WO2023021806A1 - 亜酸化窒素の分解方法および亜酸化窒素の分解装置 - Google Patents
亜酸化窒素の分解方法および亜酸化窒素の分解装置 Download PDFInfo
- Publication number
- WO2023021806A1 WO2023021806A1 PCT/JP2022/021707 JP2022021707W WO2023021806A1 WO 2023021806 A1 WO2023021806 A1 WO 2023021806A1 JP 2022021707 W JP2022021707 W JP 2022021707W WO 2023021806 A1 WO2023021806 A1 WO 2023021806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrous oxide
- gas
- ruthenium
- oxide
- catalyst
- Prior art date
Links
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 title claims abstract description 365
- 239000001272 nitrous oxide Substances 0.000 title claims abstract description 182
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000000354 decomposition reaction Methods 0.000 title abstract description 54
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 88
- 239000003054 catalyst Substances 0.000 claims abstract description 70
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 69
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 41
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 41
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 150000003304 ruthenium compounds Chemical class 0.000 claims abstract description 25
- 239000000126 substance Substances 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 159
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 230000001603 reducing effect Effects 0.000 claims description 25
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 7
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 23
- 239000013078 crystal Substances 0.000 description 21
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- -1 ruthenium organic acid salts Chemical class 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 7
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- PCBMYXLJUKBODW-UHFFFAOYSA-N [Ru].ClOCl Chemical compound [Ru].ClOCl PCBMYXLJUKBODW-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229960003753 nitric oxide Drugs 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- WYRXRHOISWEUST-UHFFFAOYSA-K ruthenium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Ru+3] WYRXRHOISWEUST-UHFFFAOYSA-K 0.000 description 3
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 3
- 150000004684 trihydrates Chemical class 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- NQZFAUXPNWSLBI-UHFFFAOYSA-N carbon monoxide;ruthenium Chemical group [Ru].[Ru].[Ru].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] NQZFAUXPNWSLBI-UHFFFAOYSA-N 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- VDRDGQXTSLSKKY-UHFFFAOYSA-K ruthenium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Ru+3] VDRDGQXTSLSKKY-UHFFFAOYSA-K 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical group CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000264877 Hippospongia communis Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- NUNTWTCLCRXIIP-UHFFFAOYSA-N [N].[O-][N+]#N Chemical compound [N].[O-][N+]#N NUNTWTCLCRXIIP-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- BIXNGBXQRRXPLM-UHFFFAOYSA-K ruthenium(3+);trichloride;hydrate Chemical compound O.Cl[Ru](Cl)Cl BIXNGBXQRRXPLM-UHFFFAOYSA-K 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009283 thermal hydrolysis Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical group C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1026—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/402—Dinitrogen oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Definitions
- the present invention relates to a nitrous oxide decomposition method and a nitrous oxide decomposition apparatus.
- Nitrogen oxides (NOx) in exhaust gases have become a problem from the viewpoint of global environmental protection and air pollution prevention, and their emissions are being strictly regulated.
- Nitrogen oxides which are subject to emission regulations in particular, are nitrogen dioxide (NO 2 ), which is harmful to the human body and causes photochemical smog and acid rain.
- NO 2 O nitrogen dioxide
- nitrous oxide (N 2 O) which is a type of nitrogen oxide, is currently not subject to emission regulations and is normally released into the atmosphere as it is.
- nitrogen monoxide and nitrogen dioxide are decomposed and removed by denitrification treatment in gases emitted from chemical manufacturing plants such as nitric acid manufacturing plants, ⁇ -caprolactam manufacturing plants, and adipic acid manufacturing plants.
- the by-produced nitrous oxide is often discharged (released) into the atmosphere without being decomposed and removed.
- Nitrous oxide is said to exhibit about 300 times the warming effect of carbon dioxide. Therefore, in recent years, there has been increasing interest in reducing emissions of nitrous oxide into the atmosphere, along with carbon dioxide, methane, and the like. Along with the growing awareness of sustainable environment, nitrous oxide is expected to be subject to emission regulations in the near future. A technique to suppress it is required.
- Patent Document 1 discloses ruthenium (Ru), rhodium (Rh), palladium (Pd), rhenium (Re), osmium (Os), iridium (Ir) Nitrous oxide decomposition, in which a gas containing nitrous oxide is catalytically decomposed in the presence of a reducing gas using a catalyst that supports at least one noble metal selected from platinum (Pt). method is described.
- nitrous oxide decomposition method described in Patent Document 1 carbon monoxide, hydrocarbon gas, mineral oil-based hydrocarbon gas, alcohols, etc. are allowed to coexist as reducing gases in the catalytic decomposition of gas containing nitrous oxide. can decompose nitrous oxide in nitrous oxide-containing gas.
- the nitrous oxide decomposition efficiency is not sufficient, and further improvement of the nitrous oxide decomposition efficiency is desired.
- An object of the present invention is to provide a nitrous oxide decomposition method and a decomposition apparatus capable of efficiently decomposing nitrous oxide in gas containing nitrous oxide, water vapor and ammonia.
- a method of decomposing nitrous oxide comprising contacting with a nitrous oxide containing gas comprising nitrous oxide, water vapor and ammonia.
- ⁇ 3> The method for decomposing nitrous oxide according to ⁇ 1> or ⁇ 2>, wherein the nitrous oxide contained in the nitrous oxide-containing gas has a molar concentration of 0.002 to 10%.
- ⁇ 4> The method for decomposing nitrous oxide according to any one of ⁇ 1> to ⁇ 3>, wherein the water vapor contained in the nitrous oxide-containing gas has a molar concentration of 0.1 to 10%.
- ⁇ 5> The method for decomposing nitrous oxide according to any one of ⁇ 1> to ⁇ 4>, wherein the nitrous oxide-containing gas further contains a saturated hydrocarbon gas.
- ⁇ 6> The method for decomposing nitrous oxide according to any one of ⁇ 1> to ⁇ 5>, wherein the nitrous oxide-containing gas further contains a reducing gas.
- ⁇ 7> The method for decomposing nitrous oxide according to ⁇ 6>, wherein the reducing gas is carbon monoxide gas, unsaturated hydrocarbon gas or hydrogen gas.
- ⁇ 8> The method for decomposing nitrous oxide according to any one of ⁇ 1> to ⁇ 7>, wherein the nitrous oxide-containing gas is a gas discharged from a chemical manufacturing plant.
- the nitrous oxide decomposition method and decomposition apparatus of the present invention can efficiently decompose nitrous oxide in gas containing nitrous oxide, water vapor and ammonia.
- a numerical range represented using “ ⁇ ” means a range including the numerical values described before and after " ⁇ " as lower and upper limits.
- a component containing at least one selected from the group consisting of ruthenium and ruthenium compounds is added to a support containing titanium oxide. It includes a step of contacting the supported catalyst with a nitrous oxide-containing gas containing nitrous oxide, water vapor and ammonia (hereinafter sometimes referred to as a contacting step). As will be described later, this contact step allows the nitrous oxide in the nitrous oxide-containing gas to be efficiently decomposed into nitrogen molecules (usually nitrogen gas) and oxygen molecules (usually oxygen gas).
- the decomposition method of the present invention uses a catalyst in which a component containing at least one selected from the group consisting of ruthenium and ruthenium compounds is supported on a support containing titanium oxide.
- a catalyst comprising a support containing titanium oxide and a component containing at least one selected from the group consisting of ruthenium and ruthenium compounds supported on the support means the surface and/or pores of the support containing titanium oxide. It means a catalyst in which a component containing at least one selected from the group consisting of ruthenium and ruthenium compounds is attached.
- at least one selected from the group consisting of ruthenium and ruthenium compounds is selected as the component to be supported on the carrier from the viewpoint of the balance between catalytic activity and cost.
- the ruthenium compound is not particularly limited, and examples thereof include ruthenium oxide, ruthenium hydroxide, ruthenium nitrate, ruthenium chloride, chlororuthenate, chlororuthenate hydrate, salts of ruthenic acid, ruthenium oxychloride, and ruthenium oxychloride.
- ruthenium ammine complexes chlorides of ruthenium ammine complexes, ruthenium bromide, ruthenium carbonyl complexes, ruthenium organic acid salts, ruthenium nitrosyl complexes, and the like.
- Ruthenium oxide includes RuO 2 and the like.
- Ruthenium hydroxides include Ru(OH) 3 .
- Ruthenium nitrate includes Ru(NO 3 ) 3 .
- Ruthenium chloride includes RuCl 3 and RuCl trihydrate.
- Examples of the chlororuthenate include salts with [RuCl 6 ] 3- as an anion, such as K 3 RuCl 6 , and salts with [RuCl 6 ] 2- as an anion, such as K 2 RuCl 6 and (NH 4 ) 2 RuCl 6 . and salt.
- Examples of the chlororuthenate hydrate include a salt hydrate with [RuCl 5 (H 2 O) 4 ] 2 ⁇ as an anion and a salt hydrate with [RuCl 2 (H 2 O) 4 ] + as a cation. is mentioned.
- Salts of ruthenic acid include Na 2 RuO 4 , K 2 RuO 4 and the like.
- Ruthenium oxychlorides include Ru 2 OCl 4 , Ru 2 OCl 5 , Ru 2 OCl 6 and the like.
- Ruthenium oxychloride salts include K 2 Ru 2 OCl 10 , Cs 2 Ru 2 OCl 4 and the like.
- the ruthenium ammine complexes include complexes having complex ions such as [Ru(NH 3 ) 6 ] 2+ , [Ru(NH 3 ) 6 ] 3+ and [Ru(NH 3 ) 5 H 2 O] 2+ .
- the chlorides of the ruthenium ammine complexes include complexes with [Ru(NH 3 ) 5 Cl] 2+ as a complex ion, [Ru(NH 3 ) 6 ]Cl 2 , [Ru(NH 3 ) 6 ]Cl 3 , [Ru (NH 3 ) 6 ]Br 3 and the like.
- RuBr 3 and RuBr trihydrate are examples of ruthenium bromide.
- Ruthenium carbonyl complexes include Ru(CO) 5 and Ru 3 (CO) 12 .
- Ruthenium compounds are preferably ruthenium oxide, ruthenium nitrate, ruthenium chloride, ruthenium bromide, salts of ruthenic acid, and ruthenium nitrosyl complexes, more preferably ruthenium oxide.
- the component supported on the carrier containing titanium oxide may contain at least one selected from the group consisting of ruthenium and ruthenium compounds, and may further contain metals other than ruthenium and metal compounds other than ruthenium compounds. may contain.
- the catalyst for the purpose of inhibiting the adsorption of substances that cause catalyst poisoning to the surface of the catalyst, preventing the performance of the catalyst from deteriorating, or preventing the sintering of the active sites of the catalyst, the catalyst is: It is preferable that the catalyst is obtained by further supporting at least one selected from the group consisting of metals other than ruthenium and metal compounds other than ruthenium compounds on a support containing titanium oxide.
- Metals other than ruthenium are not particularly limited, and include silicon, zirconium, aluminum, niobium, tin, copper, iron, cobalt, nickel, vanadium, chromium, molybdenum, tungsten, manganese, antimony, and tellurium.
- the metal compound other than the ruthenium compound is not particularly limited, and includes compounds containing metals other than ruthenium, and oxides of metals other than ruthenium are preferred.
- the metal oxide may be a composite oxide of multiple metal species.
- the catalyst may also be a catalyst in which an alloy of ruthenium and a metal other than ruthenium or a composite oxide containing ruthenium and a metal other than ruthenium is further supported on a carrier.
- the catalyst contains at least one selected from the group consisting of silicon oxide, zirconium oxide, aluminum oxide, niobium oxide, manganese oxide, antimony oxide, tellurium oxide and tin oxide on a support containing rutile crystal form of titanium oxide.
- the metal salt used to obtain the metal oxide is not particularly limited.
- the content of at least one selected from the group consisting of ruthenium and ruthenium compounds in the catalyst is not particularly limited and is set appropriately. .5 to 10% by mass is more preferable, and 1 to 5% by mass is even more preferable.
- the content of at least one selected from the group consisting of ruthenium and ruthenium compounds is based on metal ruthenium when the total amount of the component containing at least one selected from the group consisting of ruthenium and ruthenium compounds and the support is 100% by mass. 0.1 to 20% by mass is preferable, 0.5 to 10% by mass is more preferable, and 1 to 5% by mass is even more preferable.
- the contents of metals other than ruthenium and metal compounds other than ruthenium compounds in the catalyst are not particularly limited and can be appropriately set according to the above purpose.
- the carrier may contain titanium oxide, and may contain other compounds described later.
- the crystal form of titanium oxide constituting the carrier is not particularly limited, and may be any of rutile crystal form, anatase crystal form, and brookite crystal form.
- the carrier is preferably composed of titanium oxide containing titanium oxide in rutile crystal form. From the viewpoint of catalytic activity, the content of rutile crystalline titanium oxide in the titanium oxide contained in the carrier is preferably 20% by mass or more, preferably 30% by mass, based on 100% by mass of the total amount of titanium oxide contained in the carrier. The above is more preferable, 80% by mass or more is more preferable, and 90% by mass or more is even more preferable.
- titanium oxide containing rutile crystalline titanium oxide refers to titanium oxide containing rutile crystals among which the ratio of rutile crystals and anatase crystals in titanium oxide is measured by X-ray diffraction analysis.
- Various radiation sources are used as X-ray sources.
- K ⁇ rays of copper can be used as X-ray sources.
- the carrier used in the present invention is a carrier having peak intensity of rutile crystals and peak intensity of anatase crystals, or a carrier having peak intensity of rutile crystals. That is, the carrier may have both diffraction peaks of rutile crystals and diffraction peaks of anatase crystals, or may have only diffraction peaks of rutile crystals.
- Other compounds that the support may contain include, for example, metal oxides other than titanium oxide, composite oxides of titanium oxide and other metal oxides, and mixtures of titanium oxide and other metal oxides. etc.
- metal oxides other than titanium oxide include aluminum oxide, silicon oxide, and zirconium oxide.
- titanium oxide one prepared by a known method can be used, and a commercially available product can also be used.
- examples of the method for preparing the rutile crystal form of titanium oxide include the following methods. Titanium tetrachloride is added dropwise to ice-cooled water and then neutralized with an aqueous ammonia solution at a temperature of 20° C. or higher to produce titanium hydroxide (orthotitanic acid). A method of removing ions and then firing at a temperature of 600° C.
- Catalyst Preparation Chemistry, 1989, p.211, Kodansha A method of preparing a reaction gas by passing an oxygen-nitrogen mixed gas through a titanium tetrachloride evaporator, introducing it into a reactor, and reacting it at 900 ° C. or higher (Catalyst Preparation Chemistry, 1989, p.
- the carrier can be obtained by molding titanium oxide or the like into a desired shape.
- the carrier contains a compound or the like other than titanium oxide, it can be obtained by molding a mixture of titanium oxide and other compound or the like into a desired shape.
- the shape of the catalyst (carrier) is not particularly limited, and may be spherical granules, cylindrical pellets, rings, honeycombs, monoliths, corrugates, or moderately sized granules or fine particles obtained by crushing and classifying after molding. is mentioned.
- the diameter of the catalyst is preferably 10 mm or less from the viewpoint of catalytic activity.
- the diameter of the catalyst as used herein means the diameter of the sphere in the case of spherical particles, the diameter of the cross section in the case of cylindrical pellets, and the maximum diameter of the cross section in the case of other shapes.
- the catalyst used in the decomposition method of the present invention can be obtained, for example, by impregnating a support containing titanium oxide with a solution containing at least one component selected from the group consisting of ruthenium and ruthenium compounds, and It can be prepared by a method of drying after depositing a component containing at least one selected from the group consisting of ruthenium and ruthenium compounds.
- the solvent in the solution containing the component containing at least one selected from the group consisting of ruthenium and ruthenium compounds is not particularly limited, but water, ethanol and the like can be used. You may bake after drying.
- the catalyst contains ruthenium oxide
- a step of impregnating a support containing titanium oxide with a solution containing ruthenium halide to support the ruthenium halide on the support It can be obtained by a method comprising a step of drying the supported material and a step of calcining the dried material.
- the catalyst can be used by diluting it with an inert substance.
- the decomposition method of the present invention uses nitrous oxide-containing gases, including nitrous oxide, water vapor and ammonia.
- the nitrous oxide-containing gas may contain one or more gases other than nitrous oxide, water vapor, and ammonia, as long as it is a gas containing nitrous oxide, water vapor, and ammonia. Examples of such gases include various gases such as oxygen, helium, argon, nitrogen, and carbon dioxide, as well as reducing gases.
- the nitrous oxide containing gas may include liquids. In the decomposition method of the present invention, the nitrous oxide-containing gas only needs to be gaseous at least while it is in contact with the catalyst (reaction conditions). It may be a mixture.
- the content (concentration) of each component in the nitrous oxide-containing gas is not particularly limited and can be set as appropriate. For values, it is efficient to use them almost as they are. Therefore, for example, the molar concentration of nitrous oxide in the nitrous oxide-containing gas is generally and preferably 0.002 to 10 mol %.
- the molar concentration of water vapor is generally and preferably 0.1 to 10 mol %.
- the molar concentration of ammonia in the nitrous oxide-containing gas is preferably 0.0002 mol % or more, and preferably 1 mol % or less, from the viewpoint of nitrous oxide decomposition efficiency.
- the molar concentration of ammonia is more preferably 0.0002 to 0.5 mol %, even more preferably 0.0002 to 0.2 mol %.
- the content ratio of ammonia to water vapor contained in the nitrous oxide-containing gas [ammonia/water vapor] is not particularly limited and can be set as appropriate. is preferably In terms of molar ratio, it is more preferably 0.0010 to 0.050, and 0.0010 to 0.030 in terms of suppressing or avoiding the problem of remaining ammonia (emission into the atmosphere, implementation of removal work) is more preferably 0.0010 to 0.010.
- the content ratio of ammonia to nitrous oxide contained in the nitrous oxide-containing gas [ammonia/nitrous oxide] is not particularly limited and can be set appropriately, but the molar ratio is 0.005 to 10. is preferred.
- the content of oxygen gas in the nitrous oxide-containing gas is not particularly limited and can be set as appropriate. It is preferably 0.01 to 10,000 mol times.
- the nitrous oxide-containing gas does not contain oxygen gas, it can be obtained, for example, by mixing the nitrous oxide-containing gas and the oxygen-containing gas.
- Oxygen-containing gas includes air.
- the nitrous oxide-containing gas can also contain a reducing gas in order to further increase the decomposition efficiency of nitrous oxide.
- a raw material that reacts with oxygen contained in the nitrous oxide-containing gas or generated in the reactor to generate a reducing gas such as carbon monoxide gas It is also possible to contain a saturated hydrocarbon gas such as In terms of decomposition efficiency of nitrous oxide, a method of incorporating a reducing gas into the nitrous oxide-containing gas is preferable.
- the reducing gas any reducing gas other than ammonia may be used, and any reducing gas used in a general catalytic reduction method can be used without particular limitation.
- Examples include unsaturated hydrocarbon gases such as ethylene, propylene, ⁇ -butylene and ⁇ -butylene, carbon monoxide gas, hydrogen gas, and alcohol compound gases such as methanol, ethanol, propanol and butanol. Among them, at least one of carbon monoxide gas, unsaturated hydrocarbon gas and hydrogen gas is preferred.
- Methane, ethane, propane, n-butane, and the like are examples of saturated hydrocarbon gases that are raw materials for generating reducing gases such as carbon monoxide gas.
- Preferred saturated hydrocarbon gases include ethane, propane and n-butane.
- Mixtures such as natural gas, liquefied natural gas, and liquefied petroleum gas may be used to include saturated hydrocarbon gases.
- the content of the reducing gas or saturated hydrocarbon gas in the nitrous oxide-containing gas is not particularly limited and can be set appropriately.
- the molar concentration of the reducing gas or saturated hydrocarbon gas in the nitrous oxide-containing gas is 0.001-1 mol %.
- the molar ratio of reducing gas or saturated hydrocarbon gas to steam [reducing gas or saturated hydrocarbon gas/steam] in the nitrous oxide-containing gas is preferably 0.0003 to 0.03.
- the content ratio of reducing gas or saturated hydrocarbon gas to nitrous oxide contained in nitrous oxide-containing gas [reducing gas or saturated hydrocarbon gas/nitrous oxide] is a molar ratio of 0.01 to 100 is preferred.
- the nitrous oxide-containing gas can be prepared by appropriately mixing nitrous oxide, water vapor, ammonia, and the above gases other than these.
- various exhaust gases discharged from chemical manufacturing plants can also be used.
- gases discharged from chemical manufacturing plants such as nitric acid manufacturing plants, ⁇ -caprolactam manufacturing plants, and adipic acid manufacturing plants contain steam, ammonia, and oxygen gas in addition to nitrous oxide. Therefore, it can be effectively used in the decomposition method of the present invention.
- the exhaust gas satisfies the above range of content, content ratio, etc., it is preferable in that it can be applied to the decomposition method of the present invention as it is without adjusting the content.
- ⁇ Contact process> In the decomposition method of the present invention, the catalyst is brought into contact with the nitrous oxide-containing gas. In this contact step, the nitrous oxide in the nitrous oxide-containing gas contacts the catalyst, so that even in the presence of water vapor, the decomposition reaction of nitrous oxide represented by the following formula occurs, resulting in nitrous oxide. is efficiently decomposed into nitrogen molecules and oxygen molecules.
- Decomposition reaction of nitrous oxide: N 2 O ⁇ N 2 + 1/2O 2 Ammonia in the nitrous oxide-containing gas further promotes the decomposition reaction of nitrous oxide.
- a catalyst that exhibits a reducing action such as a ruthenium-supported catalyst
- ammonia reacts with nitrous oxide on the surface of the catalyst to decompose nitrous oxide into nitrogen molecules and water molecules. It is presumed that the decomposition reaction of nitric oxide can be further accelerated.
- a catalyst that does not exhibit a reducing action such as a catalyst supporting ruthenium oxide
- the oxygen atoms are removed from the catalyst surface by reacting with the oxygen atoms remaining on the catalyst surface to maintain the catalytic activity. It is presumed that the deactivation of the catalyst can be suppressed and the decomposition reaction can be promoted.
- the nitrous oxide-containing gas is brought into contact with the catalyst.
- the contacting method is not particularly limited, and may be, for example, a batch method or a continuous method, preferably a continuous method in terms of reaction efficiency.
- the continuous type includes, for example, a fixed bed type and a fluidized bed type.
- the contact temperature (reaction temperature) is appropriately determined, but is preferably 500° C. or lower from the viewpoint of catalyst activity deterioration, and preferably 100° C. or higher from the viewpoint of reaction rate.
- the contact temperature is preferably 200-450°C, more preferably 250-400°C.
- the feed rate of the nitrous oxide-containing gas relative to the weight of the catalyst is not particularly limited and is determined appropriately.
- the reaction pressure varies depending on the contact temperature, the supply rate of the nitrous oxide-containing gas, the pressure of the outside air around the reactor, etc., but is preferably higher than the outside air, preferably 0.08 to 1 MPa (absolute) in terms of absolute pressure. and more preferably 0.09 to 0.7 MPa (absolute) in terms of absolute pressure.
- the decomposition method of the present invention may have steps other than the contact step. Examples thereof include a step of adjusting the component content of the nitrous oxide-containing gas, and a step of introducing oxygen gas or reducing gas into the nitrous oxide-containing gas.
- the nitrous oxide decomposition apparatus of the present invention (hereinafter sometimes simply referred to as the decomposition apparatus of the present invention) is a component containing at least one selected from the group consisting of ruthenium and ruthenium compounds in a carrier containing titanium oxide. and a line connected to the reactor and supplying a nitrous oxide-containing gas containing nitrous oxide, water vapor and ammonia to the reactor. .
- this decomposition apparatus can efficiently decompose nitrous oxide in the nitrous oxide-containing gas into nitrogen molecules and oxygen molecules.
- the catalyst and nitrous oxide-containing gas in the cracking apparatus of the present invention are as described above.
- the reactor is a container in which nitrous oxide contained in the nitrous oxide-containing gas supplied to the catalyst is decomposed by the catalyst incorporated therein, and its shape, dimensions, etc. are appropriately set.
- reactors used in the continuous contact method include tubular or tower reactors such as metal tubes and column towers, and specific examples include various fixed bed reactors. Part or all of the internal space of the reactor is built in or filled with the above catalyst.
- the surface of the internal space through which the nitrous oxide-containing gas flows may be formed of a material having resistance to the nitrous oxide-containing gas, such as a metal reactor such as stainless steel containing iron as a main component. is mentioned.
- the reactor may be equipped internally or externally with a heater for heating the internal space.
- the decomposition apparatus of the present invention includes a line (supply pipe) connected to the reactor and supplying the nitrous oxide-containing gas to the interior space of the reactor.
- a line supply pipe
- the surface of the inner hole through which the nitrous oxide-containing gas flows is formed of a material having resistance to the nitrous oxide-containing gas, and the dimensions and the like are appropriately set.
- This line may be equipped with a pump that transfers the nitrous oxide-containing gas, a heater that heats the internal space, and the like.
- This line may also be directly or indirectly connected to the line discharged from the nitrogen oxides (NOx) denitrification reactor.
- the reactor may be equipped with an exhaust line for exhausting the nitrous oxide-containing gas after contacting the catalyst. Further, the reactor or line may be connected to various gas introduction pipes for adjusting the content of each gas in the nitrous oxide-containing gas.
- the nitrous oxide-containing gas is brought into contact with the catalyst filled in the inner space of the reactor, preferably by circulating (passing) through the catalyst, so that the nitrous oxide-containing gas Nitrous oxide can be efficiently decomposed and the emission of nitrous oxide can be suppressed. Moreover, in a preferred embodiment of the present invention, ammonia in the nitrous oxide-containing gas can also be efficiently decomposed, and the emission of ammonia can be suppressed.
- the decomposition method and decomposition apparatus of the present invention can be used in various fields and applications for decomposing and removing nitrous oxide, such as chemical manufacturing plants.
- it can be suitably used in chemical manufacturing plants such as nitric acid manufacturing plants, ⁇ -caprolactam manufacturing plants, and adipic acid manufacturing plants that discharge gases containing nitrous oxide, ammonia and water vapor.
- the installation position of the cracking device of the present invention is not particularly limited, but it is usually installed at the last stage in the flow direction of the exhaust gas, for example, at the front stage of the discharge tower. Specifically, if it is a nitric acid production plant, it is incorporated after the denitrification reactor.
- the discharge pipe of the manufacturing plant can be used as the line of the cracking apparatus of the present invention, and the cracking apparatus of the present invention can be installed simply by incorporating a reactor into the existing manufacturing plant.
- Nitrous oxide decomposition equipment can be installed at the same time, and the existing manufacturing plant can be effectively used.
- a RuO 2 /TiO 2 catalyst was prepared as follows. By firing a titanium oxide compact (cylindrical pellets with a diameter of 3 mm and a length of 4 to 6 mm) extruded from titanium oxide powder (manufactured by Showa Denko) at 800° C. for 3 hours using a muffle furnace. , a carrier (specific surface area: 5 m 2 /g, 100% rutile crystal form) formed of titanium oxide was obtained. The specific surface area of the support formed of titanium oxide was measured by the BET single-point method by nitrogen adsorption at 77K.
- Example 1 0.24 g of the RuO 2 /TiO 2 catalyst produced in Production Example 1 above was filled in a quartz glass reaction tube (inner diameter 8 mm) equipped with a sheath tube for measuring the internal temperature. This reaction tube was placed in an electric furnace, and under normal pressure (0.1 MPa (absolute)) and 100 cm 3 (0° C., 0.1013 MPa (absolute))/min of helium flow, the temperature inside the quartz glass tube was 300° C.
- a reaction outlet gas (post-reaction gas) from the reaction tube 0.5 hours after initiation of the decomposition reaction of nitrous oxide was analyzed as follows.
- the nitrous oxide content CB in the nitrous oxide-containing gas and the nitrous oxide content CA in the reaction outlet gas were analyzed by gas chromatography (Micro GC manufactured by VARIAN (detector: micro TCD, Column: CP-PoraPLOT Q 10m))).
- Examples 2 to 6 and Comparative Example 1 After the decomposition reaction and analysis of Example 1, the gas supplied to the reaction tube filled with the catalyst was sequentially switched to the nitrous oxide-containing gas having the composition shown in Table 1 below to start the decomposition reaction. Decomposition reaction and analysis of nitrous oxide were carried out in the same manner as in Example 1. Examples 2 to 6 and Comparative Example 1 were performed in the order of Example 2, Comparative Example 1, Example 3, Example 4, Example 5, and Example 6. Table 2 shows the results obtained.
- Table 1 shows the composition of the nitrous oxide-containing gas.
- the remainder of the nitrous oxide containing gas is helium gas.
- Ru/TiO 2 catalysts were produced by pre-reducing the RuO 2 /TiO 2 used in Examples 1 to 6 and Comparative Example 1 with hydrogen gas as follows. 0.24 g of the above RuO 2 /TiO 2 catalyst was filled in a quartz glass tube (inner diameter 8 mm) equipped with a sheath tube for measuring the internal temperature. This reaction tube was placed in an electric furnace, and 50 cm 3 (0° C., 0.1013 MPa (absolute))/min of argon/hydrogen mixed gas (hydrogen: 5 mol %, argon: 95 mol %) flowed at normal pressure. Then, the furnace temperature was raised to 200 ° C.
- the internal temperature of the quartz glass tube was 206°C when the temperature of the electric tubular furnace was 200°C.
- Examples 7 and 8 After the reaction and analysis of Comparative Example 2, the gas supplied to the reaction tube filled with the catalyst was sequentially switched to the nitrous oxide-containing gas having the composition shown in Table 3 below to start the reaction. The decomposition reaction and analysis of nitrous oxide were carried out in the same manner as in . Examples 7 and 8 were performed in the order of Example 7 and Example 8. Table 4 shows the results obtained.
- Table 3 shows the composition of the nitrous oxide-containing gas.
- the remainder of the nitrous oxide containing gas is helium gas.
- ammonia/steam when the molar ratio of ammonia to water vapor [ammonia/steam] is set to 0.001 to 0.030 (Examples 2 to 8)), while maintaining good nitrous oxide decomposition efficiency, The concentration of ammonia can be reduced, and ammonia can also be efficiently decomposed.
- the nitrous oxide decomposition method and decomposition apparatus of the present invention can efficiently decompose nitrous oxide in gas containing nitrous oxide, water vapor and ammonia.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
<1>酸化チタンを含む担体に、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒と、
亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスとを接触させる工程を含む、亜酸化窒素の分解方法。
<2>前記亜酸化窒素含有ガスに含まれる前記水蒸気に対する前記アンモニアのモル比が0.001~0.050である、<1>に記載の亜酸化窒素の分解方法。
<3>前記亜酸化窒素含有ガスに含まれる前記亜酸化窒素のモル濃度が0.002~10%である、<1>または<2>に記載の亜酸化窒素の分解方法。
<4>前記亜酸化窒素含有ガスに含まれる前記水蒸気のモル濃度が0.1~10%である、<1>~<3>のいずれか一項に記載の亜酸化窒素の分解方法。
<5>前記亜酸化窒素含有ガスが飽和炭化水素ガスをさらに含む、<1>~<4>のいずれか一項に記載の亜酸化窒素の分解方法。
<6>前記亜酸化窒素含有ガスが還元性ガスをさらに含む、<1>~<5>のいずれか一項に記載の亜酸化窒素の分解方法。
<7>前記還元性ガスが一酸化炭素ガス、不飽和炭化水素ガスまたは水素ガスである、<6>に記載の亜酸化窒素の分解方法。
<8>前記亜酸化窒素含有ガスが化学品製造プラントから排出されたガスである、<1>~<7>のいずれか一項に記載の亜酸化窒素の分解方法。
<9>酸化チタンを含む担体に、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒が充填された反応器と、
前記反応器に接続されており、亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスを前記反応器に供給するラインとを備えた、亜酸化窒素の分解装置。
本発明の亜酸化窒素の分解方法(以下、単に本発明の分解方法ということがある。)は、酸化チタンを含む担体にルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒と、亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスとを接触させる工程(以下、接触工程ということがある。)を含んでいる。この接触工程により、後述するように、亜酸化窒素含有ガス中の亜酸化窒素を窒素分子(通常窒素ガス)と酸素分子(通常酸素ガス)とに効率よく分解できる。
本発明の分解方法は、酸化チタンを含む担体にルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒を用いる。
本発明において、「酸化チタンを含む担体にルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒」とは、酸化チタンを含む担体の表面および/または細孔内に、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が付着している触媒を意味する。
本発明の分解方法においては、担体に担持する成分として、触媒活性およびコストのバランスなどの点で、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を選択する。
ルテニウム化合物としては、特に制限されず、例えば、酸化ルテニウム、水酸化ルテニウム、硝酸ルテニウム、塩化ルテニウム、クロロルテニウム酸塩、クロロルテニウム酸塩水和物、ルテニウム酸の塩、ルテニウムオキシ塩化物、ルテニウムオキシ塩化物の塩、ルテニウムアンミン錯体、ルテニウムアンミン錯体の塩化物、臭化ルテニウム、ルテニウムカルボニル錯体、ルテニウム有機酸塩、ルテニウムニトロシル錯体などが挙げられる。
酸化ルテニウムとしては、RuO2などが挙げられる。
水酸化ルテニウムとしては、Ru(OH)3が挙げられる。
硝酸ルテニウムとしては、Ru(NO3)3が挙げられる。
塩化ルテニウムとしては、RuCl3、RuCl3水和物などが挙げられる。
クロロルテニウム酸塩としては、K3RuCl6など、〔RuCl6〕3-を陰イオンとする塩、K2RuCl6や(NH4)2RuCl6など、〔RuCl6〕2-を陰イオンとする塩が挙げられる。
クロロルテニウム酸塩水和物としては、〔RuCl5(H2O)4〕2-を陰イオンとする塩水和物、〔RuCl2(H2O)4〕+を陽イオンとする塩水和物などが挙げられる。
ルテニウム酸の塩としては、Na2RuO4、K2RuO4などが挙げられる。
ルテニウムオキシ塩化物としては、Ru2OCl4、Ru2OCl5、Ru2OCl6などが挙げられる。
ルテニウムオキシ塩化物の塩としては、K2Ru2OCl10、Cs2Ru2OCl4などが挙げられる。
ルテニウムアンミン錯体としては、〔Ru(NH3)6〕2+、〔Ru(NH3)6〕3+、〔Ru(NH3)5H2O〕2+などを錯イオンとする錯体などが挙げられる。
ルテニウムアンミン錯体の塩化物としては、〔Ru(NH3)5Cl〕2+を錯イオンとする錯体、〔Ru(NH3)6〕Cl2、〔Ru(NH3)6〕Cl3、〔Ru(NH3)6〕Br3などが挙げられる。
臭化ルテニウムとしては、RuBr3、RuBr3水和物などが挙げられる。
ルテニウムカルボニル錯体としては、Ru(CO)5、Ru3(CO)12などが挙げられる。
ルテニウム有機酸塩としては、[Ru3O(OCOCH3)6(H2O)3]OCOCH3水和物、Ru2(RCOO)4Cl(R=炭素数1-3のアルキル基)などが挙げられる。
ルテニウムニトロシル錯体としては、K2〔RuCl5NO)〕、〔Ru(NH3)5(NO)〕Cl3、〔Ru(OH)(NH3)4(NO)〕(NO3)2、Ru(NO)(NO3)3などが挙げられる。
ルテニウム化合物は、酸化ルテニウム、硝酸ルテニウム、塩化ルテニウム、臭化ルテニウム、ルテニウム酸の塩、ルテニウムニトロシル錯体が好ましく、酸化ルテニウムがより好ましい。
本発明において、触媒被毒の原因となる物質が触媒表面に吸着することを阻害し、触媒の性能が低下することを防ぐ、あるいは触媒活性点のシンタリングを防ぐなどの目的で、触媒は、酸化チタンを含む担体に、ルテニウム以外の金属およびルテニウム化合物以外の金属化合物からなる群から選択される少なくとも1種がさらに担持された触媒であることが好ましい。
ルテニウム以外の金属としては、特に制限されず、ケイ素、ジルコニウム、アルミニウム、ニオブ、スズ、銅、鉄、コバルト、ニッケル、バナジウム、クロム、モリブデン、タングステン、マンガン、アンチモン、テルルなどが挙げられる。ルテニウム化合物以外の金属化合物としては、特に制限されず、上記ルテニウム以外の金属を有する化合物が挙げられ、上記ルテニウム以外の金属の酸化物が好ましい。金属酸化物は、複数の金属種の複合酸化物であってもよい。また、触媒は、担体に、ルテニウムとルテニウム以外の金属との合金や、ルテニウムとルテニウム以外の金属とを含む複合酸化物がさらに担持された触媒でもよい。
触媒は、より好ましくは、ルチル結晶形の酸化チタンを含有する担体に、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム、酸化ニオブ、酸化マンガン、酸化アンチモン、酸化テルルおよび酸化スズからなる群から選ばれる少なくとも一種の酸化物がさらに担持された触媒である。
金属の酸化物を得るために用いられる金属塩は、特に限定されない。
ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種の含有量は、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含む成分と担体との合計量を100質量%とすると、金属ルテニウム基準で、0.1~20質量%が好ましく、0.5~10質量%がより好ましく、1~5質量%がさらに好ましい。
触媒中の、ルテニウム以外の金属、およびルテニウム化合物以外の金属化合物などの含有量は、特に制限されず、上記目的に応じて適宜に設定できる。
担体は、酸化チタンを含むものであればよく、後述する他の化合物などを含んでいてもよい。担体を構成する酸化チタンの結晶形は、特に制限されず、ルチル結晶形、アナターゼ結晶形、ブルッカイト結晶形のいずれもでもよい。本発明において、担体は、ルチル結晶形の酸化チタンを含有する酸化チタンで構成されていることが好ましい。触媒活性の観点から、担体に含まれる酸化チタン中の、ルチル結晶形の酸化チタンの含有率は、担体に含まれる酸化チタンの全量を100質量%として、20質量%以上が好ましく、30質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。
ルチル結晶形の酸化チタンの調製方法としては、以下の方法が挙げられる。
四塩化チタンを氷冷した水に滴下溶解した後、20℃以上の温度で、アンモニア水溶液で中和し、水酸化チタン(オルトチタン酸)を生成させ、次いで、生成した沈殿を水洗して塩素イオンを除去した後、600℃以上の温度で焼成する方法(触媒調製化学、1989年、211頁、講談社);
四塩化チタン蒸発器に酸素-窒素混合ガスを通じて反応ガスを調製し、これを反応器に導入し、900℃以上で反応させる方法(触媒調製化学、1989年、89頁、講談社);
四塩化チタンを硫酸アンモニウムの存在下に加水分解した後、焼成する方法(例えば、触媒工学講座10元素別触媒便覧、1978年、254頁、地人書館);
アナターゼ結晶形の酸化チタンを焼成する方法(例えば、金属酸化物と複合酸化物、1980年、107頁、講談社);
塩化チタン水溶液を加熱加水分解する方法;および
硫酸チタンや塩化チタンなどのチタン化合物水溶液とルチル結晶形の酸化チタン粉末を混合した後、加熱加水分解やアルカリ加水分解し、次いで、500℃前後の温度で焼成する方法
触媒が酸化ルテニウムを含有する場合、例えば、ハロゲン化ルテニウムを含む溶液に、酸化チタンを含有する担体を含侵させて、担体にハロゲン化ルテニウムを担持させる工程と、ハロゲン化ルテニウムが担体に担持された担持物を乾燥させる工程と、乾燥物を焼成する工程とを有する方法により得ることができる。
本発明の分解方法は、亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスを用いる。
亜酸化窒素含有ガスは、亜酸化窒素、水蒸気およびアンモニアを含有するガスであれば、これら以外のガスを1種または2種以上含んでもよい。このようなガスとして、例えば、酸素、ヘリウム、アルゴン、窒素、二酸化炭素などの各種ガス、さらには還元性ガスが挙げられる。亜酸化窒素含有ガスは、液体を含んでもよい。本発明の分解方法において、亜酸化窒素含有ガスは、少なくとも上記触媒と接触している間(反応条件下)に気体となっていればよく、接触前は液体であっても、気体と液体の混合物であってもよい。
亜酸化窒素含有ガスに含まれる水蒸気に対するアンモニアの含有量比[アンモニア/水蒸気]は、特に制限されず適宜に設定できるが、亜酸化窒素の分解効率の点から、モル比で、0.0010以上であることが好ましい。モル比で、0.0010~0.050であることがより好ましく、残存するアンモニアの問題(大気中への排出、除去作業の実施)を抑制または回避の点で、0.0010~0.030であることがより好ましく、0.0010~0.010であることがさらに好ましい。また、亜酸化窒素含有ガスに含まれる亜酸化窒素に対するアンモニアの含有量比[アンモニア/亜酸化窒素]は、特に制限されず適宜に設定できるが、モル比で、0.005~10であることが好ましい。
亜酸化窒素含有ガス中の還元性ガスまたは飽和炭化水素ガスの含有量は、特に制限されず、適宜に設定できる。例えば、亜酸化窒素含有ガス中の還元性ガスまたは飽和炭化水素ガスのモル濃度は、0.001~1モル%である。亜酸化窒素含有ガス中の、水蒸気に対する還元性ガスまたは飽和炭化水素ガスのモル比[還元性ガスまたは飽和炭化水素ガス/水蒸気]は、0.0003~0.03であることが好ましい。また、亜酸化窒素含有ガスに含まれる亜酸化窒素に対する還元性ガスまたは飽和炭化水素ガスの含有量比[還元性ガスまたは飽和炭化水素ガス/亜酸化窒素]は、モル比で、0.01~100であることが好ましい。
本発明の分解方法においては、上記触媒と上記亜酸化窒素含有ガスとを接触させる。
この接触工程において、亜酸化窒素含有ガス中の亜酸化窒素が触媒に接触することより、水蒸気の共存下であっても、下記式に示す亜酸化窒素の分解反応が生起して、亜酸化窒素が窒素分子と酸素分子とに効率よく分解される。
亜酸化窒素の分解反応:N2O → N2 + 1/2O2
亜酸化窒素含有ガス中のアンモニアは、亜酸化窒素の分解反応をさらに促進させる。その作用メカニズムの詳細はまだ明らかではないが、次のように考えられる。例えば、ルテニウムを担持した触媒などのように還元作用を示す触媒の存在下においては、アンモニアが触媒表面で亜酸化窒素と反応することにより、亜酸化窒素を窒素分子と水分子に分解して亜酸化窒素の分解反応をさらに促進できると推定される。一方、酸化ルテニウムを担持した触媒などのように還元作用を示さない触媒の存在下においては、触媒表面に残存する酸素原子と反応することにより触媒表面から酸素原子を除去して触媒活性を持続させ(触媒の失活を抑制し)、上記分解反応を促進できると推定される。
接触させる方法は、特に制限されず、例えば、バッチ式でも連続式でもよく、反応効率の点で連続式が好ましい。連続式としては、例えば、固定床形式、流動床形式が挙げられる。
接触温度(反応温度)は、適宜に決定されるが、触媒活性劣化の観点から500℃以下が好ましく、反応速度の観点から100℃以上が好ましい。接触温度は、好ましくは200~450℃であり、より好ましくは250~400℃である。
連続式接触方法における、触媒重量に対する亜酸化窒素含有ガスの供給速度は、特に制限されず適宜に決定され、例えば、触媒1gに対する、0℃、0.1013MPa(absolute)での流量として、10~10000cm3/分であることが好ましく、50~5000cm3/分であることがより好ましい。
反応圧力は、接触温度、亜酸化窒素含有ガスの供給速度や反応器周辺の外気の圧力などによって変動するが、外気より高い圧力が好ましく、好ましくは絶対圧で0.08~1MPa(absolute)であり、より好ましくは絶対圧で0.09~0.7MPa(absolute)である。
本発明の分解方法は、接触工程以外の工程を有していてもよい。例えば、亜酸化窒素含有ガスの成分含有量を調整する工程、亜酸化窒素含有ガスに酸素ガスまたは還元性ガスを導入する工程などが挙げられる。
本発明の亜酸化窒素の分解装置(以下、単に本発明の分解装置ということがある。)は、酸化チタンを含む担体に、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒が充填された反応器と、この反応器に接続されており、亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスを上記反応器に供給するラインとを備えている。この分解装置により、後述するように、亜酸化窒素含有ガス中の亜酸化窒素を窒素分子と酸素分子とに効率よく分解できる。
本発明の分解装置における、触媒および亜酸化窒素含有ガスは上述の通りである。
反応器は、その内部に内蔵された上記触媒によって、上記触媒に供給される亜酸化窒素含有ガス中の亜酸化窒素を分解する容器であり、その形状、寸法などは適宜に設定される。例えば、連続式接触方法に用いる反応器であれば、金属管、カラム塔などの管状もしくは塔型の反応器が挙げられ、具体的には、各種の固定層反応器が挙げられる。反応器は、その内部空間の一部または全部に上記触媒が内蔵または充填されている。この反応器は、亜酸化窒素含有ガスが流通する内部空間の表面が亜酸化窒素含有ガスに対する耐性を有する材質で形成されていればよく、ステンレス鋼などの鉄を主成分とする金属反応器などが挙げられる。反応器はその内部空間を加熱する加熱器をその内部もしくは外部に備えていてもよい。
本発明の分解装置は、上記反応器に接続されて、亜酸化窒素含有ガスを反応器の内部空間に供給するライン(供給管)を備えている。このラインは、亜酸化窒素含有ガスが流通する内孔表面が亜酸化窒素含有ガスに対する耐性を有する材質で形成されていればよく、寸法などは適宜に設定される。このラインは、亜酸化窒素含有ガスを移送するポンプ、内部空間を加熱する加熱器などを備えていてもよい。また、このラインは、窒素酸化物(NOx)の脱硝反応器から排出されるラインと直接または間接的に接続されていてもよい。
また、上記反応器またはラインは、亜酸化窒素含有ガス中の各ガスの含有量を調整するための各種ガス導入管が接続されていてもよい。
本発明の分解装置を既存の製造プラントに適用する場合、本発明の分解装置の設置位置は、特に制限されないが、通常、排ガスの流通方向の最後段、例えば排出塔の前段に組み込まれる。具体的には、硝酸の製造プラントであれば、脱硝反応器の後段に組み込まれる。本発明の分解装置を既存の製造プラントに適用する場合、製造プラントの排出管を本発明の分解装置のラインとして用いることができ、本発明の分解装置は既存の製造プラントに反応器を組み込むだけで亜酸化窒素分解装置を併設でき、既存の製造プラントを有効活用できる。
以下のようにして、RuO2/TiO2触媒を製造した。
酸化チタン粉末(昭和電工社製)が押出成形された酸化チタン成形体(直径3mm、長さ4~6mmの円柱形ペレット状)を、マッフル炉を用いて、800℃、3時間焼成することで、酸化チタンで形成された担体(比表面積:5m2/g、100%ルチル結晶形)を得た。酸化チタンで形成された担体の比表面積は、77Kでの窒素吸着によるBET1点法で測定した。
塩化ルテニウム水和物0.38g(フルヤ金属社製、RuCl3・nH2O、Ru含有量40%)を、イオン交換水2.0gに溶解させた。得られた溶液を、インシピエントウェットネス法により、酸化チタンで形成された担体9.7gに含浸させた後、空気雰囲気下、室温(25℃)で一晩風乾することで、塩化ルテニウム水和物を担持した酸化チタン固体を得た。
得られた固体を、内温測定用のさや管を具備した石英製ガラス管に充填した後、電気管状炉を用いて、200cm3(0℃、0.1013MPa(absolute))/分の空気流通下、炉温250℃まで昇温し、次いで、同温度で2時間保持することで焼成した。電気管状炉温250℃における石英製ガラス管内温は275℃であった。焼成により、酸化ルテニウムを2.0質量%含むRuO2/TiO2触媒10g(Ru含有量1.5質量%)を得た。
内温測定用のさや管を具備した石英製ガラス反応管(内径8mm)に上記製造例1で製造したRuO2/TiO2触媒0.24gを充填した。この反応管を電気炉内に設置し、常圧(0.1MPa(absolute))、100cm3(0℃、0.1013MPa(absolute))/分のヘリウム流通下、石英製ガラス管内温が300℃になるまで昇温した。次いで、同圧力および同温度で、触媒に接触させるガスを、ヘリウムから下記表1に示す組成の亜酸化窒素含有ガス(流量:100cm3(0℃、0.1013MPa(absolute))/分)に切り替えて、亜酸化窒素の分解反応を行った。
亜酸化窒素含有ガス中の亜酸化窒素の含有量CBと、反応出口ガス中の亜酸化窒素の含有量CAの分析は、ガスクロマトグラフィ(VARIAN社製、マイクロGC(検出器:マイクロTCD、カラム:CP-PoraPLOT Q 10m))を用いて行った。そして、分析された亜酸化窒素の濃度から、亜酸化窒素濃度の減少率を下記式から算出した。その結果を表2に示す。
亜酸化窒素濃度の減少率(%)=[(CB-CA)/CB]×100
実施例1の分解反応および分析を行った後、触媒を充填した反応管に供給するガスを、下記表1に示す組成の亜酸化窒素含有ガスに順次切り替えて分解反応を開始した以外は、実施例1と同様にして、亜酸化窒素の分解反応および分析を行った。
実施例2~6および比較例1は、実施例2、比較例1、実施例3、実施例4、実施例5、実施例6の順番で行った。得られた結果を表2に示す。
上記実施例1~6および比較例1で使用したRuO2/TiO2を、水素ガスを用いて次のように前還元することにより、Ru/TiO2触媒を製造した。
内温測定用のさや管を具備した石英製ガラス管(内径8mm)に上記RuO2/TiO2触媒0.24gを充填した。この反応管を電気炉内に設置し、常圧、50cm3(0℃、0.1013MPa(absolute))/分のアルゴン/水素混合ガス(水素:5モル%、アルゴン:95モル%)の流通下、炉温200℃まで5℃/分の昇温速度で昇温し、次いで、同圧力および同温度で0.5時間保持することにより、RuO2/TiO2触媒を水素還元して、Ru/TiO2触媒を得た。電気管状炉温200℃における石英製ガラス管内温は206℃であった。
上記Ru/TiO2触媒の製造後、同圧力および同温度で、触媒に接触させるガスを、アルゴン/水素混合ガスから100cm3(0℃、0.1013MPa(absolute))/分のヘリウムに切り替え、石英製ガラス管内温が300℃になるまで昇温した。次いで、同圧力および同温度で、触媒に接触させるガスを、ヘリウムから下記表3に示す組成の亜酸化窒素含有ガス(流量:100cm3(0℃、0.1013MPa(absolute))/分)に切り替えて、亜酸化窒素の分解反応を行った。
亜酸化窒素の分解反応を開始して0.5時間後の反応管からの反応出口ガスを実施例1と同様の方法で分析した。その結果を表4に示す。
比較例2の反応および分析を行った後、触媒を充填した反応管に供給するガスを、下記表3に示す組成の亜酸化窒素含有ガスに順次切り替えて反応を開始した以外は、比較例2と同様にして、亜酸化窒素の分解反応および分析を行った。
実施例7および8は、実施例7、実施例8の順番で行った。得られた結果を表4に示す。
これに対して、触媒と亜酸化窒素との接触に際してアンモニアを共存させると(実施例1~8)、亜酸化窒素の濃度減少率は比較例のそれよりも大きくなっており、亜酸化窒素を効率よく分解できる。また、水蒸気に対するアンモニアのモル比[アンモニア/水蒸気]を0.001~0.030に設定すると(実施例2~8)、亜酸化窒素の良好な分解効率を維持しながらも、反応出口ガス中のアンモニア濃度を低減でき、アンモニアも効率よく分解できる。
Claims (9)
- 酸化チタンを含む担体に、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒と、
亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスとを接触させる工程を含む、亜酸化窒素の分解方法。 - 前記亜酸化窒素含有ガスに含まれる前記水蒸気に対する前記アンモニアのモル比が0.001~0.050である、請求項1に記載の亜酸化窒素の分解方法。
- 前記亜酸化窒素含有ガスに含まれる前記亜酸化窒素のモル濃度が0.002~10%である、請求項1または2に記載の亜酸化窒素の分解方法。
- 前記亜酸化窒素含有ガスに含まれる前記水蒸気のモル濃度が0.1~10%である、請求項1~3のいずれか一項に記載の亜酸化窒素の分解方法。
- 前記亜酸化窒素含有ガスが飽和炭化水素ガスをさらに含む、請求項1~4のいずれか一項に記載の亜酸化窒素の分解方法。
- 前記亜酸化窒素含有ガスが還元性ガスをさらに含む、請求項1~5のいずれか一項に記載の亜酸化窒素の分解方法。
- 前記還元性ガスが一酸化炭素ガス、不飽和炭化水素ガスまたは水素ガスである、請求項6に記載の亜酸化窒素の分解方法。
- 前記亜酸化窒素含有ガスが化学品製造プラントから排出されたガスである、請求項1~7のいずれか一項に記載の亜酸化窒素の分解方法。
- 酸化チタンを含む担体に、ルテニウムおよびルテニウム化合物からなる群から選ばれる少なくとも1種を含有する成分が担持されてなる触媒が充填された反応器と、
前記反応器に接続されており、亜酸化窒素、水蒸気およびアンモニアを含む亜酸化窒素含有ガスを前記反応器に供給するラインとを備えた、亜酸化窒素の分解装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280055695.6A CN117858750A (zh) | 2021-08-18 | 2022-05-27 | 氧化亚氮的分解方法和氧化亚氮的分解装置 |
EP22858130.2A EP4389259A1 (en) | 2021-08-18 | 2022-05-27 | Nitrous oxide decomposition method and nitrous oxide decomposition device |
KR1020247005501A KR20240041953A (ko) | 2021-08-18 | 2022-05-27 | 아산화질소의 분해 방법 및 아산화질소의 분해 장치 |
AU2022331065A AU2022331065A1 (en) | 2021-08-18 | 2022-05-27 | Nitrous oxide decomposition method and nitrous oxide decomposition device |
CA3224386A CA3224386A1 (en) | 2021-08-18 | 2022-05-27 | Method of decomposing nitrous oxide and apparatus for decomposing nitrous oxide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021133128A JP2023027828A (ja) | 2021-08-18 | 2021-08-18 | 亜酸化窒素の分解方法および亜酸化窒素の分解装置 |
JP2021-133128 | 2021-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023021806A1 true WO2023021806A1 (ja) | 2023-02-23 |
Family
ID=85240423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021707 WO2023021806A1 (ja) | 2021-08-18 | 2022-05-27 | 亜酸化窒素の分解方法および亜酸化窒素の分解装置 |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP4389259A1 (ja) |
JP (1) | JP2023027828A (ja) |
KR (1) | KR20240041953A (ja) |
CN (1) | CN117858750A (ja) |
AU (1) | AU2022331065A1 (ja) |
CA (1) | CA3224386A1 (ja) |
WO (1) | WO2023021806A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06218232A (ja) | 1993-01-26 | 1994-08-09 | Sakai Chem Ind Co Ltd | 亜酸化窒素含有排ガスの浄化方法 |
JP2005125285A (ja) * | 2003-10-27 | 2005-05-19 | Kanken Techno Co Ltd | N2o含有排ガスの処理方法およびその装置 |
JP2006281026A (ja) * | 2005-03-31 | 2006-10-19 | Tokyo Institute Of Technology | 窒素酸化物接触還元触媒及びそれを用いた亜酸化窒素の処理方法 |
JP2012192338A (ja) * | 2011-03-16 | 2012-10-11 | Nippon Shokubai Co Ltd | 排ガス処理方法 |
-
2021
- 2021-08-18 JP JP2021133128A patent/JP2023027828A/ja active Pending
-
2022
- 2022-05-27 CN CN202280055695.6A patent/CN117858750A/zh active Pending
- 2022-05-27 WO PCT/JP2022/021707 patent/WO2023021806A1/ja active Application Filing
- 2022-05-27 CA CA3224386A patent/CA3224386A1/en active Pending
- 2022-05-27 EP EP22858130.2A patent/EP4389259A1/en active Pending
- 2022-05-27 AU AU2022331065A patent/AU2022331065A1/en active Pending
- 2022-05-27 KR KR1020247005501A patent/KR20240041953A/ko unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06218232A (ja) | 1993-01-26 | 1994-08-09 | Sakai Chem Ind Co Ltd | 亜酸化窒素含有排ガスの浄化方法 |
JP2005125285A (ja) * | 2003-10-27 | 2005-05-19 | Kanken Techno Co Ltd | N2o含有排ガスの処理方法およびその装置 |
JP2006281026A (ja) * | 2005-03-31 | 2006-10-19 | Tokyo Institute Of Technology | 窒素酸化物接触還元触媒及びそれを用いた亜酸化窒素の処理方法 |
JP2012192338A (ja) * | 2011-03-16 | 2012-10-11 | Nippon Shokubai Co Ltd | 排ガス処理方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2022331065A1 (en) | 2024-01-25 |
EP4389259A1 (en) | 2024-06-26 |
CN117858750A (zh) | 2024-04-09 |
CA3224386A1 (en) | 2023-02-23 |
JP2023027828A (ja) | 2023-03-03 |
KR20240041953A (ko) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts | |
EP2098290B1 (en) | Method for producing ruthenium oxide loaded body and method for producing chlorine | |
Wang et al. | Selective catalytic oxidation of ammonia to nitrogen over zeolite-supported Pt-Au catalysts: Effects of alloy formation and acid sites | |
Ren et al. | Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3 | |
Xu et al. | Catalytic oxidation of dichloromethane over phosphate-modified Co3O4: improved performance and control of byproduct selectivity by Co3O4 defects and surface acidity | |
Ren et al. | Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism | |
JP7067035B2 (ja) | アンモニアの酸化方法 | |
Xu et al. | Catalytic oxidation of dichloromethane over CrFeO mixed oxides: Improved activity and stability by sulfuric acid treatment | |
JP2016175079A (ja) | 気相酸化による塩素製造のための触媒および方法 | |
CN108067265B (zh) | 一种甲烷转化催化剂的制备方法 | |
Wang et al. | Catalytic oxidation of propane over nanorod-like TiO2 supported Ru catalysts: structure-activity dependence and mechanistic insights | |
WO2023084825A1 (ja) | 亜酸化窒素分解用触媒の再生方法および亜酸化窒素の分解方法 | |
CN115722220B (zh) | 一种催化氧化催化剂及其制备方法和应用 | |
Bera et al. | Solution combustion synthesis, characterization, and catalytic properties of oxide materials | |
WO2023021806A1 (ja) | 亜酸化窒素の分解方法および亜酸化窒素の分解装置 | |
WO2023219074A1 (ja) | 触媒、触媒前駆体、触媒の製造方法、触媒充填反応管および亜酸化窒素の分解方法 | |
Wang et al. | Highly Efficient Catalytic Ozonization at Ultralow Temperatures of Multicomponent VOCs over the Pt/CeO2 Catalysts | |
JP5041848B2 (ja) | ハロゲン化脂肪族炭化水素含有ガスの処理方法 | |
US20240351015A1 (en) | Method of regenerating nitrous oxide-decomposing catalyst and method of decomposing nitrous oxide | |
WO2024171961A1 (ja) | 亜酸化窒素の分解方法および亜酸化窒素分解触媒の製造方法 | |
WO2024101331A1 (ja) | 塩素ガスの分解方法および塩素ガスの除去方法 | |
Batakliev et al. | Gas phase ozone decomposition over co-precipitated Ni-based catalysts | |
Xingyi et al. | Low-temperature catalytic combustion of trichloroethylene over La, Ce, and Pt catalysts supported on MCM-41 | |
CN115487832A (zh) | 一种用于低温丙烷氧化的催化剂及其制备方法 | |
TW202432229A (zh) | 氯氣的分解方法及氯氣的去除方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22858130 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3224386 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022331065 Country of ref document: AU Ref document number: AU2022331065 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2022331065 Country of ref document: AU Date of ref document: 20220527 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202447006740 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280055695.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022858130 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022858130 Country of ref document: EP Effective date: 20240318 |