WO2023020616A1 - 一种眼科光学成像诊断系统 - Google Patents

一种眼科光学成像诊断系统 Download PDF

Info

Publication number
WO2023020616A1
WO2023020616A1 PCT/CN2022/113650 CN2022113650W WO2023020616A1 WO 2023020616 A1 WO2023020616 A1 WO 2023020616A1 CN 2022113650 W CN2022113650 W CN 2022113650W WO 2023020616 A1 WO2023020616 A1 WO 2023020616A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
scanning
lens group
imaging
dichroic mirror
Prior art date
Application number
PCT/CN2022/113650
Other languages
English (en)
French (fr)
Inventor
武珩
李桂萍
汪霄
陈兴乐
Original Assignee
图湃(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 图湃(北京)医疗科技有限公司 filed Critical 图湃(北京)医疗科技有限公司
Publication of WO2023020616A1 publication Critical patent/WO2023020616A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present application relates to the field of ophthalmic imaging, in particular to an ophthalmic optical imaging diagnosis system.
  • OCT Optical coherence tomography
  • OCT device with ophthalmic diagnosis is one of the most widely used OCT technology.
  • the inventors of the present invention have found that switching function modes in the related art is relatively complicated to operate, and many devices are used, and the inspection time is long.
  • the present application provides an ophthalmic optical imaging diagnosis system.
  • An ophthalmic optical imaging diagnostic system comprising a scanning imaging module, the scanning imaging module includes an anterior segment scanning imaging mode and a fundus scanning imaging mode; in the fundus scanning imaging mode, the scanning imaging modules are sequentially arranged along the emission direction of the light beam in the imaging optical path There are a first lens group, a second lens group and a third lens group; in the anterior segment scanning imaging mode, the first lens group and the third lens group are simultaneously removed from the scanning optical path.
  • the lens group can be switched in one optical path to realize the switching between the anterior segment imaging mode and the fundus imaging mode, without affecting the normal function and use of other optical paths, and the operation is simpler and more convenient.
  • the ophthalmic optical imaging diagnostic system further includes a scanning vibrating mirror and a first dichroic mirror, the scanning imaging module is arranged on the reflection optical path of the first dichroic mirror, and the scanning vibrating mirror Set on the side of the scanning imaging module away from the first dichroic mirror, in the fundus scanning imaging mode of the scanning imaging module, the third lens group is located close to the first dichroic mirror At one end, the first lens group is located at the end close to the scanning galvanometer.
  • the scanning galvanometer is located at the focal plane of the image side of the optical path lens, forming an approximate telecentric optical path, and the telecentric angle is less than 2 degrees.
  • the imaging optical path in the anterior segment imaging mode is characterized by telecentric imaging, which can improve the accuracy of the quantitative test of the anterior segment parameters.
  • the scanning galvanometer, the second lens group and the first dichroic mirror work together to focus the focal plane of the light beam on the retina; in the fundus scanning mode Next, the scanning galvanometer, the first lens group, the second lens group, the third lens group and the first dichroic mirror work together to make the focal plane of the beam between the retina and the lens Adjustment.
  • the near-infrared light passes through the above-mentioned device sequentially, and can be focused on the retina in the anterior segment imaging mode, and can be adjusted between the retina and the lens in the fundus imaging mode, realizing the imaging of the anterior segment and the fundus.
  • the first lens group includes a first lens, a second lens and a third lens; the concave surface of the first lens faces the scanning galvanometer, and the first lens is along the beam emitting direction on the scanning optical path Move back and forth to adjust the focal plane of the fundus scanning mode between the lens and the retina; the concave surface of the third lens is far away from the scanning galvanometer; the first lens, the second lens and the third lens At least one optical power of the lens is negative.
  • the second lens group includes a fourth lens, a fifth lens and a sixth lens;
  • the fourth lens is an approximately plano-concave lens, and its concave surface faces the scanning galvanometer;
  • the fifth lens is a biconvex lens ;
  • the sixth lens is a positive power lens, and the curvature of the side away from the scanning galvanometer is greater than the curvature of the side close to the scanning galvanometer.
  • the third lens group includes a seventh lens and an eighth lens; the adjacent surfaces of the seventh lens and the eighth lens are the sides with larger curvatures, and the seventh lens and the eighth lens At least one of the lenses has positive optical power.
  • the focal length of the first lens group, the focal length of the second lens group and the focal length of the third lens group satisfy the following relationship: 0.4 ⁇ f_1/f_2 ⁇ 0.8 and -0.3 ⁇ f_3/f_2 ⁇ -0.1 , where f_1 is the focal length of the third lens group, f_2 is the focal length of the second lens group, and f_3 is the focal length of the first lens group.
  • the ophthalmic optical imaging diagnostic system further includes a second dichroic mirror, a pupil camera module, and a first relay device; the second dichroic mirror is positioned at the first dichroic mirror On the transmitted optical path, the first relay device is located between the first dichroic mirror and the second dichroic mirror, and the pupil camera module is located in the second dichroic mirror on the reflected light path.
  • the light beam sequentially passes through the pupil camera module, the second dichroic mirror, the first relay device and the first dichroic mirror to form an XX optical path, and the working distance between the device and the eye to be tested can be determined Alignment with the optical axis.
  • the ophthalmic optical imaging diagnostic system also includes a fixation target module and a second relay device; the fixation target module is located on the transmission optical path of the second dichroic mirror, and the second relay device Located between the second dichroic mirror and the fixation target module.
  • the light beam is emitted from the fixation target and then passes through the second relay device, the second dichroic mirror, the first relay device and the first dichroic mirror to reach the eye to be tested, which can ensure scanning imaging The stability of the optical path to the eye under test during the scanning test.
  • the present application includes at least one of the following beneficial technical effects:
  • the imaging optical path of the anterior segment imaging mode is characterized by telecentric imaging, which can improve the accuracy of quantitative testing of anterior segment parameters.
  • fixation target module and the pupil camera module Through the functions of the fixation target module and the pupil camera module, on the one hand, it can ensure the stability of the scanning imaging optical path in the scanning test process, and on the other hand, it can determine the working distance and optical axis between the device and the eye to be tested. alignment.
  • Figure 1 is a schematic diagram of the optical path of ophthalmic imaging.
  • Fig. 2 is a schematic diagram of switching from an anterior segment scanning imaging mode to a fundus scanning imaging mode.
  • Fig. 3 is a schematic diagram of the scanning imaging module in the anterior segment scanning imaging mode.
  • Fig. 4 is a schematic diagram of the scanning imaging module in fundus scanning imaging mode.
  • the embodiment of the present application provides an ophthalmic optical imaging diagnostic system, including an anterior segment imaging mode and a fundus imaging mode, by switching devices on a single optical path to complete the conversion of imaging modes at two different conjugate positions, and for other optical paths There is no impact on function and performance, and the operation is simple for the user.
  • FIG. 1 it is a schematic diagram of the optical path of ophthalmology imaging.
  • the ophthalmology optical imaging diagnostic system proposed in the embodiment of the present application includes a scanning imaging module, a pupil camera module and a fixation target module.
  • the working wavelengths of each imaging module are different.
  • the dichroic mirror divides the boundary, and completes the imaging of each band according to the light-splitting characteristics of the dichroic mirror.
  • the ophthalmic imaging system proposed in the embodiment of the present application includes a scanning imaging module 1, a pupil camera module 2, a fixation target module 3, a second relay device 4, and a second dichroic mirror 5 , the first relay device 6, the first dichroic mirror 7 and the scanning vibrating mirror 8, the second relay device 4 includes the fourteenth lens 41 and the fifteenth lens 42; the first dichroic mirror 7 and The second dichroic mirror 5 divides the scanning imaging module 1, the pupil camera module 2 and the fixation target module 3, wherein the first dichroic mirror 7 is the scanning imaging module 1, the pupil camera module 2 and the fixation target
  • the shared dichroic mirror of the module 3, the second dichroic mirror 5 is the shared dichroic mirror of the pupil camera module 2 and the fixation target module 3; the first relay device 6 is arranged on the first dichroic mirror Between the color mirror 7 and the second dichroic mirror 5, there is a common relay device for the pupil camera module 2 and the fixation target module 3, and the second relay device is arranged between the
  • the scanning imaging module 1 includes a first lens group 11, a second lens group 12, and a third lens group 13, and the first lens group 11 includes a first lens 111, a second lens 112, and a third lens group.
  • the second lens group 12 includes a fourth lens 121 , a fifth lens 122 and a sixth lens 123 ;
  • the third lens group 13 includes a seventh lens 131 and an eighth lens 132 .
  • the near-infrared light source is emitted by the scanning galvanometer 8, passes through the scanning imaging module 1, is refracted by the first dichroic mirror 7, reaches the eye to be measured, and is reflected and scattered by the eye to be measured. The light returns to the scanning galvanometer on the original path to scan and image the eye to be tested.
  • the first lens group 11, the second lens group 12 and the The third lens group 13 the first lens group 11 is located at one end close to the scanning galvanometer 8
  • the third lens group 13 is located at one end close to the first dichroic mirror 7 .
  • FIG. 2 it is a schematic diagram of switching from the scanning imaging mode of the anterior segment to the scanning imaging mode of the fundus. Move in to complete the switching between the fundus scanning imaging mode and the anterior segment scanning imaging mode.
  • the imaging optical path diagram of the ophthalmic imaging system in the anterior segment scanning imaging mode the near-infrared light source passes through the scanning galvanometer 8, the second lens group 12 in the scanning imaging module 1 in turn, and then passes through the first two-way
  • the refraction of the color mirror 7 focuses on the anterior segment, and the light reflected and scattered by the anterior segment returns to the scanning galvanometer 8 to complete the anterior segment scanning and imaging of the eye to be measured.
  • the second lens group 12 The fourth lens 121 is an approximate plano-concave lens, and its concave surface faces the scanning vibrating mirror 8; the fifth lens 122 is a biconvex lens; the sixth lens 123 is a positive refractive lens, and its curvature on the side away from the scanning vibrating mirror is greater than It is the curvature of the side close to the scanning galvanometer.
  • the imaging feature of the anterior segment scanning imaging in the embodiment of the present application is approximate telecentric imaging, the telecentricity is less than 2 degrees, and there is no intermediate phase surface inside the optical path. This imaging method can improve the accuracy of quantitative testing of anterior segment parameters.
  • FIG 4 is the imaging optical path diagram of the ophthalmic imaging system in the fundus scanning imaging mode, by moving the first lens group 11 and the third lens group 13 into the scanning imaging module 1 in the anterior segment scanning mode shown in Figure 3 , to complete the switch from the anterior segment scanning imaging mode to the fundus scanning imaging mode, wherein the first lens group 11 is located at one end close to the scanning galvanometer 8, and the third lens group 13 is located at one end close to the first dichroic mirror 7,
  • the second lens group 12 is located between the first lens group 11 and the third lens group 13.
  • the concave surface of the first lens 111 in the first lens group 11 faces the scanning vibrating mirror 8, and the third lens 113
  • the concave surface of the lens is far away from the scanning galvanometer, and at least one of the first lens 111, the second lens 112, and the third lens 113 has a negative power;
  • the fourth lens 121, the fifth lens 122, and the sixth lens in the second lens group 12 123 is consistent with the lens position and characteristics in the anterior segment scanning imaging mode shown in FIG.
  • the refractive power of at least one of the lens 131 and the eighth lens 132 is positive.
  • the near-infrared light source sequentially passes through the scanning galvanometer 8, the first lens group 11, the second lens group 12 and the third lens group 13 in the scanning imaging module 1 , and then through the refraction of the first dichroic mirror 7, the light beam is incident from the cornea to the fundus, and the light reflected and scattered by the fundus returns to the scanning galvanometer 8 to complete the fundus scanning imaging of the eye to be tested.
  • the imaging feature of the fundus scanning imaging mode is that an intermediate image plane is added between the second lens group 12 and the third lens 13 inside the optical path, and the scanning galvanometer 8 is conjugated to the equivalent position of the pupil, which can meet the requirement of less than 2.5 Eye test requirements for mm pupil size, and the field of view of the fundus scanning imaging mode is greater than 30 degrees, which can meet the retinal defocus range required for myopia prevention and control.
  • the focal length f 1 of the first lens group 11, the focal length f 2 of the second lens group 12 and the focal length f 3 of the third lens group satisfy 0.4 ⁇ f 1 /f 2 ⁇ 0.8 and -0.3 ⁇ f 3 /f 2 ⁇ -0.1
  • the fundus scanning imaging mode has an adjustable focal plane function
  • the first lens 111 can move back and forth along the beam emitting direction on the imaging optical path
  • the focal plane in the fundus scanning mode is The position between the lens and the retina is adjusted so that the incident light beam from the cornea reaches the fundus, and the measurement of the visual axis length of the eye can be realized.
  • Feedback calculate and analyze the defocus of the fundus retina, as a reference index for myopia prevention and control.
  • the scanning galvanometer 8 is located at the position of the theoretical aperture stop of the system, and the imaging switching between the anterior segment and the fundus is approximately the same as that between the image plane and the pupil.
  • the position of the focal plane in the anterior segment scanning imaging mode in this embodiment is the position of the optical path conjugate aperture diaphragm in the fundus imaging mode, which is the pupil.
  • the pupil camera module 2 includes XX21 , a ninth lens 22 , a third dichroic mirror 23 , a tenth lens 24 , an eleventh lens 25 and a twelfth lens 26 .
  • the light beam is emitted from the target vibrating mirror 31 of the fixation target module 3, and passes through the thirteenth lens 32, the fourteenth lens 41 and the fifteenth lens in the second relay device 4 in sequence 42.
  • the second dichroic mirror 5, the first relay device 6 and the first dichroic mirror 7 reach the eye to be tested, so that the eye to be tested can observe the cursor sent by the fixation target module 3, thereby ensuring scanning Stability of the imaging light path in the eye under test during the scanning test.
  • the fixation target module 3 includes a target vibrating mirror 31 and a thirteenth lens 32 .
  • the light reflected or scattered by the eye to be tested passes through the first dichroic mirror 7, the first relay device 6 and the second dichroic mirror 5 in sequence, and reaches the pupil camera module 2 , in the pupil camera module 2, the twelfth lens 26, the eleventh lens 25, the tenth lens 24, the third dichroic mirror 23, the ninth lens 22 and XX21 are sequentially arranged along the light beam incident direction, and finally at XX21
  • the working distance between the ophthalmic imaging device and the eye to be tested and the alignment of the optical axis can be adjusted according to the imaging of XX21.
  • each module of the ophthalmic imaging device according to the embodiment of the present application is described in detail above, and correspondingly, the imaging process of the ophthalmic imaging device according to the embodiment of the present application will be described as a whole below.
  • the light beam sent by the fixation target module 3 passes through the second relay device 4, the second two-way splitter
  • the color mirror 5, the first relay device 6 and the first dichroic mirror 7 arrive at the eye to be measured, and the eye to be measured ensures the stability of the eyeball by watching the cursor sent by the fixation target module 3; then the eye to be measured reflects or
  • the scattered light passes through the first dichroic mirror 7, the first relay device 6 and the second dichroic mirror 5 in sequence, and reaches the pupil camera module 2, and the pupil camera module 2 forms an image of the light reflected or scattered by the eye to be measured , adjust the working distance between the ophthalmic imaging equipment and the eye to be tested and the alignment of the optical axis through the definition of the imaging; after completing the auxiliary work, the scan imaging diagnosis of the anterior segment and fundus of the eye to be tested can be performed, specifically, as
  • the near-infrared light source passes through the scanning galvanometer 8 and the second lens group in the scanning imaging module 1 in sequence. 12.
  • the first dichroic mirror 7 After being refracted by the first dichroic mirror 7, it is focused on the anterior segment, and the light reflected and scattered by the anterior segment returns to the scanning galvanometer 8 to complete the scanning and imaging of the anterior segment of the eye to be measured, and then, Move the first lens group 11 and the third lens group 13 into the scanning imaging module 1, the first lens group 11 is located on the side close to the scanning galvanometer 8, and the third lens group 13 is located on the side close to the first dichroic mirror 7
  • the near-infrared light source sequentially passes through the scanning galvanometer 8, the first lens group 11, the second lens group 12 and the third lens group 13 in the scanning imaging module 1, and then refracted by the first dichroic mirror 7,
  • the light beam is incident from the cornea to the fundus, and the light reflected and scattered by the fundus returns to the scanning galvanometer 8 to complete
  • the conversion between the anterior segment scanning imaging mode and the fundus scanning imaging mode can be completed by switching the lens group in the scanning imaging module 1 arranged on the imaging optical path, without affecting the target optical path and the normal operation of other devices on the XX optical path, and in the embodiment of the present application, by controlling the focal length and the position of the main surface of the shared lens and the switching lens, the numerical apertures of the two imaging modes can be controlled separately to achieve different resolutions and depth of focus to control the target, no need to use other components such as eyepieces, the overall structure is simpler, and the user is more convenient to operate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种眼科光学成像诊断系统,涉及眼科成像领域,包括扫描成像模块(1),扫描成像模块(1)包括眼前节扫描成像模式和眼底扫描成像模式;在眼底扫描成像模式下,扫描成像模块(1)沿成像光路中光束的发射方向依次设置有第一透镜组(11)、第二透镜组(12)和第三透镜组(13);在眼前节扫描成像模式下,第一透镜组(11)和第三透镜组(13)被同时移除扫描成像模块(1)。该系统可在一个光路中切换透镜组来实现眼前节成像模式和眼底成像模式的切换,不影响其他光路的正常功能和使用,使得操作更加简单方便。

Description

一种眼科光学成像诊断系统 技术领域
本申请涉及眼科成像领域,尤其是涉及一种眼科光学成像诊断系统。
背景技术
眼科诊断中,医生经常会借助对眼部的扫描成像图来对眼部疾病进行观察和判断,光学相干层析成像(OCT,Optical Coherence Tomography)技术,具有高分辨率,高成像速度,无损伤等特点,其中拥有眼科诊断的OCT装置为OCT技术最广泛的应用之一。目前市面上基本都具有眼前节扫描和眼底扫描两种功能,而针对两种功能模式的切换各有不同。
本发明人发现相关技术中切换功能模式操作起来比较复杂,且用到的设备较多,检查时间长。
发明内容
针对目前眼前节模式和眼底模式的切换方式比较复杂以及使用设备较多,使得检查时间长的情况,本申请提供了一种眼科光学成像诊断系统。
本申请提供的一种眼科光学成像诊断系统采用以下技术方案:
一种眼科光学成像诊断系统,包括扫描成像模块,所述扫描成像模块包括眼前节扫描成像模式和眼底扫描成像模式;在眼底扫描成像模式下,扫描成像模块沿成像光路中光束的发射方向依次设置有第一透镜组、第二透镜组和第三透镜组;在眼前节扫描成像模式下,所述第一透镜组和所述第三透镜组被同时 移除所述扫描光路。
通过采用上述技术方案,可在一个光路中切换透镜组来实现眼前节成像模式和眼底成像模式的切换,不影响其他光路的正常功能和使用,操作更加简单方便。
可选地,眼科光学成像诊断系统,还包括扫描振镜和第一二向分色镜,所述扫描成像模块设置于所述第一二向分色镜的反射光路上,所述扫描振镜设置于所述扫描成像模块远离第一二向分色镜的一侧,在所述扫描成像模块的眼底扫描成像模式中,所述第三透镜组位于靠近所述第一二向分色镜的一端,第一透镜组位于靠近所述扫描振镜的一端。
通过采用上述技术方案,完成了成像光路的配置。
进一步地,在所述眼前节成像模式下,所述扫描振镜位于近似光路镜头像方焦面位置,形成近似远心光路,远心角小于2度。
通过采用上述技术方案,在眼前节成像模式下其成像光路特征为远心成像,可提高眼前节参数定量化测试准确性。
进一步地,在所述眼前节扫描模式下,所述扫描振镜、所述第二透镜组和所述第一二向分色镜共同作用使光束焦面聚焦于视网膜;在所述眼底扫描模式下,所述扫描振镜、所述第一透镜组、所述第二透镜组、所述第三透镜组和所述第一二向分色镜共同作用使光束焦面可在视网膜和晶状体间调整。
通过采用上述技术方案,近红外光线依次经过上述装置,眼前节成像模式下可聚焦于视网膜上,眼底成像模式下可在视网膜和晶状体间调整,实现了对眼前节和眼底的成像。
进一步地,所述第一透镜组包括第一透镜、第二透镜和第三透镜;所述第一透镜的凹面朝向所述扫描振镜,且所述第一透镜在扫描光路上沿光束发射方向往复移动,对所述眼底扫描模式焦面在晶状体和视网膜之间进行调整;所述第三透镜的凹面远离所述扫描振镜;所述第一透镜、所述第二透镜和所述第三透镜中至少一个光焦度为负。
进一步地,所述第二透镜组包括第四透镜、第五透镜和第六透镜;所述第四透镜为近似平凹透镜,且其凹面朝向所述扫描振镜;所述第五透镜为双凸透镜;所述第六透镜为正光焦度透镜,且其远离所述扫描振镜一侧的曲率大于其靠近所述扫描振镜一侧的曲率。
进一步地,所述第三透镜组包括第七透镜和第八透镜;所述第七透镜和所述第八透镜相邻表面为各自曲率较大的一面,所述第七透镜和所述第八透镜中至少一个透镜的光焦度为正。
进一步地,所述第一透镜组的焦距、所述第二透镜组的焦距和所述第三透镜组的焦距满足以下关系:0.4<f_1/f_2<0.8和-0.3<f_3/f_2<-0.1,其中,f_1为第三透镜组的焦距,f_2为第二透镜组的焦距,f_3为第一透镜组的焦距。
可选地,所述眼科光学成像诊断系统还包括第二二向分色镜、瞳孔相机模块和第一中继装置;所述第二二向分色镜位于所述第一二向分色镜的透射光路上,所述第一中继装置位于所述第一二向分色镜和所述第二二向分色镜之间,所述瞳孔相机模块位于所述第二二向分色镜的反射光路上。
通过采用上述技术方案,光束依次通过瞳孔相机模块、第二二向分色镜、第一中继装置以及第一二向分色镜形成XX光路,可将设备与待测眼之间工作距 离确定和光轴的对齐。
可选地,眼科光学成像诊断系统还包括固视靶标模块和第二中继装置;所述固视靶标模块位于所述第二二向分色镜的透射光路上,所述第二中继装置位于所述第二二向分色镜和所述固视靶标模块之间。
通过采用上述技术方案,光束由固视靶标发出依次经过第二中继装置、第二二向分色镜、第一中继装置和第一二向分色镜到达待测眼,可保证扫描成像光路在扫描测试过程中待测眼的稳定性。
综上所述,本申请包括以下至少一种有益技术效果:
1、通过在单个光路中切换透镜组,可以不影响其他光路的正常功能和使用,且结构更加简单,操作更加方便。
2、眼前节成像模式的成像光路特征为远心成像,可提高眼前节参数定量化测试准确性。
3、通过固视靶标模块和瞳孔相机模块的功能,一方面可以保证扫描成像光路在扫描测试过程中待测眼的稳定性,另一方面可将设备与待测眼之间工作距离确定和光轴的对齐。
附图说明
结合附图并参考以下详细说明,本申请各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1是眼科成像光路示意图。
图2是由眼前节扫描成像模式切换为眼底扫描成像模式的示意图。
图3是眼前节扫描成像模式下的扫描成像模块示意图。
图4是眼底扫描成像模式下的扫描成像模块示意图。
附图标记说明:1、扫描成像模块;11、第一透镜组;111、第一透镜;112、第二透镜;113、第三透镜;12、第二透镜组;121、第四透镜;122、第五透镜;123、第六透镜;13、第三透镜组;131、第七透镜;132、第八透镜;2、瞳孔相机模块;21、XX;22、第九透镜;23、第三二向分色镜;24、第十透镜;25、第十一透镜;26、第十二透镜;3、固视靶标模块;31、靶标振镜;32、第十三透镜;4、第二中继装置;41、第十三透镜;42、第十四透镜;5、第二二向分色镜;6、第一中继装置;7、第一二向分色镜;8、扫描振镜。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的全部其他实施例,都属于本公开保护的范围。
本申请实施例提供了一种眼科光学成像诊断系统,包括眼前节成像模式和眼底成像模式,通过对单个光路上的装置切换完成对两种不同共轭位置的成像模式的转换,对其他光路的功能和性能没有影响,且使用者操作简单。
如图1所示为眼科成像光路示意图,本申请实施例提出的眼科光学成像诊断系统,包括扫描成像模块、瞳孔相机模块和固视靶标模块,各成像模块 工作波长各不相同,通过两个二向分色镜分界,根据二向分色镜的分光特性完成各波段的成像。
具体地,如图1所示,本申请实施例提出的眼科成像系统包括扫描成像模块1、瞳孔相机模块2、固视靶标模块3、第二中继装置4、第二二向分色镜5、第一中继装置6、第一二向分色镜7以及扫描振镜8,第二中继装置4包括第十四透镜41和第十五透镜42;第一二向分色镜7和第二二向分色镜5将扫描成像模块1、瞳孔相机模块2以及固视靶标模块3分界开,其中第一二向分色镜7为扫描成像模块1、瞳孔相机模块2和固视靶标模块3的共用二向分色镜,第二二向分色镜5为瞳孔相机模块2和固视靶标模块3的共用二向分色镜;第一中继装置6设置于第一二向分色镜7和第二二向分色镜5之间,为瞳孔相机模块2和固视靶标模块3的共用中继装置,第二中继装置设置于第二二向分色镜5和固视靶标模块3之间。
在一种可选的实施方式中,扫描成像模块1包括第一透镜组11、第二透镜组12和第三透镜组13,第一透镜组11包括第一透镜111、第二透镜112和第三透镜113;第二透镜组12包括第四透镜121、第五透镜122和第六透镜123;第三透镜组13包括第七透镜131和第八透镜132。
如图1所示在成像光路上,近红外光源由扫描振镜8发出,经过扫描成像模块1,经第一二向分色镜7折射到达待测眼,经待测眼反射及散射后的光线,原路返回至扫描振镜,对待测眼进行扫描成像,在本申请实施例中,扫描成像模块1中,沿光束的发射方向依次设置为第一透镜组11、第二透镜组12以及第三透镜组13,第一透镜组11位于靠近扫描振镜8的一端,第三透镜组13位于靠近第一二向分色镜7的一端。
如图2所示为眼前节扫描成像模式切换为眼底扫描成像模式的示意图,在本申请实施例中的,通过将扫描成像模块1中的第一透镜组11和第三透镜组13的移出或移入即可完成眼底扫描成像模式和眼前节扫描成像模式的切换。
如图3所示为眼科成像系统在眼前节扫描成像模式下的成像光路图,近红外光源依次经过扫描振镜8、扫描成像模块1中的第二透镜组12,再经过第一二向分色镜7的折射,聚焦在眼前节,经眼前节反射及散射后的光线,原路返回至扫描振镜8对待测眼完成眼前节扫描成像,本申请实施例中,第二透镜组12中的第四透镜121为近似平凹透镜,且其凹面朝向扫描振镜8;第五透镜122为双凸透镜;第六透镜123为正光焦度透镜,且其远离所述扫描振镜一侧的曲率大于其靠近所述扫描振镜一侧的曲率。
本申请实施例中眼前节扫描成像的成像特征为近似远心成像,远心度小于2度,光路内部无中间相面,此成像方式可提高眼前节参数定量化测试准确性。
如图4所示为眼科成像系统在眼底扫描成像模式下的成像光路图,通过将第一透镜组11和第三透镜组13移入图3所示的眼前节扫描模式中的扫描成像模块1中,来完成从眼前节扫描成像模式切换为眼底扫描成像模式,其中,第一透镜组11位于靠近扫描振镜8的一端,第三透镜组13位于靠近第一二向分色镜7的一端,第二透镜组12位于第一透镜组11和第三透镜组13之间,在本申请实施例中,第一透镜组11中的第一透镜111的凹面朝向扫描振镜8,第三透镜113的凹面远离扫描振镜,第一透镜111、第二透镜112和第三透镜113中至少一个光焦度为负;第二透镜组12中的第四透镜121、第五透镜122和第六透镜123与图3所示眼前节扫描成像模式中的透镜位置和 特征保持一致;在第三透镜组13中,第七透镜131和第八透镜132相邻表面为各自曲率较大的一面,第七透镜131和所述第八透镜132中至少一个透镜的光焦度为正。
具体地,本申请实施例的眼底扫描成像模式下的成像光路,近红外光源依次经过扫描振镜8、扫描成像模块1中的第一透镜组11、第二透镜组12和第三透镜组13,再经过第一二向分色镜7的折射,使光束从角膜入射到达眼底,经眼底反射及散射后的光线,原路返回至扫描振镜8完成对待测眼进行眼底扫描成像,本申请实施例中,眼底扫描成像模式的成像特征为光路内部在第二透镜组12和第三透镜13之间增加一个中间像面,扫描振镜8共轭到眼瞳孔等效位置,可以满足小于2.5mm瞳孔尺寸的眼测试需求,并且眼底扫描成像模式的视场角大于30度,能满足近视防控需要的视网膜离焦范围。
在本申请实施例的眼底扫描成像模式中,第一透镜组11的焦距f 1、第二透镜组12的焦距f 2和第三透镜组的焦距f 3满足0.4<f 1/f 2<0.8和-0.3<f 3/f 2<-0.1的关系,且眼底扫描成像模式具有焦面可调功能,第一透镜111可在成像光路上沿光束发射方向往复移动,对眼底扫描模式下焦面在晶状体和视网膜之间的位置进行调整,使光束从角膜入射光束到达眼底,可实现眼睛视轴长度的测量,并且当调节光束焦面聚焦在视网膜时,可实现根据眼底成像的灵敏度或光程的反馈,计算分析眼底视网膜的离焦情况,来作为近视防控的参考指标。
需要说明的是,本申请实施例中,在眼前节和眼底两种扫描成像模式下,扫描振镜8均为系统理论孔径光阑所在位置,眼前节与眼底的成像切换近似是像面与瞳面的切换,本实施例中眼前节扫描成像模式下的焦面位置,在眼底成 像模式下为光路共轭孔径光阑位置即瞳孔,由眼前节扫描模式切换为眼底扫描模式时有以下特征:1、眼底扫描成像模式相对于眼前节扫描成像模式,成像光路中新增一个中间成像面;2、第三透镜组有至少一个正光焦度透镜;3、第一透镜组有至少一个负光焦度透镜。
在一种可选的实施方式中,瞳孔相机模块2包括XX21、第九透镜22、第三二向分色镜23、第十透镜24、第十一透镜25和第十二透镜26。
如图1所示的靶标光路上,光束从固视靶标模块3的靶标振镜31发出,依次经过第十三透镜32、第二中继装置4中的第十四透镜41和第十五透镜42、第二二向分色镜5、第一中继装置6和第一二向分色镜7到达待测眼,可使待测眼观测到固视靶标模块3发出的光标,从而保证扫描成像光路在扫描测试过程中待测眼的稳定性。
在一种可选的实施方式中,固视靶标模块3包括靶标振镜31和第十三透镜32。
如图1所示的XX光路上,待测眼反射或散射的光线依次经过第一二向分色镜7、第一中继装置6和第二二向分色镜5,到达瞳孔相机模块2,在瞳孔相机模块2中沿光束入射方向依次设置为第十二透镜26、第十一透镜25、第十透镜24、第三二向分色镜23、第九透镜22和XX21,最终在XX21上对待测眼反射或散射的光线进行成像,可根据XX21的成像来调节眼科成像设备与待测眼之间的工作距离以及光轴的对齐。
上面详细说明了本申请实施例的眼科成像设备各个模块的结构和成像方法,下面对应地,整体的说明本申请实施例的眼科成像设备的成像过程。
在眼科成像设备工作的过程中,当待测眼位于本实施例中眼科成像设备的待测位置时,首先,固视靶标模块3发出的光束经过第二中继装置4、第二二向分色镜5、第一中继装置6和第一二向分色镜7到达待测眼,待测眼通过注视固视靶标模块3发出的光标来保证眼球的稳定性;然后待测眼反射或散射的光线依次经过第一二向分色镜7、第一中继装置6和第二二向分色镜5,到达瞳孔相机模块2,瞳孔相机模块2对待测眼反射或散射的光线进行成像,通过成像的清晰度来调节眼科成像设备与待测眼之间的工作距离以及光轴的对齐;完成辅助工作后,可对待测眼进行眼前节及眼底的扫描成像诊断,具体的,如图2所示,可以先对待测眼进行眼前节扫描成像诊断,在扫描成像模块1中仅设置第二透镜组12,近红外光源依次经过扫描振镜8、扫描成像模块1中的第二透镜组12,再经过第一二向分色镜7的折射,聚焦在眼前节,经眼前节反射及散射后的光线,原路返回至扫描振镜8完成对待测眼的眼前节扫描成像,然后,将第一透镜组11和第三透镜组13移入扫描成像模块1中,第一透镜组11位于靠近扫描振镜8的一侧,第三透镜组13位于靠近第一二向分色镜7的一侧,近红外光源依次经过扫描振镜8、扫描成像模块1中的第一透镜组11、第二透镜组12和第三透镜组13,再经过第一二向分色镜7的折射,使光束从角膜入射到达眼底,经眼底反射及散射后的光线,原路返回至扫描振镜8完成对待测眼的眼底扫描成像。
综上所述,在本申请实施例中,通过对设置在成像光路上的扫描成像模块1中透镜组的切换即可完成眼前节扫描成像模式和眼底扫描成像模式的转换,不会影响靶标光路和XX光路上其他装置的正常工作,且在本申请实施例中,通过共用镜头和切换镜头的焦距和主面位置控制,可以实现分别控制两种成像模式的数值孔径,以达到不同的分辨率和焦深控制目标,无需再使用接目镜等其他 元件,整体结构更加简单,使用者在操作时更加方便。

Claims (10)

  1. 一种眼科光学成像诊断系统,其特征在于,包括扫描成像模块,所述扫描成像模块包括眼前节扫描成像模式和眼底扫描成像模式;
    在眼底扫描成像模式下,扫描成像模块沿成像光路中光束的发射方向依次设置有第一透镜组、第二透镜组和第三透镜组;
    在眼前节扫描成像模式下,所述第一透镜组和所述第三透镜组被同时移除所述扫描成像模块。
  2. 根据权利要求1所述一种眼科光学成像诊断系统,其特征在于,还包括扫描振镜和第一二向分色镜,所述扫描成像模块位于所述第一二向分色镜的反射光路上,所述扫描振镜设置于所述扫描成像模块远离第一二向分色镜的一侧,在所述扫描成像模块的眼底扫描成像模式中,所述第三透镜组位于靠近所述第一二向分色镜的一端,第一透镜组位于靠近所述扫描振镜的一端。
  3. 根据权利要求2所述眼科光学成像诊断系统,其特征在于,
    在所述眼前节扫描模式下,所述扫描振镜、第二透镜组和所述第一二向分色镜共同作用使光束焦面聚焦于视网膜;
    在所述眼底扫描模式下,所述扫描振镜、第一透镜组、第二透镜组、第三透镜组和所述第一二向分色镜共同作用使光束焦面可在视网膜和晶状体间调整。
  4. 根据权利要求1所述眼科光学成像诊断系统,其特征在于,
    所述第一透镜组包括第一透镜、第二透镜和第三透镜;
    所述第一透镜的凹面朝向所述扫描振镜,且所述第一透镜在扫描光路上沿 光束发射方向往复移动,对所述眼底扫描模式焦面在晶状体和视网膜之间进行调整;
    所述第三透镜的凹面远离所述扫描振镜;
    所述第一透镜、所述第二透镜和所述第三透镜中至少一个光焦度为负。
  5. 根据权利要求1所述眼科光学成像诊断系统,其特征在于,
    所述第二透镜组包括第四透镜、第五透镜和第六透镜;
    所述第四透镜为近似平凹透镜,且其凹面朝向所述扫描振镜;
    所述第五透镜为双凸透镜;
    所述第六透镜为正光焦度透镜,且其远离所述扫描振镜一侧的曲率大于其靠近所述扫描振镜一侧的曲率。
  6. 根据权利要求1所述眼科光学成像诊断系统,其特征在于,
    所述第三透镜组包括第七透镜和第八透镜;
    所述第七透镜和所述第八透镜相邻表面为各自曲率较大的一面,所述第七透镜和所述第八透镜中至少一个透镜的光焦度为正。
  7. 根据权利要求1所述眼科光学成像诊断系统,其特征在于,
    所述第一透镜组的焦距、所述第二透镜组的焦距和所述第三透镜组的焦距满足以下关系:
    0.4<f 1/f 2<0.8
    -0.3<f 3/f 2<-0.1
    其中,f 1为第三透镜组的焦距,f 2为第二透镜组的焦距,f 3为第一透镜组的焦距。
  8. 根据权利要求2所述眼科光学成像诊断系统,其特征在于,在所述眼前节成像模式下,所述扫描振镜位于近似光路镜头像方焦面位置,形成近似远心光路,远心角小于2度。
  9. 根据权利要求2所述眼科光学成像诊断系统,其特征在于,还包括第二二向分色镜、瞳孔相机模块和第一中继装置;所述第二二向分色镜位于所述第一二向分色镜的透射光路上,所述第一中继装置位于所述第一二向分色镜和所述第二二向分色镜之间,所述瞳孔相机模块位于所述第二二向分色镜的反射光路上。
  10. 根据权利要求2所述眼科光学成像诊断系统,其特征在于,还包括固视靶标模块和第二中继装置;所述固视靶标模块位于所述第二二向分色镜的透射光路上,所述第二中继装置位于所述第二二向分色镜和所述固视靶标模块之间。
PCT/CN2022/113650 2021-08-20 2022-08-19 一种眼科光学成像诊断系统 WO2023020616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110961347.2 2021-08-20
CN202110961347.2A CN113545744B (zh) 2021-08-20 2021-08-20 一种眼科光学成像诊断系统

Publications (1)

Publication Number Publication Date
WO2023020616A1 true WO2023020616A1 (zh) 2023-02-23

Family

ID=78106089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113650 WO2023020616A1 (zh) 2021-08-20 2022-08-19 一种眼科光学成像诊断系统

Country Status (2)

Country Link
CN (1) CN113545744B (zh)
WO (1) WO2023020616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224077A (zh) * 2023-11-09 2023-12-15 图湃(北京)医疗科技有限公司 眼底成像装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113545744B (zh) * 2021-08-20 2022-06-21 图湃(北京)医疗科技有限公司 一种眼科光学成像诊断系统
CN113974957B (zh) * 2021-11-02 2023-11-17 北京鹰瞳科技发展股份有限公司 用于眼底按摩装置的镜筒和眼底按摩装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106696A1 (en) * 2006-11-01 2008-05-08 Bioptigen, Inc. Optical coherence imaging systems having a mechanism for shifting focus and scanning modality and related adapters
US20110267583A1 (en) * 2009-01-06 2011-11-03 Kabushiki Kaisha Topcon Optical image measuring device and control method thereof
CN107582020A (zh) * 2017-10-20 2018-01-16 视微影像(河南)科技有限公司 一种眼科成像诊断系统
US20190099074A1 (en) * 2017-09-29 2019-04-04 Nidek Co., Ltd. Oct apparatus
CN111643048A (zh) * 2020-05-07 2020-09-11 深圳市斯尔顿科技有限公司 基于微调焦的眼科测量系统及其测量方法
CN113545744A (zh) * 2021-08-20 2021-10-26 图湃(北京)医疗科技有限公司 一种眼科光学成像诊断系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009846B2 (ja) * 2017-09-04 2022-01-26 株式会社ニデック Oct装置
ES2899428T3 (es) * 2017-10-20 2022-03-11 Svision Imaging Ltd Sistema de diagnóstico de obtención de imágenes oftálmicas
JPWO2021065582A1 (zh) * 2019-09-30 2021-04-08

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106696A1 (en) * 2006-11-01 2008-05-08 Bioptigen, Inc. Optical coherence imaging systems having a mechanism for shifting focus and scanning modality and related adapters
US20110267583A1 (en) * 2009-01-06 2011-11-03 Kabushiki Kaisha Topcon Optical image measuring device and control method thereof
US20190099074A1 (en) * 2017-09-29 2019-04-04 Nidek Co., Ltd. Oct apparatus
CN107582020A (zh) * 2017-10-20 2018-01-16 视微影像(河南)科技有限公司 一种眼科成像诊断系统
CN111643048A (zh) * 2020-05-07 2020-09-11 深圳市斯尔顿科技有限公司 基于微调焦的眼科测量系统及其测量方法
CN113545744A (zh) * 2021-08-20 2021-10-26 图湃(北京)医疗科技有限公司 一种眼科光学成像诊断系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117224077A (zh) * 2023-11-09 2023-12-15 图湃(北京)医疗科技有限公司 眼底成像装置
CN117224077B (zh) * 2023-11-09 2024-03-12 图湃(北京)医疗科技有限公司 眼底成像装置

Also Published As

Publication number Publication date
CN113545744B (zh) 2022-06-21
CN113545744A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2023020616A1 (zh) 一种眼科光学成像诊断系统
US9402540B2 (en) Optical systems for whole eye imaging and biometry
JP6353436B2 (ja) 光コヒーレンストモグラフィ(oct)システム
JP7293227B2 (ja) 顕微鏡の短小鏡筒内での近赤外光イメージング及び可視光イメージングの結合
JP7167417B2 (ja) 眼底撮影装置および眼科装置
TW201422197A (zh) 用於操作即時大屈光度範圍之連續波前感測器之裝置及方法
WO2012145882A1 (zh) 一种眼科oct系统和眼科oct成像方法
JP5928844B2 (ja) 角膜共焦点顕微鏡(ccm)
CN210871522U (zh) 多功能眼科测量系统
US11983308B2 (en) Virtual reality instrument for the automatic measurement of refraction and aberrations of the eye
CN107582020A (zh) 一种眼科成像诊断系统
JP2020054806A (ja) 眼科装置
US20210038071A1 (en) Ophthalmic apparatus, method of controlling the same, and recording medium
WO2023025062A1 (zh) 一种眼部多模态成像系统
US11730361B2 (en) Methods and systems for optical coherence tomography scanning of cornea and retina
JP2024063110A (ja) 眼科用光学系及び眼科装置
JP2020110578A (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
WO2023005252A1 (zh) 测量眼睛的光学质量的眼科仪器
WO2024125416A1 (zh) 手术显微镜系统及手术显微镜
US20210085178A1 (en) Scanning Patient Interface Systems And Methods
CN209172278U (zh) 一种基于裂隙灯平台的全眼光学相干断层成像装置
US20220322933A1 (en) Methods and systems for determining change in eye position between successive eye measurements
JP7306978B2 (ja) 眼科情報処理装置、眼科装置、眼科情報処理方法、及びプログラム
JP2019072027A (ja) 眼科装置及びフォーカスユニット
JP6638050B2 (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE