurality of pockets 3a are arranged along the circumferential direction at substantially equal intervals.
  • a needle roller 2 is rotatably held in each of the plurality of pockets 3a.
  • each of the plurality of needle rollers 2 rolls on an outer peripheral surface serving as the raceway surface 1 b of the transmission shaft 1 and an inner peripheral surface serving as the raceway surface 4 b of the planetary gear 4 . are placed in The planetary gear 4 is rotatably supported on the transmission shaft 1 by the needle roller bearing with retainer.
  • gear type transmission has been described as an application example of the transmission shaft, it can also be applied to belt type, toroidal type, hydraulic type, etc. transmissions.
  • FIG. 3 is an enlarged cross-sectional view showing the configuration of the transmission shaft in the region R of FIG.
  • the transmission shaft 1 has a base material 11 and a triiron tetroxide film 12 .
  • the base material 11 is made of steel containing chromium, for example.
  • the material of the base material 11 is, for example, chromium steel, chromium molybdenum steel, or nickel chromium molybdenum steel.
  • the chromium steel, chromium molybdenum steel and nickel chromium molybdenum steel mentioned above are steels belonging to SCr steel grade, SCM steel grade and SNCM steel grade specified in JIS (Japanese Industrial Standards) (JIS G 4053:2016).
  • the base material 11 is subjected to carbonitriding heat treatment. Therefore, the base material 11 has a diffusion layer DR on its surface (peripheral surface).
  • the diffusion layer DR is a portion in which the concentration of nitrogen and carbon is higher than the concentration of nitrogen and carbon in the steel material forming the transmission shaft 1 (IP inside the diffusion layer DR).
  • a depth D of the diffusion layer DR is, for example, 0.6 mm or more and 1.5 mm or less.
  • the diffusion layer DR has a plurality of compound grains.
  • the compound grains are crystal grains of at least one of iron (Fe) carbide, iron nitride and iron carbonitride. More specifically, the compound grain is a compound ( That is, they are crystal grains of (Fe, Cr) 3 (C, N) compound).
  • the triiron tetroxide film 12 is arranged in contact with the surface of the base material 11 .
  • the triiron tetraoxide film 12 is made of triiron tetroxide (Fe 3 O 4 ), is so-called black rust, and is a passive oxide film.
  • the surface of the triiron tetraoxide film 12 is porous.
  • the thickness of the triiron tetraoxide film 12 is 1 ⁇ m or more and 2 ⁇ m or less.
  • the triiron tetroxide film 12 is arranged on at least the raceway surface 1 b of the transmission shaft 1 .
  • the triiron tetroxide film 12 may be arranged so as to cover the entire surface of the base material 11 .
  • the triiron tetroxide film 12 is formed on the surface of the base material 11 by a chemical conversion treatment called a blackening treatment method, for example.
  • the blackening treatment method in this embodiment is immersion in a strong alkaline aqueous solution containing sodium hydroxide (NaOH) as a main component at 130° C. or higher and 160° C. or lower for 3 minutes or longer.
  • NaOH sodium hydroxide
  • the temperature of the strong alkaline aqueous solution is as low as 130.degree. Therefore, changes in the structure, strength, properties, etc. of the base material 11 are suppressed, and the structure, strength, properties, etc. of the base material 11 obtained by the carbonitriding heat treatment are maintained even after the blackening treatment.
  • the thickness of the triiron tetroxide film 12 formed by the blackening treatment method is as thin as 1 ⁇ m or more and 2 ⁇ m or less. Therefore, the surface condition of the base material 11 with which the triiron tetraoxide film 12 is in contact is substantially the same as the surface condition of the steel material subjected to the carbonitriding heat treatment.
  • the base material 11 is made of, for example, chromium molybdenum, and is preferably subjected to a special carbonitriding heat treatment shown in FIG.
  • This special carbonitriding heat treatment enhances grain refinement of the base material 11 and enriches the precipitated compounds. As a result, resistance to surface damage is strengthened, fatigue strength is improved, deformation due to deflection is suppressed, and the service life is further improved.
  • the diffusion layer DR has a plurality of martensite blocks in addition to the plurality of compound grains.
  • the average grain size of the compound grains in the diffusion layer DR is 0.3 ⁇ m or less.
  • the average grain size of the compound grains in the diffusion layer DR is preferably 0.25 ⁇ m or less.
  • the area ratio of the compound grains in the diffusion layer DR is 3% or more.
  • the area ratio of the compound grains in the diffusion layer DR is preferably 8% or more.
  • the area ratio of the compound grains in the diffusion layer DR is, for example, 10% or less.
  • the average particle size and area ratio of the compound grains in the diffusion layer DR are measured by the following methods. First, cross-sectional polishing of the diffusion layer DR is performed. Second, erosion of the polished surface takes place. Third, SEM (Scanning Electron Microscopy) photography is performed on the corroded polished surface (hereinafter, an image obtained by SEM photography is referred to as an "SEM image"). The SEM image is taken such that a sufficient number (20 or more) of compound particles are included. Fourthly, by performing image processing on the obtained SEM image, the area of each compound grain and the total area of the compound grains in the SEM image are calculated.
  • SEM Sccanning Electron Microscopy
  • the average particle diameter of the compound grains in the diffusion layer DR is obtained by dividing the sum of the equivalent circle diameters of the compound grains displayed in the SEM image by the number of compound grains displayed in the SEM image. It is said that A value obtained by dividing the total area of the compound grains displayed in the SEM image by the area of the SEM image is the area ratio of the compound grains in the diffusion layer DR.
  • a martensite block is a martensite phase block composed of crystals with aligned crystal orientations.
  • the martensite phase is a non-equilibrium phase obtained by rapidly cooling the austenite phase of iron in which carbon is dissolved. If the crystal orientation of the block of the first martensite phase deviates from the crystal orientation of the block of the second martensite phase adjacent to the block of the first martensite phase by 15° or more, the first martensite The phase block and the second martensite phase block are different martensite blocks.
  • the first The martensite phase block and the second martensite phase block constitute one martensite block.
  • the maximum grain size of martensite blocks in the diffusion layer DR is 3.8 ⁇ m or less.
  • the maximum grain size of martensite blocks in the diffusion layer DR is, for example, 3.6 ⁇ m or more.
  • the martensite blocks contained in the diffusion layer DR with a crystal grain size of 1 ⁇ m or less constitute the first group.
  • the area ratio of the martensite blocks forming the first group to the total area of the martensite blocks contained in the diffusion layer DR is preferably 0.55 or more and 0.75 or less.
  • the martensite blocks included in the diffusion layer DR may be divided into a second group and a third group.
  • the maximum grain size of the martensite blocks belonging to the second group is smaller than the minimum grain size of the martensite blocks belonging to the third group.
  • a value obtained by dividing the total area of the martensite blocks belonging to the third group by the total area of the martensite blocks included in the diffusion layer DR is 0.5 or more.
  • the value obtained by dividing the total area of the martensite blocks belonging to the third group excluding the martensite block belonging to the third group and having the largest crystal grain size by the total area of the martensite blocks included in the diffusion layer DR is less than 0.5. is.
  • the martensite blocks included in the second group and the martensite blocks belonging to the third group are classified by the following method. That is, first, each martensite block is assigned to the first group in order from the smallest crystal grain size, and the total number of martensite blocks assigned to the second group with respect to the total area of the martensite blocks Areas are calculated sequentially. Second, when the ratio of the total area of the martensite blocks assigned to the second group to the total area of the martensite blocks reaches a limit not exceeding 50%, the assignment of the martensite blocks to the second group is be stopped. Third, martensitic blocks not assigned to the second group are assigned to the third group.
  • the average grain size of the martensite blocks included in the third group is 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the martensite blocks included in the third group have an average aspect ratio of 2.5 or more and 2.8 or less.
  • the martensite blocks included in the diffusion layer DR may be divided into a fourth group and a fifth group.
  • the maximum grain size of the martensite blocks belonging to the fourth group is smaller than the minimum grain size of the martensite blocks belonging to the fifth group.
  • a value obtained by dividing the total area of the martensite blocks belonging to the fifth group by the total area of the martensite blocks included in the diffusion layer DR is 0.7 or more.
  • the value obtained by dividing the total area of the martensite blocks belonging to the fifth group excluding the martensite block belonging to the fifth group having the largest crystal grain size by the total area of the martensite blocks included in the diffusion layer DR is less than 0.7. is.
  • the martensite blocks belonging to the fourth group and the martensite blocks belonging to the fifth group are classified by the following method. That is, first, each martensite block is assigned to the fourth group in order from the smallest crystal grain size, and the total number of martensite blocks assigned to the fourth group with respect to the total area of the martensite blocks Areas are calculated sequentially. Second, when the ratio of the total area of the martensite blocks assigned to the fourth group to the total area of the martensite blocks reaches a limit that does not exceed 30%, the assignment of the martensite blocks to the fourth group is be stopped. Third, martensite blocks not assigned to the fourth group are assigned to the fifth group.
  • the average grain size of martensite blocks included in the fifth group is 0.7 ⁇ m or more and 1.1 ⁇ m or less.
  • the martensite blocks included in the fifth group have an average aspect ratio of 2.4 or more and 2.6 or less.
  • the grain size of the martensite blocks and the aspect ratio of the martensite blocks in the diffusion layer DR are measured using the EBSD (Electron Back Scattered Diffraction) method.
  • EBSD image a cross-sectional image is taken in the diffusion layer DR (hereinafter referred to as "EBSD image"). Note that the EBSD image is taken such that a sufficient number (20 or more) of martensite blocks are included. Based on the EBSD image, the crystallographic misorientation of adjacent martensitic phase blocks is identified. This identifies the boundaries of each martensite block. Second, based on the identified martensite block boundaries, the area and shape of each martensite block displayed in the EBSD image are calculated.
  • the circle of each martensite block displayed in the EBSD image is calculated by calculating the square root of the area of each martensite block displayed in the EBSD image divided by 4/ ⁇ .
  • An equivalent diameter is calculated.
  • the largest value is taken as the maximum grain size of the martensite blocks in the diffusion layer DR.
  • the martensite blocks belonging to the first group are determined among the martensite blocks displayed in the EBSD image.
  • the value obtained by dividing the total area of the martensite blocks belonging to the first group among the martensite blocks displayed in the EBSD image by the total area of the martensite blocks displayed in the EBSD image is the diffusion It is the total area of the martensite blocks in the layer DR divided by the total area of the martensite blocks in the diffusion layer DR.
  • the martensite blocks displayed in the EBSD image are classified into the second group and the third group (or the fourth group and fifth group).
  • the sum of the equivalent circle diameters of the martensite blocks displayed in the EBSD images classified into the third group (or fifth group) is displayed in the EBSD images classified into the third group (or fifth group)
  • the value obtained by dividing by the number of martensite blocks is the average grain size of the martensite blocks in the diffusion layer DR belonging to the third group (or belonging to the fifth group).
  • each martensite block displayed in the EBSD image is approximated to an ellipse by the method of least squares.
  • This elliptical approximation by the method of least squares is performed according to the method described in S. Biggin and D. J. Dingley, Journal of Applied Crystallography, (1977) 10, 376-378.
  • the aspect ratio of each martensite block displayed in the EBSD method image is calculated by dividing the dimension of the major axis by the dimension of the minor axis.
  • the sum of the aspect ratios of the martensite blocks displayed in the EBSD images classified into Group 3 (or Group 5) is the marten displayed in the EBSD images classified into Group 3 (or Group 5).
  • the value obtained by dividing by the number of site blocks is taken as the average aspect ratio of the martensite blocks in the diffusion layer DR belonging to the third group (or belonging to the fifth group).
  • the diffusion layer DR contains a plurality of prior austenite grains.
  • the prior austenite grains are regions defined by grain boundaries (prior austenite grain boundaries) of austenite grains formed in holding steps S13a and S14a (FIG. 5) described later.
  • the average grain size of the prior austenite grains is preferably 8 ⁇ m or less. More preferably, the average grain size of the prior austenite grains is 6 ⁇ m or less.
  • the average grain size of prior austenite grains in the diffusion layer DR is measured by the following method. First, cross-sectional polishing of the diffusion layer DR is performed. Second, erosion of the polished surface takes place. Thirdly, the corroded polished surface is photographed with an optical microscope (hereinafter, an image obtained by the optical microscope photographing is referred to as an "optical microscope image"). The optical microscope image is taken such that a sufficient number (20 or more) of prior austenite grains are included. Fourthly, by performing image processing on the obtained optical microscope image, the area of each prior austenite grain in the optical microscope image is calculated.
  • the equivalent circle diameter of each prior austenite grain displayed in the optical microscope image is calculated. be done.
  • the value obtained by dividing the total equivalent circle diameter of each prior austenite grain displayed in the optical microscope image by the number of prior austenite grains displayed in the optical microscope image is the average grain size of the prior austenite grains in the diffusion layer DR. diameter.
  • the average carbon concentration in the diffusion layer DR between the surface (peripheral surface) of the base material 11 and a depth position at a distance of 10 ⁇ m from the surface of the base material 11 is preferably 0.7% by mass or more.
  • the average carbon concentration in the diffusion layer DR between the surface (peripheral surface) of the base material 11 and a depth position at a distance of 10 ⁇ m from the surface of the base material 11 is preferably 1.2% by mass or less. .
  • the average nitrogen concentration in the diffusion layer DR between the surface (peripheral surface) of the base material 11 and a depth position at a distance of 10 ⁇ m from the surface of the base material 11 is preferably 0.2% by mass or more.
  • the average nitrogen concentration in the diffusion layer DR between the surface (peripheral surface) of the base material 11 and a depth position at a distance of 10 ⁇ m from the surface of the base material 11 is preferably 0.4% by mass or less. .
  • the average carbon concentration and average nitrogen concentration in the diffusion layer DR between the surface (peripheral surface) of the base material 11 and the depth position at a distance of 10 ⁇ m from the surface of the base material 11 are measured by EPMA (Electron Probe Micro Analyzer) Measured using EPMA (Electron Probe Micro Analyzer) Measured using EPMA (Electron Probe Micro Analyzer) Measured using EPMA (Electron Probe Micro Analyzer) Measured using EPMA (Electron Probe Micro Analyzer) Measured using EPMA (Electron Probe Micro Analyzer)
  • FIG. 4 is a flowchart showing a method of manufacturing a transmission shaft according to one embodiment.
  • FIG. 5 is a flow chart showing the subdivided steps of the carbonitriding heat treatment in FIG.
  • FIG. 6 is a graph showing heat patterns in the method of manufacturing a transmission shaft according to one embodiment.
  • the transmission shaft manufacturing method includes a step S1 of preparing a steel material, a step S2 of performing carbonitriding heat treatment, grinding, superfinishing, honing, and the like. and a step S4 of forming the triiron tetroxide film 12 .
  • step S1 a steel material made of one of chromium steel, chromium molybdenum steel and nickel chromium molybdenum steel is prepared.
  • step S2 the steel material prepared in step S1 is subjected to carbonitriding heat treatment.
  • this carbonitriding heat treatment an atmosphere gas containing, for example, ammonia (NH 3 ) gas is used.
  • step S3 the carbonitriding heat-treated steel material is subjected to grinding, superfinishing, honing, and the like. As a result, the steel material is finished to have an outer diameter dimension as the transmission shaft 1 .
  • a triiron tetraoxide film 12 is formed on the surface of the steel material.
  • the triiron tetraoxide film 12 is formed, for example, by a chemical conversion treatment called a blackening treatment method.
  • the steel material is immersed in a strong alkaline aqueous solution containing sodium hydroxide as a main component at 130° C. or higher and 160° C. or lower for 3 minutes or longer.
  • a triiron tetroxide film 12 is formed on the surface of the base material 11, and the transmission shaft 1 of the present embodiment is manufactured.
  • step S2 As the carbonitriding heat treatment in step S2, a special carbonitriding heat treatment shown in FIGS. 5 and 6 may be performed. This special carbonitriding heat treatment will be described below.
  • the special carbonitriding heat treatment includes a carbonitriding step S11, a diffusion step S12, a primary quenching step S13, a secondary quenching step S14, and a tempering step S15.
  • the carbonitriding step S11 for example, carbonitriding is performed on the surface of the steel material made of chromium molybdenum steel prepared in the step S1 shown in FIG.
  • the steel material is held in a furnace at a predetermined temperature (hereinafter referred to as "first holding temperature") for a predetermined time (hereinafter referred to as “first holding time”).
  • first holding temperature a predetermined temperature
  • first holding time a predetermined time
  • the first holding temperature is, for example, 930° C. or higher and 940° C. or lower.
  • the first holding time is, for example, 10 hours or more and 15 hours or less.
  • the diffusion step S12 the carbon and nitrogen introduced from the surface of the steel material in the carbonitriding step S11 diffuse into the steel material.
  • the diffusion step S12 is performed by holding in a furnace at a predetermined temperature (hereinafter referred to as "second holding temperature") for a predetermined time (hereinafter referred to as "second holding time").
  • a predetermined temperature hereinafter referred to as "second holding temperature”
  • second holding time For the atmosphere in the furnace, for example, an endothermic transformation gas (R gas) and a gas containing ammonia are used.
  • the second holding temperature is, for example, 930° C. or higher and 940° C. or lower.
  • the second holding time is, for example, 5 hours or more and 10 hours or less.
  • ⁇ defined by the following equations (1) and (2) is adjusted to be lower than in the carbonitriding step S11. Adjustment of ⁇ is performed by adjusting the amount of carbon monoxide, the amount of carbon dioxide, and the amount of undecomposed ammonia in the atmosphere, as is clear from equations (1) and (2).
  • the amount of undecomposed ammonia in the atmosphere is preferably 0.1% by volume or more.
  • the primary quenching step S13 the steel material is quenched.
  • the primary quenching step S13 has a holding step S13a and a cooling step S13b.
  • the holding step S13a is performed by holding the steel material in the furnace at a predetermined temperature (hereinafter referred to as "third holding temperature") for a predetermined time (hereinafter referred to as "third holding time").
  • the atmosphere in the furnace does not contain ammonia.
  • the third holding temperature is a temperature equal to or higher than the A1 transformation point of steel constituting the steel material and lower than the first holding temperature and the second holding temperature.
  • the third holding temperature is, for example, 850°C or higher and lower than 930°C.
  • the third holding temperature is 860°C or higher and 880°C or lower.
  • the third holding time is, for example, 0.5 hours or more and 2 hours or less.
  • the steel material is cooled from the third holding temperature to a temperature below the Ms point.
  • the cooling step S13b is performed, for example, by oil cooling.
  • the secondary quenching step S14 the steel material is quenched.
  • the secondary quenching step S14 has a holding step S14a and a cooling step S14b.
  • the holding step S14a is performed by holding the steel material in the furnace at a predetermined temperature (hereinafter referred to as "fourth holding temperature") for a predetermined time (hereinafter referred to as "fourth holding time").
  • the atmosphere in the furnace does not contain ammonia.
  • the fourth holding temperature is a temperature equal to or higher than the A1 transformation point of steel constituting the steel material and lower than the third holding temperature.
  • the fourth holding temperature is, for example, above the A1 transformation point of steel constituting the steel material and below 850°C.
  • the fourth holding temperature is preferably 820° C. or higher and 840° C. or lower.
  • the fourth retention time is, for example, 1 hour or more and 2 hours or less.
  • the steel material is cooled from the fourth holding temperature to a temperature below the Ms point.
  • the cooling step S14b is performed, for example, by oil cooling.
  • the compound grains in the diffusion layer DR are mainly precipitated in the holding step S13a and the holding step S14a.
  • the solid solubility limits of carbon and nitrogen in steel increase as the holding temperature increases (and decrease as the holding temperature decreases).
  • the third holding temperature is set higher than the holding temperature during normal quenching in order to avoid excessive precipitation of compound grains in the diffusion layer DR in the holding step S13a ( set so that the solid solubility limits of carbon and nitrogen in steel are relatively wide).
  • the fourth holding temperature is set lower than the third holding temperature in order to narrow the solid solubility limits of nitrogen and carbon in steel and promote the precipitation of compound grains in the holding step S14a.
  • the area ratio of the compound grains in the diffusion layer DR can be 3% or more.
  • the average particle size can be 0.3 ⁇ m or less.
  • the growth of the austenite crystal grains is suppressed by the pinning effect of the compound grains precipitated in large amounts and finely as described above, and the austenite crystal grains remain fine.
  • martensite transformation a plurality of martensite blocks are formed within one austenite grain. From another point of view, one martensite block is not formed across a plurality of austenite grains. Therefore, the finer the austenite grains, the finer the martensite blocks contained therein.
  • the steel material is tempered.
  • the steel material is held in a furnace at a predetermined temperature (hereinafter referred to as "fifth holding temperature") for a predetermined time (hereinafter referred to as "fifth holding time") and then cooled. It is done by The fifth holding temperature is a temperature below the A1 transformation point of steel forming the steel material.
  • the fifth holding temperature is, for example, 150° C. or higher and 350° C. or lower.
  • the fourth holding time is, for example, 0.5 hours or more and 5 hours or less. Cooling in the tempering step S15 is performed, for example, by air cooling.
  • step S11 to S15 the carbonitriding heat treatment shown in step S2 in FIG. 4 is performed.
  • FIG. 6 is a graph showing the heat pattern in the method of manufacturing the transmission shaft according to the embodiment.
  • FIG. 6 schematically shows the relationship between the first to fifth holding temperatures and the first to fifth holding times.
  • FIG. 7 is a diagram showing the driving force of the needle rollers and the load distribution acting on the raceway surface when the raceway surface is straight (A) and when the raceway surface is bent (B).
  • FIG. 7A when the raceway surface 1b is straight in the axial direction, the load distribution applied to the raceway surface 1b through the rollers (rolling elements) 2 is substantially uniform. As a result, the driving force for the rollers 2 is also substantially uniform in the axial direction of the rollers 2 .
  • the triiron tetroxide film 12 has a porous surface and has a structure including concave portions on the surface. Therefore, by forming the triiron tetraoxide film 12, the oil is retained in the concave portions of the surface, the oil film forming ability is improved, and the life under lean lubrication conditions is improved.
  • the triiron tetroxide film 12 is softer than the mating material (needle roller). For this reason, unevenness due to processing or protrusions around indentations formed when foreign matter is bitten in are quickly worn out, and metal contact in actual use can be reduced. In the life test, the triiron tetroxide film 12 wore about 0.8 ⁇ m in the initial stage of operation, and the wear did not progress until breakage occurred. Therefore, the thickness of the triiron tetraoxide film 12 should be 0.8 ⁇ m or more (preferably 1 ⁇ m or more). In addition, if the triiron tetroxide film 12 is made thicker, the time required for the blackening treatment becomes longer, leading to an increase in cost.
  • the blackening process it is possible to process multiple products at once, and it is possible to reduce the cost increase due to additional processing. Further, since the surface roughness is improved during the blackening treatment, the number of man-hours for processing the transmission shaft 1 can be reduced.
  • this experiment conducted to confirm the effect of the transmission shaft 1 according to the embodiment will be described below.
  • Samples 1 and 2 were used in this experiment.
  • the steel material used for Samples 1 and 2 is SCM435 (JIS G 4053:2016) as shown in Table 1.
  • Each of Sample 1 and Sample 2 is a rotating shaft that is an inner member of a needle roller bearing device.
  • each of Sample 1 and Sample 2 was subjected to the carbonitriding step S11 under the conditions of a first holding temperature of 930° C. or higher and 940° C. or lower and a first holding time of 13 hours. .
  • the diffusion step S12 was performed under the conditions that the second holding temperature was 930° C. or higher and 940° C. or lower and the second holding time was 6 hours.
  • the amount of carbon monoxide, the amount of carbon dioxide, and the amount of ammonia in the atmosphere in the carbonitriding step S11 and the diffusion step S12 are 11% by volume or more and 17% by volume or less and 0.05% by volume or more and 0.15% by volume or less, respectively. , 0.1% by volume or more and 0.3% by volume or less.
  • the primary quenching step S13 was performed under the condition that the third holding temperature was 870°C and the third holding time was 1 hour. After that, the sample 1 was subjected to the secondary quenching step S14 under the condition that the fourth holding temperature was 830° C. and the fourth holding temperature was 1.5 hours. Sample 2 was not subjected to the secondary quenching step S14. Thereafter, the tempering step S15 was performed on each of the samples 1 and 2 under the conditions of a fifth holding temperature of 180° C. and a fifth holding time of 3 hours. After that, each of the samples 1 and 2 was subjected to mechanical polishing with a polishing amount of 150 ⁇ m as the processing step S3.
  • FIG. 8 is a graph showing the measurement results of the carbon concentration and nitrogen concentration of sample 1 by EPMA.
  • FIG. 9 is a graph showing the measurement results of the carbon concentration and nitrogen concentration of sample 2 by EPMA.
  • the horizontal axis is the distance (unit: mm) from the surface of sample 1 and sample 2
  • the vertical axis is carbon concentration and nitrogen concentration (unit: mass % concentration).
  • FIG. 10 is an electron microscope image in the vicinity of the surface of the sample 1.
  • FIG. 10 it was confirmed that a large number of compound particles with a size of 0.2 ⁇ m or more and 3.0 ⁇ m or less were precipitated in the vicinity of the surface of Sample 1.
  • the average grain size of the compound grains near the surface of Sample 1 was about 0.25 ⁇ m.
  • the area ratio of the compound grains was about 8%.
  • FIG. 11 is an electron microscope image in the vicinity of the surface of sample 2. As shown in FIG. 11, in the vicinity of the surface of sample 2, it was confirmed that the area ratio of the compound grains was about 1%.
  • the maximum grain size of the martensite block was within the range of 3.6 ⁇ m or more and 3.8 ⁇ m or less. It was also confirmed that in the vicinity of the surface of Sample 1, martensite blocks with a crystal grain size of 2 ⁇ m or less account for 90% or more of the area of the martensite blocks. Furthermore, it was confirmed that in the vicinity of the surface of Sample 1, martensite blocks having a crystal grain size of 1 ⁇ m or less occupied 55% or more and 75% or less of the area of the martensite blocks.
  • the maximum grain size of the martensite block was within the range of 5.1 ⁇ m or more and 7.3 ⁇ m or less. It was also confirmed that in the vicinity of the surface of Sample 2, martensite blocks with a crystal grain size of 2 ⁇ m or less occupied 65% or more and 80% or less of the area of the martensite blocks. Furthermore, it was confirmed that in the vicinity of the surface of Sample 2, martensite blocks having a crystal grain size of 1 ⁇ m or less occupied 35% or more and 45% or less of the area of the martensite blocks.
  • FIG. 12 is an optical microscope image near the surface of sample 1.
  • the average grain size of the prior austenite grains is in the range of 4 ⁇ m or more and 8 ⁇ m or less, and the crystal grain size of the prior austenite grains is distributed in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • FIG. 13 is an optical microscope image in the vicinity of the surface of the sample 2.
  • the average grain size of the prior austenite grains is in the range of 12 ⁇ m or more and 25 ⁇ m or less, and the crystal grain size of the prior austenite grains is distributed over a wide range of 5 ⁇ m or more and 100 ⁇ m or less. It was confirmed that
  • FIG. 14 is a graph showing the average grain sizes of martensite blocks belonging to the third and fifth groups in the vicinity of the surfaces of samples 1 and 2.
  • the vertical axis indicates the average particle diameter (unit: ⁇ m).
  • the average grain size of martensite blocks belonging to the third group was about 1.0 ⁇ m. From this, it was confirmed that in Sample 1, the average grain size of the martensite blocks belonging to the third group was in the range of 0.7 ⁇ m or more and 1.4 ⁇ m or less.
  • the average grain size of martensite blocks belonging to the fifth group was about 0.8 ⁇ m. From this, it was confirmed that in sample 1, the average grain size of martensite blocks belonging to the fifth group was in the range of 0.6 ⁇ m or more and 1.1 ⁇ m.
  • the average grain size of martensite blocks belonging to the third group was about 1.7 ⁇ m.
  • the average grain size of martensite blocks belonging to the fifth group was about 1.3 ⁇ m.
  • FIG. 15 is a graph showing the average aspect ratios of martensite blocks belonging to the third and fifth groups in the vicinity of the surfaces of samples 1 and 2.
  • the vertical axis indicates the average aspect ratio.
  • the average aspect ratio of martensite blocks belonging to the third group was about 2.8. From this, it was confirmed that in Sample 1, the average aspect ratio of the martensite blocks belonging to the third group was within the range of 2.5 or more and 2.8 or less.
  • the average aspect ratio of martensite blocks belonging to the fifth group was about 2.6. From this, it was confirmed that in sample 1, the average aspect ratio of the martensite blocks belonging to the fifth group was within the range of 2.4 or more and 2.6 or less.
  • the average aspect ratio of martensite blocks belonging to the third group was about 3.2.
  • the average aspect ratio of martensite blocks belonging to the fifth group was about 3.0.
  • Sample 3 is a transmission shaft obtained by subjecting sample 1 to blackening treatment
  • sample 4 is a transmission shaft obtained by subjecting sample 2 to blackening treatment.
  • Each of Samples 3 and 4 was blackened by immersion in a strong alkaline aqueous solution containing sodium hydroxide at about 130° C. for 10 minutes or longer.
  • the thickness of the triiron tetroxide film formed by this blackening treatment was 1.8 ⁇ m.
  • lubrication was oil bath lubrication using engine oil SAE30, the load was 24.5 kN, and the relative rotational speed of the outer member to the transmission shaft was 2150 rpm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ocean & Marine Engineering (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

変速機用軸(1)は、変速機に用いられ、針状ころ(2)が転動する軌道面を有する。変速機用軸(1)は、母材(11)と、四三酸化鉄皮膜(12)とを備える。母材(11)は、クロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかの材質からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する。四三酸化鉄皮膜(12)は、母材(11)の表面上に形成され、少なくとも軌道面に配置されている。

Description

変速機用軸およびそれを用いた軸受装置
 本発明は、変速機用軸およびそれを用いた軸受装置に関する。
 トランスミッションなどの変速機では、外径部を軌道面とする軸と、その軸の外周部に配置された保持器付き針状ころ軸受とのセットである軸受装置が使用される。この軸受装置は、高温かつ摩耗粉などの異物が多い環境下で使用される。このため、この軸受装置には、異物または潤滑不良による表面損傷に強い部品が要求される。特に軸は固定部品であるため、同じ箇所が常にダメージを受ける構造を有し、最弱部となりやすい。
 軸受において異物環境下または希薄潤滑下にて寿命を延ばす方法として、鋼材からなる部品にアンモニア(NH3)を含む浸炭窒化雰囲気で熱処理(浸炭窒化処理)を行ない、表面の残留オーステナイト量および炭素、窒素の濃度を多くする強化方法が一般的に知られている。
 またショットピーニングにより軸またはころに凹部を設け、その凹部に固体潤滑剤を被覆して摩擦係数を低下させる技術が、例えば特開2006-161887号公報(特許文献1)に開示されている。また同様に、ショットピーニングにより表層に硬化層(Hv850以上Hv10000以下)を形成するとともに大きな圧縮残留応力(絶対値が600MPa以上1700MPa以下)を与えて強化する技術が、例えば特開2017-106534号公報(特許文献2)に開示されている。
特開2006-161887号公報 特開2017-106534号公報
 しかしながら一般的な浸炭窒化処理だけでは十分な寿命を得ることができない。また特許文献1、2のようなショットピーニングを伴う長寿命化手法では製品毎の個別処理が必要になり製造プロセスが煩雑となる。
 本発明は、上記の課題を解決するためになされたものであって、その目的は、簡易な製造プロセスにて長寿命化を図ることができる変速機用軸およびそれを用いた軸受装置を提供することである。
 本発明の変速機用軸は、変速機に用いられ、針状ころが転動する軌道面を有する変速機用軸であって、母材と、四三酸化鉄皮膜とを備える。母材は、クロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかの材質からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する。四三酸化鉄皮膜は、母材の表面上に形成され、少なくとも軌道面に配置されている。
 なお本発明における変速機は減速機および増速機のいずれであってもよい。
 上記の変速機用軸において、四三酸化鉄皮膜の厚みは1μm以上2μm以下である。
 上記の変速機用軸において、母材はクロムモリブデン鋼からなる。
 上記の変速機用軸において、母材の表面における旧オーステナイト結晶粒の平均粒径は8μm以下である。
 上記の変速機用軸において、拡散層中における少なくとも1つの結晶粒を含む化合物粒の面積比率は3%以上であり、化合物粒の平均粒径は0.3μm以下である。
 上記の変速機用軸において、拡散層は、複数のマルテンサイトブロックを含む。
 上記の変速機用軸において、マルテンサイトブロックの最大粒径は3.8μm以下である。
 本発明の軸受装置は、上記の変速機用軸と、その変速機用軸の軌道面を転動する複数の針状ころとを備える。
 本発明の変速機用軸の製造方法は、変速機に用いられ、針状ころが転動する軌道面を有する変速機用軸の製造方法であって、以下の工程を備える。
 クロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかの材質からなる鋼材が準備される。鋼材が浸炭窒化される。浸炭窒化された鋼材の表面上に四三酸化鉄皮膜が形成される。
 上記の変速機用軸の製造方法において、鋼材は、クロムモリブデン鋼からなる。鋼材を浸炭窒化する工程は、鋼材を、アンモニアを含む浸炭窒化雰囲気中で930℃以上940℃以下に加熱する工程を含む。浸炭窒化された鋼材を850℃超え930℃未満の1次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、鋼材が1次焼入れされる。1次焼入れされた鋼材をA1点以上850℃未満の2次焼入温度に加熱した後、Ms点以下の温度まで冷却することにより、鋼材が2次焼入れされる。
 本発明によれば、簡易な製造プロセスにて長寿命化を図ることができる変速機用軸およびそれを用いた軸受装置を実現することができる。
遊星型変速機における遊星歯車およびその支持構造を、遊星歯車を破断して示す一部破断斜視図である。 図1に示す遊星歯車およびその支持構造の断面図である。 図2の領域Rにおける変速機用軸の構成を拡大して示す拡大断面図である。 一実施形態に係る変速機用軸の製造方法を示すフロー図である。 図4における浸炭窒化熱処理の工程を細分化して示すフロー図である。 一実施形態に係る変速機用軸の製造方法におけるヒートパターンを示すグラフである。 軌道面がストレートの状態(A)と軌道面にたわみがある状態(B)との各々における針状ころの駆動力と軌道面に作用する荷重分布とを示す図である。 試料1に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。 試料2に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。 試料1の表面近傍における電子顕微鏡像である。 試料2の表面近傍における電子顕微鏡像である。 試料1の表面近傍における光学顕微鏡像である。 試料2の表面近傍における光学顕微鏡像である。 試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均粒径を示すグラフである。 試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均アスペクト比を示すグラフである。
 以下、図面を参照して、本発明の実施形態について説明する。以下の図面においては、同一または相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。
 <遊星型変速機における遊星歯車とその支持構造>
 まず一実施形態に係る遊星型変速機における遊星歯車とその支持構造について図1および図2を用いて説明する。
 図1は、遊星型変速機における遊星歯車およびその支持構造を、遊星歯車を破断して示す一部破断斜視図である。図2は、図1に示す遊星歯車およびその支持構造の断面図である。
 遊星型変速機は、遊星歯車装置を有している。遊星歯車装置は、太陽歯車(サン・ギヤ)と、遊星歯車(プラネタリ・ギヤ)と、内歯車(インターナル・ギヤ)との3系統の歯車を有している。遊星歯車装置では、1系統の歯車への入力に対して、他の2系統の歯車のどちらかを固定または開放することで必要な変速が実行される。
 図1に示されるように、遊星歯車4は、外周部に複数の歯4aを有している。遊星歯車4の歯4aは、太陽歯車(図示せず)の外周側に設けられた歯と噛み合う。これにより遊星歯車4は、太陽歯車の外周側で回転する。また遊星歯車4の歯4aは、内歯車(図示せず)の内周側に設けられた歯と噛み合う。これにより遊星歯車4は、内歯車の内周側で回転する。このように遊星歯車4は、太陽歯車と内歯車との間で、太陽歯車の軸を中心として公転する。
 遊星型変速機は、遊星歯車4を回転可能に支持する転がり軸受装置10を有している。転がり軸受装置10は、変速機用軸1と、複数の針状ころ2と、保持器3とを有している。なお転がり軸受装置10は、遊星歯車4を含んでいてもよい。
 遊星歯車4の中央部には、貫通孔が設けられている。貫通孔を規定する壁面4bは、遊星歯車4の内周面を構成している。遊星歯車4の貫通孔には、変速機用軸1が挿入されている。これにより遊星歯車4は、変速機用軸1の外周を取り囲んでいる。変速機用軸1は、例えば円柱形状を有している。変速機用軸1は、内部に油路1aを有している。変速機用軸1は転がり軸受装置10の内方部材に対応し、遊星歯車4は転がり軸受装置10の外方部材に対応する。変速機用軸1の外周面(軌道面1b)と遊星歯車4の内周面(軌道面4b)との間には、保持器付き針状ころ軸受が配置されている。
 保持器付き針状ころ軸受は、複数の針状ころ2と、保持器3とを有している。保持器3は、環状の形状を有しており、変速機用軸1の外周面を取り囲んでいる。保持器3は、複数のポケット3aを有している。複数のポケット3aは、ほぼ等しい間隔で周方向に沿って配置されている。複数のポケット3aの各々には、針状ころ2が転動自在に保持されている。
 図2に示されるように、複数の針状ころ2の各々は、変速機用軸1の軌道面1bとなる外周面と遊星歯車4の軌道面4bとなる内周面とを転動するように配置されている。保持器付き針状ころ軸受により、遊星歯車4は変速機用軸1に対して回転自在に支持されている。
 なお、変速機用軸の適用例として歯車式変速機について述べたが、ベルト式やトロイダル式、油圧式などの変速機にも適用できる。
 <変速機用軸1の構成>
 次に、変速機用軸1の構成について図3を用いて説明する。
 図3は、図2の領域Rにおける変速機用軸の構成を拡大して示す拡大断面図である。図3に示されるように、変速機用軸1は、母材11と、四三酸化鉄皮膜12とを有している。母材11の材質は、例えばクロムを含む鋼材よりなっている。母材11の材質は、例えばクロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかである。上記におけるクロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のそれぞれは、JIS(Japanese Industrial Standards)規格(JIS G 4053:2016)に規定されるSCr鋼種、SCM鋼種およびSNCM鋼種に属する鋼である。
 母材11には、浸炭窒化熱処理が施されている。このため母材11は、表面(外周面)において、拡散層DRを有している。拡散層DRは、窒素および炭素の濃度が、変速機用軸1を構成する鋼材中(拡散層DRよりも内部IP)の窒素および炭素の濃度よりも高くなっている部分である。拡散層DRの深さDは、例えば0.6mm以上1.5mm以下である。
 拡散層DRは、複数の化合物粒を有している。化合物粒は、鉄(Fe)の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒である。より具体的には、化合物粒は、セメンタイト(Fe3C)の鉄サイトの一部がクロムによって置換されており、炭素(C)サイトの一部が窒素(N)により置換されている化合物(すなわち、(Fe,Cr)3(C,N)により示される化合物)の結晶粒である。
 四三酸化鉄皮膜12は、母材11の表面に接して配置されている。四三酸化鉄皮膜12は、四三酸化鉄(Fe34)よりなっており、いわゆる黒錆といわれるものであり、不動態酸化皮膜である。四三酸化鉄皮膜12の表面は、多孔質である。四三酸化鉄皮膜12の厚みは、1μm以上2μm以下である。四三酸化鉄皮膜12は、変速機用軸1の少なくとも軌道面1bに配置されている。四三酸化鉄皮膜12は、母材11の表面全面を覆うように配置されていてもよい。
 四三酸化鉄皮膜12は、例えば黒染め処理法といわれる化成処理により母材11の表面上に形成される。本実施形態における黒染め処理法は、130℃以上160℃以下の水酸化ナトリウム(NaOH)を主成分とする強アルカリ水溶液中に3分以上浸漬することである。この黒染め処理法によれば、強アルカリ水溶液の温度が130℃以上160℃以下と低いため、母材11が変質または変形するほどまで加熱されない。このため母材11の組織、強度、性質などの変化が抑制され、浸炭窒化熱処理により得られた母材11の組織、強度、性質などは黒染め処理後にも維持されている。また黒染め処理法により形成される四三酸化鉄皮膜12の厚みは1μm以上2μm以下と薄い。このため四三酸化鉄皮膜12が接する母材11の表面状態は、浸炭窒化熱処理が施された鋼材の表面状態とほぼ同じである。
 母材11は、例えばクロムモリブデンよりなり、四三酸化鉄皮膜12の形成前に、後述の図6に示す特殊な浸炭窒化熱処理を施されていることが好ましい。この特殊な浸炭窒化熱処理により、母材11の結晶粒微細化が強化されるとともに、析出化合物が富化される。これにより耐表面損傷が強化され、疲労強度が向上し、たわみによる変形が抑止されて、さらなる寿命向上が図られる。
 以下に、上記特殊な浸炭窒化熱処理が施された母材11について説明する。
 拡散層DRは、複数の化合物粒以外に、複数のマルテンサイトブロックを有している。拡散層DR中における化合物粒の平均粒径は、0.3μm以下である。拡散層DR中における化合物粒の平均粒径は、0.25μm以下であることが好ましい。拡散層DR中における化合物粒の面積比率は、3%以上である。拡散層DR中における化合物粒の面積比率は、8%以上であることが好ましい。拡散層DR中における化合物粒の面積比率は、例えば10%以下である。
 なお、拡散層DR中における化合物粒の平均粒径および面積比率は、以下の方法で測定される。第1に、拡散層DRの断面研磨が行われる。第2に、研磨面の腐食が行われる。第3に、腐食が行われた研磨面に対して、SEM(Scanning Electron Microscopy)撮影が行われる(以下においては、SEM撮影によって得られた画像を、「SEM画像」という)。なお、SEM画像は、十分な数(20個以上)の化合物粒が含まれるように撮影される。第4に、得られたSEM画像に対して画像処理を行うことにより、当該SEM画像中における各々の化合物粒の面積および化合物粒の総面積が算出される。
 化合物粒の円相当径と化合物粒の面積との間には、π×(化合物粒の円相当径)2/4=化合物粒の面積、の関係が成立する。そのため、当該SEM画像中に表示されている各々の化合物粒の面積を4/πで除した値の平方根を計算することにより、当該SEM画像中に表示されている各々の化合物粒の円相当径が算出される。当該SEM画像中に表示されている各々の化合物粒の円相当径の合計を当該SEM画像中に表示されている化合物粒の数で除した値が、拡散層DR中における化合物粒の平均粒径とされる。当該SEM画像中に表示されている化合物粒の総面積を当該SEM画像の面積で除した値が、拡散層DR中における化合物粒の面積比率とされる。
 マルテンサイトブロックは、結晶方位が揃った結晶により構成されているマルテンサイト相のブロックである。マルテンサイト相は、炭素が固溶した鉄のオーステナイト相を急冷することにより得られる非平衡相である。第1のマルテンサイト相のブロックの結晶方位と第1のマルテンサイト相のブロックに隣接する第2のマルテンサイト相のブロックの結晶方位とのずれが15°以上である場合、第1のマルテンサイト相のブロックと第2のマルテンサイト相のブロックとは、異なるマルテンサイトブロックである。他方、第1のマルテンサイト相のブロックの結晶方位と第1のマルテンサイト相のブロックに隣接する第2のマルテンサイト相のブロックの結晶方位とのずれが15°未満である場合、第1のマルテンサイト相のブロックと第2のマルテンサイト相のブロックとは、1つのマルテンサイトブロックを構成している。
 拡散層DR中におけるマルテンサイトブロックの最大粒径は、3.8μm以下である。拡散層DR中におけるマルテンサイトブロックの最大粒径は、例えば3.6μm以上である。
 結晶粒径が1μm以下の拡散層DR中に含まれるマルテンサイトブロックは、第1群を構成している。拡散層DR中に含まれているマルテンサイトブロックの総面積に対する第1群を構成しているマルテンサイトブロックの面積比率は、0.55以上0.75以下であることが好ましい。
 拡散層DRに含まれるマルテンサイトブロックは、第2群と、第3群とに区分されていてもよい。第2群に属するマルテンサイトブロックの結晶粒径の最大値は、第3群に属するマルテンサイトブロックの結晶粒径の最小値よりも小さい。第3群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.5以上である。第3群に属する結晶粒径が最も大きいマルテンサイトブロックを除く第3群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.5未満である。
 このことを別の観点からいえば、第2群に含まれるマルテンサイトブロックと第3群に属するマルテンサイトブロックとは、以下の方法により区分される。すなわち、第1に、各々のマルテンサイトブロックを、結晶粒径が最も小さいものから順次第1群に割り当てていくとともに、マルテンサイトブロックの総面積に対する第2群に割り当てられたマルテンサイトブロックの総面積が順次計算される。第2に、マルテンサイトブロックの総面積に対する第2群に割り当てられたマルテンサイトブロックの総面積の割合が50%を超えない限界に達した時点で、第2群へのマルテンサイトブロックの割り当てが停止される。第3に、第2群に割り当てられていないマルテンサイトブロックが、第3群に割り当てられる。
 好ましくは、第3群に含まれるマルテンサイトブロックの平均粒径は、0.7μm以上1.4μm以下である。好ましくは、第3群に含まれるマルテンサイトブロックの平均アスペクト比は、2.5以上2.8以下である。
 拡散層DRに含まれるマルテンサイトブロックは、第4群と、第5群とに区分されていてもよい。第4群に属するマルテンサイトブロックの結晶粒径の最大値は、第5群に属するマルテンサイトブロックの結晶粒径の最小値よりも小さい。第5群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.7以上である。第5群に属する結晶粒径が最も大きいマルテンサイトブロックを除く第5群に属するマルテンサイトブロックの総面積を拡散層DRに含まれるマルテンサイトブロックの総面積で除した値は、0.7未満である。
 このことを別の観点からいえば、第4群に含まれるマルテンサイトブロックと第5群に属するマルテンサイトブロックとは、以下の方法により区分される。すなわち、第1に、各々のマルテンサイトブロックを、結晶粒径が最も小さいものから順次第4群に割り当てていくとともに、マルテンサイトブロックの総面積に対する第4群に割り当てられたマルテンサイトブロックの総面積が順次計算される。第2に、マルテンサイトブロックの総面積に対する第4群に割り当てられたマルテンサイトブロックの総面積の割合が30%を超えない限界に達した時点で、第4群へのマルテンサイトブロックの割り当てが停止される。第3に、第4群に割り当てられていないマルテンサイトブロックが、第5群に割り当てられる。
 好ましくは、第5群に含まれるマルテンサイトブロックの平均粒径は、0.7μm以上1.1μm以下である。好ましくは、第5群に含まれるマルテンサイトブロックの平均アスペクト比は、2.4以上2.6以下である。
 拡散層DR中におけるマルテンサイトブロックの結晶粒径およびマルテンサイトブロックのアスペクト比は、EBSD(Electron BackScattered Diffraction)法を用いて測定される。
 第1に、EBSD法に基づいて、拡散層DRにおける断面画像が撮影される(以下においては、「EBSD画像」という)。なお、EBSD画像は、十分な数(20個以上)のマルテンサイトブロックが含まれるように撮影される。EBSD画像に基づいて、隣接するマルテンサイト相のブロックの結晶方位のずれが特定される。これにより、各々のマルテンサイトブロックの境界が特定される。第2に、特定されたマルテンサイトブロックの境界に基づいて、EBSD画像に表示されている各々のマルテンサイトブロックの面積および形状が算出される。
 より具体的には、EBSD画像に表示されている各々のマルテンサイトブロックの面積を4/πで除した値の平方根を計算することにより、EBSD画像に表示されている各々のマルテンサイトブロックの円相当径が算出される。EBSD画像に表示されているマルテンサイトブロックの円相当径のうち、最も大きな値が、拡散層DR中におけるマルテンサイトブロックの最大粒径とされる。
 上記のように算出された各々のマルテンサイトブロックの円相当径に基づいて、EBSD画像に表示されているマルテンサイトブロックのうち、第1群に属するマルテンサイトブロックが決定される。EBSD画像に表示されているマルテンサイトブロックのうち第1群に属するマルテンサイトブロックの総面積を、EBSD画像に表示されているマルテンサイトブロックの総面積で除した値は、第1群に属する拡散層DR中のマルテンサイトブロックの総面積を拡散層DR中のマルテンサイトブロックの総面積により除した値とされる。
 上記のように算出された各々のマルテンサイトブロックの円相当径に基づいて、EBSD画像に表示されているマルテンサイトブロックは、第2群と第3群とに分類される(または、第4群と第5群とに分類される)。第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの円相当径の合計を第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの個数で除した値が、第3群に属する(または第5群に属する)拡散層DR中のマルテンサイトブロックの平均粒径とされる。
 EBSD画像に表示されている各々のマルテンサイトブロックの形状から、EBSD画像に表示されている各々のマルテンサイトブロックの形状が最小二乗法により楕円近似される。この最小二乗法による楕円近似は、S. Biggin and D. J. Dingley, Journal of Applied Crystallography, (1977)10, 376-378に記載の方法にしたがって行われる。この楕円形状において、長軸の寸法を短軸の寸法で除することにより、EBSD法画像に表示されている各々のマルテンサイトブロックのアスペクト比が算出される。第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックのアスペクト比の合計を第3群(または第5群)に分類されたEBSD画像に表示されているマルテンサイトブロックの個数で除した値が、第3群に属する(または第5群に属する)拡散層DR中のマルテンサイトブロックの平均アスペクト比とされる。
 拡散層DR中には、複数の旧オーステナイト粒が含まれている。なお、旧オーステナイト粒は、後述する保持工程S13aおよびS14a(図5)において形成されるオーステナイト粒の結晶粒界(旧オーステナイト粒界)により画される領域である。旧オーステナイト粒の平均粒径は、8μm以下であることが好ましい。旧オーステナイト粒の平均粒径は、6μm以下であることがさらに好ましい。
 なお、拡散層DR中における旧オーステナイト粒の平均粒径は、以下の方法で測定される。第1に、拡散層DRの断面研磨が行われる。第2に、研磨面の腐食が行われる。第3に、腐食が行われた研磨面に対して、光学顕微鏡撮影が行われる(以下においては、光学顕微鏡撮影によって得られた画像を、「光学顕微鏡画像」という)。なお、光学顕微鏡画像は、十分な数(20個以上)の旧オーステナイト粒が含まれるように撮影される。第4に、得られた光学顕微鏡画像に対して画像処理を行うことにより、当該光学顕微鏡画像中における各々の旧オーステナイト粒の面積が算出される。
 光学顕微鏡画像に表示されている各々の旧オーステナイト粒の面積を4/πで除した値の平方根を計算することにより、光学顕微鏡像に表示されている各々の旧オーステナイト粒の円相当径が算出される。光学顕微鏡像に表示されている各々の旧オーステナイト粒の円相当径の合計を光学顕微鏡像に表示されている旧オーステナイト粒の数で除した値が、拡散層DR中における旧オーステナイト粒の平均粒径とされる。
 母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均炭素濃度は、0.7質量%以上であることが好ましい。母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均炭素濃度は、1.2質量%以下であることが好ましい。
 母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均窒素濃度は、0.2質量%以上であることが好ましい。母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均窒素濃度は、0.4質量%以下であることが好ましい。
 母材11の表面(外周面)と母材11の表面から10μmの距離にある深さ位置との間にある拡散層DR中における平均炭素濃度および平均窒素濃度は、EPMA(Electron Probe Micro Analyzer)を用いて測定される。
 <変速機用軸1の製造方法>
 次に、一実施形態に係る変速機用軸1の製造方法を図4~図6を用いて説明する。
 図4は、一実施形態に係る変速機用軸の製造方法を示すフロー図である。図5は、図4における浸炭窒化熱処理の工程を細分化して示すフロー図である。図6は、一実施形態に係る変速機用軸の製造方法におけるヒートパターンを示すグラフである。
 図4に示されるように、本実施形態に係る変速機用軸の製造方法は、鋼材を準備する工程S1と、浸炭窒化熱処理を実施する工程S2と、研削、スーパーフィニッシュ、ホーニング加工などを実施する工程S3と、四三酸化鉄皮膜12を形成する工程S4とを有している。工程S1においては、クロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかの材質からなる鋼材が準備される。
 工程S2においては、工程S1において準備された鋼材に浸炭窒化熱処理が施される。この浸炭窒化熱処理においては、例えばアンモニア(NH3)のガスを含む雰囲気ガスが用いられる。工程S3においては、浸炭窒化熱処理が施された鋼材に、研削、スーパーフィニッシュ、ホーニング加工などが実施される。これにより鋼材は、変速機用軸1としての外径寸法に仕上げられる。
 この後、工程S4において、鋼材の表面に四三酸化鉄皮膜12が形成される。四三酸化鉄皮膜12は、例えば黒染め処理法といわれる化成処理により形成される。本実施形態においては、鋼材は130℃以上160℃以下の水酸化ナトリウムを主成分とする強アルカリ水溶液中に3分以上浸漬される。これにより図3に示されるように、母材11の表面上に四三酸化鉄皮膜12が形成され、本実施形態の変速機用軸1が製造される。
 なお工程S2における浸炭窒化熱処理として、図5および図6に示す特殊な浸炭窒化熱処理が実施されてもよい。以下、この特殊な浸炭窒化熱処理について説明する。
 図5に示されるように、特殊な浸炭窒化熱処理は、浸炭窒化工程S11と、拡散工程S12と、一次焼き入れ工程S13と、二次焼き入れ工程S14と、焼き戻し工程S15とを有している。
 浸炭窒化工程S11においては、例えば図4に示す工程S1で準備されたクロムモリブデン鋼からなる鋼材の表面に対する浸炭窒化が行われる。浸炭窒化工程S11は、鋼材を、所定の温度(以下においては、「第1保持温度」という)において、所定の時間(以下においては、「第1保持時間」という)炉内に保持することにより行われる。炉内雰囲気には、例えば、吸熱型変成ガス(Rガス)およびアンモニアを含有するガスが用いられる。第1保持温度は、例えば930℃以上940℃以下である。第1保持時間は、例えば10時間以上15時間以下である。
 拡散工程S12においては、浸炭窒化工程S11において鋼材の表面から導入された炭素および窒素が鋼材の内部へと拡散する。拡散工程S12は、所定の温度(以下においては、「第2保持温度」という)において、所定の時間(以下においては、「第2保持時間」という)炉内に保持することにより行われる。炉内雰囲気には、例えば、吸熱型変成ガス(Rガス)およびアンモニアを含有するガスが用いられる。第2保持温度は、例えば930℃以上940℃以下である。第2保持時間は、例えば5時間以上10時間以下である。
 拡散工程S12においては、以下の式(1)および式(2)により定義されるαが、浸炭窒化工程S11よりも低くなるように調整される。αの調整は、式(1)および式(2)から明らかなとおり、雰囲気中の一酸化炭素の量、二酸化炭素の量および未分解のアンモニアの量を調整することにより行われる。なお、雰囲気中の未分解のアンモニアの量は、0.1体積%以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000001
 一次焼き入れ工程S13においては、鋼材に対する焼き入れが行われる。一次焼き入れ工程S13は、保持工程S13aと、冷却工程S13bとを有している。保持工程S13aは、鋼材を所定の温度(以下においては、「第3保持温度」という)において所定の時間(以下においては「第3保持時間」という)炉内に保持することにより行われる。なお、一次焼き入れ工程S13においては、炉内の雰囲気にアンモニアは含まれていない。第3保持温度は、鋼材を構成する鋼のA1変態点以上の温度であって、第1保持温度および第2保持温度よりも低い温度である。第3保持温度は、例えば850℃以上930℃未満である。好ましくは、第3保持温度は、860℃以上880℃以下である。第3保持時間は、例えば0.5時間以上2時間以下である。冷却工程S13bにおいては、第3保持温度からMs点以下の温度まで、鋼材の冷却が行われる。冷却工程S13bは、例えば油冷により行われる。
 二次焼き入れ工程S14においては、鋼材の焼き入れが行われる。二次焼き入れ工程S14は、保持工程S14aと、冷却工程S14bとを有している。保持工程S14aは、鋼材を所定の温度(以下においては、「第4保持温度」という)において所定の時間(以下においては「第4保持時間」という)炉内に保持することにより行われる。なお、二次焼き入れ工程S14においては、炉内の雰囲気にアンモニアは含まれていない。第4保持温度は、鋼材を構成する鋼のA1変態点以上の温度であって、第3保持温度よりも低い温度である。第4保持温度は、例えば鋼材を構成する鋼のA1変態点以上850℃以下である。第4保持温度は、820℃以上840℃以下であることが好ましい。第4保持時間は、例えば1時間以上2時間以下である。冷却工程S14bにおいては、第4保持温度からMs点以下の温度まで、鋼材の冷却が行われる。冷却工程S14bは、例えば油冷により行われる。
 拡散層DR中の化合物粒は、主として保持工程S13aおよび保持工程S14aにおいて析出する。鋼中における炭素および窒素の固溶限は、保持温度が高くなるほど大きくなる(保持温度が低くなるほど小さくなる)。第3保持温度は、保持工程S13aにおける拡散層DR中に化合物粒が過大に析出することを避けるため、通常の焼き入れ時の保持温度よりも高く設定されている(通常の焼き入れ時よりも鋼中における炭素および窒素の固溶限が相対的に広くなるように設定されている)。
 保持工程S14aにおいては、保持工程S13aにおいて既に化合物粒が析出している。つまり、保持工程S14aにおいては、母材中の炭素濃度および窒素濃度が低下しており、保持工程S13aよりも相対的に化合物粒が析出しにくくなっている。そのため、第4保持温度は、鋼中における窒素および炭素の固溶限を狭くして保持工程S14aにおける化合物粒の析出を促進するため、第3保持温度よりも低く設定されている。これにより、拡散層DR中における化合物粒の面積比率と3%以上とすることができる。また、第4保持温度を第3保持温度よりも低く設定することにより、保持工程S13aおよび保持工程S14aにおいて析出した化合物粒の粗大化を抑制することができるため、拡散層DR中における化合物粒の平均粒径を0.3μm以下とすることができる。
 保持工程S13aおよび保持工程S14aにおいては、上記のようにして多量かつ微細に析出させた化合物粒のピン止め効果によりオーステナイト結晶粒の成長が抑制され、オーステナイト結晶粒が微細なままとされる。マルテンサイト変態に際しては、1つのオーステナイト結晶粒内に複数のマルテンサイトブロックが形成される。このことを別の観点からいえば、1つのマルテンサイトブロックは、複数のオーステナイト結晶粒に跨って形成されることはない。そのため、オーステナイト結晶粒が微細化されるほど、それに含まれるマルテンサイトブロックも微細化される。
 焼き戻し工程S15においては、鋼材に対する焼き戻しが行われる。焼き戻し工程S15は、鋼材を、所定の温度(以下においては、「第5保持温度」という)において所定の時間(以下においては、「第5保持時間」という)炉内に保持した後に冷却することにより行われる。第5保持温度は、鋼材を構成する鋼のA1変態点以下の温度である。第5保持温度は、例えば150℃以上350℃以下である。第4保持時間は、例えば0.5時間以上5時間以下である。焼き戻し工程S15における冷却は、例えば空冷により行われる。
 以上の工程S11~S15により、図4の工程S2に示す浸炭窒化熱処理が行なわれる。
 図6は、実施形態に係る変速機用軸の製造方法におけるヒートパターンを示すグラフである。図6には、上記の第1保持温度~第5保持温度および第1保持時間~第5保持時間の関係が模式的に示されている。
 <本実施形態の作用効果>
 次に、本実施形態の変速機用軸の作用効果について図7(A)、(B)を用いて説明する。
 図7は、軌道面がストレートの状態(A)と軌道面にたわみがある状態(B)との各々における針状ころの駆動力と軌道面に作用する荷重分布とを示す図である。図7(A)に示されるように、軌道面1bが軸方向にストレートの場合、ころ(転動体)2越しに軌道面1bに負荷される荷重分布はほぼ均等となる。これによりころ2の駆動力もころ2の軸方向にほぼ均等となる。
 これに対して図7(B)に示されるように、変速機用軸1の両端が固定された状態で変速機用軸1のおよそ中央部分に荷重が負荷される。このため、軌道面1bが軸方向にたわみ、曲げ応力が作用した状態で変速機用軸1は使用される。軌道面1bがたわんでいる場合、軌道面1b上を転動するころ2の形状の左右差などによりスキューが生じやすくなり、滑りが大きくなる。このため、油膜切れが発生しやすく、金属接触による表面損傷の危険性が高くなる。
 四三酸化鉄皮膜12は、多孔質の表面を有し、表面に凹部を含んだ構造をしている。このため四三酸化鉄皮膜12が形成されることにより、表面の凹部に油が保持されて油膜形成能力が向上し、希薄潤滑条件下における寿命が向上する。
 また四三酸化鉄皮膜12は相手材(針状ころ)に比べて軟らかい。このため、加工目による凹凸部または異物を噛みこんだ際にできる圧痕周辺の凸部が早期に摩滅し、実使用における金属接触を低減させることができる。なお寿命試験において、運転初期段階で四三酸化鉄皮膜12に0.8μm程度の摩耗が発生し、破損発生まで摩耗が進行しなかった。このことから四三酸化鉄皮膜12の厚みは、0.8μm以上(好ましくは1μm以上)必要である。また四三酸化鉄皮膜12を厚膜化した場合に黒染め処理の時間が長くなりコストアップにつながるため、四三酸化鉄皮膜12の厚みは2μm以下であることが望ましい。
 黒染め処理によれば、一度に複数の製品を処理することが可能であり、処理追加によるコストアップを抑えることができる。また黒染め処理時に表面粗さが向上するため、変速機用軸1の加工工数を抑えることができる。
 なお、一方方向荷重が長時間作用した場合、時間と共に大きくなる微小な塑性変形(クリープ)が懸念される。しかし、図5および図6に示される特殊な浸炭窒化熱処理を施した変速機用軸1では、結晶粒の微細化と析出化合物の増加とにより、最大曲げ応力が作用する表層部の降伏応力が大きくなる。このため、一般的な浸炭窒化処理品よりもクリープ変形を抑えることができ、長時間たわみによる変形を最小限に抑えることができる。また、図5および図6に示される特殊な浸炭窒化熱処理では従来の浸炭窒化処理に比べて、母材11の疲労強度と耐表面損傷性能とが向上しており、さらに寿命が向上される。
 以下に、実施形態に係る変速機用軸1の効果を確認するために行った実験(以下において「本実験」という)を説明する。
 <試料>
 本実験には、試料1および試料2が用いられた。試料1および試料2に用いられた鋼材は、表1に示されるようにSCM435(JIS G 4053:2016)である。試料1および試料2の各々は、針状ころ軸受装置の内方部材である回転軸である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、試料1および試料2の各々に対しては、第1保持温度が930℃以上940℃以下、第1保持時間が13時間の条件で浸炭窒化工程S11が行われた。試料1および試料2の各々に対しては、第2保持温度が930℃以上940℃以下、第2保持時間が6時間の条件で拡散工程S12が行われた。なお、浸炭窒化工程S11および拡散工程S12における雰囲気中の一酸化炭素量、二酸化炭素量、およびアンモニア量は、それぞれ11体積%以上17体積%以下、0.05体積%以上0.15体積%以下、0.1体積%以上0.3体積%以下とされた。
 試料1および試料2の各々に対して、第3保持温度が870℃、第3保持時間が1時間の条件で一次焼き入れ工程S13が行われた。この後、試料1に対して、第4保持温度が830℃、第4保持温度が1.5時間の条件で二次焼き入れ工程S14が行われた。試料2には、この二次焼き入れ工程S14が行われなかった。この後、試料1および試料2の各々に対して、第5保持温度が180℃、第5保持時間が3時間の条件で焼き戻し工程S15が行われた。この後、試料1および試料2の各々に対して、加工工程S3として、研磨量が150μmの機械研磨が行われた。
Figure JPOXMLDOC01-appb-T000003
 <炭素濃度および窒素濃度の測定>
 図8は、試料1に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。図9は、試料2に対するEPMAによる炭素濃度および窒素濃度の測定結果を示すグラフである。なお、図8および図9においては、横軸は試料1および試料2の表面からの距離(単位:mm)であり、縦軸は炭素濃度および窒素濃度(単位:質量%濃度)である。
 図8に示されるように、試料1の表面近傍においては、炭素濃度および窒素濃度に、鋭いピークが多数確認された。この結果から、試料1においては、表面近傍に炭化物、窒化物および炭窒化物などの微細な化合物粒が析出していることが実験的に確認された。また、試料1においては、表面と表面から10μmの距離にある深さ位置との間の領域における平均炭素濃度が0.7%以上1.2%以下の範囲内にあり、当該領域における平均窒素濃度が0.2質量%以上0.4質量%以下の範囲内にあった。他方、図9に示されるように、試料2の表面近傍において、炭素濃度および窒素濃度に、鋭いピークが多数確認されなかった。この結果から、試料2においては、表面近傍に炭化物、窒化物および炭窒化物などの微細な化合物粒が析出していないことが実験的に確認された。
 <組織観察>
 図10は、試料1の表面近傍における電子顕微鏡像である。図10に示されるように、試料1の表面近傍においては、0.2μm以上3.0μm以下の化合物粒が多数析出していることが確認された。また、試料1の表面近傍においては、化合物粒の平均粒径が約0.25μmであることが確認された。さらに、試料1の表面近傍においては、化合物粒の面積比率が約8%であることが確認された。
 図11は、試料2の表面近傍における電子顕微鏡像である。図11に示されるように、試料2の表面近傍においては、化合物粒の面積比率が約1%であることが確認された。
 また試料1の表面近傍におけるEBSD画像を確認したところ、試料1の表面近傍においては、マルテンサイトブロックの最大粒径が3.6μm以上3.8μm以下の範囲内にあることが確認された。また、試料1の表面近傍においては、マルテンサイトブロックの面積の90%以上を結晶粒径が2μm以下のマルテンサイトブロックが占めていることが確認された。さらに、試料1の表面近傍においては、マルテンサイトブロックの面積の55%以上75%以下を結晶粒径が1μm以下のマルテンサイトブロックが占めていることが確認された。
 また試料2の表面近傍におけるEBSD画像を確認したところ、試料2の表面近傍においては、マルテンサイトブロックの最大粒径が5.1μm以上7.3μm以下の範囲内にあることが確認された。また、試料2の表面近傍においては、マルテンサイトブロックの面積の65%以上80%以下を結晶粒径が2μm以下のマルテンサイトブロックが占めていることが確認された。さらに、試料2の表面近傍においては、マルテンサイトブロックの面積の35%以上45%以下を結晶粒径が1μm以下のマルテンサイトブロックが占めていることが確認された。
 図12は、試料1の表面近傍における光学顕微鏡像である。図12に示されるように、試料1の表面近傍においては、旧オーステナイト粒の平均粒径が4μm以上8μm以下の範囲にあり、旧オーステナイト粒の結晶粒径は1μm以上10μm以下の範囲で分布していることが確認された。図13は、試料2の表面近傍における光学顕微鏡像である。図13に示されるように、試料2の表面近傍においては、旧オーステナイト粒の平均粒径が12μm以上25μm以下の範囲にあり、旧オーステナイト粒の結晶粒径は5μm以上100μm以下の広い範囲で分布していることが確認された。
 図14は、試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均粒径を示すグラフである。なお、図14においては、縦軸は平均粒径(単位:μm)を示している。
 図14に示されるように、試料1の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径が約1.0μmであった。このことから、試料1においては、第3群に属するマルテンサイトブロックの平均粒径が、0.7μm以上1.4μm以下の範囲内にあることが確認された。
 図14に示されるように、試料1の表面近傍においては、第5群に属するマルテンサイトブロックの平均粒径が約0.8μmであった。このことから、試料1においては、第5群に属するマルテンサイトブロックの平均粒径が、0.6μm以上1.1μmの範囲内にあることが確認された。
 他方で、試料2の表面近傍においては、第3群に属するマルテンサイトブロックの平均粒径が約1.7μmであった。また、試料2の表面近傍においては、第5群に属するマルテンサイトブロックの平均粒径が約1.3μmであった。
 図15は、試料1および試料2の表面近傍における第3群および第5群に属するマルテンサイトブロックの平均アスペクト比を示すグラフである。なお、図15においては、縦軸は平均アスペクト比を示している。
 図15に示されるように、試料1の表面近傍においては、第3群に属するマルテンサイトブロックの平均アスペクト比が、約2.8であった。このことから、試料1においては、第3群に属するマルテンサイトブロックの平均アスペクト比が2.5以上2.8以下の範囲内にあることが確認された。
 図15に示されるように、試料1の表面近傍においては、第5群に属するマルテンサイトブロックの平均アスペクト比が、約2.6であった。このことから、試料1においては、第5群に属するマルテンサイトブロックの平均アスペクト比が2.4以上2.6以下の範囲内にあることが確認された。
 他方で、試料2の表面近傍においては、第3群に属するマルテンサイトブロックの平均アスペクト比が、約3.2であった。また、試料2の表面近傍においては、第5群に属するマルテンサイトブロックの平均アスペクト比は、約3.0であった。
 <異物混入潤滑下における転動疲労寿命試験>
 試料1~試料4の各々における変速機用軸と保持器付き針状ころ軸受と外方部材とを用いて、異物混入潤滑下における転動疲労試験(以下においては、「転動疲労試験」という)が行なわれた。試料3は試料1に黒染め処理を施した変速機用軸であり、試料4は試料2に黒染め処理を施した変速機用軸である。試料3および4の各々に施した黒染め処理は、約130℃の水酸化ナトリウムを主成分とする強アルカリ水溶液中に10分以上浸漬することにより行なわれた。この黒染め処理により形成された四三酸化鉄皮膜の厚みは1.8μmであった。
 転動疲労試験においては、潤滑はエンジン油SAE30を用いた油浴潤滑とされ、荷重は24.5kNとされ、変速機用軸に対する外方部材の相対的な回転速度は2150rpmとされた。
 転動疲労試験においては、L10寿命(試験開始から剥離が発生するまでの時間を統計的に解析し、累積破損確率が10%となるときの試験時間)、L50寿命(試験開始から剥離が発生するまでの時間を統計的に解析し、累積破損確率が50%となるときの試験時間)で評価を行った。その結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、一般的な浸炭窒化を施され、かつ黒染め処理が施されていない試料2を基準として、一般的な浸炭窒化を施され、かつ黒染め処理が施された試料4の寿命が向上していることが分かった。また図5、6に示す浸炭窒化熱処理が施され、かつ黒染め処理が施された試料3の寿命は、試料2を基準として大幅に向上することが分かった。また試料3の寿命は、図5、6に示す浸炭窒化熱処理が施され、かつ黒染め処理が施されていない試料1を基準としても向上することが分かった。
 以上より黒染め処理が施されることにより黒染め処理が施されない場合よりも寿命が向上することが分かった。また図5、6に示す特殊な浸炭窒化熱処理を施したうえで黒染め処理を施すことにより寿命が大幅に向上することが分かった。
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 変速機用軸、1a 油路、1b,4b 軌道面、2 針状ころ、3 保持器、3a ポケット、4 遊星歯車、4a 歯、10 軸受装置、11 母材、12 四三酸化鉄皮膜、DR 拡散層、IP 内部。

Claims (8)

  1.  変速機に用いられ、針状ころが転動する軌道面を有する変速機用軸であって、
     クロム鋼、クロムモリブデン鋼およびニッケルクロムモリブデン鋼のいずれかの材質からなり、かつ鉄の炭化物、鉄の窒化物および鉄の炭窒化物の少なくとも1つの結晶粒を含む拡散層を表面に有する母材と、
     前記母材の前記表面上に形成され、少なくとも前記軌道面に配置された四三酸化鉄皮膜と、を備えた、変速機用軸。
  2.  前記四三酸化鉄皮膜の厚みは、1μm以上2μm以下である、請求項1に記載の変速機用軸。
  3.  前記母材は、クロムモリブデン鋼からなる、請求項1または請求項2に記載の変速機用軸。
  4.  前記母材の前記表面における旧オーステナイト結晶粒の平均粒径は、8μm以下である、請求項1から請求項3のいずれか1項に記載の変速機用軸。
  5.  前記拡散層中における前記少なくとも1つの結晶粒を含む化合物粒の面積比率は3%以上であり、前記化合物粒の平均粒径は0.3μm以下である、請求項1から請求項4のいずれか1項に記載の変速機用軸。
  6.  前記拡散層は、複数のマルテンサイトブロックを含む、請求項1から請求項5のいずれか1項に記載の変速機用軸。
  7.  前記マルテンサイトブロックの最大粒径は、3.8μm以下である、請求項6に記載の変速機用軸。
  8.  請求項1から請求項7のいずれか1項に記載の変速機用軸と、
     前記変速機用軸の前記軌道面を転動する複数の針状ころと、を備えた、軸受装置。
PCT/JP2022/030282 2021-08-19 2022-08-08 変速機用軸およびそれを用いた軸受装置 WO2023022044A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280055210.3A CN117795211A (zh) 2021-08-19 2022-08-08 变速器用轴及使用其的轴承装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133926 2021-08-19
JP2021133926A JP2023028302A (ja) 2021-08-19 2021-08-19 変速機用軸およびそれを用いた軸受装置

Publications (1)

Publication Number Publication Date
WO2023022044A1 true WO2023022044A1 (ja) 2023-02-23

Family

ID=85240655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030282 WO2023022044A1 (ja) 2021-08-19 2022-08-08 変速機用軸およびそれを用いた軸受装置

Country Status (3)

Country Link
JP (1) JP2023028302A (ja)
CN (1) CN117795211A (ja)
WO (1) WO2023022044A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352416U (ja) * 1989-09-28 1991-05-21
JP2006144828A (ja) * 2004-11-16 2006-06-08 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2012215288A (ja) * 2011-03-25 2012-11-08 Jtekt Corp ころ軸受
JP2019108576A (ja) * 2017-12-18 2019-07-04 Ntn株式会社 軸受部品及び転がり軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352416U (ja) * 1989-09-28 1991-05-21
JP2006144828A (ja) * 2004-11-16 2006-06-08 Nsk Ltd 車輪支持用転がり軸受ユニット
JP2012215288A (ja) * 2011-03-25 2012-11-08 Jtekt Corp ころ軸受
JP2019108576A (ja) * 2017-12-18 2019-07-04 Ntn株式会社 軸受部品及び転がり軸受

Also Published As

Publication number Publication date
JP2023028302A (ja) 2023-03-03
CN117795211A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2019124074A1 (ja) 軸受部品及び転がり軸受
US9816557B2 (en) Tapered roller bearing
JP2001098343A (ja) 耐高面圧部材およびその製造方法
EP1647727A2 (en) Tapered roller bearing
CN112119169B (zh) 轴承部件
JP2004340221A (ja) ピニオンシャフト
US20140321789A1 (en) Machine part, rolling bearing, tapered roller bearing, and method for manufacturing machine part
JP2007297676A (ja) 軸の製造方法およびこの方法で得られた軸
WO2014196428A1 (ja) 軸受部品および転がり軸受
WO2023022044A1 (ja) 変速機用軸およびそれを用いた軸受装置
US11137031B2 (en) Bearing part, rolling bearing, and method for manufacturing bearing part
JP2014077481A (ja) 円錐ころ軸受
WO2022202922A1 (ja) 軌道輪及びシャフト
JP2006112558A (ja) 円すいころ軸受
EP4039833A1 (en) Bearing component
JP2022170860A (ja) 転がり軸受
JP2006316821A (ja) プラネタリギヤ機構用転がり軸受
JP2014020394A (ja) プラネタリギヤ装置
JP2013234702A (ja) プラネタリギヤ装置
JP6843786B2 (ja) 軸受部品及び転がり軸受、ならびに軸受部品の製造方法
JP7049492B2 (ja) 軸受部品及び転がり軸受
JP7049490B2 (ja) 軸受部品及び転がり軸受
JP7049491B2 (ja) 軸受部品及び転がり軸受
WO2023080064A1 (ja) 軸部材及び転がり軸受
JP2023068856A (ja) 転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280055210.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE