WO2023021812A1 - 筐体およびセンサ装置 - Google Patents

筐体およびセンサ装置 Download PDF

Info

Publication number
WO2023021812A1
WO2023021812A1 PCT/JP2022/022636 JP2022022636W WO2023021812A1 WO 2023021812 A1 WO2023021812 A1 WO 2023021812A1 JP 2022022636 W JP2022022636 W JP 2022022636W WO 2023021812 A1 WO2023021812 A1 WO 2023021812A1
Authority
WO
WIPO (PCT)
Prior art keywords
translucent body
housing
actuator
vibration
actuators
Prior art date
Application number
PCT/JP2022/022636
Other languages
English (en)
French (fr)
Inventor
勝宏 田淵
克己 藤本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023542231A priority Critical patent/JPWO2023021812A1/ja
Publication of WO2023021812A1 publication Critical patent/WO2023021812A1/ja
Priority to US18/416,941 priority patent/US20240151560A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a housing for a sensor device and a sensor device.
  • Water droplets such as rain may adhere to the lenses of cameras used outdoors, such as in-vehicle cameras and security cameras. Therefore, a device has been proposed that can remove the water droplets adhering to the lens.
  • Patent Document 1 describes a camera with a waterdrop removal function that removes waterdrops adhering to the lens of the imaging unit.
  • a camera with a waterdrop removing function described in Patent Document 1 removes waterdrops attached to a lens by vibrating an imaging unit in a direction in which an optical axis oscillates.
  • the camera with a water droplet removal function described in Patent Document 1 still has room for improvement in terms of improving detection accuracy.
  • the present invention provides a housing for a sensor device and a sensor device that can improve detection accuracy in a sensor device that removes droplets by vibration.
  • a housing includes A housing containing an optical sensor, a translucent body; a housing base that houses the optical sensor and holds the translucent body so as to vibrate; one or more actuators for vibrating the translucent body; Prepare.
  • a sensor device comprises: the housing described above; an optical sensor housed within the housing; Prepare.
  • the present invention can provide a housing for a sensor device and a sensor device that can improve detection accuracy in a sensor device that removes droplets by vibration.
  • FIG. 1 is a perspective view showing a sensor device and a housing according to Embodiment 1 of the present invention
  • FIG. 2 is an exploded perspective view of the sensor device and housing of FIG. 1
  • Enlarged view of region R2 in FIG. BB sectional view of FIG. 3 is a perspective view showing a housing according to Modification 1 of Embodiment 1.
  • FIG. 4 is a perspective view showing part of a housing according to a second embodiment;
  • FIG. 11 is a block diagram showing the structure of the housing according to the third embodiment;
  • Perspective view of the housing according to the fifth embodiment FIG. 14 is a partially omitted perspective view of the housing of FIG. EE sectional view of FIG. FF sectional view of FIG. Schematic diagram showing the cushioning member of FIG.
  • FIG. 20 is a perspective view showing a translucent body of the housing of FIG. 19
  • FIG. 20 is an enlarged view of region R3 in FIG. Diagram showing an example of the vibration mode of a translucent body A diagram showing another example of the vibration mode of a translucent body FIG.
  • FIG. 11 is a diagram showing an example of vibration modes of a translucent body in a housing base according to a modified example of the sixth embodiment;
  • FIG. 12 is a block diagram showing the structure of the housing according to the eighth embodiment;
  • Graph showing an example of a signal at the first resonance frequency Graph showing an example of a signal at the second resonance frequency
  • Graph showing an example of a signal of a resonance frequency in which a first resonance frequency and a second resonance frequency are superimposed
  • a table showing the maximum acceleration for moving a foreign object attached to a translucent body and the effective frequency for realizing the maximum acceleration.
  • the present inventors have proposed to improve detection accuracy in a sensor device that removes foreign matter by vibrating a transparent body by not transmitting the vibration of the transparent body to an optical sensor. investigated.
  • the housing according to the first aspect of the present invention includes A housing containing an optical sensor, a translucent body; a housing base that houses the optical sensor and holds the translucent body so as to vibrate; one or more actuators for vibrating the translucent body; Prepare.
  • the vibration of the translucent body is not transmitted to the optical sensor, so it is possible to provide a housing for the sensor device that can improve the detection accuracy.
  • the one or more actuators include a coil that generates a magnetic field by applying an electric current, an iron core that is inserted into the hollow of the coil and supports the translucent body, and a magnet that attracts the iron core by the magnetic field generated by the coil. and, and the translucent body may be vibrated in the axial direction of the iron core.
  • the translucent body has a plate-like shape
  • the plurality of actuators includes a first actuator and a second actuator;
  • the first actuator may be arranged on one end side of the transparent body, and the second actuator may be arranged on the other end side of the transparent body opposite to the first actuator.
  • the first actuator and the second actuator may be arranged to face each other.
  • the translucent body can be vibrated efficiently.
  • the housing according to the fifth aspect of the present invention includes moreover, a detection unit that detects an output voltage of at least one of the first actuator and the second actuator; may be provided.
  • the housing according to the sixth aspect of the present invention includes moreover, a controller for controlling vibration of the one or more actuators; with The control section may control vibrations of the plurality of actuators based on the output voltage of the at least one actuator detected by the detection section.
  • the plurality of actuators may vibrate the transparent body in a direction intersecting the thickness direction of the transparent body.
  • the translucent body can be vibrated without changing the optical axis of the optical sensor, so detection accuracy can be improved.
  • the translucent body has a plate-like shape having a first main surface located on the outside and a second main surface opposite to the first main surface,
  • the plurality of actuators may be arranged on the second main surface side of the translucent body.
  • the plurality of actuators may vibrate the transparent body in a thickness direction of the transparent body.
  • the translucent body has a cylindrical shape having a first end and a second end opposite to the first end,
  • the plurality of actuators may be arranged at equal intervals on at least one of the first end side and the second end side.
  • the plurality of actuators may vibrate the translucent body in the axial direction of the cylindrical shape.
  • the translucent body can be vibrated without changing the optical axis of the optical sensor, so detection accuracy can be improved.
  • the actuator includes a piezoelectric element
  • the housing base includes a vibration transmission section that connects the actuator and the transparent body and transmits vibration to the transparent body;
  • the translucent body has a first main surface located outside, a second main surface opposite to the first main surface, and a side surface connecting the first main surface and the second main surface.
  • the vibration transmission section includes a first vibration transmission section and a second vibration transmission section,
  • the first vibration transmitting portion and the second vibration transmitting portion each have one end and the other end, the one end being connected to the actuator and extending along the side surface; a support portion extending from the other end of the side surface toward the side surface and supporting the translucent body;
  • the supporting portions of the first vibration transmitting portion and the second vibration transmitting portion may be arranged to face each other and support the side surface of the translucent body therebetween.
  • the actuator extends in a first direction along the first main surface of the translucent body intersecting the direction in which the support portions of the extension portions of the first vibration transmission portion and the second vibration transmission portion face each other. vibrate to The support part may be arranged at the center of the side surface in the first direction.
  • the translucent body is vertically slid to vibrate the attached foreign matter in the direction of gravity, or the translucent body is vibrated to rotate around the holding portion to remove the attached foreign matter. It can be detached in the thickness direction of the translucent body.
  • the actuator extends in a first direction along the first main surface of the translucent body, intersecting the direction in which the support portions of the extension portions of the first vibration transmission portion and the second vibration transmission portion face each other. vibrate,
  • the support portion may be arranged at a position closer to the actuator than the center in the first direction.
  • the side opposite to the actuator of the translucent body can be largely vibrated, so foreign matter can be removed more efficiently.
  • the one or more actuators are composed of unimorph or bimorph piezoelectric elements
  • the housing base may include a frame that supports the translucent body, and a connecting portion that connects the translucent body and the one or more actuators.
  • control unit that controls the actuator
  • the control unit may vibrate the actuator at a modulation frequency obtained by superimposing a first resonance frequency of the actuator and a second resonance frequency of a foreign substance adhering to the transparent body.
  • the housing base may have an elastic body that absorbs vibration of the translucent body.
  • the vibration of the translucent body can be absorbed by the elastic body. Therefore, vibration is less likely to be transmitted to the optical sensor, and blurring of the sensor image can be suppressed.
  • a buffer member may be arranged between the translucent body and the housing base or between the translucent body and the optical sensor.
  • the cushioning member may have a bellows structure.
  • the cushioning member may be made of an elastomer.
  • the sensor device comprises the housing described above; an optical sensor housed within the housing; Prepare.
  • FIG. 1 is a perspective view showing a sensor device 1 and a housing 2 according to Embodiment 1 of the present invention.
  • FIG. 2 is an exploded perspective view of the sensor device 1 of FIG.
  • the X direction is the vertical direction of the sensor device 1
  • the Y direction is the horizontal direction of the sensor device 1
  • the Z direction is the height direction of the sensor device 1.
  • the sensor device 1 includes a housing 2 and an optical sensor 100 housed inside the housing 2 .
  • optical sensor 100 examples include LiDAR, millimeter wave radar, infrared camera, optical camera, and the like.
  • the housing 2 accommodates such an optical sensor and is used, for example, as a sensor device for searching for external information necessary for automatic driving of a vehicle.
  • the housing 2 is a housing that accommodates the optical sensor 100 therein. By housing the optical sensor 100 inside the housing 2, it can be used as a sensor device.
  • the housing 2 includes a translucent body 10, a housing base 20, and an actuator 30.
  • the translucent body 10 is a cover for preventing dirt or foreign matter from adhering to the optical sensor housed in the housing 2 .
  • the transparent body 10 is made of a transparent material so as not to obstruct the field of view of the optical sensor 100 .
  • the translucent body 10 for example, glass such as soda glass, borosilicate glass, aluminosilicate glass, or quartz glass, translucent plastic, translucent ceramic, synthetic resin, or the like can be used.
  • the strength of the translucent body 10 can be increased by forming the translucent body 10 from, for example, tempered glass whose strength is improved by chemical strengthening.
  • the surface of the translucent body 10 may be coated with an antifouling coating or a water-repellent coating.
  • antireflection coating may be applied to the surface of the translucent body 10 in order to improve the transmittance of light of a desired wavelength.
  • the translucent body 10 is formed in a cylindrical shape having a first end 10a and a second end 10b opposite to the first end 10a. If the translucent body 10 has a cylindrical shape, even if the optical sensor 100 is a sensor having a field of view of 360 degrees along the XY plane, the field of view of the optical sensor 100 is not obstructed, and the detection accuracy is improved. can be improved.
  • the first holder 11 is arranged at the first end (upper end) 10a of the translucent body 10
  • the second holder 12 is arranged at the second end (lower end) 10b of the translucent body.
  • the holders 11, 12 are not essential components. The holders 11 and 12 can prevent the translucent body 10 from being damaged.
  • the holder 11 is ring-shaped and holds the first end 10a of the translucent body 10 .
  • the holder 12 is ring-shaped and holds the second end 10b of the translucent body 10 .
  • the holder 12 is formed with a recessed portion 12a, and an actuator 30, which will be described later, is arranged in the recessed portion 12a of the holder 12. As shown in FIG. 2, the holder 12 is formed with a recessed portion 12a, and an actuator 30, which will be described later, is arranged in the recessed portion 12a of the holder 12. As shown in FIG. 2, the holder 12 is formed with a recessed portion 12a, and an actuator 30, which will be described later, is arranged in the recessed portion 12a of the holder 12. As shown in FIG. 2, the holder 12 is formed with a recessed portion 12a, and an actuator 30, which will be described later, is arranged in the recessed portion 12a of the holder 12. As shown in FIG.
  • the housing base 20 accommodates the optical sensor 100 and holds the translucent body 10 so that it can vibrate.
  • the housing base 20 includes a first base 23 that holds the first end 10a of the translucent body 10, a second base 21 that holds the second end 10b of the translucent body 10, and a body portion 22 that houses the optical sensor 100 .
  • an optical sensor 100 is arranged inside a cylindrical transparent body 10, a first base 23 is arranged on the side of the first end portion 10a of the transparent body 10, and a The second base 21 and the body portion 22 are arranged on the side of the second end portion 10b. In this manner, the optical sensor 100 is accommodated in the housing base 20 .
  • the material of the housing base 20 for example, metal, ceramics, synthetic resin, or the like can be used.
  • the actuator 30 vibrates the translucent body 10 .
  • the actuator 30 vibrates the translucent body 10 in the height direction (Z direction).
  • three actuators 30 are arranged.
  • FIG. 3 is an enlarged view of region R1 in FIG.
  • the actuator 30 is arranged to connect the second end 10b of the translucent body 10 and the housing base 20. As shown in FIGS. In this embodiment, the actuator 30 is arranged on the second end portion 10b side of the translucent body 10 .
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is an enlarged view of region R2 in FIG.
  • the actuator 30 has a coil 31, an iron core 32, and a magnet 33.
  • the coil 31 generates a magnetic field by passing an electric current through it.
  • the iron core 32 is inserted into the hollow of the coil 31 and supports the second end 10b of the translucent body 10 via the holder 12 .
  • a magnet 33 is arranged on the second base 21 of the housing base 20 and attracts the iron core 32 by the magnetic field generated by the coil 31 .
  • the actuator 30 vibrates the translucent body 10 in the axial direction of the iron core 32 .
  • the axial direction of iron core 32 is the Z direction
  • actuator 30 vibrates translucent body 10 in the direction of arrow A1 shown in FIG.
  • the iron core 32 is arranged at the second end 10b (holder 12) of the translucent body 10, and the coil 31 and the magnet 33 are arranged at the second base 21 of the housing base 20.
  • a magnetic field generated by applying an alternating current to the coil 31 alternately generates a repulsive force and an attractive force, and the iron core 32 is guided and excited in the Z direction. That is, the iron core 32 vibrates in the Z direction.
  • the translucent body 10 vibrates in the axial direction (Z direction) of the cylindrical shape.
  • the optical axis of the optical sensor 100 is less likely to change. Therefore, detection accuracy can be improved even when the translucent body vibrates to remove foreign matter.
  • the translucent body 10 vibrates vertically. In this case, foreign matter such as water droplets adhering to the transparent body 10 can be efficiently removed.
  • the translucent body 10 can be vibrated independently of the optical sensor 100 . Therefore, the vibration of the translucent body 10 is less likely to be transmitted to the housing base 20 and the optical sensor 100 . Therefore, even if the translucent body 10 is vibrated by the actuator, the optical sensor 100 does not vibrate. That is, the vibration of the translucent body 10 is not transmitted to the optical sensor 100 . Since vibration is not transmitted to the optical sensor 100, blurring of the sensor image can be suppressed.
  • FIG. 6 is a cross-sectional view taken along the line BB in FIG.
  • three actuators 30 are arranged at regular intervals when viewed from the axial direction (Z direction) of the cylindrical transparent body 10 .
  • the plurality of actuators 30 may be arranged at equal intervals on at least one of the first end 10a and the second end 10b of the translucent body 10 .
  • the translucent body 10 can be vibrated so as not to change the optical axis of the optical sensor 100 .
  • the housing base 20 has an elastic body (spring) 40 .
  • a spring is arranged on the second base 21 of the housing base 20 as an elastic body 40 that absorbs the vibration of the translucent body 10 .
  • the elastic body 40 allows the attraction bias force to be controlled by adjusting the gap.
  • the attraction bias force is a force with which the iron core 32 is pulled by the magnet 33, and is a force that repels the magnetic force so that the magnet 33 and the iron core 32 do not come into contact with each other.
  • an attraction bias force can be generated, and this attraction bias force can be adjusted by the spring performance of the elastic body 40 or the gap length.
  • the elastic body 40 can prevent the translucent body 10 from colliding with the housing base 20 and being damaged.
  • the elastic body 40 is not limited to a spring as long as it is a member capable of absorbing the vibration of the translucent body 10 .
  • a cushioning member 50 is arranged between the translucent body 10 and the housing base 20 .
  • cushioning member 50 is made of elastomer and includes two cushioning members 51 and 52 .
  • a cushioning member 51 is arranged between the first end 10 a (holder 11 ) of the translucent body 10 and the first base 23 of the housing base 20 .
  • a buffer member 52 is arranged between the second end portion 10 b (holder 12 ) of the translucent body 10 and the body portion 22 of the housing base 20 .
  • the cushioning members 51 and 52 are both ring-shaped. Foreign matter can be prevented from entering the housing 2 from between the housing base 20 and the translucent body 10 . Furthermore, since the vibration of the translucent body 10 is less likely to be transmitted to the housing base 20 and the optical sensor 100, it is possible to prevent the sensor image from becoming unclear.
  • vibration damping materials 53 and 54 are arranged between the optical sensor 100 and the housing base 20, as shown in FIG.
  • the vibration-absorbing materials 53 and 54 By arranging the vibration-absorbing materials 53 and 54, the transmission of vibration to the optical sensor 100 becomes more difficult, and a clear sensor image can be obtained.
  • the sensor device 1 includes a housing 2 and an optical sensor 100 housed inside the housing 2 .
  • the housing 2 is a housing that accommodates the optical sensor 100 .
  • the housing 2 includes a translucent body 10 , a housing base 20 and an actuator 30 .
  • the housing base 20 accommodates the optical sensor 100 and holds the translucent body 10 so that it can vibrate.
  • the actuator 30 vibrates the translucent body 10 . With such a configuration, the vibration of the translucent body 10 caused by the actuator 30 is less likely to be transmitted to the optical sensor 100, so that it is possible to provide a sensor device capable of improving detection accuracy.
  • the actuator 30 has a coil 31, an iron core 32, and a magnet 33, and vibrates the translucent body in the axial direction of the iron core 32.
  • the coil 31 generates a magnetic field by passing an electric current through it.
  • the iron core 32 is inserted into the hollow of the coil 31 and supports the translucent body 10 .
  • the magnet 33 attracts or moves the iron core 32 away by the magnetic field generated by the coil 31 .
  • the actuator 30 vibrates the translucent body 10 in the axial direction of the iron core 32 .
  • the actuator 30 can vibrate the translucent body 10 , but the housing 2 is configured such that the vibration of the translucent body 10 is less likely to be transmitted to the housing base 20 and the optical sensor 100 . can provide. Therefore, blurring of the sensor image of the optical sensor 100 can be suppressed, and detection accuracy can be improved.
  • the translucent body 10 has a cylindrical shape with a first end 10a and a second end 10b opposite to the first end 10a.
  • the plurality of actuators 30 are arranged at equal intervals on at least one of the first end portion 10a side and the second end portion 10b side. With such a configuration, the housing 2 can be used even for the optical sensor 100 with a wide viewing angle.
  • a plurality of actuators 30 vibrate the translucent body 10 in the axial direction of the cylindrical shape.
  • the translucent body 10 can be vibrated without changing the optical axis of the optical sensor 100, so that a clear image can be obtained.
  • the housing base 20 has an elastic body 40 that absorbs vibration of the translucent body 10 .
  • the vibration of the translucent body 10 can be absorbed by the elastic body (spring) 40 . Therefore, vibration is less likely to be transmitted to the optical sensor 100, and blurring of the sensor image can be suppressed.
  • a cushioning member 50 is arranged between the translucent body 10 and the housing base 20 .
  • the cushioning member 50 is made of elastomer. With such a configuration, it is possible to prevent dirt and foreign matter from entering the inside of the housing 2 or the inside of the optical sensor 100 .
  • the transparent body 10 is held by the holders 11 and 12
  • the transparent body 10 does not have to be held by the holders 11 and 12 .
  • the actuator 30 may be arranged directly on the second end 10b of the translucent body 10 .
  • the housing base 20 may be directly connected to the first end portion 10a of the translucent body 10 .
  • the actuator 30 may be arranged at the first end portion 10a of the translucent body 10 .
  • the actuators 30 may be arranged at both the first end portion 10a and the second end portion 10b of the translucent body 10 . That is, the actuator 30 may be arranged at least one of the first end portion 10a and the second end portion 10b of the translucent body 10 .
  • the housing 2 includes three actuators, but the number of actuators 30 is not limited to this.
  • the housing 2 may include two or more actuators 30 .
  • the housing base 20 is configured by a plurality of parts, but the housing base 20 may be integrally formed.
  • FIG. 7 is a perspective view showing a housing 3A according to Modification 1 of Embodiment 1.
  • FIG. 8 is a cross-sectional view taken along line CC of FIG. 7.
  • the translucent body 13 may have a dome shape.
  • a dome shape means, for example, a shape in which a plate-like member is curved in a hemispherical shape.
  • the housing base 20 (second base 21 ) is attached to the end portion 13 a of the translucent body 13 via the holder 12 . If the translucent body 13 is dome-shaped, the field of view of the sensor can be further widened.
  • FIG. 9 is a perspective view showing a housing 3B according to Modification 2 of Embodiment 1.
  • FIG. 10 is a cross-sectional view taken along line DD of FIG. 9.
  • the housing 3B has, for example, a rectangular parallelepiped appearance, and includes a plate-like transparent body 110 arranged on one surface of the rectangular parallelepiped.
  • the housing 3B includes a rectangular parallelepiped housing base 24.
  • a housing cover 25 is arranged facing the translucent body 110 .
  • the second end portion 110b of the translucent body 110 is held by the holder 112, as in the first embodiment.
  • An actuator 130 is arranged on the second end 110b side of the translucent body 110 .
  • a buffer member 150 is arranged to surround the outer edge of the translucent body 110 .
  • Actuator 130 has coil 131 , iron core 132 , and magnet 133 as in the first embodiment. Further, the housing base 120 has an elastic body 140 having vibration of the translucent body 110 .
  • the actuator 130 vibrates the translucent body 110 in a direction crossing the thickness direction of the translucent body 110, that is, in the direction of the arrow A2.
  • the housing 3B may be configured to include one actuator 130 as shown in FIG. may
  • the housing 3B can be used for an optical sensor that senses a predetermined direction, such as the front or rear of an automobile.
  • Embodiment 2 A housing according to a second embodiment of the present invention will be described. In addition, in Embodiment 2, mainly different points from Embodiment 1 will be described. In the second embodiment, the same reference numerals are assigned to the same or equivalent configurations as in the first embodiment. In addition, in the second embodiment, the description overlapping with the first embodiment is omitted.
  • FIG. 11 is a perspective view showing part of the housing 4 according to the second embodiment.
  • the actuator 230 is arranged on both the one end 210a side of the transparent body 210 and the other end 210b side of the transparent body 210. different from 1.
  • the translucent body 210 has a plate-like shape.
  • a holder 211 is arranged at one end portion 210 a of the translucent body 210
  • a holder 212 is arranged at the other end portion 210 b of the translucent body 210 .
  • a translucent body 210 is arranged inside a frame-shaped casing base 220 .
  • the actuator 230 includes a first actuator 231 and a second actuator 232.
  • the first actuator 231 is arranged on the one end 210 a side of the transparent body 210
  • the second actuator 232 is arranged on the other end 210 b side of the transparent body 210 opposite to the first actuator 231 .
  • the two actuators 231 and 232 are preferably arranged facing each other. In this case, the direction of vibration is less likely to deviate from the direction of arrow A3, and foreign matter on translucent body 210 can be removed more efficiently.
  • the translucent body 210 has a plate-like shape.
  • the plurality of actuators 230 includes first actuators 231 and second actuators 232 .
  • the first actuator 231 is arranged on the one end 210 a side of the translucent body 210 .
  • the second actuator 232 is arranged at the other end 210 b of the translucent body 210 opposite to the first actuator 231 . With such a configuration, the translucent body can be vibrated efficiently.
  • the first actuator 231 and the second actuator 232 are arranged facing each other. With such a configuration, the vibration direction is less likely to shift, and foreign matter on the translucent body 210 can be removed more efficiently. Note that the first actuator 231 and the second actuator 232 do not necessarily have to be arranged to face each other.
  • FIG. 12 is a block diagram showing the configuration of the housing 4A according to the third embodiment.
  • Embodiment 3 is different from Embodiment 2 in that a detecting section 260 that detects the output voltage of the second actuator 232 is provided.
  • the third embodiment differs from the second embodiment in that a control section 270 that controls vibration of the actuator 230 is provided.
  • the detection section 260 is connected to the second actuator 232 .
  • the detector 260 detects the output voltage of the second actuator 232 .
  • the control section 270 controls the vibration of the actuator 230 and is electrically connected to the detection section 260, the first actuator 231 and the second actuator 232 in this embodiment.
  • the controller 270 includes a calculator 271 and a driver 272 .
  • the calculation unit 271 receives information about the output voltage of the second actuator 232 from the detection unit 260, and calculates the magnitude of vibration of the translucent body 210 based on the information.
  • the drive unit 272 appropriately vibrates the first actuator 231 and the second actuator 232 based on the magnitude of vibration of the translucent body 210 . For example, when the vibration of the transparent body 210 is smaller than a predetermined threshold, at least one of the first actuator 231 and the second actuator 232 is subjected to the same phase vibration, and conversely, the vibration of the transparent body 210 is is greater than a predetermined threshold, anti-phase oscillations can be applied.
  • the control unit 270 is composed of digital circuits such as microcomputers, CPUs, MPUs, GPUs, DSPs, FPGAs, and ASICs. Also, the control unit 270 may have a storage device.
  • the first actuator 231 may be used for vibration of the translucent body 210
  • the second actuator 232 may be used for detecting vibration and for adjusting the acceleration or deceleration of the vibration of the first actuator 231.
  • control section controls the vibration of the actuator 230 based on the output voltage of the actuator 230 detected by the detection section 260 .
  • the housing 4A further includes a detection section 260 that detects the output voltage of the second actuator 232. With such a configuration, it is possible to detect the magnitude of vibration of the translucent body 210 and adjust the magnitude of the vibration to be appropriate.
  • the housing 4A further includes a control section 270 that controls vibration of one or more actuators 230 .
  • the controller 270 controls vibrations of the actuators 231 and 232 based on the output voltage of at least one actuator detected by the detector 260 . With such a configuration, rapid acceleration and deceleration of vibration can be realized.
  • the detection unit 260 is connected to the second actuator 232, but the detection unit 260 only needs to detect the output voltage of at least one of the actuators 230. That is, the detection section 260 only needs to detect the output voltage of at least one of the first actuator 231 and the second actuator 232 .
  • FIG. 13 is a perspective view showing the housing 5 according to the fourth embodiment.
  • translucent body 310 has a plate-like shape having a first major surface 310d located outside and a second major surface 310c opposite to first major surface 310d. Different from form 2. Moreover, it differs from the second embodiment in that a plurality of actuators 330 are arranged on the second main surface 310c side of the translucent body 310 . Moreover, it differs from the second embodiment in that a plurality of actuators 330 vibrate the transparent body 310 in the thickness direction of the transparent body 310 .
  • the translucent body 310 is arranged on a bent frame-shaped housing base 320 .
  • a holder 311 extending in a direction crossing the second main surface 310 c of the transparent body 310 is arranged at the end of the transparent body 310 .
  • Two actuators 330 are arranged on the second main surface 310c side of the translucent body 310 .
  • the two actuators 330 vibrate the transparent body 310 in the thickness direction of the transparent body 310 (direction of arrow A4).
  • the two actuators 330 may be arranged along one end 310a of the translucent body 310 and the other end 310b opposite to the one end 310a. In this case, the foreign matter can be removed by vibrating the translucent body 310 without obstructing the field of view of the optical sensor. More preferably, two actuators 330 are arranged facing each other. In this case, the translucent body 310 can be efficiently vibrated.
  • the translucent body 310 has a plate-like shape having a first major surface 310d located outside and a second major surface 310c opposite to the first major surface 310d.
  • a plurality of actuators 330 are arranged on the second main surface 310 c side of the translucent body 310 .
  • Such a configuration makes it difficult to see the actuator 330 from the front of the translucent body 310, so that it is possible to reduce the height of the sensor device or improve the design.
  • the housing 5 is effective in such a case because it can reduce the air resistance by reducing the height.
  • the plurality of actuators 330 vibrate the transparent body 310 in the thickness direction of the transparent body 310 . With such a configuration, it is possible to deform the foreign matter adhering to the translucent body 310 by vibration and make it easier to drop.
  • Embodiment 5 A housing according to a fifth embodiment of the present invention will be described. In addition, in Embodiment 5, mainly different points from Embodiment 1 will be described. In the fifth embodiment, the same reference numerals are given to the same or equivalent configurations as in the first embodiment. In addition, in the fifth embodiment, the description overlapping with that in the first embodiment is omitted.
  • FIG. 14 is a perspective view of the housing 6 according to the fifth embodiment.
  • FIG. 15 is a perspective view of the casing 6 of FIG. 14 with a part omitted.
  • 16 is a cross-sectional view taken along the line EE of FIG. 15.
  • FIG. Embodiment 5 differs from Embodiment 1 in the shape of transparent body 410 and the position and shape of actuator 430 .
  • the housing base 420 has a box-like shape and is composed of a bottom portion 424, an upper portion 421, and coil support portions 422 and 423.
  • the translucent body 410 is a plate-like member having a rectangular shape.
  • the translucent body 410 is sandwiched between the coil support portions 422 and 423 of the housing base 420 .
  • a holder 411 is arranged at one end 410a of the translucent body 410, and a holder 412 is arranged at the other end 410b opposite to the one end 410a.
  • the holder 411 has a shape having a body portion 411a and core support portions 411b and 411c projecting from both ends of the body portion 411a.
  • One end 410a of the translucent body 410 is supported by the body portion 411a, and an iron core 432, which will be described later, is sandwiched and supported by the iron core support portions 411b and 411c.
  • the holder 412 has a shape having a body portion 412a and core support portions 412b and 412c projecting from both ends of the body portion 412a.
  • the other end 410b of the translucent body 410 is supported by the body portion 412a, and the core 432 is sandwiched and supported by the core support portions 412b and 412c.
  • An actuator 430 is arranged on each of the coil support portions 422 and 423 of the housing base 420 .
  • Actuator 430 has coil 431 , iron core 432 , and magnet 433 .
  • a magnetic field is generated by the coil 431 to alternately generate a repulsive force and an attractive force to the magnet 433, and the iron core 432 vibrates up and down in the Z direction. Therefore, the translucent body 410 can be vibrated in the Z direction.
  • the two actuators 430 sandwich the transparent body 410 in the X direction. are placed in By arranging the two actuators 430 in a direction intersecting with the vibration direction, it is possible to reduce the height of the sensor device.
  • an elastic body (spring) 440 is arranged on the coil support portion 422 of the housing base 420 .
  • An elastic body 441 is also arranged in the iron core 432 , and the two elastic bodies 440 and 441 sandwich the iron core support portion 411 b of the holder 411 .
  • an elastic body (spring) 442 is arranged on the coil support portion 423 of the housing base 420 , and an elastic body 443 is also arranged on the iron core 432 .
  • the two elastic bodies 442 and 443 sandwich the iron core support portion 412 b of the holder 412 .
  • a bias force is a force that repels the magnetic force by the elastic bodies 440 and 441 and the elastic bodies 442 and 443 so that the iron core 432 is pulled by the magnet 433 and the magnet 433 and the iron core 432 do not come into contact with each other.
  • the bias force can be adjusted by the spring capacity of the elastic bodies 440-443 or the gap length.
  • the elastic bodies 440 to 443 can generate a repulsive force for suppressing the collision of the holders 411 and 412 and the transparent body 410 with the housing base 420 due to vibration.
  • a cushioning member 450 is arranged around the perimeter of the translucent body 410 (see FIG. 15).
  • the cushioning member 450 is made of elastomer, for example, and is arranged between the translucent body 410 and the housing base 420 . With such a configuration, it is possible to prevent the translucent body 410 from colliding with the housing base 420 due to vibration. In addition, foreign matter can be prevented from entering the housing 6 from the outside.
  • FIG. 17 is a cross-sectional view taken along line FF of FIG.
  • FIG. 18 is a schematic diagram showing the cushioning member 444 of FIG. In this embodiment, as shown in FIG. 17, a cushioning member 444 is arranged between the translucent body 410 and the optical sensor 100A.
  • the cushioning member 444 has a bellows structure.
  • the bellows structure is a shape in which a plurality of convex portions 444a and a plurality of concave portions 444b are alternately and repeatedly arranged in the thickness direction of the translucent body 410, and the adjacent convex portions 444a and concave portions 444b are mutually expandable and contractable. are connected.
  • the buffer member 444 having a bellows structure, the vibration of the translucent body 410 can be absorbed by the buffer member 444 .
  • the cushioning member 444 between the light transmitting body 410 and the optical sensor 100A, foreign matter can be prevented from entering between the optical sensor 100A and the light transmitting body 410.
  • a vibration damping material 453 is arranged between the optical sensor 100A and the bottom portion 424 of the housing base 420. As shown in FIGS. By arranging the vibration-absorbing material 453, the vibration is less likely to be transmitted to the optical sensor 100A, and the detection accuracy can be improved.
  • a cushioning member 444 having a bellows structure is arranged between the translucent body 410 and the optical sensor 100A. With such a configuration, it is possible to prevent foreign matter from entering between the optical sensor 100A and the transparent body 410 without affecting the sensor image of the optical sensor 100A due to vibration.
  • Embodiment 6 A housing according to a sixth embodiment of the present invention will be described. In addition, in Embodiment 6, mainly different points from Embodiment 1 will be described. In the sixth embodiment, the same reference numerals are assigned to the same or equivalent configurations as in the first embodiment. Moreover, in the sixth embodiment, the description overlapping with the first embodiment is omitted.
  • FIG. 19 is a perspective view showing the housing 7 according to the sixth embodiment.
  • 20 is a front view showing the housing base 520 of the housing 7 of FIG. 19.
  • FIG. 21 is a perspective view showing the translucent body 510 of the housing 7 of FIG. 19.
  • the sixth embodiment differs from the first embodiment in that actuator 530 includes a piezoelectric element, and housing base 520 includes vibration transmitting portions 560a and 560b. Moreover, it differs from the first embodiment in that the translucent body 510 has a plate-like shape. Further, the sixth embodiment differs from the first embodiment in that the housing 7 has a rectangular parallelepiped appearance.
  • the housing 7 has a rectangular parallelepiped appearance and includes a rectangular parallelepiped housing base 524 shown in FIG.
  • a housing base 520 (see FIG. 20) to which a translucent body 510 is attached is housed inside the housing base 524 .
  • Translucent body 510 attached to housing base 520 is exposed to the outside through opening 524 a of housing base 524 .
  • the translucent body 510 has a first major surface 510d located outside, a second major surface 520c opposite to the first major surface 510d, and a first major surface 520d. 510d and a side surface 510e connecting the second main surface 510c. Further, in the present embodiment, transparent body 510 is formed in a rectangular shape when viewed from first main surface 510d.
  • the housing base 520 includes a vibration transmitting portion that connects the actuator 530 and the transparent body 510 and transmits vibration to the transparent body 510 .
  • the vibration transmitting portion includes a first vibration transmitting portion 560a and a second vibration transmitting portion 560b.
  • housing base 520 includes frame 521 surrounding translucent body 510 .
  • the frame 521 is formed with an opening 522 in which the transparent body 510 is arranged. Further, along the opening 522, a first vibration transmitting portion 560a and a second vibration transmitting portion 560b are arranged.
  • the first vibration transmission portion 560a has a vibration portion 561 and a support portion 564.
  • vibrating portion 561 has one end portion 561 a and the other end portion 561 b .
  • One end portion 561 a is connected to actuator 530 and extends along side surface 510 e of transparent body 510 .
  • the vibrating portion 561 has a first extension portion 562 connected to the actuator 530 and a second extension portion 563 extending from the first extension portion 562 and connected to the support portion 564 .
  • the support portion 564 extends from the other end portion 561 b of the vibrating portion 561 toward the side surface 510 e of the transparent body 510 and supports the side surface 510 e of the transparent body 510 .
  • the second vibration transmission portion 560b has a vibration portion 565 and a support portion 568.
  • vibrating portion 565 has one end portion 565 a and the other end portion 565 b , one end portion 565 a is connected to actuator 530 and extends along side surface 510 e of transparent body 510 .
  • the vibrating portion 565 has a first extension portion 566 connected to the actuator 530 and a second extension portion 567 extending from the first extension portion 566 and connected to the support portion 568 .
  • the support portion 568 extends from the other end portion 565 b of the vibrating portion 565 toward the side surface 510 e of the transparent body 510 and supports the side surface 510 e of the transparent body 510 .
  • the first vibration transmission portion 560a and the second vibration transmission portion 560b can efficiently transmit the vibration of the actuator 530 to the translucent body 510 by being made of, for example, a metal material. Also, the first vibration transmitting portion 560 a and the second vibration transmitting portion 560 b may be formed integrally with the housing base 520 .
  • the first vibration transmission portion 560a and the second vibration transmission portion 560b have symmetrical shapes when viewed from the first main surface 510d of the translucent body 510 .
  • a first extending portion 562 of the first vibration transmitting portion 560 a and a first extending portion 566 of the second vibration transmitting portion 560 b are arranged to extend in opposite directions from the actuator 530 .
  • the supporting portion 564 of the first vibration transmitting portion 560a and the supporting portion 568 of the second vibration transmitting portion 560b are arranged to face each other and support the side surface 510e of the translucent body 510 therebetween.
  • the supporting portions 564 and 568 are arranged at the center in the Z direction on the side surface 510e of the translucent body 510, respectively.
  • the support portions 564 and 568 and the transparent body 510 can be connected by inserting projections provided on the support portions 564 and 568 into holes provided in the transparent body 510, for example.
  • the support portions 564 and 568 are transparent.
  • Body 510 may be supported.
  • the support portions 564 and 568 and the frame portion may be integrated. Supports 564 and 568 can rotatably support translucent body 510 .
  • the actuator 530 is arranged on the frame 521 of the housing base 520 on the side of the second end 510b of the translucent body 510 .
  • the actuator 530 is composed of, for example, a piezoelectric element such as laminated piezoelectric ceramics.
  • a conductor (not shown) that applies a potential to the piezoelectric element that constitutes the actuator 530 may be arranged in the housing 7 .
  • Actuator 530 is arranged along first main surface 510d of translucent body 510 intersecting the direction (Y direction) in which supporting portions 564 and 568 of first vibration transmitting portion 560a and second vibration transmitting portion 560b face each other. Vibrate in one direction. That is, it reciprocates in the direction of arrow A6 (Z direction) in FIG. 22, which will be described later.
  • FIG. 22 is an enlarged view of region R3 in FIG. Transmission of vibration to transparent body 510 by first vibration transmission portion 560a will be described with reference to FIG.
  • the actuator 530 vibrates in the direction of arrow A6. Vibration of actuator 530 is transmitted from one end portion 561a to first extension portion 562, and the vibration of actuator 530 is amplified at first extension portion 562 with connecting portion 562a with frame 521 as a fulcrum. The vibration amplified by the first extending portion 562 is transmitted to the translucent body 510 via the second extending portion 563 . As for the second vibration transmitting portion 560b, the vibration of the actuator 530 is similarly amplified by the first extending portion 566, and the vibration is transmitted to the translucent body 510 via the second extending portion 567. FIG.
  • first extending portions 562 and 566 are portions that amplify the vibration of the actuator 530, they preferably have a relatively high rigidity. In order to increase the rigidity of the vibrating portion, it is formed wider than the second extending portions 563 and 567 .
  • FIG. 23 is a diagram showing an example of vibration modes of the translucent body 510.
  • the translucent body 510 By applying a signal of a predetermined frequency to the actuator 530 by a control device (not shown), the translucent body 510 can be vibrated in the same direction as the vibration direction (arrow A6) of the actuator 530 (slide mode). That is, the translucent body 510 can be vibrated along the Z direction as indicated by an arrow A7 in FIG.
  • the first extending portions 562 and 566 of the vibration transmitting portions 560a and 560b bend and vibrate in the Z direction.
  • the foreign matter adhering to the translucent body 510 can be efficiently slid down in the gravitational direction (downward direction of the Z axis).
  • FIG. 24 is a diagram showing another example of the vibration mode of the translucent body 510.
  • the translucent body 510 can be vibrated to rotate about the support portions 564, 568 of the vibration transmission portions 560a, 560b, respectively ( rotation mode). That is, it is possible to vibrate the translucent body 510 so as to rotate about the rotation axis along the Y direction as indicated by the arrow A8.
  • translucent body 510 can be vibrated in rotation mode by applying a lower frequency signal to actuator 530 than in slide mode.
  • Rotational mode vibration about the support portions 564 and 568 can be generated by utilizing the natural frequency determined by the structure of the translucent body 510 or the vibration transmission portions 560a and 560b. By applying the vibrational energy necessary to excite the natural frequency to the actuator 530, the translucent body 510 can be vibrated in a rotational mode.
  • the first extending portions 562 and 566 of the vibration transmitting parts 560a and 560b vibrate due to the vibration of the translucent body 510 in the rotational mode.
  • the foreign matter adhering to the translucent body can be efficiently removed in the thickness direction (X direction) of the translucent body 510 .
  • the supporting portions 564 and 568 of the first vibration transmitting portion 560a and the second vibration transmitting portion 560b are arranged at the center of the side surface 510e of the translucent body 510 in the first direction (Z direction). Therefore, by changing the frequency applied to the actuator 530, the translucent body 510 can be vibrated in two modes, a slide mode and a rotation mode.
  • the translucent body 510 has a rectangular shape in plan view
  • the shape of the translucent body 510 is not limited to this.
  • the translucent body 510 may have various shapes such as a circular shape, an elliptical shape, or a polygonal shape in plan view.
  • FIG. 25 is a diagram showing an example of vibration modes of transparent body 510 in housing base 520A according to the modification of the sixth embodiment.
  • the supporting portions 574 of the first vibration transmitting portion 570a and the second vibration transmitting portion 570b are positioned closer to the actuator 530 than the center in the first direction (Z direction). are placed in That is, the translucent body 510 is supported below the center in the Z direction.
  • the vibration displacement of the first end portion 510a of the translucent body 510 increases. Therefore, the foreign matter attached to the upper side of the translucent body 510 can be slid down while the foreign matter attached to the lower side is pushed away.
  • Embodiment 7 A housing according to a seventh embodiment of the present invention will be described. In addition, in Embodiment 7, mainly different points from Embodiment 6 will be described. In Embodiment 7, the same reference numerals are given to the same or equivalent configurations as those in Embodiment 6. FIG. Moreover, in Embodiment 7, the description overlapping with Embodiment 6 is omitted.
  • FIG. 26 is a perspective view showing the housing 8 according to the seventh embodiment.
  • the actuator 630 is composed of a unimorph type or bimorph type piezoelectric element, and the housing base 620 includes a frame 621 and a connecting portion 622. different.
  • the housing base 620 includes a frame 621 that supports the translucent body 610 and a connecting portion 622 that connects the translucent body 610 and the actuator 630 .
  • transparent body 610 is formed in a plate shape, and frame 621 is arranged so as to surround the side surface of transparent body 610 .
  • the connection portion 622 sandwiches and holds the translucent body 610 in the thickness direction at the first end portion 610a.
  • the actuator 630 is composed of a unimorph type or bimorph type piezoelectric element.
  • a unimorph-type piezoelectric element is made by, for example, bonding a sheet-shaped piezoelectric element to a plate-shaped metal. occurs.
  • a bimorph-type piezoelectric element is made by bonding two sheet-like piezoelectric elements together, and each piezoelectric element expands and contracts in the opposite direction in the surface direction, thereby causing each piezoelectric element to warp.
  • the expansion and contraction of the piezoelectric element in the X direction causes warpage, and the connecting portion 622 can be vibrated in the Z direction.
  • Each of the two actuators 630 has one end fixed by, for example, a claw 623 provided on the frame 621 and the other end fixed by a connecting portion 622 .
  • Actuator 630 causes connecting portion 622 to vibrate in the Z direction.
  • the connecting portion vibrates, the translucent body 610 also vibrates in the Z direction.
  • the actuator 630 is formed so that the width becomes narrower from the claw 623 toward the connecting portion 622 . By narrowing the width toward the connecting portion 622, the warp increases as the connecting portion 622 is approached, so that the translucent body 610 can be vibrated more efficiently.
  • the cost can be further reduced.
  • the size in the vertical direction (Z direction) can be reduced, which contributes to miniaturization of the housing.
  • FIG. 27 is a block diagram showing the configuration of the housing 9 according to the eighth embodiment.
  • the eighth embodiment differs from the sixth embodiment in that the housing 9 includes a controller 590 that controls the actuator 530 .
  • Other configurations of the housing 9 are the same as those of the housing 7 shown in FIGS.
  • the control unit 590 vibrates the actuator 530 by applying a signal with a predetermined frequency to the actuator 530 .
  • the control unit 590 is configured by a digital circuit such as a microcomputer, CPU, MPU, GPU, DSP, FPGA, ASIC, or the like. Also, the control unit 590 may have a storage device.
  • the control unit 590 vibrates the actuator 530 at a modulation frequency obtained by superimposing the first resonance frequency of the actuator 530 and the second resonance frequency of the foreign matter adhering to the translucent body 510 .
  • the foreign matter adhering to the translucent body 510 is droplets including rain, muddy water, and the like. When the foreign matter (droplet) is vibrated at the second resonance frequency, the droplet is likely to be deformed or moved, making it easier to remove the droplet from the translucent body 510 .
  • the translucent body 510 is vibrated near the second resonance frequency of the foreign matter adhering to the translucent body 510, the foreign matter can be efficiently slid off. different from the frequency. Therefore, by vibrating the actuator at a modulation frequency obtained by superimposing the first resonance frequency and the second resonance frequency, the deformation of the foreign matter attached to the translucent body 510 can be facilitated and the foreign matter can be efficiently slid off.
  • FIG. 28 is a graph showing an example of the signal of the first resonance frequency.
  • FIG. 29 is a graph showing an example of the signal of the second resonance frequency.
  • FIG. 30 is a graph showing an example of a resonance frequency signal obtained by superimposing the first resonance frequency and the second resonance frequency.
  • the first resonance frequency of the actuator 530 is 158 Hz
  • the second resonance frequency of the foreign matter is around 70 Hz. Note that the foreign matter in this case is assumed to be a liquid droplet with a size of about 5 ⁇ L.
  • the frequency to be superimposed may be changed according to the size of the foreign matter adhering to the translucent body 510 .
  • FIG. 31 is a table showing the maximum acceleration for moving the foreign matter adhering to the translucent body 510 and the effective frequency for realizing the maximum acceleration.
  • the maximum acceleration should be 4.4 G or more in order to move the foreign matter and remove it from the translucent body 510 .
  • the second resonance frequency is 140 Hz to 160 Hz when the size of the foreign matter is 1 ⁇ L.
  • the foreign matter can be efficiently removed by vibrating the actuator 530 at the modulation frequency obtained by superimposing the second resonance frequency in the range of 140 Hz to 160 Hz on the first resonance frequency.
  • the second resonance frequency can be superimposed according to the size of the foreign matter, the foreign matter on the translucent body 510 can be removed more efficiently.
  • the actuator 530 By vibrating the actuator 530 at a modulation frequency obtained by superimposing the first resonance frequency of the actuator 530 and the second resonance frequency of the foreign matter, the deformation of the foreign matter can be promoted and the foreign matter can be efficiently removed from the translucent body 510 .
  • the housing and sensor device of the present invention can be applied to an on-vehicle camera used outdoors, a surveillance camera, or an optical sensor such as LiDAR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本発明の筐体2は、光学式センサ100を収容する筐体2であって、透光体10と、光学式センサ100を収容し、透光体10を振動可能に保持する筐体ベース20と、透光体10を振動させる1つまたは複数のアクチュエータ30と、を備える。また、本発明のセンサ装置1は、筐体2と、筐体2内に収容される光学式センサ100と、を備える。

Description

筐体およびセンサ装置
 本発明は、センサ装置用の筐体、およびセンサ装置に関する。
 車載カメラまたは防犯カメラ等の屋外で使用されるカメラのレンズには、雨等の水滴が付着することがある。そこで、レンズに付着した水滴を除去することのできる装置が提案されている。
 例えば、特許文献1には、撮像ユニットのレンズに付着した水滴を除去する水滴除去機能付きカメラが記載されている。特許文献1に記載の水滴除去機能付きカメラでは、撮像ユニットを光軸の動揺する方向に振動させることで、レンズについた水滴を除去する。
特開2013-80177号公報
 特許文献1に記載の水滴除去機能付きカメラでは、検出精度の向上の点で、未だ改善の余地がある。
 本発明は、振動により液滴を除去するセンサ装置において、検出精度を向上させることのできるセンサ装置用の筐体、およびセンサ装置を提供する。
 本発明の一態様にかかる筐体は、
 光学式センサを収容する筐体であって、
 透光体と、
 前記光学式センサを収容し、前記透光体を振動可能に保持する筐体ベースと、
 前記透光体を振動させる1つまたは複数のアクチュエータと、
を備える。
 本発明の一態様にかかるセンサ装置は、
 上述の筐体と、
 前記筐体内に収容される光学式センサと、
を備える。
 本発明は、振動により液滴を除去するセンサ装置において、検出精度を向上させることのできるセンサ装置用の筐体、およびセンサ装置を提供することができる。
本発明の実施の形態1にかかるセンサ装置および筐体を示す斜視図 図1のセンサ装置および筐体の分解斜視図 図2の領域R1を拡大した図 図1のA-A断面図 図4の領域R2を拡大した図 図2のB-B断面図 実施の形態1の変形例1にかかる筐体を示す斜視図 図7のC-C断面図 実施の形態1の変形例2にかかる筐体を示す斜視図 図9のD-D断面図 実施の形態2にかかる筐体の一部を示す斜視図 実施の形態3にかかる筐体の構成を示すブロック図 実施の形態4にかかる筐体を示す斜視図 実施の形態5にかかる筐体の斜視図 図14の筐体の一部を省略した斜視図 図15のE-E断面図 図14のF-F断面図 図17の緩衝部材を示す概略図 実施の形態6にかかる筐体を示す斜視図 図19の筐体の筐体ベースを示す正面図 図19の筐体の透光体を示す斜視図 図20の領域R3を拡大した図 透光体の振動モードの一例を示す図 透光体の振動モードの別の一例を示す図 実施の形態6の変形例にかかる筐体ベースにおける透光体の振動モードの一例を示す図 実施の形態7にかかる筐体を示す斜視図 実施の形態8にかかる筐体の構成を示すブロック図 第1共振周波数の信号の一例を示すグラフ 第2共振周波数の信号の一例を示すグラフ 第1共振周波数と第2共振周波数とを重畳させた共振周波数の信号の一例を示すグラフ 透光体に付着した異物を移動させるための最大加速度と、最大加速度を実現するために有効な周波数を示す表
(本発明に至った経緯)
 近年、例えば、LiDAR、ミリ波レーダ、赤外線カメラ、または通常の光学カメラなどの光学式センサにより取得した車両外部の情報を利用して車両の自動運転を制御することが行われている。通常、これらの光学式センサは、車両の外部に配置されるため、センサのレンズを保護する透光体が風雨に曝されて雨水や泥水などの異物が付着し、センサの性能に影響を及ぼしてしまうことがある。
 このため、特許文献1に記載の水滴除去機能付きカメラのように、振動によりレンズに付着した水滴等を除去する装置が検討されている。特許文献1に記載の水滴除去機能付きカメラでは、撮像ユニットに圧電素子が配置されており、水滴等を除去するために圧電素子を駆動すると、撮像ユニット自体が振動してしまう。その結果、撮像された画像のブレにより、鮮明な画像を得ることができないなどの課題がある。
 そこで、本発明者(ら)は、透光体を振動させて異物を除去するセンサ装置において、透光体の振動を光学式センサに伝達しないようにすることで、検出精度を向上させることを検討した。
 本発明の第1態様にかかる筐体は、
 光学式センサを収容する筐体であって、
 透光体と、
 前記光学式センサを収容し、前記透光体を振動可能に保持する筐体ベースと、
 前記透光体を振動させる1つまたは複数のアクチュエータと、
を備える。
 このような構成により、透光体の振動が光学式センサに伝達されないため、検出精度を向上させることのできるセンサ装置の筐体を提供することができる。
 本発明の第2態様にかかる筐体において、
 前記1つまたは複数のアクチュエータは、電流を流すことにより磁界を発生させるコイルと、前記コイルの中空に挿入され前記透光体を支持する鉄心と、前記コイルにより発生する磁界により前記鉄心を引き寄せる磁石と、を有し、前記鉄心の軸方向に前記透光体を振動させてもよい。
 このような構成により、アクチュエータへのストレスを軽減することができる。
 本発明の第3態様にかかる筐体において、
 前記透光体は、板状の形状を有し、
 前記複数のアクチュエータは、第1アクチュエータと第2アクチュエータとを含み、
 前記第1アクチュエータは前記透光体の一方端部側に配置され、前記第2アクチュエータは前記第1アクチュエータと反対側の前記透光体の他方端部側に配置されてもよい。
 このような構成により、視野を阻害することなく効率的に透光体を振動させることができる。
 本発明の第4態様にかかる筐体において、
 前記第1アクチュエータと前記第2アクチュエータとは、対向して配置されてもよい。
 このような構成により、効率よく透光体を振動させることができる。
 本発明の第5態様にかかる筐体は、
 さらに、
  前記第1アクチュエータと前記第2アクチュエータとのうち少なくとも1つのアクチュエータの出力電圧を検出する検出部、
 を備えてもよい。
 このような構成により、透光体の振動の大きさを検出し、適切な振動の大きさとなるよう調整することができる。
 本発明の第6態様にかかる筐体は、
 さらに、
  前記1つまたは複数のアクチュエータの振動を制御する制御部、
 を備え、
 前記制御部は、前記検出部により検出された前記少なくとも1つのアクチュエータの出力電圧に基づいて、前記複数のアクチュエータの振動を制御してもよい。
 このような構成により、振動の急速な加減速を実現することができる。
 本発明の第7態様にかかる筐体において、
 前記複数のアクチュエータは、前記透光体の厚み方向と交差する方向に前記透光体を振動させてもよい。
 このような構成により、光学式センサの光軸変化をもたらさずに透光体を振動させることができるため、検出精度を向上させることができる。
 本発明の第8態様にかかる筐体において、
 前記透光体は、外側に位置する第1主面と、前記第1主面と反対側の第2主面とを有する板状の形状を有し、
 前記複数のアクチュエータは、前記透光体の前記第2主面側に配置されてもよい。
 このような構成により、センサ装置の低背化、または意匠性の向上を実現することができる。
 本発明の第9態様にかかる筐体において、
 前記複数のアクチュエータは、前記透光体の厚み方向に前記透光体を振動させてもよい。
 このような構成により、透光体310に付着した異物を振動により変形させて落としやすくすることができる。
 本発明の第10態様にかかる筐体において、
 前記透光体は、第1端部と前記第1端部と反対側の第2端部とを有する円筒形状を有し、
 前記複数のアクチュエータは、前記第1端部側および前記第2端部側のうち少なくとも一方に等間隔に配置されてもよい。
 このような構成により、視野角の広い光学式センサにも対応可能である。
 本発明の第11態様にかかる筐体において、
 前記複数のアクチュエータは、前記透光体を前記円筒形状の軸方向に振動させてもよい。
 このような構成により、光学式センサの光軸変化をもたらさずに透光体を振動させることができるため、検出精度を向上させることができる。
 本発明の第12態様にかかる筐体に置いて、
 前記アクチュエータは、圧電素子を含み、
 前記筐体ベースは、前記アクチュエータと前記透光体とを接続し、前記透光体に振動を伝達する振動伝達部を含み、
 前記透光体は、外側に位置する第1主面と、前記第1主面と反対側の第2主面と、前記第1主面と前記第2主面とを接続する側面と、を有する板状の形状を有し、
 前記振動伝達部は、第1振動伝達部および第2振動伝達部を含み、
 前記第1振動伝達部および第2振動伝達部はそれぞれ、一方端部および他方端部を有し、前記一方端部が前記アクチュエータに接続され、前記側面に沿って延びる振動部と、前記振動部の前記他方端部から前記側面に向かって延び、前記透光体を支持する支持部と、を有し、
 前記第1振動伝達部および前記第2振動伝達部のそれぞれの前記支持部は、向き合って配置されて前記透光体の前記側面を挟んで支持してもよい。
 このような構成により、消費電力を低減させつつ、効率よく透光体を振動させて異物を除去することができる。
 本発明の第13態様にかかる筐体において、
 前記アクチュエータは、前記第1振動伝達部および前記第2振動伝達部のそれぞれの前記延伸部の前記支持部が向き合う方向に交差して前記透光体の前記第1主面に沿った第1方向に振動し、
 前記支持部は、前記第1方向における前記側面の中央に配置されてもよい。
 このような構成により、透光体を上下にスライドするように振動させて付着した異物を重力方向に滑落させたり、保持部を中心に透光体を回転させるように振動させて付着した異物を透光体の厚み方向に脱離させたりすることができる。
 本発明の第14態様にかかる筐体において、
 前記アクチュエータは、前記第1振動伝達部および前記第2振動伝達部のそれぞれの前記延伸部の前記支持部が向き合う方向に交差し前記透光体の前記第1主面に沿った第1方向に振動し、
 前記支持部は、前記第1方向において中央よりも前記アクチュエータに近い位置に配置されてもよい。
 このような構成により、透光体のアクチュエータと反対側を大きく振動させることができるため、より効率的に異物を除去することができる。
 本発明の第15態様にかかる筐体において、
 前記1つまたは複数のアクチュエータは、ユニモルフ型またはバイモルフ型の圧電素子により構成され、
 前記筐体ベースは、前記透光体を支持するフレームと、前記透光体と前記1つまたは複数のアクチュエータとを接続する接続部と、を含んでもよい。
 このような構成により、より簡素で小型な構成で、透光体を効率よく振動させることができる。
 本発明の第16態様にかかる筐体において、
 さらに、前記アクチュエータを制御する制御部、を備え、
 前記制御部は、前記アクチュエータの第1共振周波数と、前記透光体に付着した異物の第2共振周波数と、を重畳させた変調周波数で、前記アクチュエータを振動させてもよい。
 このような構成により、透光体に付着した異物の共振周波数に近い振動を与えることができるため、異物の変形を促して異物を効率的に除去することができる。
 本発明の第17態様にかかる筐体において、
 前記筐体ベースは、前記透光体の振動を吸収する弾性体を有してもよい。
 このような構成により、透光体の振動を弾性体で吸収することができる。このため光学式センサに振動が伝達しにくくなり、センサ画像のブレを抑制することができる。
 本発明の第18態様にかかる筐体において、
 前記透光体と前記筐体ベースとの間、または前記透光体と前記光学式センサとの間に、緩衝部材が配置されていてもよい。
 このような構成により、筐体の内部または光学式センサの内部に汚れや異物が混入することを抑制することができる。
 本発明の第19態様にかかる筐体において、
 前記緩衝部材は、蛇腹構造を有してもよい。
 このような構成により、透光体の振動を光学式センサに伝達せずに、透光体と光学式センサとの隙間を塞いて、内部に汚れや異物が混入することを抑制することができる。
 本発明の第20態様にかかる筐体において、
 前記緩衝部材は、エラストマにより構成されていてもよい。
 このような構成により、筐体内または光学式センサの内部に汚れや異物が混入することを抑制することができる。
 本発明の第21態様にかかるセンサ装置は、
 上述の筐体と、
 前記筐体内に収容される光学式センサと、
を備える。
 このような構成により、検出精度を向上させることのできるセンサ装置を提供することができる。
 以下、本発明の一実施形態を添付図面に従って説明する。なお、以下の説明は、本質的に例示に過ぎず、本発明、その適用物、あるいは、その用途を制限することを意図するものではない。さらに、図面は模式的なものであり、各寸法の比率等は現実のものとは必ずしも合致していない。
(実施の形態1)
 図1は、本発明の実施の形態1にかかるセンサ装置1および筐体2を示す斜視図である。図2は、図1のセンサ装置1の分解斜視図である。なお、図中のX方向はセンサ装置1の縦方向、Y方向はセンサ装置1の横方向、Z方向はセンサ装置1の高さ方向を意味する。
[センサ装置]
 センサ装置1は、筐体2と筐体2の内部に収容された光学式センサ100を備える。
 光学式センサ100としては、例えば、LiDAR、ミリ波レーダ、赤外線カメラ、または光学カメラ等が挙げられる。筐体2はこのような光学式センサを収容し、例えば、車両の自動運転に必要な外部情報を探索するセンサ装置に使用される。
[筐体]
 筐体2は、図1および図2に示すように、内部に光学式センサ100を収容する筐体である。筐体2の内部に光学式センサ100を収容することにより、センサ装置として使用することができる。
 筐体2は、透光体10と、筐体ベース20と、アクチュエータ30と、を備える。
<透光体>
 透光体10は、筐体2に収容されている光学式センサに汚れまたは異物が付着するのを防止するためのカバーである。透光体10は、光学式センサ100の視野を阻害しないよう透明材料で形成されている。
 透光体10の材料としては、例えば、ソーダガラス、ホウケイ酸ガラス、アルミノシリケートガラス、または石英ガラスなどのガラス、透光性プラスチック、透光性セラミック、または合成樹脂等を用いることができる。透光体10を、例えば化学強化で強度を向上させた強化ガラスにより形成することで、透光体10の強度を高めることができる。また、汚れの付着を低減するために、透光体10の表面には防汚コーティングまたは撥水コーティングが施されていてもよい。また、所望の波長の光の透過率を向上させるために、透光体10の表面に反射防止コーティングが施されていてもよい。
 本実施の形態では、透光体10は、第1端部10aと、第1端部10aと反対側の第2端部10bとを有する円筒形状に形成されている。透光体10が円筒形状であると、光学式センサ100が、例えば、XY平面に沿って360度の視野を有するセンサである場合にも、光学式センサ100の視野を阻害せず検出精度を向上させることができる。
 本実施の形態では、透光体10の第1端部(上端)10aに第1ホルダ11が配置され、透光体の第2端部(下端)10bに第2ホルダ12が配置されている。ホルダ11、12は、必須の構成ではない。ホルダ11、12により、透光体10の破損を防止することができる。
 ホルダ11は、リング状に形成されており、透光体10の第1端部10aを保持する。ホルダ12は、リング状に形成されており、透光体10の第2端部10bを保持する。
 ホルダ12には、図2に示すように、凹部12aが形成されており、ホルダ12の凹部12aに、後述するアクチュエータ30が配置される。
<筐体ベース>
 筐体ベース20は、光学式センサ100を収容し、透光体10を振動可能に保持する。本実施の形態では、筐体ベース20は、透光体10の第1端部10aを保持する第1ベース23と、透光体10の第2端部10bを保持する第2ベース21と、光学式センサ100を収容する本体部22と、を含む。本実施の形態では、円筒形状の透光体10の内部に光学式センサ100を配置し、透光体10の第1端部10a側に第1ベース23を配置し、透光体10の第2端部10b側に第2ベース21および本体部22を配置する。このようにして、筐体ベース20に光学式センサ100を収容する。
 筐体ベース20の材料としては、例えば、金属、セラミックス、または合成樹脂等を使用することができる。
<アクチュエータ>
 アクチュエータ30は、透光体10を振動させるものである。本実施の形態では、アクチュエータ30は、透光体10を高さ方向(Z方向)に振動させる。後述するように、本実施の形態では、3つのアクチュエータ30が配置されている。
 図3は、図2の領域R1を拡大した図である。図2および図3に示すように、アクチュエータ30が、透光体10の第2端部10bと、筐体ベース20とを繋ぐよう配置されている。本実施の形態では、アクチュエータ30は、透光体10の第2端部10b側に配置されている。
 図4は、図1のA-A断面図である。図5は、図4の領域R2を拡大した図である。図4および図5に示すように、アクチュエータ30は、コイル31と、鉄心32と、磁石33と、を有する。コイル31は、電流を流すことにより磁界を発生させる。鉄心32は、コイル31の中空に挿入され、ホルダ12を介して透光体10の第2端部10bを支持する。磁石33は、筐体ベース20の第2ベース21に配置され、コイル31により発生する磁界により鉄心32を引き寄せる。アクチュエータ30は、鉄心32の軸方向に透光体10を振動させる。本実施の形態では、鉄心32の軸方向はZ方向であり、アクチュエータ30は、図2に示す矢印A1の方向に透光体10を振動させる。
 本実施の形態では、透光体10の第2端部10b(ホルダ12)に鉄心32が配置され、筐体ベース20の第2ベース21にコイル31および磁石33が配置されている。コイル31に交流電流を流すことにより発生する磁界により、反発力と吸引力が交互に発生して、鉄心32はZ方向に引導加振される。すなわち、鉄心32はZ方向に振動する。アクチュエータ30により発生するZ方向の振動により、透光体10は円筒形状の軸方向(Z方向)に振動する。透光体10が円筒形状の軸方向に振動する場合、光学式センサ100の光軸変化を引き起こしにくい。このため、異物を除去するために透光体が振動しているときでも、検出精度を向上させることができる。
 例えば、Z方向を上下方向として筐体2を配置すると、透光体10が上下に振動することとなる。この場合、透光体10に付着した水滴等の異物を効率的に落とすことができる。
 筐体ベース20にアクチュエータ30を設けることにより、光学式センサ100と独立して透光体10を振動させることができる。このため、透光体10の振動が筐体ベース20および光学式センサ100に伝達しにくい。したがって、透光体10がアクチュエータにより振動しても、光学式センサ100は振動しない。すなわち、透光体10の振動は、光学式センサ100には伝達されない。光学式センサ100に振動が伝達されないため、センサ画像のブレを抑制することができる。
 図6は、図2のB-B断面図である。本実施の形態では、図6に示すように、円筒形状の透光体10の軸方向(Z方向)から見たときに、3つのアクチュエータ30が等間隔に配置されている。透光体10が円筒形状の場合、複数のアクチュエータ30が、透光体10の第1端部10aおよび第2端部10bのうち少なくとも一方に等間隔に配置されるとよい。この場合、光学式センサ100の光軸変化を発生させないように透光体10を振動させることができる。
<弾性体>
 本実施の形態では、筐体ベース20は、弾性体(スプリング)40を有する。具体的には、図3に示すように、筐体ベース20の第2ベース21に、透光体10の振動を吸収する弾性体40としてスプリングが配置されている。弾性体40により、吸引バイアス力をギャップの調整により制御することができる。吸引バイアス力とは、磁石33によって鉄心32が引っ張られる力のことであり、磁石33と鉄心32とが接触しないよう、磁力に反発する力である。弾性体40が配置されることにより、吸引バイアス力を生じさせることができ、この吸引バイアス力を、弾性体40のスプリング性能またはギャップ長さで調整することができる。また、弾性体40により、透光体10が筐体ベース20に衝突して、破損することを抑制することができる。弾性体40は、透光体10の振動を吸収できる部材であれば、スプリングに限定されない。
<緩衝部材>
 透光体10と筐体ベース20との間には、緩衝部材50が配置されている。本実施の形態では、緩衝部材50は、エラストマにより構成されており、2つの緩衝部材51、52を含む。具体的には、図2に示すように、透光体10の第1端部10a(ホルダ11)と筐体ベース20の第1ベース23との間に、緩衝部材51が配置されている。また、透光体10の第2端部10b(ホルダ12)と筐体ベース20の本体部22との間に緩衝部材52が配置されている。
 緩衝部材51、52は、ともにリング状に形成されている。筐体ベース20と透光体10との間から、筐体2の内部への異物の混入を防止することができる。さらに、透光体10の振動が筐体ベース20および光学式センサ100に伝達しにくくなるため、センサ画像が不鮮明になることを防止することができる。
 さらに、本実施の形態では、図4に示すように、光学式センサ100と筐体ベース20との間に、振動緩衝材53、54が配置されている。振動緩衝材53、54が配置されていることにより、より光学式センサ100に振動が伝達しにくくなり、鮮明なセンサ画像を得ることができる。
[効果]
 実施の形態1にかかる筐体2およびセンサ装置1によれば、以下の効果を奏することができる。
 センサ装置1は、筐体2と、筐体2の内部に収容された光学式センサ100と、を備える。筐体2は、光学式センサ100を収容する筐体である。筐体2は、透光体10と、筐体ベース20と、アクチュエータ30と、を備える。筐体ベース20は、光学式センサ100を収容し、透光体10を振動可能に保持する。アクチュエータ30は、透光体10を振動させる。このような構成により、アクチュエータ30による透光体10の振動が光学式センサ100に伝達しにくいため、検出精度を向上させることのできるセンサ装置を提供することができる。
 アクチュエータ30は、コイル31と、鉄心32と、磁石33と、を有し、鉄心32の軸方向に透光体を振動させる。コイル31は、電流を流すことにより磁界を発生させる。鉄心32は、コイル31の中空に挿入され、透光体10を支持する。磁石33は、コイル31により発生する磁界により、鉄心32を引き寄せたり、遠ざけたりする。アクチュエータ30は、鉄心32の軸方向に透光体10を振動させる。
 このような構成により、アクチュエータ30により透光体10を振動させることができるが、透光体10の振動を筐体ベース20および光学式センサ100には振動を伝達しにくい構成の筐体2を提供することができる。このため、光学式センサ100のセンサ画像のブレを抑制して、検出精度を向上させることができる。
 透光体10は、第1端部10aと、第1端部10aと反対側の第2端部10bと、を有する円筒形状を有する。複数のアクチュエータ30は、第1端部10a側および第2端部10b側のうち少なくとも一方に等間隔に配置される。このような構成により、視野角の広い光学式センサ100に対しても筐体2を用いることができる。
 複数のアクチュエータ30は、透光体10を円筒形状の軸方向に振動させる。このような構成により、光学式センサ100の光軸変化をもたらさずに透光体10を振動させることができるため、鮮明な画像を得ることができる。
 筐体ベース20は、透光体10の振動を吸収する弾性体40を有する。このような構成により、透光体10の振動を弾性体(スプリング)40で吸収することができる。このため、光学式センサ100に振動が伝達しにくくなり、センサ画像のブレを抑制することができる。
 透光体10と筐体ベース20との間に、緩衝部材50が配置されている。緩衝部材50は、エラストマにより構成されている。このような構成により、筐体2の内部または光学式センサ100の内部に汚れや異物が混入することを抑制することができる。
 なお、上述した実施の形態では、透光体10がホルダ11、12に保持されている例について説明したが、透光体10はホルダ11、12に保持されていなくてもよい。例えば、透光体10の第2端部10bに直接アクチュエータ30が配置されてもよい。また、透光体10の第1端部10aに直接筐体ベース20が接続されてもよい。
 また、上述した実施の形態では、透光体10の第2端部10bに3つのアクチュエータ30が配置される例について説明したが、これに限定されない。例えば、透光体10の第1端部10aにアクチュエータ30が配置されていてもよい。または、透光体10の第1端部10aおよび第2端部10bの両方にアクチュエータ30が配置されていてもよい。すなわち、アクチュエータ30は、透光体10の第1端部10aおよび第2端部10bのうち少なくとも一方に配置されていればよい。
 また、上述した実施の形態では、筐体2が3つのアクチュエータを備える例について説明したが、アクチュエータ30の数はこれに限定されない。透光体10が円筒形状の場合、筐体2は2つ以上の複数のアクチュエータ30を備えていればよい。
 また、上述した実施の形態では、筐体ベース20が複数の部品で構成されている例について説明したが、筐体ベース20は一体的に形成されていてもよい。
[変形例]
 図7は、実施の形態1の変形例1にかかる筐体3Aを示す斜視図である。図8は、図7のC-C断面図である。図7および図8に示すように、透光体13はドーム状の形状を有していてもよい。ドーム状とは、例えば、板状部材が半球状に湾曲した形状を意味する。この場合、透光体13の端部13aに、ホルダ12を介して筐体ベース20(第2ベース21)が取り付けられる。透光体13がドーム状である場合、さらにセンサの視野を広くすることができる。
 図9は、実施の形態1の変形例2にかかる筐体3Bを示す斜視図である。図10は、図9のD-D断面図である。筐体3Bは、図9および図10に示すように、例えば直方体状の外観を有し、直方体状の1つの面に配置された板状の透光体110を備える。図9に示すように、筐体3Bは、直方体状の筐体ベース24を備える。また、透光体110に面して、筐体カバー25が配置されている。実施の形態1と同様に、透光体110の第2端部110bがホルダ112で保持されている。透光体110の第2端部110b側には、アクチュエータ130が配置されている。また、透光体110の外縁を囲むように、緩衝部材150が配置されている。アクチュエータ130は、実施の形態1と同様に、コイル131、鉄心132、および磁石133を有する。また、筐体ベース120は、透光体110の振動を有する弾性体140を有する。
 筐体3Bでは、アクチュエータ130により、透光体110の厚み方向と交差する方向、すなわち矢印A2の方向に透光体110を振動させる。
 透光体110が板状の形状を有する場合、図10のように、筐体3Bは1つのアクチュエータ130を備える構成であってもよいし、2つ以上の複数のアクチュエータ130を備える構成であってもよい。
 筐体3Bは、例えば、自動車の前方あるいは後方など、所定の方向をセンシングする光学式センサに対して使用することができる。
(実施の形態2)
 本発明の実施の形態2にかかる筐体について説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一または同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
 図11は、実施の形態2にかかる筐体4の一部を示す斜視図である。実施の形態2では、図11に示すように、透光体210の一方端部210a側および透光体210の他方端部210b側の両方にアクチュエータ230が配置されている点で、実施の形態1と異なる。
 本実施の形態では、透光体210は板状の形状を有している。透光体210の一方端部210aにはホルダ211が配置され、透光体210の他方端部210bにはホルダ212が配置されている。枠状の筐体ベース220の内側に、透光体210が配置されている。
 アクチュエータ230は、第1アクチュエータ231と、第2アクチュエータ232と、を含む。第1アクチュエータ231は、透光体210の一方端部210a側に配置され、第2アクチュエータ232は、第1アクチュエータ231と反対側の透光体210の他方端部210b側に配置される。第1アクチュエータ231と第2アクチュエータ232とをこのように配置することで、透光体210の厚み方向に交差する方向(図11の矢印A3の方向)に効率よく透光体210を振動させることができる。
 第1アクチュエータ231と第2アクチュエータ232とにより透光体210を振動させる場合、2つのアクチュエータ231、232は対向して配置されるとよい。この場合、振動の方向が矢印A3の方向からずれにくくなり、より効率的に透光体210の異物を除去することができる。
[効果]
 実施の形態2にかかる筐体4によれば、以下の効果を奏することができる。
 筐体4において、透光体210は板状の形状を有する。複数のアクチュエータ230は、第1アクチュエータ231と第2アクチュエータ232とを含む。第1アクチュエータ231は透光体210の一方端部210a側に配置される。第2アクチュエータ232は、第1アクチュエータ231と反対側の透光体210の他方端部210bに配置される。このような構成により、効率的に透光体を振動させることができる。
 第1アクチュエータ231と第2アクチュエータ232とは、対向して配置される。このような構成により、振動方向のずれが起きにくく、より効率的に透光体210の異物を除去することができる。なお、第1アクチュエータ231と第2アクチュエータ232とは、必ずしも対向して配置されていなくてもよい。
(実施の形態3)
 本発明の実施の形態3にかかる筐体について説明する。なお、実施の形態3では、主に実施の形態2と異なる点について説明する。実施の形態3においては、実施の形態2と同一または同等の構成については同じ符号を付して説明する。また、実施の形態3は、実施の形態2と重複する記載は省略する。
 図12は、実施の形態3にかかる筐体4Aの構成を示すブロック図である。実施の形態3では、第2アクチュエータ232の出力電圧を検出する検出部260を備える点で、実施の形態2と異なる。また、実施の形態3では、アクチュエータ230の振動を制御する制御部270を備える点で、実施の形態2と異なる。
 本実施の形態では、図12に示すように、第2アクチュエータ232に検出部260が接続されている。検出部260は、第2アクチュエータ232の出力電圧を検出する。
 検出部260で検出された出力電圧の情報は、制御部270に送信される。制御部270は、アクチュエータ230の振動を制御するものであり、本実施の形態では、検出部260、第1アクチュエータ231、および第2アクチュエータ232に電気的に接続されている。
 本実施の形態では、制御部270は、演算部271および駆動部272を含む。演算部271は、検出部260から第2アクチュエータ232の出力電圧に関する情報を受信し、その情報に基づいて透光体210の振動の大きさを算出する。透光体210の振動の大きさに基づいて、駆動部272は、第1アクチュエータ231および第2アクチュエータ232を適切に振動させる。例えば、透光体210の振動が所定の閾値よりも小さい場合は、第1アクチュエータ231および第2アクチュエータ232の少なくともいずれか一方に、同位相の振動を与え、逆に、透光体210の振動が所定の閾値よりも大きい場合には、逆位相の振動を与えることができる。
 制御部270は、例えば、マイコン、CPU、MPU、GPU、DSP、FPGA、ASICなどのようなデジタル回路により構成される。また、制御部270は、記憶装置を有していてもよい。
 この場合、例えば、第1アクチュエータ231を透光体210の振動用とし、第2アクチュエータ232を振動検出用および第1アクチュエータ231の振動への加速または減速の調整用としてもよい。
 このように、制御部は、検出部260により検出されたアクチュエータ230の出力電圧に基づいて、アクチュエータ230の振動を制御する。
[効果]
 実施の形態3にかかる筐体4Aによれば、以下の効果を奏することができる。
 筐体4Aは、さらに、第2アクチュエータ232の出力電圧を検出する検出部260を備える。このような構成により、透光体210の振動の大きさを検出し、適切な振動の大きさとなるよう調整することができる。
 筐体4Aは、さらに、1つまたは複数のアクチュエータ230の振動を制御する制御部270を備える。制御部270は、検出部260により検出された少なくとも1つのアクチュエータの出力電圧に基づいて、複数のアクチュエータ231、232の振動を制御する。このような構成により、振動の急速な加減速を実現することができる。
 なお、上述した実施の形態では、検出部260は第2アクチュエータ232に接続されている例について説明したが、検出部260は複数のアクチュエータ230のうち少なくともいずれか1つの出力電圧を検出できればよい。すなわち、検出部260は、第1アクチュエータ231および第2アクチュエータ232のうち少なくとも1つの出力電圧を検出できればよい。
(実施の形態4)
 本発明の実施の形態4にかかる筐体について説明する。なお、実施の形態4では、主に実施の形態2と異なる点について説明する。実施の形態4においては、実施の形態2と同一または同等の構成については同じ符号を付して説明する。また、実施の形態4は、実施の形態2と重複する記載は省略する。
 図13は、実施の形態4にかかる筐体5を示す斜視図である。実施の形態4では、透光体310が、外側に位置する第1主面310dと、第1主面310dと反対側の第2主面310cを有する板状の形状を有する点で、実施の形態2と異なる。また、複数のアクチュエータ330が、透光体310の第2主面310c側に配置される点で、実施の形態2と異なる。また、複数のアクチュエータ330が透光体310の厚み方向に透光体310を振動させる点で、実施の形態2と異なる。
 本実施の形態では、透光体310が、屈曲した枠状の筐体ベース320に配置されている。透光体310の端部には、透光体310の第2主面310cと交差する方向に延びるホルダ311が配置されている。
 2つのアクチュエータ330が透光体310の第2主面310c側に配置されている。2つのアクチュエータ330は、透光体310の厚み方向(矢印A4の方向)に透光体310を振動させる。2つのアクチュエータ330はそれぞれ、透光体310の一方の端部310aと、一方の端部310aと反対側の他方の端部310bに沿って配置されているとよい。この場合、光学式センサの視野を阻害することなく、透光体310を振動させて異物を除去することができる。さらに好ましくは、2つのアクチュエータ330が対向して配置されているとよい。この場合、透光体310を効率よく振動させることができる。
[効果]
 実施の形態4にかかる筐体5によれば、以下の効果を奏することができる。
 筐体5において、透光体310は、外側に位置する第1主面310dと、第1主面310dと反対側の第2主面310cを有する板状の形状を有する。複数のアクチュエータ330は、透光体310の第2主面310c側に配置される。このような構成により、透光体310の正面からアクチュエータ330が見えづらいため、センサ装置の低背化、または意匠性の向上を実現することができる。例えば、自動車のフロントガラスの上方に設置するセンサ装置の場合、空気抵抗を小さくすることが求められる。筐体5は、低背化により空気抵抗を小さくすることができるため、このような場合に有効である。
 複数のアクチュエータ330は、透光体310の厚み方向に透光体310を振動させる。このような構成により、透光体310に付着した異物を振動により変形させて落としやすくすることができる。
(実施の形態5)
 本発明の実施の形態5にかかる筐体について説明する。なお、実施の形態5では、主に実施の形態1と異なる点について説明する。実施の形態5においては、実施の形態1と同一または同等の構成については同じ符号を付して説明する。また、実施の形態5では、実施の形態1と重複する記載は省略する。
 図14は、実施の形態5にかかる筐体6の斜視図である。図15は、図14の筐体6の一部を省略した斜視図である。図16は、図15のE-E断面図である。実施の形態5では、透光体410の形状、およびアクチュエータ430の位置と形状とが実施の形態1と異なる。
 本実施の形態では、図14に示すように、筐体ベース420が箱型の形状であり、底部424、上部421、およびコイル支持部422、423により構成されている。
 本実施の形態では、図15および図16に示すように、透光体410は、矩形状の形状を有する板状の部材である。透光体410は、筐体ベース420のコイル支持部422、423に挟まれて配置されている。透光体410の一端410aにホルダ411が配置され、一端410aと反対側の他端410bにホルダ412が配置されている。
 ホルダ411は、図16に示すように、本体部411aと、本体部411aの両端からそれぞれ突出する鉄心支持部411b、411cと、を有する形状である。本体部411aで、透光体410の一端410aを支持し、鉄心支持部411b、411cで後述する鉄心432を挟んで支持する。ホルダ412も同様に、本体部412aと、本体部412aの両端からそれぞれ突出する鉄心支持部412b、412cと、を有する形状である。本体部412aで透光体410の他端410bを支持し、鉄心支持部412b、412cで鉄心432を挟んで支持する。
 筐体ベース420のコイル支持部422、423にはそれぞれ、アクチュエータ430が配置されている。アクチュエータ430は、コイル431と、鉄心432と、磁石433と、を有する。コイル431により磁界が発生して、磁石433への反発力と吸引力とが交互に発生し、鉄心432がZ方向に上下に振動する。このため、透光体410をZ方向に振動させることができる。上述のように、本実施の形態では、透光体410がZ方向(図16の矢印A5の方向)に振動するのに対し、2つのアクチュエータ430が、X方向において透光体410を挟むように配置されている。振動方向と交差する方向に2つのアクチュエータ430を配置することで、センサ装置の低背化が可能となる。
 本実施の形態では、筐体ベース420のコイル支持部422に弾性体(スプリング)440が配置されている。また、鉄心432にも弾性体441が配置されており、2つの弾性体440、441でホルダ411の鉄心支持部411bを挟む構成となっている。同様に、筐体ベース420のコイル支持部423に弾性体(スプリング)442が配置され、鉄心432にも弾性体443が配置されている。2つの弾性体442、443でホルダ412の鉄心支持部412bを挟む構成となっている。このような構成により、透光体410を固定するためのバイアス力を調整することができる。磁石433により鉄心432が引っ張られて磁石433と鉄心432が接触しないよう、弾性体440、441および弾性体442、443により磁力に反発する力がバイアス力である。弾性体440~443のスプリング性能またはギャップ長さにより、バイアス力を調整することができる。また、弾性体440~443は、振動によりホルダ411、412および透光体410が、筐体ベース420と衝突するのを抑制するための反発力を生成することができる。
 透光体410の外周には、緩衝部材450が配置されている(図15参照)。緩衝部材450は、例えばエラストマにより構成され、透光体410と筐体ベース420との間に配置されている。このような構成により、透光体410が振動により筐体ベース420に衝突するのを防ぐことができる。また、外部から筐体6の内部への異物の混入を防止することができる。
 図17は、図14のF-F断面図である。図18は、図17の緩衝部材444を示す概略図である。本実施の形態では、図17に示すように、透光体410と光学式センサ100Aとの間に、緩衝部材444が配置されている。
 図18に示すように、緩衝部材444は、蛇腹構造を有する。蛇腹構造とは、複数の凸部444aと複数の凹部444bとが、透光体410の厚み方向に交互に繰り返し配列された形状であり、隣接する凸部444aと凹部444bとは互いに伸縮可能に連結している。蛇腹構造の緩衝部材444が配置されることで、透光体410の振動を緩衝部材444により吸収することができる。また、透光体410と光学式センサ100Aとの間に緩衝部材444が配置されることにより、光学式センサ100Aと透光体410との間への異物の混入を防止することができる。
 また、図15および図17に示すように、光学式センサ100Aと筐体ベース420の底部424との間に、振動緩衝材453が配置されている。振動緩衝材453が配置されていることにより、より光学式センサ100Aに振動が伝達しにくくなり、検出精度を向上させることができる。
[効果]
 実施の形態5にかかる筐体6によれば、以下の効果を奏することができる。
 振動方向と交差する方向に2つのアクチュエータ430を配置することで、センサ装置の低背化が可能となる。
 透光体410と光学式センサ100Aとの間に蛇腹構造を有する緩衝部材444が配置されている。このような構成により、光学式センサ100Aによるセンサ画像に振動の影響を与えることなく、光学式センサ100Aと透光体410との間への異物の混入を防止することができる。
(実施の形態6)
 本発明の実施の形態6にかかる筐体について説明する。なお、実施の形態6では、主に実施の形態1と異なる点について説明する。実施の形態6においては、実施の形態1と同一または同等の構成については同じ符号を付して説明する。また、実施の形態6では、実施の形態1と重複する記載は省略する。
 図19は、実施の形態6にかかる筐体7を示す斜視図である。図20は、図19の筐体7の筐体ベース520を示す正面図である。図21は、図19の筐体7の透光体510を示す斜視図である。実施の形態6では、図19および図20に示すように、アクチュエータ530が圧電素子を含み、筐体ベース520が振動伝達部560a、560bを含む点で、実施の形態1と異なる。また、透光体510が板状の形状を有する点で、実施の形態1と異なる。また、実施の形態6では、筐体7が直方体状の外観を有する点で、実施の形態1と異なる。
 本実施の形態では、筐体7は、直方体状の外観を有し、図19に示す直方体状の筐体ベース524を備える。筐体ベース524の内部には、透光体510が取り付けられた筐体ベース520(図20参照)が収容されている。筐体ベース520に取り付けられた透光体510は、筐体ベース524の開口部524aから外部に露出する。
 本実施の形態では、図21に示すように、透光体510は、外側に位置する第1主面510dと、第1主面510dと反対側の第2主面520cと、第1主面510dと第2主面510cとを接続する側面510eと、を有する板状の形状を有する。また、本実施の形態では、透光体510は、第1主面510dから見たときに、矩形状に形成されている。
 筐体ベース520は、図20に示すように、アクチュエータ530と透光体510とを接続し、透光体510に振動を伝達する振動伝達部を含む。振動伝達部は、第1振動伝達部560aおよび第2振動伝達部560bを含む。本実施の形態では、筐体ベース520は、透光体510を囲むフレーム521を含む。フレーム521には、透光体510を配置する開口部522が形成されている。さらに、開口部522に沿って、第1振動伝達部560aおよび第2振動伝達部560bが配置されている。
 第1振動伝達部560aは、振動部561と支持部564とを有する。具体的には、振動部561は、一方端部561aおよび他方端部561bを有し、一方端部561aがアクチュエータ530に接続され、透光体510の側面510eに沿って延びる。本実施の形態では、振動部561は、アクチュエータ530に接続される第1延伸部562と、第1延伸部562から延びて支持部564に接続される第2延伸部563と、を有する。支持部564は、振動部561の他方端部561bから透光体510の側面510eに向かって延び、透光体510の側面510eを支持する。
 第2振動伝達部560bは、振動部565と支持部568とを有する。具体的には、振動部565は、一方端部565aおよび他方端部565bを有し、一方端部565aがアクチュエータ530に接続され、透光体510の側面510eに沿って延びる。本実施の形態では、振動部565は、アクチュエータ530に接続される第1延伸部566と、第1延伸部566から延びて支持部568に接続される第2延伸部567と、を有する。支持部568は、振動部565の他方端部565bから透光体510の側面510eに向かって延び、透光体510の側面510eを支持する。
 第1振動伝達部560aおよび第2振動伝達部560bは、例えば、金属材料により形成されることで、アクチュエータ530の振動を効率的に透光体510に伝達することができる。また、第1振動伝達部560aおよび第2振動伝達部560bは、筐体ベース520と一体に形成されていてもよい。
 第1振動伝達部560aと第2振動伝達部560bとは、透光体510の第1主面510dから見て、左右対称の形状を有する。第1振動伝達部560aの第1延伸部562と第2振動伝達部560bの第1延伸部566とは、アクチュエータ530から互いに反対方向に延びて配置される。第1振動伝達部560aの支持部564と、第2振動伝達部560bの支持部568とは、向き合って配置されて透光体510の側面510eを挟んで支持している。支持部564、568はそれぞれ、透光体510の側面510eにおいて、Z方向の中央に配置されている。
 支持部564、568と透光体510とは、例えば、透光体510に設けられた穴に支持部564、568に設けられた突起を挿入することによって接続することができる。または、透光体510の外周に沿って第1主面510d、第2主面510c、または側面510eに取り付けられた枠に支持部564、568を取り付けることにより、支持部564、568が透光体510を支持してもよい。この場合、支持部564、568と枠部とが一体であってもよい。支持部564、568は、透光体510を回転可能に支持することができる。
 本実施の形態では、図20に示すように、筐体ベース520のフレーム521において、透光体510の第2端部510b側にアクチュエータ530が配置されている。アクチュエータ530は、例えば、積層圧電セラミックスなどの圧電素子により構成されている。筐体7には、アクチュエータ530を構成する圧電素子に電位を与える図示省略の導体が配置されていてもよい。
 アクチュエータ530は、第1振動伝達部560aおよび第2振動伝達部560bのそれぞれの支持部564、568が向き合う方向(Y方向)に交差して透光体510の第1主面510dに沿った第1方向に振動する。すなわち、後述する図22の矢印A6の方向(Z方向)に往復振動する。
 図22は、図20の領域R3を拡大した図である。図22を参照して、第1振動伝達部560aによる透光体510への振動の伝達について説明する。
 アクチュエータ530は、矢印A6の方向に振動する。アクチュエータ530の振動が、一方端部561aから第1延伸部562に伝わり、フレーム521との接続部562aを支点として、アクチュエータ530の振動が第1延伸部562で増幅される。第1延伸部562で増幅された振動は、第2延伸部563を介して透光体510に伝達される。第2振動伝達部560bについても、同様に第1延伸部566でアクチュエータ530の振動が増幅され、第2延伸部567を介して透光体510に振動が伝達される。
 第1延伸部562、566は、アクチュエータ530の振動を増幅させる部分であるため、ある程度高い剛性を有することが好ましい。振動部の剛性を高めるために、第2延伸部563、567と比較して、幅が広く形成されている。
 図23は、透光体510の振動モードの一例を示す図である。図示省略の制御装置により、アクチュエータ530に所定の周波数の信号を印加することにより、透光体510をアクチュエータ530の振動方向(矢印A6)と同じ方向に振動させることができる(スライドモード)。すなわち、図23の矢印A7に示すように透光体510をZ方向に沿って振動させることができる。透光体510がスライドモードで振動しているとき、振動伝達部560a、560bの第1延伸部562、566は、Z方向に撓んで振動している。透光体510をZ方向に沿って振動させることで、透光体510に付着した異物を重力方向(Z軸下方向)に効率よく滑落させることができる。
 図24は、透光体510の振動モードの別の一例を示す図である。制御装置によりアクチュエータ530に印加する信号の周波数を変更することにより、振動伝達部560a、560bのそれぞれの支持部564、568を中心にして透光体510を回転させるように振動させることができる(回転モード)。すなわち、矢印A8に示すように透光体510をY方向に沿った回転軸を中心に回転させるよう振動させることができる。例えば、スライドモードの場合よりも低い周波数の信号をアクチュエータ530に印加することにより、透光体510を回転モードで振動させることができる。一例として、透光体510をスライドモードで振動させる場合、約220Hzの周波数の信号を使用し、透光体510を回転モードで振動させる場合、スライドモードよりも低い約160Hzの周波数の信号を使用することができる。支持部564、568を中心とする回転モードの振動は、透光体510または振動伝達部560a、560bなどの構造により決定される固有振動数を利用することにより発生させることができる。アクチュエータ530に固有振動数を励起するのに必要な振動エネルギーを印加することにより、透光体510を回転モードで振動させることができる。透光体510が回転モードで振動してるとき、振動伝達部560a、560bの第1延伸部562、566は、透光体510の回転モードの振動に作用されて振動する。透光体510をこのように振動させることで、透光体に付着した異物を、透光体510の厚み方向(X方向)に効率よく離脱させることができる。
[効果]
 実施の形態6にかかる筐体7によれば、以下の効果を奏することができる。
 アクチュエータ530として、圧電素子を採用することで、消費電力を低減させつつ、効率よく透光体を振動させて異物を除去することができる。
 また、第1振動伝達部560aおよび第2振動伝達部560bのそれぞれの支持部564、568が、第1方向(Z方向)における透光体510の側面510eの中央に配置される。このため、アクチュエータ530に印加する周波数を変えることで、透光体510をスライドモードおよび回転モードの2つのモードで振動させることができる。
 なお、上述した実施の形態では、透光体510が平面視で矩形状である例について説明したが、透光体510の形状はこれに限定されない。透光体510は板状に形成されていれば、平面視で円形、楕円形、または多角形等様々な形状であってもよい。
[変形例]
 図25は、実施の形態6の変形例にかかる筐体ベース520Aにおける透光体510の振動モードの一例を示す図である。
 筐体ベース520Aでは、図25に示すように、第1振動伝達部570aおよび第2振動伝達部570bのそれぞれの支持部574が、第1方向(Z方向)において中央よりもアクチュエータ530に近い位置に配置されている。すなわち、透光体510が、Z方向において中央よりも下側で支持されている。この場合、矢印A9に示すように透光体510を回転モードで振動させると、透光体510の第1端部510a側の振動変位が大きくなる。このため、透光体510の上側に付着した異物を、下側に付着した異物を押し流しながら滑落させることができる。
(実施の形態7)
 本発明の実施の形態7にかかる筐体について説明する。なお、実施の形態7では、主に実施の形態6と異なる点について説明する。実施の形態7においては、実施の形態6と同一または同等の構成については同じ符号を付して説明する。また、実施の形態7では、実施の形態6と重複する記載は省略する。
 図26は、実施の形態7にかかる筐体8を示す斜視図である。実施の形態7では、図26に示すように、アクチュエータ630がユニモルフ型またはバイモルフ型の圧電素子により構成され、筐体ベース620がフレーム621と接続部622とを含む点で、実施の形態6と異なる。
 筐体ベース620は、透光体610を支持するフレーム621と、透光体610とアクチュエータ630とを接続する接続部622と、を含む。本実施の形態では、透光体610が板状に形成され、フレーム621は、透光体610の側面を囲うように配置されている。接続部622は、第1端部610aにおいて、透光体610を厚み方向に挟んで保持している。
 本実施の形態では、筐体8は2つのアクチュエータ630が配置されている。アクチュエータ630は、ユニモルフ型またはバイモルフ型の圧電素子により構成される。ユニモルフ型の圧電素子は、例えば板状の金属にシート状の圧電素子を貼り合わせたものであり、圧電素子が面方向に伸縮する一方で、金属板の寸法はそのままであるため金属板に反りが生じる。バイモルフ型の圧電素子は、2枚のシート状の圧電素子を貼り合わせたものであり、それぞれの圧電素子が面方向に反対側に伸縮することによりそれぞれの圧電素子に反りが生じる。本実施の形態では、圧電素子がX方向に伸縮することにより反りが発生し、接続部622をZ方向に振動させることができる。
 2つのアクチュエータ630はそれぞれ、例えば、フレーム621に設けられた爪623により一方の端部を固定され、接続部622により他方の端部を固定されている。アクチュエータ630により、接続部622がZ方向に振動する。接続部の振動に伴い、透光体610もZ方向に振動する。本実施の形態では、アクチュエータ630は、爪623から接続部622に向かって幅が狭くなるよう形成されている。接続部622に向かって幅を狭くすることで、接続部622に近付くにつれて反りが大きくなるため、より効率的に透光体610を振動させることができる。
[効果]
 実施の形態7にかかる筐体8によれば、以下の効果を奏することができる。
 アクチュエータ630をユニモルフ型またはバイモルフ型の圧電素子により構成することでより低コスト化を図ることができる。
 また、実施の形態6と比較して、縦方向(Z方向)の寸法を小さくすることができるため、筐体の小型化に寄与する。
(実施の形態8)
 本発明の実施の形態8にかかる筐体について説明する。なお、実施の形態8では、主に実施の形態6と異なる点について説明する。実施の形態8においては、実施の形態6と同一または同等の構成については同じ符号を付して説明する。また、実施の形態8では、実施の形態6と重複する記載は省略する。
 図27は、実施の形態8にかかる筐体9の構成を示すブロック図である。実施の形態8では、筐体9がアクチュエータ530を制御する制御部590を備える点で、実施の形態6と異なる。筐体9のその他の構成は、図19~図22に示す筐体7と同様である。
 制御部590は、アクチュエータ530に所定の周波数の信号を印加することにより、アクチュエータ530を振動させる。制御部590は、例えば、マイコン、CPU、MPU、GPU、DSP、FPGA、ASICなどのようなデジタル回路により構成される。また、制御部590は、記憶装置を有していてもよい。
 制御部590は、アクチュエータ530の第1共振周波数と、透光体510に付着した異物の第2共振周波数とを重畳させた変調周波数で、アクチュエータ530を振動させる。なお、本実施の形態では、透光体510に付着した異物とは、雨や泥水等を含む液滴である。第2共振周波数で異物(液滴)を振動させると、液滴の変形または移動が発生しやすいため、液滴を透光体510から除去させやすくなる。
 透光体510に付着した異物の第2共振周波数付近で透光体510を振動させると、異物を効率よく滑落させることができるが、通常、アクチュエータ530の第1共振周波数と異物の第2共振周波数とは異なっている。そこで、第1共振周波数と第2共振周波数とを重畳させた変調周波数でアクチュエータを振動させることにより、透光体510に付着した異物の変形を促し、効率よく滑落させることができる。
 図28は、第1共振周波数の信号の一例を示すグラフである。図29は、第2共振周波数の信号の一例を示すグラフである。図30は、第1共振周波数と第2共振周波数とを重畳させた共振周波数の信号の一例を示すグラフである。
 図28~図30に示すように、アクチュエータ530の第1共振周波数は158Hzであり、異物の第2共振周波数は70Hz付近である。なお、この場合の異物は、5μL前後の大きさの液滴を想定している。
 透光体510に付着した異物の大きさにより、重畳させる周波数を変えてもよい。図31は、透光体510に付着した異物を移動させるための最大加速度と、最大加速度を実現するために有効な周波数を示す表である。例えば、異物が1μLの液滴である場合、異物を移動させて透光体510から除去するためには、最大加速度が4.4G以上であるとよい。この場合、140Hz~160Hz程度の周波数で振動させることで、効率よく異物を除去することができる。すなわち、異物の大きさが1μLの場合の第2共振周波数は、140Hz~160Hzである。異物の大きさが1μL程度である場合第1共振周波数に140Hz~160Hzの範囲の第2共振周波数を重畳させた変調周波数でアクチュエータ530を振動させることにより、効率よく異物を除去することができる。例えば、異物の大きさに応じて、重畳させる第2共振周波数を変えることで、より効率よく透光体510の異物を除去することができる。
[効果]
 実施の形態8にかかる筐体9によれば、以下の効果を奏することができる。
 アクチュエータ530の第1共振周波数と異物の第2共振周波数とを重畳させた変調周波数でアクチュエータ530を振動させることにより、異物の変形を促して効率よく透光体510から除去することができる。
 本発明の筐体およびセンサ装置は、屋外で使用する車載カメラ、監視カメラ、またはLiDAR等の光学式センサへ適用することができる。
1 センサ装置
2、3、3A、4、4A、5~9 筐体
10、13、110、210、310、410、510、610 透光体
20、24、120、220、320、420、520、520A、620 筐体ベース
30、130、230~232、330、430、530、630 アクチュエータ
31、131、431 コイル
32、132、432 鉄心
33、133、433 磁石
40、140、440~443 弾性体(スプリング)
50~52、450 緩衝部材(エラストマ)
444 緩衝部材(蛇腹構造)
100 光学式センサ
100A 光学式センサ
260 検出部
270、590 制御部

Claims (21)

  1.  光学式センサを収容する筐体であって、
     透光体と、
     前記光学式センサを収容し、前記透光体を振動可能に保持する筐体ベースと、
     前記透光体を振動させる1つまたは複数のアクチュエータと、
    を備える、
     筐体。
  2.  前記1つまたは複数のアクチュエータは、電流を流すことにより磁界を発生させるコイルと、前記コイルの中空に挿入され前記透光体を支持する鉄心と、前記コイルにより発生する磁界により前記鉄心を引き寄せる磁石と、を有し、前記鉄心の軸方向に前記透光体を振動させる、
     請求項1に記載の筐体。
  3.  前記透光体は、板状の形状を有し、
     前記複数のアクチュエータは、第1アクチュエータと第2アクチュエータとを含み、
     前記第1アクチュエータは前記透光体の一方端部側に配置され、前記第2アクチュエータは前記第1アクチュエータと反対側の前記透光体の他方端部側に配置される、
     請求項1または2に記載の筐体。
  4.  前記第1アクチュエータと前記第2アクチュエータとは、対向して配置される、
     請求項3に記載の筐体。
  5.  さらに、
      前記第1アクチュエータと前記第2アクチュエータとのうち少なくとも1つのアクチュエータの出力電圧を検出する検出部、
     を備える、
     請求項3または4に記載の筐体。
  6.  さらに、
      前記1つまたは複数のアクチュエータの振動を制御する制御部、
     を備え、
     前記制御部は、前記検出部により検出された前記少なくとも1つのアクチュエータの出力電圧に基づいて、前記複数のアクチュエータの振動を制御する、
     請求項5に記載の筐体。
  7.  前記複数のアクチュエータは、前記透光体の厚み方向と交差する方向に前記透光体を振動させる、
     請求項3から6のいずれか1項に記載の筐体。
  8.  前記透光体は、外側に位置する第1主面と、前記第1主面と反対側の第2主面とを有する板状の形状を有し、
     前記複数のアクチュエータは、前記透光体の前記第2主面側に配置される、
     請求項1または2に記載の筐体。
  9.  前記複数のアクチュエータは、前記透光体の厚み方向に前記透光体を振動させる、
     請求項8に記載の筐体。
  10.  前記透光体は、第1端部と前記第1端部と反対側の第2端部とを有する円筒形状を有し、
     前記複数のアクチュエータは、前記第1端部側および前記第2端部側のうち少なくとも一方に等間隔に配置される、
     請求項1または2に記載の筐体。
  11.  前記複数のアクチュエータは、前記透光体を前記円筒形状の軸方向に振動させる、
     請求項10に記載の筐体。
  12.  前記アクチュエータは、圧電素子を含み、
     前記筐体ベースは、前記アクチュエータと前記透光体とを接続し、前記透光体に振動を伝達する振動伝達部を含み、
     前記透光体は、外側に位置する第1主面と、前記第1主面と反対側の第2主面と、前記第1主面と前記第2主面とを接続する側面と、を有する板状の形状を有し、
     前記振動伝達部は、第1振動伝達部および第2振動伝達部を含み、
     前記第1振動伝達部および第2振動伝達部はそれぞれ、一方端部および他方端部を有し、前記一方端部が前記アクチュエータに接続され、前記側面に沿って延びる振動部と、前記振動部の前記他方端部から前記側面に向かって延び、前記透光体を支持する支持部と、を有し、
     前記第1振動伝達部および前記第2振動伝達部のそれぞれの前記支持部は、向き合って配置されて前記透光体の前記側面を挟んで支持する、
     請求項1に記載の筐体。
  13.  前記アクチュエータは、前記第1振動伝達部および前記第2振動伝達部のそれぞれの前記支持部が向き合う方向に交差して前記透光体の前記第1主面に沿った第1方向に振動し、
     前記支持部は、前記第1方向における前記側面の中央に配置される、
     請求項12に記載の筐体。
  14.  前記アクチュエータは、前記第1振動伝達部および前記第2振動伝達部のそれぞれの前記支持部が向き合う方向に交差し前記透光体の前記第1主面に沿った第1方向に振動し、
     前記支持部は、前記第1方向において中央よりも前記アクチュエータに近い位置に配置される、
     請求項12に記載の筐体。
  15.  前記1つまたは複数のアクチュエータは、ユニモルフ型またはバイモルフ型の圧電素子により構成され、
     前記筐体ベースは、前記透光体を支持するフレームと、前記透光体と前記1つまたは複数のアクチュエータとを接続する接続部と、を含む、
     請求項1に記載の筐体。
  16.  さらに、前記アクチュエータを制御する制御部、を備え、
     前記制御部は、前記アクチュエータの第1共振周波数と、前記透光体に付着した異物の第2共振周波数と、を重畳させた変調周波数で、前記アクチュエータを振動させる、
     請求項12から15のいずれか1項に記載の筐体。
  17.  前記筐体ベースは、前記透光体の振動を吸収する弾性体を有する、
     請求項1から16のいずれか1項に記載の筐体。
  18.  前記透光体と前記筐体ベースとの間、または前記透光体と前記光学式センサとの間に、緩衝部材が配置されている、
     請求項1から17のいずれか1項に記載の筐体。
  19.  前記緩衝部材は、蛇腹構造を有する、
     請求項18に記載の筐体。
  20.  前記緩衝部材は、エラストマにより構成されている、
     請求項18に記載の筐体。
  21.  請求項1から20のいずれか1項に記載の筐体と、
     前記筐体内に収容される光学式センサと、
    を備える、
     センサ装置。
PCT/JP2022/022636 2021-08-18 2022-06-03 筐体およびセンサ装置 WO2023021812A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023542231A JPWO2023021812A1 (ja) 2021-08-18 2022-06-03
US18/416,941 US20240151560A1 (en) 2021-08-18 2024-01-19 Housing and sensor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-133492 2021-08-18
JP2021133492 2021-08-18
JP2022-047370 2022-03-23
JP2022047370 2022-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/416,941 Continuation US20240151560A1 (en) 2021-08-18 2024-01-19 Housing and sensor device

Publications (1)

Publication Number Publication Date
WO2023021812A1 true WO2023021812A1 (ja) 2023-02-23

Family

ID=85240428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022636 WO2023021812A1 (ja) 2021-08-18 2022-06-03 筐体およびセンサ装置

Country Status (3)

Country Link
US (1) US20240151560A1 (ja)
JP (1) JPWO2023021812A1 (ja)
WO (1) WO2023021812A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231398A (ja) * 1994-02-18 1995-08-29 Hitachi Ltd 微動振動装置
JP2006058498A (ja) * 2004-08-18 2006-03-02 Fuji Photo Film Co Ltd デジタルカメラ
JP2012038078A (ja) * 2010-08-06 2012-02-23 Secom Co Ltd 監視用センサ
JP2017096674A (ja) * 2015-11-19 2017-06-01 株式会社デンソーウェーブ レーザレーダ装置
WO2019225042A1 (ja) * 2018-05-22 2019-11-28 株式会社村田製作所 振動装置及び光学検出装置
US20200358938A1 (en) * 2019-05-06 2020-11-12 H.P.B. Optoelectronics Co., Ltd. Method for removing foreign substances from a camera system, and camera system
CN212275973U (zh) * 2019-12-13 2021-01-01 深圳市镭神智能系统有限公司 一种清洁机构及激光雷达系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231398A (ja) * 1994-02-18 1995-08-29 Hitachi Ltd 微動振動装置
JP2006058498A (ja) * 2004-08-18 2006-03-02 Fuji Photo Film Co Ltd デジタルカメラ
JP2012038078A (ja) * 2010-08-06 2012-02-23 Secom Co Ltd 監視用センサ
JP2017096674A (ja) * 2015-11-19 2017-06-01 株式会社デンソーウェーブ レーザレーダ装置
WO2019225042A1 (ja) * 2018-05-22 2019-11-28 株式会社村田製作所 振動装置及び光学検出装置
US20200358938A1 (en) * 2019-05-06 2020-11-12 H.P.B. Optoelectronics Co., Ltd. Method for removing foreign substances from a camera system, and camera system
CN212275973U (zh) * 2019-12-13 2021-01-01 深圳市镭神智能系统有限公司 一种清洁机构及激光雷达系统

Also Published As

Publication number Publication date
JPWO2023021812A1 (ja) 2023-02-23
US20240151560A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
US20080238592A1 (en) Two-axis driving electromagnetic micro-actuator
US9054636B2 (en) Micromechanical resonator arrangement
US8730599B2 (en) Piezoelectric and MEMS actuator
US20090109512A1 (en) Mems scanner having actuator separated from mirror
JP4759636B2 (ja) 振動装置
JP5614167B2 (ja) 光偏向器、光走査装置、画像形成装置及び画像投影装置
US11061221B2 (en) Micromechanical component, method for manufacturing a micromechanical component, and method for exciting a movement of an adjustable part about a rotational axis
WO2021100227A1 (ja) 振動装置、および振動装置を備える撮像ユニット
JP2020181079A (ja) 振動装置及び光学検出装置
TWI589513B (zh) 用以補償震動之微機電系統裝置和機構
JP2011227428A (ja) レンズ駆動装置
JP2004530926A (ja) 共振スキャナ
WO2021132129A1 (ja) レンズ駆動装置、カメラモジュールおよびカメラ搭載装置
JP2002321195A (ja) 振動体およびその製造方法
WO2021100228A1 (ja) 振動装置、および振動装置を備える撮像ユニット
Senger et al. A bi-axial vacuum-packaged piezoelectric MEMS mirror for smart headlights
US20220299752A1 (en) Optical module and method for manufacturing optical module
JP2010122412A (ja) 光学反射素子ユニット
US7559708B2 (en) Optical unit and imaging apparatus
WO2023021812A1 (ja) 筐体およびセンサ装置
JP2008111882A (ja) アクチュエータ、光スキャナおよび画像形成装置
JP5585478B2 (ja) 光偏向用mems素子
US20040007069A1 (en) Resonant pivoting surface with inertially coupled activation
US8081366B2 (en) Oscillating device, light deflector, and image forming apparatus using the same
JP2010060689A (ja) 光学反射素子ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542231

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE