WO2024125416A1 - 手术显微镜系统及手术显微镜 - Google Patents

手术显微镜系统及手术显微镜 Download PDF

Info

Publication number
WO2024125416A1
WO2024125416A1 PCT/CN2023/137512 CN2023137512W WO2024125416A1 WO 2024125416 A1 WO2024125416 A1 WO 2024125416A1 CN 2023137512 W CN2023137512 W CN 2023137512W WO 2024125416 A1 WO2024125416 A1 WO 2024125416A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
unit
beam splitter
illumination
Prior art date
Application number
PCT/CN2023/137512
Other languages
English (en)
French (fr)
Inventor
卢丽荣
汪霄
Original Assignee
图湃(北京)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 图湃(北京)医疗科技有限公司 filed Critical 图湃(北京)医疗科技有限公司
Publication of WO2024125416A1 publication Critical patent/WO2024125416A1/zh

Links

Definitions

  • the present disclosure relates to the field of optical technology and surgical microscope technology, and for example, to a surgical microscope system and a surgical microscope that can be applied to ophthalmic surgery scenarios.
  • vitreoretinal surgery in ophthalmic surgery involves vitrectomy (removal of the vitreous from the posterior chamber to access the retina), and a successful vitrectomy essentially requires complete removal of the vitreous from the posterior chamber, including removal of the challenging area near the vitreous base. Due to the transparent nature of the vitreous, it is extremely challenging to perform a vitrectomy using only a conventional surgical microscope.
  • the present disclosure provides a surgical microscope system and a surgical microscope, which can be applied to ophthalmic surgery scenarios, for example.
  • a surgical microscope system comprising a microscopic imaging module and an illumination module;
  • the microscopic imaging module comprises an objective lens, a dichroic beam splitter, a magnification unit, a beam splitter, a lens barrel, and an eyepiece group arranged along a main optical axis; light emitted from an observed object surface passes through the objective lens, the dichroic beam splitter, and the magnification unit in sequence, and is then split by the beam splitter into a first light beam and a second light beam, and the first light beam passes through the lens barrel and the eyepiece group in sequence along the main optical axis, and is configured to be observed by an observer; the microscopic imaging module further comprises an image acquisition unit, which is located on a propagation path of the second light beam and is configured to acquire surgical images; wherein the propagation directions of the first light beam and the second light beam are different;
  • the lighting module comprises a coaxial lighting unit and an angled lighting unit, both of which are located on the side of the dichroic beam splitter facing the objective lens;
  • the coaxial lighting unit comprises a first light source and a first field diaphragm, the first field diaphragm is arranged between the first light source and the
  • the coaxial illumination light emitted by the first light source passes through the first field aperture, is reflected by the dichroic beam splitter, and then passes through the objective lens along the direction of the main optical axis to reach the observed object surface and form a first light spot;
  • the angled illumination light emitted by the angled illumination unit is reflected by the dichroic beam splitter, and then passes through the objective lens along a direction forming a preset angle with the main optical axis to reach the observed object surface and form a second light spot;
  • the size of the first light spot is adjustable.
  • a second aspect of the present disclosure further provides a surgical microscope, comprising the surgical microscope system described in any embodiment of the first aspect of the present disclosure.
  • FIG1 is a schematic diagram of a surgical microscope system used in ophthalmic surgery according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of a first field stop provided according to an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of another first field stop provided according to an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of another first field stop provided according to an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a fundus functional lens provided according to an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a zoom unit provided according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an optical path of a scanning unit provided according to an embodiment of the present disclosure.
  • OCT imaging is also provided for ophthalmic surgery.
  • OCT imaging can only be used before surgery and cannot be combined with a surgical microscope for intraoperative use, thus providing limited help to ophthalmic surgeons.
  • a surgical microscope used in ophthalmic surgery has an illumination module including a coaxial illumination unit and an angled illumination unit.
  • the angled illumination unit is also called a field illumination unit, and the surgical microscope uses the illumination light path of the field illumination unit to provide illumination at different angles, so as to provide the required ambient illumination light for the entire surgical site.
  • the coaxial illumination unit is also called a 0° illumination unit, which can provide a decisive background illumination light for the surgical area, which is itself limited by the pupil area of the lens, for cataract surgery. This can establish basic requirements for the optimal illumination system in cataract surgery.
  • the background illumination light of the surgical area needs to have a uniform red light reflection, and at the same time, the red light reflection is required to have a good contrast, and the coaxial illumination unit can just meet this requirement.
  • the size of the fundus light spot (also called the fundus light spot) generated by the coaxial illumination unit is not adjustable.
  • cataract surgery if there is only a small local disease on the patient's fundus or the patient's fundus is relatively small (for example, when the patient is a child, the fundus is usually relatively small), then the smaller the fundus spot, the better the contrast. In addition, in cataract surgery, thicker cataracts may be encountered. In this case, the "red light reflex" may be too dark. In this case, if the fundus brightness can be enhanced by increasing the fundus spot, it is extremely beneficial for cataract surgery.
  • the coaxial lighting unit and the angled lighting unit in the lighting module can only be enabled separately and cannot be enabled at the same time.
  • both the coaxial lighting unit and the angled lighting unit need to be enabled at the same time.
  • an OCT imaging module is added to the surgical microscope, so that the OCT imaging function can be used during ophthalmic operations, and is no longer limited to using OCT imaging only before ophthalmic operations.
  • the lighting module in the surgical microscope is also improved so that the size of the light spot formed by the coaxial lighting unit on the fundus is adjustable.
  • the lighting module in the surgical microscope is also improved so that its coaxial lighting unit and angled lighting unit can be enabled not only separately, but also simultaneously.
  • FIG1 is a schematic diagram of a surgical microscope system for ophthalmic surgery provided in accordance with an embodiment of the present disclosure.
  • the present application embodiment provides a surgical microscope system for ophthalmic surgery.
  • the system can be applied in medical ophthalmic surgery, and the surgical display mirror system includes a microscopic imaging module 01 and an illumination module 02;
  • the microscopic imaging module 01 includes an objective lens 11, a dichroic beam splitter 12, a magnification unit 13, a beam splitter 14, a lens barrel 15, and an eyepiece group 16 arranged along the main optical axis L1 from the object plane to the image plane;
  • the light emitted from the observed object plane M passes through the objective lens 11, the dichroic beam splitter 12, and the magnification unit 13 in sequence, and is then split by the beam splitter 14 into a first light beam S3 and a second light beam S4, and the first light beam S3 passes through the lens barrel 15 and the eyepiece group 16 in sequence along the main optical axis L1, and is configured to be observed by an
  • the coaxial lighting unit 21 also includes a fundus functional mirror 213, the first field aperture 212 is arranged between the fundus functional mirror 213 and the first lighting lens group 214.
  • the coaxial illumination light S1 emitted by the first light source 211 passes through the first field aperture 212 and the first illumination lens group 214, is reflected by the dichroic beam splitter 12, and then passes through the objective lens 11 along the direction of the main optical axis L1 to reach the observed object surface M and form a first light spot (fundus light spot), and the size of the first light spot is adjustable;
  • the angled illumination light S2 emitted by the angled illumination unit 22 passes through the dichroic beam splitter 12, and then passes through the objective lens 11 along a direction forming a preset angle (such as 5° ⁇ 7°) with the main optical axis L1 to reach the observed object surface M and form a second light spot.
  • the microscopic imaging module 01 is configured to magnify and image the observed eye
  • the illumination module 02 is configured to provide illumination for the optical path of the surgical microscope system
  • the observed object plane M can be the object plane where the retina of the observed eye is located.
  • the microscopic imaging module 01 includes an objective lens 11, a dichroic beam splitter 12, a magnification unit 13, a beam splitter 14, a first reflector 18, a lens barrel 15, and an eyepiece group 16 arranged in sequence along the main optical axis L1 from the object plane to the image plane.
  • the magnification unit 13 can be configured to adjust the size of the displayed image of the observed object plane M observed by the eyepiece group 16.
  • the illumination module 02 is set in the display mirror system, and the observed eye is illuminated by coaxial illumination and/or angled illumination, wherein coaxial illumination means that the illumination light is parallel to the main optical axis L1; angled illumination means that there is an angle between the illumination light and the main optical axis L1, such as the angle between 5° and 7°.
  • the coaxial illumination unit 21 and the angled illumination unit 22 can be both arranged on the side of the dichroic beam splitter 12 facing the objective lens 11.
  • the first light source 211 can be a white light source, and the first light source 211 is configured to emit a coaxial illumination light S1.
  • a first field aperture 212 is arranged between the first light source 211 and the dichroic beam splitter 12, and the central optical axis of the coaxial illumination light S1 emitted by the first light source 211 is arranged to illuminate the overlapping area of the dichroic beam splitter 12 and the main optical axis L1, so that the coaxial illumination light S1 is reflected by the dichroic beam splitter 12, propagates along the main optical axis L1, passes through the objective lens 11, reaches the observed object surface M, and forms a first light spot.
  • the size of the first light spot can be adjusted by adjusting the size of the light hole of the first field aperture 212 according to the fundus size of different patients and/or the size of the lesion area on the fundus, so as to meet different lighting requirements.
  • the size of the light spot formed by the coaxial lighting unit on the fundus is adjustable, during cataract surgery, if there is only a small local disease on the patient's fundus or the patient's fundus is relatively small, the fundus light spot can be adjusted to a smaller size to provide a better contrast, thereby facilitating the operation.
  • the fundus light spot can be adjusted to a larger size to enhance the fundus brightness, thereby facilitating the cataract surgery.
  • the angled illumination light S2 emitted by the angled illumination unit 22 is irradiated on the overlapping area deviating from the dichroic beam splitter 12 and the main optical axis L1, so that the angled illumination light S2 is reflected by the dichroic beam splitter 12 and passes through the objective lens 11 along a direction at a preset angle to the main optical axis L1 to reach the observed object surface M and form a second light spot.
  • the angle between the propagation direction of the angled illumination light S2 through the objective lens 11 after being reflected by the dichroic beam splitter 12 and the propagation direction of the coaxial illumination light S1 through the objective lens 11 after being reflected by the dichroic beam splitter 12 can be made to be 5° to 7°, thereby obtaining a larger field illumination spot diameter, so as to illuminate the observed eye with a large field of view, thereby meeting the lighting needs of ophthalmic surgery.
  • the eyepiece group 16 can be a lens group with a magnification of 10x consisting of a single lens and a double cemented lens.
  • the surgical microscope includes two-way imaging eyepieces for the left and right eyes, and the two-way imaging eyepieces for the left and right eyes are symmetrically arranged.
  • the microscopic imaging module 01 can also include a first reflector 18, as shown in Figure 1, and the first reflector 18 is arranged between the beam splitter 14 and the lens barrel 15, and is configured to adjust the propagation direction of the light to meet the observation needs of the observer (such as an ophthalmologist).
  • Part of the light reflected by the observed object surface M enters the display mirror system from the objective lens 11 along the direction of the main optical axis L1, passes through the dichroic beam splitter 12 and the magnification unit 13 in sequence, and is then split by the beam splitter 14 into a first light beam S3 and a second light beam S4.
  • the first light beam S3 passes through the first reflector 18, the lens barrel 15 and the eyepiece group 16 in sequence along the main optical axis L1, which is convenient for the surgeon to observe the patient's eyes;
  • the second light beam S4 reaches the image acquisition unit 17 along another propagation direction to generate a surgical image within the field of view of the surgical display mirror, which is used for intraoperative observation and postoperative archiving.
  • the acute angle between the dichroic beam splitter 12 and the main optical axis L1 is set to ⁇ .
  • the coaxial lighting unit 21 and the angled lighting unit 22 are fixedly set, by adjusting the size of ⁇ , the contact surface between the angled lighting light S2 and the dichroic beam splitter 12 is changed, and the angle between the angled lighting light S2 after refraction by the objective lens 11 and the main optical axis L1 can be adjusted.
  • the angle ⁇ the diameter of the second light spot can be increased, expanding the angle illumination field of view
  • by decreasing the angle ⁇ the diameter of the second light spot can be reduced, narrowing the angle illumination field of view.
  • the fundus light spot (such as the first light spot mentioned above) formed by the coaxial lighting unit of the lighting module is set to a light spot with adjustable size, which can meet different ophthalmic surgical scenarios and reduce the difficulty of ophthalmic surgery.
  • the field formed by the angled lighting unit in the lighting module can be adjusted.
  • the size of the illumination spot (such as the second light spot mentioned above) can therefore be adjusted according to different ophthalmic surgery scenarios to obtain a field of view illumination range that meets different surgical requirements, thereby facilitating the operation.
  • FIGS. 2 to 4 are schematic diagrams of three first field apertures according to embodiments of the present disclosure.
  • the first field aperture 212 is provided with a plurality of light holes O of different sizes. Different light holes O on the first field aperture 212 can be selected to form first light spots of different sizes.
  • light holes O with different apertures can be selected for different surgical scenes to adjust the size of the fundus light spot of the object being examined, thereby affecting the intensity (brightness) and uniformity of the "red light reflex".
  • the red light reflex test is used to screen abnormalities of the posterior segment of the eye and turbidity on the visual axis, such as cataracts and corneal turbidity. The larger the diameter of the fundus light spot formed by illumination, the more uniform and brighter the "red light reflex" is; the smaller the diameter of the fundus light spot formed by illumination, the better the contrast of the "red light reflex".
  • the first light source 211 is turned on, and a light hole O with a suitable aperture size is selected according to the size of the patient's fundus.
  • the coaxial illumination light S1 emitted by the first light source 211 passes through the light hole O, is reflected by the dichroic beam splitter 12, and then passes through the objective lens 11 to reach the observed eye and forms a first light spot of a corresponding size on the fundus, which can achieve the effect of controlling the size of the illumination light spot on the fundus.
  • the first field aperture 212 can have multiple forms.
  • the first field aperture 212 can be: a first disc-shaped aperture 2121.
  • the centers of the multiple light holes O of different sizes provided on the first disc-shaped aperture 2121 are all located on the same circumference with the center of the first disc-shaped aperture 2121 as the center, so that after the first field aperture 212 is rotated to move any of its light holes O into the coaxial illumination light path, the main optical axis of the coaxial illumination light S1 emitted by the first light source 211 can be perpendicular to the plane where the light hole O is located and accurately pass through the center of the light hole O, thereby achieving the purpose of accurate positioning and easy adjustment.
  • a light hole O with different aperture sizes can be respectively set in the four quadrants of the circular first field of view aperture 212, wherein the centers of the four light holes O are all distributed in the ⁇ 45° direction of the corresponding quadrant, and the centers of the four light holes O are also distributed on the same circumference centered on the center of the first field of view aperture 212.
  • the first field of view aperture 212 can be rotated 45°, 135°, 225°, and 270° around an axis perpendicular to the surface of the first field of view aperture 212 and passing through the center of the first field of view aperture 212, so as to move different light holes O into the coaxial illumination optical path.
  • the main optical axis of the coaxial illumination light S1 emitted by the first light source 211 can be perpendicular to the plane where the light hole O is located and accurately pass through the center of the light hole O.
  • the user can select the size of the light hole O of the first field aperture 212 according to the size of the patient's fundus, which is beneficial to improving the contrast of microscopic imaging.
  • the first field aperture 212 may be a rectangular aperture 2122.
  • the rectangular aperture 2122 is provided with a plurality of light holes O of different sizes at the center position.
  • the main optical axis of the coaxial illumination light S1 emitted by the first light source 211 can be perpendicular to the plane where the light hole O is located and accurately pass through the center of the light hole O, thereby achieving the purpose of accurate positioning and easy adjustment.
  • the rectangular first field aperture 212 shown in FIG3 is provided with four light holes O of different sizes in sequence along its long axis direction.
  • the first field aperture 212 can be pushed along the long side direction of the first field aperture 212, so as to push the light hole O that meets the surgical needs into the coaxial illumination optical path.
  • the main optical axis of the coaxial illumination light S1 emitted by the first light source 211 can be perpendicular to the plane where the light hole O is located and accurately pass through the center of the light hole O.
  • the user can select the size of the light hole O of the first field aperture 212 according to the size of the patient's fundus, which is conducive to improving the contrast of microscopic imaging.
  • the first field aperture 212 may include a plurality of second disk-shaped apertures 2123, the plurality of second disk-shaped apertures 2123 are folded, each second disk-shaped aperture 2123 is provided with a light-through hole O, different second disk-shaped apertures 2123 are provided with light-through holes O of different sizes, and the centers of the plurality of light-through holes O corresponding to the plurality of second disk-shaped apertures 2123 in the folded state are located on the same axis.
  • each second disc-shaped aperture 2123 is provided with a light hole O, and the plurality of light holes O are of different sizes.
  • the plurality of second disc-shaped apertures 2123 are arranged in a folded state, and the centers of the plurality of light holes O corresponding to the plurality of second disc-shaped apertures 2123 in the folded state are located on the same axis.
  • the second disc-shaped aperture 2123 required for the operation is selected from the first field aperture 212, and the selected second disc-shaped aperture 2123 is moved into the coaxial illumination optical path, and the unselected second disc-shaped apertures 2123 are folded together to reduce the space occupied.
  • the main optical axis of the coaxial illumination light S1 emitted by the first light source 211 can be perpendicular to the plane where the light hole O is located and accurately pass through the center of the light hole O, thereby achieving the purpose of accurate positioning and easy adjustment.
  • the user can select the size of the light hole O of the first field aperture 212 according to the size of the patient's fundus, which is beneficial to improving the contrast of microscopic imaging.
  • a first lens group 151 and a second lens group 152 are provided in the lens barrel 15.
  • the first lens group 151 is located at one end of the lens barrel 15 close to the eyepiece group 16, and the second lens group 152 is located at a side of the lens barrel 15 close to the magnification unit 13.
  • the first lens group 151 includes a meniscus lens, and the second lens group 152 includes a cemented lens.
  • a first lens group 151 and a second lens group 152 are respectively arranged at both ends of the lens barrel 15, and the first lens group 151 near one end of the eyepiece group 16 is a meniscus lens.
  • the meniscus lens can be a negative meniscus lens, with its convex surface facing the eyepiece group 16, which converges the light emitted by the zoom unit 13, and can reduce the spherical aberration of the microscope imaging light path.
  • the use of the meniscus lens design is conducive to compressing the numerical aperture (NA) of the zoom unit 13 and the lens barrel 15, thereby reducing the overall size of the device, thereby reducing
  • the second lens group 152 near one end of the zoom unit 13 uses a cemented lens to eliminate the reflection loss on the two surfaces of the lens and prevent total reflection on the air gap, which is beneficial to correct the off-axis image quality and axial chromatic aberration.
  • the focal length of the second lens group 152 can be set to 170mm, which is beneficial to compressing the light entering the eyepiece group 16.
  • the aperture angle also known as the "lens mouth angle" is the angle formed by the object point on the optical axis of the lens and the effective diameter of the front lens of the objective lens. The larger the aperture angle, the greater the light flux entering the lens. It is proportional to the effective diameter of the lens and inversely proportional to the distance from the focus.
  • FIG5 is a schematic diagram of a fundus functional lens provided according to an embodiment of the present disclosure.
  • the coaxial illumination unit 21 further includes a fundus functional lens 213;
  • the fundus functional lens 213 includes a light-transmitting portion P1 and a light-shielding portion P2, the light-transmitting portion P1 is arranged around the light-shielding portion P2, the fundus functional lens 213 is arranged between the first light source 211 and the first field aperture 212, and the light-shielding portion P2 is located on the optical axis of the coaxial illumination light S1 emitted by the first light source 212.
  • the light transmittance of the light-shielding portion P2 is T1
  • the light transmittance of the light-transmitting portion P1 is T2; T1 ⁇ 1%, T2>99%.
  • the first light source 211 can be a white light source
  • a fundus functional lens 213 is arranged between the first light source 211 and the first field aperture 212, so as to avoid damage to the observed eye due to excessive white light source.
  • the fundus functional lens 213 can be a flat lens, and its shape can be designed to be circular.
  • a light shielding portion P2 is arranged at the center of the fundus functional lens 213, and the size of the light shielding portion P2 can be adjusted according to factors such as the light source intensity, the coaxial illumination field, and the perception of the observed person to light stimulation.
  • the center of the fundus functional lens 213 can be coated with a black light absorbing material with a diameter of 1 mm, and the diameter of the blackened area on the fundus after being magnified by the illumination lens is about 15 mm.
  • the transmittance T1 of the blackened area is less than 1%; the light-transmitting portion P1 is arranged around the light-shielding portion P2; and the transmittance T2 of the light-transmitting portion P1 is greater than 99%.
  • the pupil of the observed person can be protected from being damaged by strong light on the basis of ensuring coaxial illumination.
  • the technical solution of this embodiment is particularly suitable for children and adolescent patients, and can prevent strong light from damaging the pupil of the eye.
  • the angled illumination unit 22 includes a second light source 221 , a second field aperture 222 , and a second illumination lens group 223 .
  • the second light source 221 is configured to emit an angled illumination light S2 .
  • the coaxial illumination unit 21 and the angled illumination unit 22 can be enabled separately or simultaneously.
  • the coaxial illumination unit 21 and the angled illumination unit 22 can be controlled by using different start switches or buttons.
  • coaxial illumination (0° illumination) and angled illumination can be enabled independently, and the two coaxial illumination light paths corresponding to the left and right eyes are symmetrical about the main optical axis of the surgical microscope system.
  • the light intensity ratio of the coaxial lighting and the angled lighting is set to 4:15
  • the angle between the angled lighting light S2 refracted by the objective lens 11 and the coaxial lighting light S1 refracted by the objective lens 11 is 5° to 7°, which can balance the light spot energy, increase the field of view and the lighting brightness.
  • FIG. 6 is a schematic diagram of a zoom unit provided according to an embodiment of the present disclosure.
  • the zoom unit 13 includes a front fixed group 120, a zoom group 130, a compensation group 140 and a rear fixed group 150.
  • the front fixed group 120, the zoom group 130 and the compensation group 140 are all cemented lenses.
  • the front fixed group 120 includes a third lens 121 and a fourth lens 122 arranged in sequence along the main optical axis from the image side to the object side;
  • the zoom group 130 includes a fifth lens 131 (with negative optical power) and a sixth lens 132 (with negative optical power) arranged in sequence along the main optical axis from the image side to the object side;
  • the compensation group 140 includes a seventh lens 141 (with negative optical power) and an eighth lens 142 (with negative optical power) arranged in sequence along the main optical axis from the image side to the object side.
  • the rear fixed group 150 includes two lenses, namely a cemented lens 1501 and a meniscus lens 1502 arranged in sequence along the main optical axis from the image side to the object side.
  • the front fixed group 120 has a positive optical power
  • the zoom group 130 has a negative optical power
  • the compensation group 140 has a negative optical power
  • the rear fixed group 150 has a positive optical power. Therefore, the zoom unit 13 is a positive-negative-positive structure.
  • the zoom ratio of the zoom unit 13 can reach 1:6, the field of view of the zoom unit 13 can reach a range of 0° to 7.4°, and the entrance pupil diameter of the zoom unit 13 can reach a range of 3.4mm to 18mm.
  • the compensation group 140 is configured to compensate for the off-axis aberration caused during the zoom movement, which can effectively achieve the aberration balance of each focal length and ensure the clarity of the image under different focal lengths.
  • the zoom group 130 and the compensation group 140 cooperate to achieve continuous afocal zooming, and have the characteristics of large system zoom ratio and continuous change of field of view, so as to achieve afocal continuous zooming of the surgical microscope and eliminate the discomfort of the observer (such as the surgeon) caused by the jump of the field of view.
  • the objective lens 11 includes a first lens 111 and a second lens 112 that are glued together; the surface of the lens close to the object plane is the object side surface, and the surface of the lens close to the image plane is the image side surface; the object side surface of the first lens 111 is a plane, and the image side surface of the first lens 111 is a concave surface; the object side surface of the second lens 112 is a convex surface, and the image side surface of the second lens 112 is a convex surface; the refractive index of the first lens 111 is n1, and the refractive index of the second lens 112 is n2; the Abbe constant of the first lens 111 is v1, and the Abbe constant of the second lens 112 is v2; wherein, n1>n2; v1 ⁇ V2.
  • the refractive index is the ratio of the speed of light in a vacuum to the speed of light in a medium. It is mainly used to describe the material's ability to refract light. Different materials have different refractive indices. The higher the refractive index of a material, the stronger its ability to refract incident light.
  • the Abbe number is an index used to represent the dispersion ability of a transparent medium. The more severe the dispersion of a transparent medium, the smaller the Abbe number; the milder the dispersion of a transparent medium, the larger the Abbe number.
  • chromatic aberration When a white light source is used for imaging, dispersion will be caused due to different refractive indices of different colored lights, so that different colored lights have different propagation optical paths, and finally present the aberration caused by the difference in optical paths of different colored lights, which is called chromatic aberration (abbreviated as chromatic aberration).
  • the first lens 111 as a plano-concave lens
  • the second lens 112 as a convex-convex lens
  • the amount of incident light can be increased, but chromatic aberration is introduced at the same time
  • the Abbe constant of the first lens 111 is set to v1, which is smaller than the Abbe constant v2 of the second lens 112, so as to reduce the dispersion effect and eliminate chromatic aberration.
  • the lighting module 02 further includes a stray light absorption unit 23.
  • the stray light absorption unit 23 is disposed on a side of the dichroic beam splitter 12 away from the coaxial lighting unit 21 and is disposed on the propagation path of the illumination light passing through the dichroic beam splitter 12 in the coaxial illumination light S1.
  • the lighting module 02 is also provided with a stray light absorption unit 23 to prevent stray light interference, which is mainly configured to collect stray light in the illumination light that is transmitted through the dichroic mirror 12. Therefore, the stray light absorption unit 23 is arranged on the side of the dichroic beam splitter 12 away from the coaxial illumination unit 21, and the coaxial illumination light S1 passing through the dichroic beam splitter 12 can be absorbed by the stray light absorption unit 23, thereby achieving the purpose of eliminating stray light.
  • the stray light absorption unit 23 can be an ellipsoidal bowl structure, the interior of the ellipsoidal bowl structure is made of a light-absorbing material, and its inner surface can also be coated with a light-absorbing film.
  • the curvature of the ellipsoidal bowl is determined by its distance from the dichroic beam splitter 12 and the objective lens 11.
  • the stray light absorption unit 23 can be designed as the outer wall of the mechanical frame of the objective lens 11.
  • FIG. 7 is a schematic diagram of an optical path of a scanning unit provided according to an embodiment of the present disclosure.
  • the surgical microscope system may further include an OCT imaging module 03 having a scanning unit 31 and an OCT image acquisition unit 32.
  • the OCT image acquisition unit 32 is disposed on the main optical axis between the variable magnification unit 13 and the dichroic beam splitter 12, and the scanning unit 31 is disposed on the main optical axis between the dichroic beam splitter 12 and the objective lens 11.
  • the OCT imaging module 03 is configured to collect and display the OCT image of the observed eye.
  • OCT is a conventional ophthalmic examination method, mainly used for the examination of the anterior and posterior segments (including the fundus).
  • the OCT imaging module 03 is arranged in the optical path of the surgical display mirror system, and by arranging the scanning unit 31 and the coaxial lighting unit 21 on the same side of the dichroic beam splitter 12, the scanning light S5 emitted by the scanning unit 31 is reflected by the dichroic beam splitter 12, and its optical axis L2 coincides with the main optical axis L1.
  • the scanning unit 31 also includes a scanning galvanometer 311, a focusing lens 312, an OCT system light source 313, a second reflector 314, a plurality of focusing lenses 315, a controller, etc.
  • the scanning galvanometer 311 is configured to scan the eye to be inspected, and the focusing lens 312 is a negative lens configured to fine-tune the axial direction.
  • the scanning galvanometer 311 and the focusing lens 312 work together to realize the OCT tomographic scanning imaging of the observed object surface M.
  • the OCT image acquisition unit 32 is disposed on the main optical axis between the dichroic beam splitter 12 and the magnification unit 13.
  • the OCT image acquisition unit 32 is a high-speed charge-coupled device (CCD) camera.
  • CCD charge-coupled device
  • a side of the dichroic beam splitter 12 facing the OCT image acquisition unit 32 is coated with a reflective film, so that the light from the observed object surface M that passes through the dichroic beam splitter 12 is divided into two paths (the two paths of light propagation directions are different), one of which enters the OCT image acquisition unit 32 after being reflected by the reflective film of the dichroic beam splitter 12 to form an OCT tomographic image; the other path of light directly enters the magnification unit 13 along the main optical axis L1 to form a microscope image.
  • a beam splitting component similar to the beam splitter 14 can be further provided between the dichroic beam splitter 12 and the magnification unit 13, so that the light from the observed object surface M that passes through the dichroic beam splitter 12 is divided into two paths by the beam splitting component (the two paths of light propagation directions are different), one of which enters the OCT image acquisition unit 32 to form an OCT tomographic image; the other path of light directly enters the magnification unit 13 along the main optical axis L1 to form a microscope image.
  • the OCT image acquisition unit 32 is arranged on the principal optical axis between the dichroic beam splitter 12 and the magnification unit 13, the size of the image displayed on the CCD interface of the OCT image acquisition unit 32 can change with the change of the magnification of the surgical microscope, and since the observed object surface M and the CCD image plane are conjugate surfaces, the OCT image displayed in real time on the CCD interface can be consistent with the microscope imaging of the observed object surface M observed through the eyepiece group 16. Therefore, the OCT image displayed on the CCD interface by the OCT image acquisition unit 32 is consistent with the imaging magnification of the observed object surface M seen by the observer (such as the surgeon) through the eyepiece group 16 of the surgical microscope. In this way, since the microscope imaging observed by the surgeon through the eyepiece group 16 during the operation is consistent with the OCT imaging observed by the assistant doctor through the above-mentioned CCD interface, the purpose of intraoperative teaching can also be achieved.
  • the image content and field of view of the microscope image observed through the eyepiece group 16 of the surgical microscope are consistent with the surgical image acquired through the image acquisition unit 17 and the OCT image acquired through the OCT image acquisition unit 32, and the microscope image observed through the eyepiece group 16 and the OCT image acquired and displayed on the CCD interface by the OCT image acquisition unit 32 are consistent in image content and field of view, and the magnification is also consistent.
  • the surgical image acquired by the image acquisition unit 17 can be used for postoperative archiving and analysis.
  • the embodiment of the present disclosure also provides a surgical display mirror, which includes the surgical display mirror system provided in the above embodiment.
  • the surgical display mirror also has the effects of the surgical display mirror system in the above embodiment.
  • the similarities can be understood by referring to the above explanation of the surgical display mirror system, and will not be repeated below.

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

手术显微镜系统及手术显微镜。该手术显微镜系统包括显微成像模块(01)和照明模块(02),显微成像模块(01)包括沿主光轴(L1)设置的物镜(11)、二色分光镜(12)、变倍单元(13)、分光器(14)、镜筒(15)、目镜组(16);照明模块(02)包括同轴照明单元(21)和有角度照明单元(22),同轴照明单元(21)包括第一光源(211)和第一视场光阑(212),第一视场光阑(212)设于第一光源(211)与二色分光镜(12)之间,第一光源(211)出射的同轴照明光线穿过第一视场光阑(212)经二色分光镜(12)反射后透过物镜(11)沿主光轴(L1)方向到达被观测物面(M)并形成第一光斑;有角度照明单元(22)出射的有角度照明光线经二色分光镜(12)反射后透过物镜(11)沿与主光轴(L1)成预设角度的方向到达被观测物面(M)并形成第二光斑;第一光斑大小可调。

Description

手术显微镜系统及手术显微镜
本申请要求在2022年12月12日提交中国专利局、申请号为202211587632.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及光学技术和手术显微镜技术领域,例如涉及可应用于眼科手术场景的手术显微镜系统及手术显微镜。
背景技术
常规的外科手术显微镜功能比较单一,为医生手术提供的参考数据、影像都不够丰富、充分。因而对眼科医生而言,在眼外科手术中依靠常规的外科手术显微镜来观测患者眼睛的微小细节,具有极大的挑战性。
比如,眼外科手术中的玻璃体视网膜手术,涉及玻璃体切除(从后房中移除玻璃体以进入视网膜),而成功的玻璃体切除术基本上需要完全从后房中移除玻璃体,包括移除玻璃体基底附近极具挑战性的区域。由于玻璃体的透明特性,仅依靠常规的外科手术显微镜来进行玻璃体切除术是极具挑战性的。
发明内容
本公开提供了一种手术显微镜系统及手术显微镜,例如可应用于眼科手术场景。
本公开的第一方面,提供了一种手术显微镜系统,包括显微成像模块和照明模块;
所述显微成像模块包括沿主光轴设置的物镜、二色分光镜、变倍单元、分光器、镜筒、目镜组;被观测物面出射的光线依次经过所述物镜、所述二色分光镜、所述变倍单元后被所述分光器分束成第一光束和第二光束,所述第一光束沿所述主光轴依次经过所述镜筒和所述目镜组,配置为观测者观测;所述显微成像模块还包括图像采集单元,所述图像采集单元位于所述第二光束的传播路径上,配置为采集手术图像;其中,所述第一光束和所述第二光束的传播方向不同;
所述照明模块包括同轴照明单元和有角度照明单元,所述同轴照明单元和所述有角度照明单元均位于所述二色分光镜朝向所述物镜的一侧;所述同轴照明单元包括第一光源和第一视场光阑,所述第一视场光阑设于所述第一光源与 所述二色分光镜之间,所述第一光源出射的同轴照明光线穿过所述第一视场光阑经所述二色分光镜反射后透过所述物镜沿所述主光轴方向到达所述被观测物面并形成第一光斑;所述有角度照明单元出射的有角度照明光线经所述二色分光镜反射后透过所述物镜沿与所述主光轴成预设角度的方向到达所述被观测物面并形成第二光斑;所述第一光斑大小可调。
本公开的第二方面,还提供了一种手术显微镜,包括本公开第一方面中任一实施例所述的手术显微镜系统。
附图说明
图1是根据本公开实施例提供的一种应用于眼科手术的手术显微镜系统的示意图;
图2是根据本公开实施例提供的一种第一视场光阑的示意图;
图3是根据本公开实施例提供的另一种第一视场光阑的示意图;
图4是根据本公开实施例提供的另一种第一视场光阑的示意图;
图5是根据本公开实施例提供的一种眼底功能镜片的示意图;
图6是根据本公开实施例提供的一种变倍单元的示意图;
图7是根据本公开实施例提供的一种扫描单元的光路示意图。
其中,附图标记为:
L1-主光轴,M-被观测物面,01-显微成像模块,02-照明模块,03-O光学相
干断层扫描(Optical Coherence Tomography,OCT)成像模块,11-物镜,111-第一透镜,112-第二透镜,12-二色分光镜,13-变倍单元,14-分光器,15-镜筒,16-目镜组,17-图像采集单元,18-第一反射镜,S3-第一光束,S4-第二光束,21-同轴照明单元,211-第一光源,212-第一视场光阑,2121-第一圆盘形光阑,2122-长方形光阑,2123-第二圆盘形光阑,O-通光孔,213-眼底功能镜片,P1-透光部,P2-遮光部,214-第一照明透镜组,22-有角度照明单元,221-第二光源,222-第二视场光阑,223-第二照明透镜组,23-杂散光吸收单元,120-前固定组,121-第三透镜,122-第四透镜,130-变倍组,131-第五透镜,132-第六透镜,140-补偿组,141-第七透镜,142-第八透镜,150-后固定组,151-第一透镜组,152-第二透镜组,1501-胶合透镜,1502-弯月透镜,31-扫描单元,311-扫描振镜,312-调焦镜片,313-OCT系统光源,314-第二反射镜,315-聚焦透镜,32-OCT图像采集单元。
具体实施方式
以下将结合本公开实施例中的附图,通过具体实施方式,描述本公开的技术方案。所描述的实施例是本公开的一部分实施例。
在一些实施例中,为了解决常规的外科手术显微镜功能比较单一的问题,针对眼外科手术还提供了OCT成像。但是,该实施例中,OCT成像只能应用于术前,无法与外科手术显微镜结合应用于术中,因而对眼外科医生帮助有限。
另外,在一些实施例中,应用于眼科手术的手术显微镜,其照明模块包括同轴照明单元和有角度照明单元。其中,有角度照明单元又称为场照明单元,手术显微镜使用中场照明单元的照明光路可以提供不同角度的照明,以便为整个手术现场提供所需的环境照明光。而同轴照明单元又称为0°照明单元,可以为白内障手术提供起决定性作用的、本身受到晶状体的瞳孔区限制的手术区的背景照明光,这可以为白内障手术中的最佳照明系统确立基本要求。即,手术区的背景照明光需要具有均匀的红光反射,同时要求红光反射具有良好的对比度,而同轴照明单元恰好可以满足该要求。但是,在相关技术中的一些实施例中,同轴照明单元产生的眼底光斑(也称眼底光点)的大小是不可调的。
然而,在白内障手术中,如果患者眼底上只有很小的局部病或患者眼底比较小(例如当患者是儿童时其眼底通常比较小),那么眼底光斑越小越能提供更好的对比度。此外,在白内障手术中,还可能遇到比较厚的白内障,这种情况下“红光反射”可能太暗,此种情况下如果能通过增大眼底光斑来增强眼底亮度,那么对白内障手术是极为有利的。
此外,在相关技术中的一些实施例中,应用于眼科手术的手术显微镜,其照明模块中的同轴照明单元和有角度照明单元只能单独启用,不能同时启用。
然而,眼科手术中,有些情况下需要增大视野以方便手术,有些情况下需要助理医生帮助主刀医生对眼周进行处理,此种情况需要同轴照明单元和有角度照明单元同时启用。
因此,为了使手术显微镜能够更加满足外科手术尤其是满足眼科手术的需求,本公开的一些实施例中,在手术显微镜中增加了OCT成像模块,因而可以在眼科手术中使用OCT成像功能,而不再限于只能在眼科手术前使用OCT成像。本公开的另一些实施例中,还对手术显微镜中的照明模块进行了改进,使得同轴照明单元在眼底形成的光斑大小可调。在本公开的另一些实施例中,还对手术显微镜中的照明模块进行了改进,使得其同轴照明单元和有角度照明单元不仅可以单独启用,还可以同时启用。
图1是根据本公开实施例提供的一种应用于眼科手术的手术显微镜系统的示意图。如图1所示,本申请实施例提供了一种应用于眼科手术的手术显微镜系 统,可应用在医用眼科手术中,手术显示镜系统包括显微成像模块01、照明模块02;显微成像模块01包括沿主光轴L1从物面到像面设置的物镜11、二色分光镜12、变倍单元13、分光器14、镜筒15、目镜组16;被观测物面M出射的光线依次经过物镜11、二色分光镜12、变倍单元13后被分光器14分束成第一光束S3和第二光束S4,第一光束S3沿主光轴L1依次经过镜筒15和目镜组16,配置为观测者观测;显微成像模块01还包括图像采集单元17,图像采集单元17位于第二光束S4的传播路径上,配置为采集手术图像;其中,第一光束S3和第二光束S4的传播方向不同;照明模块02包括同轴照明单元21和有角度照明单元22,同轴照明单元21和有角度照明单元22均位于二色分光镜12朝向物镜11的一侧;同轴照明单元21包括第一光源211、第一视场光阑212和第一照明透镜组214,第一视场光阑212设于第一光源211与二色分光镜12之间,设于第一光源211与第一照明透镜组214之间,在同轴照明单元21还包括眼底功能镜213的情况下,第一视场光阑212设于眼底功能镜213和第一照明透镜组214之间。第一光源211出射的同轴照明光线S1穿过第一视场光阑212以及第一照明透镜组214经二色分光镜12反射后透过物镜11沿主光轴L1方向到达被观测物面M并形成第一光斑(眼底光斑),该第一光斑大小可调;有角度照明单元22出射的有角度照明光线S2经二色分光镜12反射后透过物镜11沿与主光轴L1成预设角度(如5°~7°)的方向到达被测物面M并形成第二光斑。
在本公开实施例中,显微成像模块01配置为对被观测眼睛进行放大成像,照明模块02配置为为手术显微镜系统的光路提供照明,被观测物面M可以为被观测眼睛的视网膜所在的物面。以显微成像模块01的主光轴L1为参考,显微成像模块01包括沿主光轴L1从物面到像面依次设置的物镜11、二色分光镜12、变倍单元13、分光器14、第一反射镜18、镜筒15、目镜组16。其中,变倍单元13可配置为调节目镜组16观察到的被观测物面M的显示成像的大小。在显示镜系统中设置照明模块02,对被观测眼睛采用同轴照明和/或有角度照明两种方式,其中,同轴照明指的是照明光线与主光轴L1平行;有角度照明指的是照明光线与主光轴L1存在夹角,如夹角度数在5°~7°之间。
示例性的,如图1所示,可以使同轴照明单元21和有角度照明单元22均设于二色分光镜12朝向物镜11的一侧。第一光源211可以采用白光光源,第一光源211配置为出射同轴照明光线S1,在第一光源211和二色分光镜12之间设置第一视场光阑212,设置第一光源211出射的同轴照明光线S1的中心光轴照射在二色分光镜12与主光轴L1的交叠区域,以使同轴照明光线S1经二色分光镜12反射后沿主光轴L1传播穿过物镜11到达被观测物面M并形成第一光斑。可以根据不同患者的眼底大小和/或眼底上病灶区域的大小,通过调整第一视场光阑212通光孔的大小来调整第一光斑的大小,以满足不同的照明需求。
在本公开实施例中,由于同轴照明单元在眼底形成的光斑大小可调,因此在白内障手术中,如果遇到患者眼底上只有很小的局部病或患者眼底比较小的情况,则可以将眼底光斑调小,以便提供更好的对比度,从而利于手术开展。在白内障手术中,如果遇到比较厚的白内障而导致“红光反射”太暗的情况,则可以将眼底光斑调大,以便增强眼底亮度,从而利于白内障手术的开展。
在本公开实施例中,有角度照明单元22出射的有角度照明光线S2照射在偏离二色分光镜12与主光轴L1的交叠区域,以此使有角度照明光线S2经二色分光镜12反射后透过物镜11沿着与主光轴L1呈预设角度的方向到达被观测物面M并形成第二光斑。在本公开实施例中,通过调整有角度照明单元22的位姿,可以使有角度照明光线S2经二色分光镜12反射后透过物镜11的传播方向和同轴照明光线S1经二色分光镜12反射后透过物镜11的传播方向之间的夹角为5°~7°,从而获得较大场照明光斑直径,以便对被观测眼睛进行大视野照明,从而满足眼科手术的照明需要。
在本公开的一个实施例中,目镜组16可以为单镜片和双胶合透镜组成的10x放大倍率的透镜组。手术显微镜包含左、右眼两路成像目镜,左、右眼两路成像目镜采用对称设置。显微成像模块01还可以包括第一反射镜18,如图1所示,设置第一反射镜18位于分光器14和镜筒15之间,配置为调节光线的传播方向,以适应观测者(如眼科医生)的观测需要。
被观测物面M反射的部分光线沿主光轴L1的方向由物镜11进入显示镜系统,依次穿过二色分光镜12、变倍单元13后被分光器14分束成第一光束S3和第二光束S4,第一光束S3沿主光轴L1依次经过第一反射镜18、镜筒15和目镜组16,便于主刀医生观测病患的眼睛;第二光束S4沿另一传播方向到达图像采集单元17,以生成手术显示镜视野范围内的手术图像,用于术中观察和术后存档。其中,设置二色分光镜12与主光轴L1的锐角夹角为α,当同轴照明单元21和有角度照明单元22固定设置时,通过调整α的大小,改变有角度照明光线S2与二色分光镜12的接触面,可以调整有角度照明光线S2经物镜11折射后与主光轴L1之间的夹角大小。示例性的,通过将夹角α调大,可以增大第二光斑的直径,扩大有角度照明视野范围;通过将夹角α调小,可以减小第二光斑的直径,缩小有角度照明视野范围。通过调整有角度照明的视场范围,可以满足手术对视野范围的要求。
通过本公开实施例,在手术显微镜系统中,将照明模块的同轴照明单元形成的眼底光斑(如上述的第一光斑)设置成大小可调的光斑,可以满足不同的眼科手术场景,并降低眼科手术难度。通过改变手术显微镜系统中二色分光镜相对于系统主光轴的倾斜角度,可以调节照明模块中有角度照明单元形成的场 照明光斑(如上述的第二光斑)的大小,因而可以根据不同的眼科手术场景,获得满足不同手术要求的视野照明范围,以利手术开展。
图2~图4是根据本公开实施例的三种第一视场光阑的示意图。
在本公开实施例中,第一视场光阑212上设有多个大小不同的通光孔O,选用第一视场光阑212上的不同通光孔O能够形成不同大小的第一光斑。
在本公开实施例中,由于第一视场光阑212上设有多个不同孔径的通光孔O,因此,针对不同的手术场景可以选用不同孔径的通光孔O以达到调节被检查对象的眼底光斑的大小的目的,从而影响“红光反射”的强度(明亮度)和均匀性。红光反射试验是用来筛查眼后段的异常和视轴上的浑浊的,例如白内障和角膜浑浊。照明形成的眼底光斑直径越大,“红光反射”越均匀且越明亮;照明形成的眼底光斑直径越小,“红光反射”的对比度就越好。在手术显微镜系统仅需采用同轴照明的情况下,开启第一光源211,并根据患者的眼底大小,选择合适孔径大小的通光孔O,第一光源211出射的同轴照明光线S1透过通光孔O后再经二色分光镜12反射后透过物镜11到达被观测眼睛并在眼底上形成对应大小的第一光斑,可以达到控制眼底上照明光斑大小的作用。
在本公开实施例中,第一视场光阑212可以有多种表现形式。一种可行的实施方式,如图2所示,第一视场光阑212可以是:一个第一圆盘形光阑2121。该第一圆盘形光阑2121上设有的多个大小不同的通光孔O的中心均位于以第一圆盘形光阑2121中心为圆心的同一圆周上,以便通过旋转第一视场光阑212将其任一通光孔O移入同轴照明光路后,都可以使第一光源211出射的同轴照明光线S1的主光轴垂直于该通光孔O所在的平面并精准穿过该通光孔O的中心,从而达到定位准确和便于调节的目的。
示例性的,如图2所示,可以在圆形的第一视场光阑212的四个象限内分别设置一个孔径大小不等的通光孔O,其中,这4个通光孔O的圆心都分布在对应象限的∠45°方向上,并且这4个通光孔O的圆心同时还都分布在以第一视场光阑212圆心为中心的同一圆周上。使用时,可以将第一视场光阑212绕垂直于第一视场光阑212表面且穿过第一视场光阑212圆心的轴线进行45°、135°、225°、270°旋转,以将不同的通光孔O移入同轴照明光路中。该第一视场光阑212上的任一通光孔O移入同轴照明光路后,都可以使第一光源211出射的同轴照明光线S1的主光轴垂直于该通光孔O所在的平面并精准穿过该通光孔O的中心。使用者可以根据患者眼底的大小选择第一视场光阑212的通光孔O的大小,有利于提高显微成像的对比度。
或者,另一种可行的实施方式,如图3所示,第一视场光阑212可以是一个长方形光阑2122。该长方形光阑2122上设有的多个大小不同的通光孔O的中心位 于同一直线上,以便通过推动第一视场光阑212将其任一通光孔O移入同轴照明光路后,都可以使第一光源211出射的同轴照明光线S1的主光轴垂直于该通光孔O所在的平面并精准穿过该通光孔O的中心,从而达到定位准确和便于调节的目的。
示例性的,如图3所示的长方形第一视场光阑212,沿其长轴方向,依次设置有四个大小不同的通光孔O。使用时,可以沿第一视场光阑212的长边方向推动第一视场光阑212,从而将满足手术需要的通光孔O推入同轴照明光路。本实施例中,长方形第一视场光阑212的任一通光孔O移入同轴照明光路后,都可以使第一光源211出射的同轴照明光线S1的主光轴垂直于该通光孔O所在的平面并精准穿过该通光孔O的中心。使用者可以根据患者眼底的大小选择第一视场光阑212的通光孔O的大小,有利于提高显微成像的对比度。
或者,另一种可行的实施方式,如图4所示,第一视场光阑212可以包括多个第二圆盘形光阑2123,多个第二圆盘形光阑2123呈折叠设置,每个第二圆盘形光阑2123上设有一个通光孔O,不同第二圆盘形光阑2123上设有大小不同的通光孔O,折叠状态下多个第二圆盘形光阑2123对应的多个通光孔O的中心位于同一轴线上。
示例性的,如图4所示,每个第二圆盘形光阑2123上设有一个通光孔O,多个通光孔O大小不等,多个第二圆盘形光阑2123呈折叠状态设置,折叠状态下这多个第二圆盘形光阑2123对应的多个通光孔O的中心位于同一轴线上。使用时,从第一视场光阑212中选择手术需要的第二圆盘形光阑2123,并将被选中的第二圆盘形光阑2123移入同轴照明光路,同时将没有被选中的第二圆盘形光阑2123折叠在一起,以减少对空间的占用。通过操作第一视场光阑212将其任一通光孔O移入同轴照明光路后,都可以使第一光源211出射的同轴照明光线S1的主光轴垂直于该通光孔O所在的平面并精准穿过该通光孔O的中心,从而达到定位准确和便于调节的目的。使用者可以根据患者眼底的大小选择第一视场光阑212的通光孔O的大小,有利于提高显微成像的对比度。
继续参考图1所示,镜筒15内设有第一透镜组151和第二透镜组152,第一透镜组151位于镜筒15靠近目镜组16的一端,第二透镜组152位于镜筒15靠近变倍单元13的一侧;第一透镜组151包括弯月透镜,第二透镜组152包括胶合透镜。
示例性的,在镜筒15的两端分别设置第一透镜组151和第二透镜组152,靠近目镜组16一端的第一透镜组151为弯月透镜。该弯月透镜可以是负弯月透镜,其凸面朝向目镜组16,对变倍单元13出射的光线进行汇聚,可以减小显微镜成像光路的球差。并且利用弯月透镜设计有利于压缩变倍单元13和镜筒15的数值孔径(Numerical Aperture,NA)的大小,从整体上减小了设备体积,进而减少 了手术显微镜对手术空间的占用。靠近变倍单元13一端的第二透镜组152采用胶合透镜,可以消除透镜两个面上的反射损失以及防止空气间隙上的全反射,有利于矫正轴外的像质和轴上色差。示例性的,第二透镜组152的焦距可以设置为170mm,有利于压缩光线进入目镜组16。
NA是透镜与被观测物体之间介质的孔径角(2β)半数的正弦值与折射率(n)之乘积。用公式表示如下:NA=n*sinβ。孔径角又称“镜口角”,是透镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入透镜的光通量就越大,它与透镜的有效直径成正比,与焦点的距离成反比。
图5是根据本公开实施例提供的一种眼底功能镜片的示意图。
如图5所示,同轴照明单元21还包括眼底功能镜片213;眼底功能镜片213包括透光部P1和遮光部P2,透光部P1围设于遮光部P2周边,眼底功能镜片213设于第一光源211和第一视场光阑212之间,且遮光部P2位于第一光源212出射的同轴照明光线S1的光轴上。遮光部P2的光线透过率为T1,透光部P1的光线透过率为T2;T1<1%,T2>99%。
示例性的,第一光源211可以采用白光光源,在第一光源211和第一视场光阑212之间设置眼底功能镜片213,可以避免因白光光源过强而损伤被观测的眼睛。在本实施例中,眼底功能镜片213可以采用平板透镜,其形状可以设计为圆形,在眼底功能镜片213的圆心处设置遮光部P2,遮光部P2的大小可根据光源强度、同轴照明视场以及被观测者对光照刺激的感受等因素调整。例如,眼底功能镜片213的中心可以涂覆有直径1毫米的黑色吸光材料,该涂黑区域经照明镜头放大后在眼底上的直径大小约为15毫米。涂黑区域的透过率T1小于1%;透光部P1围绕遮光部P2周边设置;透光部P1的透过率T2大于99%。本公开实施例中,通过设置上述眼底功能镜片213,可以在保证同轴照明的基础上,保护被观测者瞳孔不被强光损伤。本实施例技术方案尤其适用于儿童、青少年患者,可以避免强光对眼睛瞳孔的伤害。
继续参照图1所示,有角度照明单元22包括第二光源221、第二视场光阑222和第二照明透镜组223,第二光源221配置为出射有角度照明光线S2。
返回参考图1,在手术显微镜中,同轴照明单元21和有角度照明单元22既可以分别单独启用,也可同时启用。同轴照明单元21和有角度照明单元22可以使用不同的启动开关或者按钮进行开关控制。
本公开实施例中,在一些手术场景下,同轴照明(0°照明)和有角度照明(如5°-7°场照明)可以独立启用,并且左、右眼对应的两个同轴照明光路关于手术显微镜系统的主光轴对称。在另一些手术场景下,同轴照明和有角度照 明还可以同时启用。一种实施方式,在同轴照明单元21和有角度照明单元22同时照明的情况下,设置同轴照明和有角度照明的光强度比为4:15,经物镜11折射后的有角度照明光线S2和经物镜11折射后的同轴照明光线S1之间的夹角为5°~7°,可以起到均衡光斑能量、增大视野范围和照明亮度的作用。
图6是根据本公开实施例提供的一种变倍单元的示意图。
如图6所示,变倍单元13包括前固定组120、变倍组130、补偿组140和后固定组150。前固定组120、变倍组130、补偿组140均为胶合透镜。示例性的,前固定组120包括从像方到物方沿主光轴依次设置的第三透镜121和第四透镜122;变倍组130包括从像方到物方沿主光轴依次设置的第五透镜131(为负光焦度)和第六透镜132(为负光焦度);补偿组140包括从像方到物方沿主光轴依次设置的第七透镜141(为负光焦度)和第八透镜142(为负光焦度)。后固定组150包括两个透镜,分别为从像方到物方沿主光轴依次设置的胶合透镜1501和弯月透镜1502。
根据本公开的实施例,前固定组120为正光焦度;变倍组130为负光焦度;补偿组140为负光焦度;后固定组150为正光焦度。因此变倍单元13为正-负-正结构。本公开实施例中,变倍单元13的变倍比可以达到1:6,变倍单元13的视场变化范围可以达到0°~7.4°,变倍单元13的入瞳直径变化范围可以达到3.4mm~18mm。
在本公开实施例中,补偿组140配置为补偿变焦移动过程中引起的轴外像差,可以有效实现各焦段的像差平衡,保证不同焦距状态下图像的清晰度。通过变倍组130和补偿组140配合实现连续的无焦变倍,并且具有系统变倍比大、视场范围连续变化的特点,实现了手术显微镜的无焦连续变倍,消除了观测者(如手术医生)因视场跳跃而带来的不适感。
在本公开实施例中,如图1所示,物镜11包括胶合设置的第一透镜111和第二透镜112;透镜靠近物面一侧的表面为物侧面,透镜靠近像面一侧的表面为像侧面;第一透镜111的物侧面为平面,第一透镜111的像侧面为凹面;第二透镜112的物侧面为凸面,第二透镜112的像侧面为凸面;第一透镜111的折射率为n1,第二透镜112的折射率为n2;第一透镜111的阿贝常数为v1,第二透镜112的阿贝常数为v2;其中,n1>n2;v1<V2。
折射率是光在真空中的传播速度与光在介质中的传播速度之比,主要用来描述材料对光的折射能力,不同材料的折射率不同,材料的折射率越高,使入射光发生折射的能力越强。阿贝数是用以表示透明介质色散能力的指数,透明介质色散越严重,阿贝数越小;透明介质的色散越轻微,阿贝数越大。
由于使用白光光源进行成像时,会因不同色光有不同折射率而造成色散,从而使不同的色光有不同的传播光路,从而最终呈现出因不同色光的光路差别而引起的像差,称之为色像差(简称色差)。本公开实施例中,通过设置第一透镜111为平凹透镜,第二透镜112为凸凸透镜,并将第一透镜111和第二透镜112胶合,且设置第一透镜111的折射率为n1大于第二透镜112的折射率n2,可以增大入射光线量,但同时引入色差,设置第一透镜111的阿贝常数为v1小于第二透镜112的阿贝常数v2,以起到降低色散效应,消除色差的作用。
在本公开实施例中,如图1所示,照明模块02还包括杂散光吸收单元23。杂散光吸收单元23设于二色分光镜12背离同轴照明单元21的一侧,且设于同轴照明光线S1中透过二色分光镜12的照明光线的传播路径上。
在本公开实施例中,照明模块02还设置有防杂散光干扰的杂散光吸收单元23,主要配置为收集照明光中透过二向色镜12传播的杂散光。因此,在二色分光镜12背离同轴照明单元21的一侧设置杂散光吸收单元23,透过二色分光镜12的同轴照明光线S1就可以被杂散光吸收单元23吸收,因而可以达到消除杂散光的目的。示例性的,杂散光吸收单元23可以为椭球碗结构,该椭球碗结构内部采用吸光材料制成,其内部表面还可以镀有吸光膜。该椭球碗的曲率由它到二色分光镜12和物镜11的距离决定。在本公开实施例中,杂散光吸收单元23可以设计成物镜11的机械框外壁。
图7是根据本公开实施例提供的一种扫描单元的光路示意图。
在本公开实施例中,返回参考图1并参考图7所示,手术显微镜系统还可以包括具有扫描单元31和OCT图像采集单元32的OCT成像模块03。OCT图像采集单元32设于变倍单元13与二色分光镜12之间的主光轴上,扫描单元31设于二色分光镜12与物镜11之间的主光轴上。
在本公开实施例中,OCT成像模块03配置为采集并显示被观测眼睛的OCT图像。OCT是眼科的常规检查方法,主要用于眼前段和后段(包括眼底)的检查。本公开实施例中,在手术显示镜系统的光路中设置OCT成像模块03,通过将扫描单元31和同轴照明单元21设置在二色分光镜12的同一侧,扫描单元31出射的扫描光线S5经二色分光镜12反射后其光轴L2与主光轴L1重合。扫描单元31还包括扫描振镜311、调焦镜片312、OCT系统光源313、第二反射镜314、多个聚焦透镜315、控制器等。扫描振镜311配置为对被检眼进行扫描,调焦镜片312为负透镜,配置为微调节轴向,扫描振镜311和调焦镜片312共同作用可以实现被观测物面M的OCT断层扫描成像。
将OCT图像采集单元32设于二色分光镜12和变倍单元13之间的主光轴上。OCT图像采集单元32为高速电荷耦合器件(Charge-coupled Device,CCD)相机。 在一个实施例中,二色分光镜12朝向OCT图像采集单元32的一侧涂有反射膜,使得来自被观测物面M的光束中透射过二色分光镜12的光线被分作两路(两路光线传播方向不同),其中一路光线经过二色分光镜12的所述反射膜反射后进入OCT图像采集单元32,以形成OCT断层扫描图像;另一路光线沿主光轴L1方向直接进入变倍单元13,以形成显微镜成像。或者,在另一个实施例中,二色分光镜12与变倍单元13之间还可以增设一个类似于分光器14的分光组元,使得来自被观测物面M的光束中透射过二色分光镜12的光线被该分光组元分作两路(两路光线传播方向不同),其中一路光线进入OCT图像采集单元32,以形成OCT断层扫描图像;另一路光线沿主光轴L1方向直接进入变倍单元13,以形成显微镜成像。根据本公开的实施例,由于OCT图像采集单元32设于二色分光镜12和变倍单元13之间的主光轴上,因此OCT图像采集单元32的CCD界面上显示的图像的大小可以随手术显微镜倍率的变化而变化,并且由于被观测物面M和CCD像面是共轭面,因此CCD界面上实时显示的OCT图像与通过目镜组16观测到的被观测物面M的显微镜成像可以保持一致。由此,OCT图像采集单元32显示在CCD界面上的OCT图像与观测者(如主刀医生)通过手术显微镜目镜组16看到的被观测物面M的成像放大倍率一致。以此方式,由于术中主刀医生通过目镜组16观测到的显微镜成像与助理医生通过上述CCD界面观测到OCT成像保持一致,因而还可以实现术中教学的目的。
根据本公开的实施例,通过手术显微镜的目镜组16观测到的显微镜成像与通过图像采集单元17采集的手术图像以及通过OCT图像采集单元32采集的OCT图像的图像内容和视野范围都一致,并且通过目镜组16观测到的显微镜成像和OCT图像采集单元32采集并显示在CCD界面上的OCT图像除了图像内容和视野范围一致之外,放大倍率也一致。图像采集单元17采集的手术图像可用于术后存档和分析时调用。
基于同一个构思,本公开实施例还提供了一种手术显示镜,该手术显微镜包括上述实施例提供的手术显示镜系统,该手术显示镜也具有上述实施方式中的手术显示镜系统所具有的效果,相同之处可参照上文对手术显示镜系统的解释说明进行理解,下文不再赘述。

Claims (10)

  1. 一种手术显微镜系统,包括显微成像模块(01)和照明模块(02);
    所述显微成像模块(01)包括沿主光轴(L1)设置的物镜(11)、二色分光镜(12)、变倍单元(13)、分光器(14)、镜筒(15)、目镜组(16);被观测物面(M)出射的光线依次经过所述物镜(11)、所述二色分光镜(12)、所述变倍单元(13)后被所述分光器(14)分束成第一光束(S3)和第二光束(S4),所述第一光束(S3)沿所述主光轴(L1)依次经过所述镜筒(15)和所述目镜组(16),配置为观测者观测;所述显微成像模块(01)还包括图像采集单元(17),所述图像采集单元(17)位于所述第二光束(S4)的传播路径上,配置为采集手术图像;其中,所述第一光束(S3)和所述第二光束(S4)的传播方向不同;
    所述照明模块(02)包括同轴照明单元(21)和有角度照明单元(22),所述同轴照明单元(21)和所述有角度照明单元(22)均位于所述二色分光镜(12)朝向所述物镜(11)的一侧;所述同轴照明单元(21)包括第一光源(211)和第一视场光阑(212),所述第一视场光阑(212)设于所述第一光源(211)与所述二色分光镜(12)之间,所述第一光源(211)出射的同轴照明光线穿过所述第一视场光阑(212)经所述二色分光镜(12)反射后透过所述物镜(11)沿所述主光轴(L1)方向到达所述被观测物面(M)并形成第一光斑;所述有角度照明单元(22)出射的有角度照明光线经所述二色分光镜(12)反射后透过所述物镜(11)沿与所述主光轴(L1)成预设角度的方向到达所述被观测物面(M)并形成第二光斑;所述第一光斑大小可调。
  2. 根据权利要求1所述的手术显微镜系统,其中,所述第一视场光阑(212)上设有多个大小不同的通光孔(O),选用所述第一视场光阑(212)上的不同通光孔(O)能够形成不同大小的第一光斑。
  3. 根据权利要求2所述的手术显微镜系统,其中,所述第一视场光阑(212)包括以下之一:
    一个第一圆盘形光阑(2121),所述第一圆盘形光阑(2121)上设有的多个大小不同的通光孔(O)的中心均位于以所述第一圆盘形光阑(2121)中心为圆心的同一圆周上;
    长方形光阑(2122),所述长方形光阑(2122)上设有的多个大小不同的通光孔的中心位于同一直线上;
    多个第二圆盘形光阑(2123),所述多个第二圆盘形光阑(2123)呈折叠设置,每个第二圆盘形光阑(2123)上设有一个通光孔,不同第二圆盘形光阑(2123)上设有大小不同的通光孔,折叠状态下所述多个第二圆盘形光阑(2123) 对应的多个通光孔的中心位于同一轴线上。
  4. 根据权利要求1所述的手术显微镜系统,其中,所述同轴照明单元(21)和所述有角度照明单元(22)可单独启用,也可同时启用。
  5. 根据权利要求1所述的手术显微镜系统,还包括:具有扫描单元(31)和光学相干断层扫描OCT图像采集单元(32)的OCT成像模块(03),所述OCT图像采集单元(32)设于所述变倍单元(13)与所述二色分光镜(12)之间的主光轴(L1)上,所述扫描单元(31)设于所述二色分光镜(12)与所述物镜(11)之间的主光轴(L1)上。
  6. 根据权利要求1所述的手术显微镜系统,其中,所述镜筒(15)内设有第一透镜组(151)和第二透镜组(152),所述第一透镜组(151)位于所述镜筒(15)靠近所述目镜组(16)的一端,所述第二透镜组(152)位于所述镜筒(15)靠近所述变倍单元(13)的一端;所述第一透镜组(151)包括弯月透镜,所述第二透镜组(152)包括胶合透镜。
  7. 根据权利要求1所述的手术显微镜系统,其中,所述同轴照明单元(21)还包括眼底功能镜片(213);所述眼底功能镜片(213)包括透光部(P1)和遮光部(P2),所述透光部(P1)围设于所述遮光部(P2)周边,所述眼底功能镜片(213)位于所述第一光源(211)和所述第一视场光阑(212)之间,且所述遮光部(P2)位于所述第一光源(211)出射的同轴照明光线的光轴上;所述遮光部(P2)的透过率为T1,所述透光部(P2)的透过率为T2;T1<1%,T2>99%。
  8. 根据权利要求1所述的手术显微镜系统,其中,所述照明模块(02)还包括杂散光吸收单元(23);所述杂散光吸收单元(23)设于所述二色分光镜(12)背离所述同轴照明单元(21)的一侧,且设于所述同轴照明光线中透过所述二色分光镜(12)的照明光线的传播路径上。
  9. 根据权利要求1所述的手术显微镜系统,其中,所述物镜(11)包括胶合设置的第一透镜(111)和第二透镜(112);透镜靠近物面一侧的表面为物侧面,透镜靠近像面一侧的表面为像侧面;
    所述第一透镜(111)的物侧面为平面,所述第一透镜(111)的像侧面为凹面;所述第二透镜(112)的物侧面为凸面,所述第二透镜(112)的像侧面为凸面;所述第一透镜(111)的折射率为n1,所述第二透镜(112)的折射率为n2;所述第一透镜(111)的阿贝常数为v1,所述第二透镜(112)的阿贝常数为v2;其中,n1>n2;v1<v2。
  10. 一种手术显微镜,包括权利要求1至9中任一项所述的手术显微镜系 统。
PCT/CN2023/137512 2022-12-12 2023-12-08 手术显微镜系统及手术显微镜 WO2024125416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211587632.3A CN115644795B (zh) 2022-12-12 2022-12-12 手术显微镜系统及手术显微镜
CN202211587632.3 2022-12-12

Publications (1)

Publication Number Publication Date
WO2024125416A1 true WO2024125416A1 (zh) 2024-06-20

Family

ID=85020018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137512 WO2024125416A1 (zh) 2022-12-12 2023-12-08 手术显微镜系统及手术显微镜

Country Status (2)

Country Link
CN (1) CN115644795B (zh)
WO (1) WO2024125416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115644795B (zh) * 2022-12-12 2024-04-09 图湃(北京)医疗科技有限公司 手术显微镜系统及手术显微镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611044A1 (de) * 1995-03-20 1996-09-26 Nikon Corp Operationsmikroskop
JPH10133122A (ja) * 1996-10-25 1998-05-22 Nikon Corp 手術用顕微鏡
JP2005031582A (ja) * 2003-07-11 2005-02-03 Takagi Seiko Corp 手術用顕微鏡
CN103852876A (zh) * 2012-11-30 2014-06-11 徕卡显微系统(瑞士)股份公司 用于手术显微镜的照明装置
CN105266903A (zh) * 2015-09-07 2016-01-27 航天海鹰光电信息技术(天津)有限公司 一种可调节的手术显微镜用照明系统
CN108852617A (zh) * 2018-05-18 2018-11-23 深圳市斯尔顿科技有限公司 一种眼科手术显微镜系统
CN214311082U (zh) * 2021-03-25 2021-09-28 深圳百炼光特种照明有限公司 一种显微镜用照明装置
CN115644795A (zh) * 2022-12-12 2023-01-31 图湃(北京)医疗科技有限公司 手术显微镜系统及手术显微镜

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417036B2 (ja) * 2003-06-09 2010-02-17 株式会社トプコン 眼科用手術顕微鏡
DE102009026555B4 (de) * 2009-05-28 2016-03-24 Leica Instruments (Singapore) Pte. Ltd. Auflicht-Beleuchtungseinrichtung für ein Mikroskop
DE102010042351B4 (de) * 2010-10-12 2014-02-13 Leica Microsystems Cms Gmbh Mikroskopbeleuchtungssystem, Mikroskop und Verfahren zur schrägen Auflichtbeleuchtung
JP5981722B2 (ja) * 2011-04-27 2016-08-31 キヤノン株式会社 眼科装置
CN114726975A (zh) * 2021-01-06 2022-07-08 Oppo广东移动通信有限公司 摄像头镜片及其制备方法和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611044A1 (de) * 1995-03-20 1996-09-26 Nikon Corp Operationsmikroskop
JPH10133122A (ja) * 1996-10-25 1998-05-22 Nikon Corp 手術用顕微鏡
JP2005031582A (ja) * 2003-07-11 2005-02-03 Takagi Seiko Corp 手術用顕微鏡
CN103852876A (zh) * 2012-11-30 2014-06-11 徕卡显微系统(瑞士)股份公司 用于手术显微镜的照明装置
CN105266903A (zh) * 2015-09-07 2016-01-27 航天海鹰光电信息技术(天津)有限公司 一种可调节的手术显微镜用照明系统
CN108852617A (zh) * 2018-05-18 2018-11-23 深圳市斯尔顿科技有限公司 一种眼科手术显微镜系统
CN214311082U (zh) * 2021-03-25 2021-09-28 深圳百炼光特种照明有限公司 一种显微镜用照明装置
CN115644795A (zh) * 2022-12-12 2023-01-31 图湃(北京)医疗科技有限公司 手术显微镜系统及手术显微镜

Also Published As

Publication number Publication date
CN115644795B (zh) 2024-04-09
CN115644795A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US10893803B2 (en) Wide-field retinal imaging system
RU2675688C2 (ru) Хирургическая система визуализации oct широкого поля обзора без использования микроскопа
JP6353436B2 (ja) 光コヒーレンストモグラフィ(oct)システム
JP5691026B2 (ja) 照明−および観察装置
JP6456711B2 (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
US9629536B2 (en) Illumination system for opthalmic microscope, and its operation method
WO2024125416A1 (zh) 手术显微镜系统及手术显微镜
JP3377238B2 (ja) 細隙灯顕微鏡
WO2023005252A1 (zh) 测量眼睛的光学质量的眼科仪器
JP2024063110A (ja) 眼科用光学系及び眼科装置
JP2024045686A (ja) 眼科装置及び断層画像生成装置
JP6638050B2 (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
CN211796403U (zh) 一种基于裂隙灯平台的眼科多功能眼前段成像装置
CN113509142A (zh) 一种大视野视网膜检查装置
CN214906733U (zh) 一种免散瞳眼底相机光学系统
JP2018166927A (ja) 眼科用顕微鏡
WO2020234895A1 (en) Illumination system for surgical and other stereo microscopes
JP2814050B2 (ja) 前眼部観察装置付スペキュラーマイクロスコープ
JPS6125762Y2 (zh)
JPH07194552A (ja) 眼底検査装置
e Silva Development of an optical confocal module for a slit lamp microscope