WO2023019754A1 - 冷板装置及服务器 - Google Patents

冷板装置及服务器 Download PDF

Info

Publication number
WO2023019754A1
WO2023019754A1 PCT/CN2021/128631 CN2021128631W WO2023019754A1 WO 2023019754 A1 WO2023019754 A1 WO 2023019754A1 CN 2021128631 W CN2021128631 W CN 2021128631W WO 2023019754 A1 WO2023019754 A1 WO 2023019754A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
cooling
chamber
phase change
vertical
Prior art date
Application number
PCT/CN2021/128631
Other languages
English (en)
French (fr)
Inventor
曲中江
郭广亮
Original Assignee
南昌华勤电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌华勤电子科技有限公司 filed Critical 南昌华勤电子科技有限公司
Publication of WO2023019754A1 publication Critical patent/WO2023019754A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • the present application relates to the field of heat dissipation, and more specifically, relates to a cold plate device and a server.
  • accompanying drawing 1 is a top view of a cold plate device provided by a specific embodiment of the prior art
  • accompanying drawing 2 is a front view of accompanying drawing 1.
  • the cold plate device in the prior art includes: a cold plate cover 100 , a cold plate bottom plate 300 , a microchannel radiator 200 , a liquid inlet pipe 400 , and a liquid outlet pipe 500 .
  • the cold plate cover 100 is buckled on the cold plate bottom plate 300 to form a cooling cavity.
  • a micro-channel heat sink 200 is arranged in the cooling chamber. The cooling liquid enters the cooling cavity from the liquid inlet pipe 400 and then flows out from the liquid outlet pipe 500 .
  • the micro-channel heat sink 200 includes fins, and the function of the fins is to increase the heat exchange area in the cooling chamber.
  • the height of the fins is generally small, and the heat dissipation area of the cold plate is relatively large, thus restricting the heat dissipation capacity of the cold plate.
  • the current cold plate is generally made of copper or aluminum, but the thermal conductivity of copper or aluminum is not good, which also restricts the heat dissipation capability of the cold plate.
  • a cold plate device including:
  • phase change chamber the phase change chamber is located above the part to be cooled, the bottom of the phase change chamber is stored with cooling liquid, and the cooling liquid will be vaporized into steam after absorbing the heat of the part to be cooled;
  • a cooling cavity the cooling cavity is located above the phase change cavity, and the phase change cavity and the cooling cavity are two separate cavities, and the steam in the phase change cavity is released to the cooling cavity Will liquefy into liquid droplets when heated.
  • phase change chamber is surrounded by a phase change chamber casing
  • cooling chamber is formed by fastening a cooling chamber cover on the phase change chamber casing.
  • the cooling chamber cover is provided with a liquid inlet and a liquid outlet, the liquid inlet allows the cooling liquid to enter the cooling chamber, and the liquid outlet allows the cooling liquid in the cooling chamber to flow out.
  • a micro-channel heat sink is arranged in the cooling cavity.
  • both the shell of the phase change chamber and the cover of the cooling chamber are cuboid cavity structures.
  • micro-channel heat sink is arranged on the top plate of the phase change chamber casing, and the liquid inlet and the liquid outlet are respectively arranged on opposite sides of the cooling chamber cover.
  • the phase change cavity is a convex cavity, including a horizontal cavity and a vertical cavity that communicate with each other.
  • the vertical cavity protrudes above the horizontal cavity, and the horizontal cavity is surrounded by the horizontal cavity casing.
  • the vertical cavity is surrounded by a vertical cavity shell, and the cooling cavity cover is covered outside the vertical cavity shell.
  • a condensation plate is arranged in the vertical cavity, and the condensation plate is placed vertically, and there are a plurality of condensation plates, and the plurality of condensation plates are arranged in a row.
  • the liquid inlet and the liquid outlet are arranged on the first side plate of the cooling chamber cover, and the liquid inlet is located above the liquid outlet; in the cooling chamber cover, And an upper passage is formed above the vertical chamber casing, the liquid inlet communicates with the inlet of the upper passage, and the second side plate of the cooling chamber cover is connected to the vertical chamber casing. There is a gap between them, the outlet of the upper channel communicates with the gap, and the first side plate is opposite to the second side plate.
  • a head-end liquid baffle is arranged between the top plate of the vertical cavity shell and the first side plate of the cooling cavity cover, and the top plate of the vertical cavity shell and the first side plate of the cooling cavity cover
  • a side liquid baffle is arranged between the third side plate and the fourth side plate, the third side plate is opposite to the fourth side plate, the head end liquid baffle, the side liquid baffle , the top plate of the vertical cavity housing and the top plate of the cooling cavity cover enclose the upper channel.
  • micro-channel heat sink is provided on the top plate of the vertical chamber housing, and the micro-channel heat sink is also provided on the side plate of the vertical chamber housing.
  • the top plate of the cooling cavity cover is in contact with the top plate of the vertical cavity shell, and the side plate on one side of the cooling cavity cover is in contact with the corresponding side plate of the vertical cavity shell, And on this side, the side plate of the cooling cavity cover is formed with a protruding portion protruding away from the vertical cavity housing, there are two protruding portions, and two of the protruding portions Partially provided on both sides of the vertical cavity housing, the liquid inlet is arranged on the end surface of one of the protrusions, and the liquid outlet is arranged on the end surface of the other protrusion;
  • micro-channel heat sink is arranged between the side plates on the other side of the cooling cavity cover and the corresponding side plates of the vertical cavity housing, and the micro-channel heat sink is arranged on the Side panels of the vertical cavity housing.
  • capillary structures are provided on the inner surface of the cavity wall of the phase change cavity.
  • An embodiment of the present application also provides a server, including a cold plate device, where the cold plate device is any one of the above cold plate devices.
  • the heat transfer process is as follows: the cooling liquid in the phase change chamber will vaporize into steam after absorbing the heat of the parts to be cooled.
  • the steam will rise to the upper part of the phase change chamber, and then the steam will exchange heat with the cooling chamber.
  • the steam releases heat to the cooling chamber and liquefies into liquid droplets.
  • the droplet will re-enter the bottom of the phase change chamber under the action of gravity.
  • the heat of the parts to be cooled is continuously transferred to the cooling cavity through the phase change of the cooling liquid.
  • the cooling liquid with a lower temperature in the cooling cavity becomes the cooling liquid with a higher temperature after absorbing heat, and then is discharged from the liquid outlet.
  • the phase change of the coolant in the phase change chamber improves the heat transfer and temperature uniformity of the cold plate device, thereby improving the heat dissipation capacity of the cold plate device.
  • Fig. 1 is the top view of the cold plate device that a specific embodiment of the prior art provides
  • Fig. 2 is the front view of Fig. 1A-A;
  • FIG. 3 is a front view of a cold plate device provided according to a specific embodiment of the present application.
  • Fig. 4 is the top view of D-D in Fig. 3;
  • FIG. 5 is a front view of a cold plate device provided according to a specific embodiment of the present application.
  • Fig. 6 is a side sectional view of Fig. 5;
  • Figure 7 is a top view of Figure 5;
  • Fig. 8 is a front view of a cold plate device provided according to a specific embodiment of the present application.
  • FIG. 9 is a top view of FIG. 8 .
  • 100 is the cold plate cover
  • 200 is the micro-channel radiator
  • 300 is the bottom plate of the cold plate
  • 400 is the liquid inlet pipe
  • 500 is the liquid outlet pipe
  • 11 is the cooling chamber
  • 12 is the phase change chamber
  • 13 is the micro-channel radiator
  • 14 is the part to be cooled
  • 15 is the shell of the phase change chamber
  • 16 is the cover of the cooling chamber
  • 17 is the liquid inlet pipe
  • 18 is the liquid outlet Tube;
  • 20 is a cooling plate
  • 21 is a cooling chamber
  • 22 is a cooling chamber cover
  • 231 is a vertical chamber
  • 232 is a vertical chamber shell
  • 233 is a horizontal chamber
  • 234 is a horizontal chamber shell
  • 24 is a micro-channel radiator
  • 25 is a micro-channel radiator
  • 26 is a head end liquid baffle
  • 27 is a part to be cooled
  • 28 is a liquid inlet pipe
  • 29 is a liquid outlet pipe;
  • 30 is a condensation plate
  • 31 is a cooling chamber
  • 32 is a cooling chamber cover
  • 331 is a vertical chamber
  • 332 is a vertical chamber shell
  • 333 is a horizontal chamber
  • 334 is a horizontal chamber shell
  • 34 is a micro-channel radiator
  • 35 is the part to be cooled
  • 36 is the liquid inlet pipe
  • 37 is the liquid outlet pipe
  • 38 is the side plate
  • 39 is the protrusion.
  • the application discloses a cold plate device, and the cold plate device has high heat dissipation capacity.
  • An embodiment of the present application provides a cold plate device, and the cold plate device includes a phase change cavity and a cooling cavity.
  • the phase change chamber is located above the piece to be cooled. Coolant is stored at the bottom of the phase change chamber.
  • the cooling cavity is located above the phase change cavity, and the cooling cavity and the phase change cavity are two adjacent cavities that are not communicated with each other.
  • Heat exchange can be performed between the phase change chamber and the cooling chamber.
  • the heat transfer process is as follows: the coolant in the phase change chamber will vaporize into steam after absorbing the heat of the parts to be cooled. The steam will rise to the upper part of the phase change chamber, and then the steam will exchange heat with the cooling chamber. The steam releases heat to the cooling chamber and liquefies into liquid droplets. The droplet will re-enter the bottom of the phase change chamber under the action of gravity. In such a cycle, the heat of the parts to be cooled is continuously transferred to the cooling cavity through the phase change of the cooling liquid.
  • the phase change of the coolant in the phase change chamber improves the heat transfer and temperature uniformity of the cold plate device, thereby improving the heat dissipation capacity of the cold plate device.
  • the component to be cooled may be an electronic component such as a chip.
  • the phase change chamber is surrounded by the shell of the phase change chamber.
  • the cooling chamber is formed by fastening the cooling chamber cover on the phase change chamber shell. That is, the top plate of the phase change cavity and the bottom plate of the cooling cavity are the same plate, which reduces the thermal resistance between the phase change cavity and the cooling cavity, and facilitates heat exchange between the phase change cavity and the cooling cavity.
  • a liquid inlet and a liquid outlet are arranged on the cooling chamber cover.
  • the cooling liquid enters into the cooling chamber through the liquid inlet, and the cooling liquid in the cooling chamber flows out from the cooling chamber through the liquid outlet. After absorbing the heat of the phase change chamber, the cooling liquid with a lower temperature in the cooling chamber will become a cooling liquid with a higher temperature, and then be discharged from the liquid outlet.
  • the application provided a micro-channel radiator in the cooling cavity, and the special arrangement in the application allows a plurality of micro-channel radiators to be arranged in different directions in the cooling cavity, so that further The heat exchange capacity of the cooling cavity is improved.
  • the arrangement of the micro-channel heat sink will be described in detail below.
  • cooling liquid in the cooling chamber and the cooling liquid in the phase change chamber may be the same cooling liquid or different cooling liquids.
  • liquid inlet is connected with the liquid inlet pipe
  • liquid outlet is connected with the liquid outlet pipe
  • both the phase change chamber 12 and the cooling chamber 11 are configured as cuboid cavities. Since the phase change chamber housing 15 is in direct contact with the cooling part, in order to ensure that the phase change chamber 12 can absorb most of the heat in the cooling part 14, the present embodiment makes the size of the phase change chamber housing 15 large enough to The part to be cooled 14 can be covered. That is, the length and width of the bottom surface of the phase change chamber housing 15 are respectively greater than the length and width of the top surface of the to-be-cooled 14 .
  • the size of the cooling chamber cover 16 can be made slightly smaller to save space. That is, the length and width of the bottom surface of the cooling chamber 11 are respectively smaller than the length and width of the top surface of the phase change chamber housing 15 .
  • a micro-channel heat sink 13 is arranged on the top plate of the phase change cavity housing 15 to increase the heat exchange area of the cooling cavity 11.
  • a liquid inlet and a liquid outlet communicated with the cooling chamber 11 are respectively arranged on opposite sides of the cooling chamber cover 16 .
  • the cooling liquid entering from the liquid inlet fully contacts the micro-channel heat sink 13 and then flows out from the liquid outlet on the other side of the cooling chamber 11 .
  • the structures of the phase change chamber 12 and the cooling chamber 11 in this embodiment are simple and easy to manufacture.
  • the liquid inlet is communicated with the liquid inlet pipe 17, and the liquid outlet is communicated with the liquid outlet pipe 18.
  • the phase change cavity is a cavity with a convex structure.
  • the phase change chamber includes a horizontal chamber 233 and a vertical chamber 231 , the horizontal chamber 233 is surrounded by the horizontal chamber casing 234 , and the vertical chamber 231 is surrounded by the vertical chamber casing 232 .
  • the vertical cavity 231 protrudes above the horizontal cavity 233 , and the horizontal cavity 233 communicates with the vertical cavity 231 .
  • the cooling cavity cover 22 is covered outside the vertical cavity 231 , that is, the vertical cavity housing 232 protrudes into the cooling cavity cover 22 .
  • the cooling liquid In the phase change chamber, the cooling liquid is located in the horizontal chamber 233 , and the vaporized water vapor will rise to the vertical chamber 231 . Because the vertical chamber 231 is located in the cooling chamber 21, the cooling liquid in the cooling chamber 21 can directly contact with the vertical chamber housing 232, so the steam in the vertical chamber 231 can fully exchange with the cooling liquid in the cooling chamber 21. heat, thereby improving the heat transfer effect.
  • the lateral dimension of the vertical chamber housing 232 is smaller than that of the horizontal chamber housing 234 .
  • the horizontal cavity housing 234 is in direct contact with the cooling component 27, so the size of the horizontal cavity housing 234 should be large enough to cover the surface of the cooling component 27, thereby fully absorbing the heat of the cooling component 27. That is, the length and width of the bottom surface of the horizontal chamber housing 234 are respectively greater than the length and width of the top surface of the component to be cooled 27 .
  • the vertical chamber housing 232 will stretch into the cooling chamber 21, so the size of the vertical chamber housing 232 cannot be made particularly large.
  • the cooling chamber cover 22 will The size will be larger, which will cause the overall size of the entire cold plate device to be particularly large, which is not conducive to product design. Accordingly, the length and width dimensions defining the bottom surface of the vertical chamber housing 232 are smaller than the length and width dimensions, respectively, of the horizontal chamber housing 234 .
  • the present application also provides a microchannel radiator 25 on the top plate of the vertical chamber housing 232 .
  • the present application also sets a condensing plate 20 in the vertical cavity 231 .
  • the condensing plates 20 are placed vertically, and there are multiple condensing plates 20 , and the multiple condensing plates 20 are evenly arranged side by side.
  • the condensation plate 20 is used to increase the condensation area to facilitate the liquefaction of the steam. And, the liquefied liquid droplets will slide into the horizontal cavity 233 along the condensation plate 20.
  • a capillary structure is also provided on the inner surface of the vertical chamber housing 232 , and the capillary structure is molded on the inner surface of the vertical chamber housing 232 .
  • the liquefied liquid droplets can flow back into the horizontal chamber 233 under the action of capillary force.
  • FIG. 5 Please refer to accompanying drawing 5, accompanying drawing 6, accompanying drawing 7: There is gap between the top plate of vertical cavity housing 232 and the top plate of cooling cavity cover 22, the side plate of vertical cavity housing 232 and cooling cavity cover 22 There is a gap between the side panels.
  • the top plate of the vertical cavity housing 232 is provided with a micro-channel radiator 25 , and the micro-channel radiator 25 is located between the top plate of the vertical cavity housing 232 and the top plate of the cooling cavity cover 22 .
  • a micro-channel heat sink 24 is arranged on a side plate of the vertical cavity housing 232 , and the micro-channel radiator 24 is located between the side plate of the vertical cavity housing 232 and the side plate of the cooling cavity cover 22 .
  • the liquid inlet and the liquid outlet are arranged on the first side plate of the cooling chamber cover 22, and the liquid inlet is located above the liquid outlet.
  • the liquid inlet is communicated with the liquid inlet pipe 28
  • the liquid outlet is communicated with the liquid outlet pipe 29 .
  • an upper channel is formed, and the liquid inlet communicates with the upper channel.
  • the upper channel communicates with the gap, and the first side plate of the cooling cavity cover 22 is opposite to the second side plate.
  • the cooling liquid enters the upper channel from the liquid inlet pipe 28, and flows into the other side of the cooling chamber 21 along the upper channel. 25 full contact. After the cooling liquid flows into the other side of the cooling chamber 21, it turns around and returns to the liquid inlet pipe 28 side, or the liquid outlet pipe 29 side. Such a circuitous arrangement can ensure that the cooling liquid passes through every part of the cooling chamber 21 , thereby improving the cooling balance. During the process of turning back the cooling liquid, the cooling liquid can fully contact with the micro-channel heat sink 24 on the side plate of the vertical cavity housing 232 .
  • micro-channel heat sinks are provided on the top plate and side plates of the vertical chamber housing 232, thereby increasing the heat exchange area, thereby greatly improving the heat dissipation capacity of the cold plate device.
  • this embodiment provides a head end liquid baffle 26 and a side liquid baffle.
  • the head-end liquid baffle plate 26 is located between the top plate of the vertical chamber housing 232 and the first side plate of the cooling chamber cover 22 .
  • the side liquid baffle is arranged between the top plate of the vertical cavity shell 232 and the third side plate of the cooling cavity cover 22, and is arranged between the top plate of the vertical cavity shell 232 and the fourth side of the cooling cavity cover 22 between the boards.
  • a liquid inlet and a liquid outlet are provided on the first side plate of the cooling chamber cover 22 .
  • Both the third side board and the fourth side board are adjacent to the first side board, and the third side board and the fourth side board are opposite to each other.
  • the difference between embodiment 3 and embodiment 2 is that the cooling chamber 31 in embodiment 3 is a horizontal concave cavity.
  • the top plate of the cooling chamber cover 32 and the top plate of the vertical chamber housing 332 are in contact with each other, that is, there is no gap between them.
  • the side plate 38 on one side of the cooling chamber cover 32 is in contact with the corresponding side plate of the vertical cavity housing 332 , and on this side, the side plate of the cooling cavity cover 32 is formed with a
  • One of the protruding parts 39 is provided with a liquid inlet on the end surface, and the other protruding part 39 is provided with a liquid outlet on the end surface.
  • the coolant enters one side of the vertical chamber 331 through the liquid inlet pipe 36, then turns 90°, then turns 90°, then enters the other side of the vertical chamber 331, and finally flows out from the liquid outlet pipe 37. That is, the coolant flows in a C-shaped route.
  • the C-shaped route in this embodiment not only prolongs the flow route of the cooling liquid, thereby making the cooling liquid fully contact with the vertical chamber casing 332, but also ensures that the cooling liquid can fully contact each part of the vertical chamber casing 332. Contact, thereby improving the balance of heat transfer.
  • a micro-channel heat sink 34 is disposed between the other side plates of the cooling cavity cover 32 and the corresponding side plates of the vertical cavity housing 332 .
  • Another embodiment of the present application also provides a server, including a cold plate device, where the cold plate device is any one of the above cold plate devices.
  • the above-mentioned cold plate device has the above-mentioned effect, and the server having the above-mentioned cold plate device also has the above-mentioned effect, so it will not be repeated here.
  • the thermal simulation results of the traditional cold plate device the center temperature of the cold plate device: 64.7°C; the junction temperature of the chip: 104.2°C; the thermal resistance of the cold plate device: 0.037°C/W.
  • the thermal simulation results of the cold plate device in this application the central temperature of the cold plate device: 54°C; the junction temperature of the chip: 95.8°C; the thermal resistance of the cold plate: 0.017°C/W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请部分实施例提供了一种冷板装置及服务器,所述冷板装置包括:相变腔,相变腔位于待冷却件的上方,相变腔的底部储存有冷却液,冷却液在吸收待冷却件的热量后会气化为蒸汽;冷却腔,冷却腔位于相变腔的上方,且相变腔与冷却腔为两个互不相通的腔,相变腔内的蒸汽向冷却腔释放热量后会液化为液滴。在本申请中,相变腔内的冷却液在吸收了待冷却件的热量后会气化为蒸汽。蒸汽会上升至相变腔的上部,之后蒸汽会与冷却腔进行热交换。蒸汽向冷却腔释放热量,液化为液滴。液滴会重新进入相变腔的底部。在本申请中,相变腔内冷却液的相变提升了冷板装置的传热和均温能力,从而提升了冷板装置的散热能力。

Description

冷板装置及服务器
本申请要求于2021年08月17日提交中国专利局、申请号为202110942429.2、发明名称为“一种冷板装置及一种服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热领域,更具体地说,涉及一种冷板装置及服务器。
背景技术
请参考附图1和附图2,附图1为现有技术一具体实施例提供的冷板装置的俯视图,附图2为附图1的主视图。现有技术中的冷板装置包括:冷板上盖100、冷板底板300、微槽道散热器200、进液管400、出液管500。冷板上盖100扣合在冷板底板300上形成冷却腔。冷却腔内设置有微槽道散热器200。冷却液从进液管400进入到冷却腔内,之后从出液管500流出。微槽道散热器200包括翅片,翅片的作用在于增大冷却腔内的换热面积。但是,受限于加工工艺的限制,翅片的高度一般较小,冷板的散热面积受到了比较大的限制,因此制约了冷板的散热能力。另外,目前的冷板的材料一般为铜或铝,而铜或铝的导热性能不佳,同样也制约了冷板的散热能力。
发明内容
本申请部分实施例提供了一种冷板装置,包括:
相变腔,所述相变腔位于待冷却件的上方,所述相变腔的底部储存有冷却液,所述冷却液在吸收所述待冷却件的热量后会气化为蒸汽;
冷却腔,所述冷却腔位于所述相变腔的上方,且所述相变腔与所述冷却腔为两个互不相通的腔,所述相变腔内的蒸汽向所述冷却腔释放热量后会液化为液滴。
另外,所述相变腔由相变腔壳体围成,所述冷却腔由冷却腔腔盖扣合在所述相变腔壳体上形成。
另外,所述冷却腔腔盖上设置有进液口和出液口,所述进液口供冷却液进入到所述冷却腔内,所述出液口供所述冷却腔内的冷却液流出。
另外,所述冷却腔内设置有微槽道散热器。
另外,所述相变腔壳体和所述冷却腔腔盖均为长方体空腔结构。
另外,所述微槽道散热器设置在相变腔壳体的顶板上,所述进液口与所述出液口分设在所述冷却腔腔盖相对的两侧。
另外,所述相变腔为凸型腔,包括相通的水平腔和竖直腔,所述竖直腔凸出在所述水平腔的上方,所述水平腔由水平腔壳体围成,所述竖直腔由竖直腔壳体围成,所述冷却腔腔盖罩在所述竖直腔壳外。
另外,所述竖直腔内设置有冷凝板,所述冷凝板竖直放置,且所述冷凝板为多个,多个所述冷凝板成排布置。
另外,所述竖直腔壳体的顶板与所述冷却腔腔盖的顶板之间具有间隙,所述竖直腔壳体的侧板与所述冷却腔腔盖的侧板之间具有间隙;
所述进液口和所述出液口设置在所述冷却腔腔盖的第一侧板上,且所述进液口位于所述出液口的上方;在所述冷却腔腔盖内,且在所述竖直腔壳体的上方形成有上层通道,所述进液口与所述上层通道的进口相通,所述冷却腔腔盖的第二侧板与所述竖直腔壳体之间具有间隙,所述上层通道的出口与该间隙相通,所述第一侧板与所述第二侧板相对。
另外,所述竖直腔壳体的顶板与所述冷却腔盖体的第一侧板之间设置有首端挡液板,所述竖直腔壳体的顶板与所述冷却腔盖体的第三侧板和第四侧板之间均设置有侧部挡液板,所述第三侧板与所述第四侧板相对,所述首端挡液板、所述侧部挡液板、所述竖直腔壳体的顶板、所述冷却腔盖体的顶板围成所述上层通道。
另外,所述竖直腔壳体的顶板上设置有所述微槽道散热器,所述竖直腔壳体的侧板上也设置有所述微槽道散热器。
另外,所述冷却腔腔盖的顶板与所述竖直腔壳体的顶板相互接触,所述冷却腔腔盖一侧的侧板与所述竖直腔壳体的对应的侧板相互接触,且在该侧,所述冷却腔腔盖的侧板上形成有向着远离所述竖直腔壳体的方向凸出的凸出部,所述凸出部为两个,两个所述凸出部分设在所述竖直腔壳体的两侧,所述进液 口设置在其中一个所述凸出部的端面上,所述出液口设置在另一个所述凸出部的端面上;
所述冷却腔腔盖其它侧的侧板与所述竖直腔壳体的对应的侧板之间具有空隙。
另外,所述冷却腔腔盖其它侧的侧板与所述竖直腔壳体的对应的侧板之间设置有所述微槽道散热器,且所述微槽道散热器设置在所述竖直腔壳体的侧板上。
另外,所述相变腔的腔壁的内表面上设置有毛细结构。
本申请实施例还提供了一种服务器,包括冷板装置,所述冷板装置为上述任意一种冷板装置。
从上述技术方案可以看出,热量的传递过程如下:相变腔内的冷却液在吸收了待冷却件的热量后会气化为蒸汽。蒸汽会上升至相变腔的上部,之后蒸汽会与冷却腔进行热交换。蒸汽向冷却腔释放热量,液化为液滴。液滴在重力的作用下会重新进入相变腔的底部。如此循环,通过冷却液的相变不断地将待冷却件的热量传递给冷却腔。冷却腔内的温度较低的冷却液在吸收热量后变为温度较高的冷却液,之后从出液口排走。在本申请中,相变腔内冷却液的相变提升了冷板装置的传热和均温能力,从而提升了冷板装置的散热能力。
附图说明
为了更清楚地说明本申请实施例中的方案,下面将对实施例中描述所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术一具体实施例提供的冷板装置的俯视图;
图2为图1A-A向的主视图;
图3为根据本申请一具体实施例提供的冷板装置的主视图;
图4为图3中D-D向的俯视图;
图5为根据本申请一具体实施例提供的冷板装置的主视图;
图6为图5的侧剖图;
图7为图5的俯视图;
图8为根据本申请一具体实施例提供的冷板装置的主视图;
图9为图8的俯视图。
其中,100为冷板上盖、200为微槽道散热器、300为冷板底板、400为进液管、500为出液管;
11为冷却腔、12为相变腔、13为微槽道散热器、14为待冷却件、15为相变腔壳体、16为冷却腔腔盖、17为进液管、18为出液管;
20为冷凝板、21为冷却腔、22为冷却腔腔盖、231为竖直腔、232为竖直腔壳体、233为水平腔、234为水平腔壳体、24为微槽道散热器、25为微槽道散热器、26为首端挡液板、27为待冷却件、28为进液管、29为出液管;
30为冷凝板、31为冷却腔、32为冷却腔腔盖、331为竖直腔、332为竖直腔壳体、333为水平腔、334为水平腔壳体、34为微槽道散热器、35为待冷却件、36为进液管、37为出液管、38为侧板、39为凸出部。
具体实施方式
本申请公开了一种冷板装置,该冷板装置具有较高的散热能力。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请,而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请实施例提供一种冷板装置,该冷板装置包括相变腔和冷却腔。相变腔位于待冷却件的上方。相变腔的底部储存有冷却液。冷却腔位于相变腔的上方,且冷却腔与相变腔为互不相通且相邻的两个腔。相变腔与冷却腔之间能够进行热交换。热量的传递过程如下:相变腔内的冷却液在吸收了待冷却件的热量后会气化为蒸汽。蒸汽会上升至相变腔的上部,之后蒸汽会与冷却腔进行热交换。蒸汽向冷却腔释放热量,液化为液滴。液滴在重力的作用下会重新进入 相变腔的底部。如此循环,通过冷却液的相变不断地将待冷却件的热量传递给冷却腔。
在本申请中,相变腔内冷却液的相变提升了冷板装置的传热和均温能力,从而提升了冷板装置的散热能力。
需要说明的是,待冷却件可以为芯片等电子元器件。
相变腔由相变腔壳体围成。冷却腔是由冷却腔腔盖扣合在相变腔壳体上而形成的。即相变腔的顶板与冷却腔的底板为同一块板,如此降低了相变腔与冷却腔之间的热阻,利于相变腔与冷却腔之间进行热交换。
冷却腔腔盖上设置有进液口和出液口。冷却液通过进液口进入到冷却腔内,冷却腔内的冷却液通过出液口从冷却腔内流出。冷却腔内的温度较低的冷却液在吸收了相变腔的热量后会变为温度较高的冷却液,之后从出液口排出。为了提升冷却腔的换热能力,本申请在冷却腔内设置了微槽道散热器,并且本申请中的特殊布置方式允许在冷却腔内的不同方位设置多个微槽道散热器,如此进一步提高了冷却腔的换热能力。关于微槽道散热器的布置方式将来下文进行详细描述。
需要说明的是,冷却腔内的冷却液与相变腔内的冷却液可以为同一种冷却液,也可以为不同的冷却液。
还需要说明的是,进液口与进液管连通,出液口与出液管连通。
实施例1
请参考附图3和附图4,在本实施例中,将相变腔12和冷却腔11均设置为长方体结构的空腔。由于相变腔壳体15与待冷却件直接接触,为了确保相变腔12能够吸收待冷却件14中大部分的热量,本实施例将相变腔壳体15的尺寸作的足够大,以能够覆盖待冷却件14。即相变腔壳体15的底面的长度和宽度尺寸分别大于待冷却14的顶面的长度和宽度尺寸。对于冷却腔11来说,只要能够确保达到预设的换热能力,可以将冷却腔腔盖16的尺寸制作的稍小一些,以节约空间。即冷却腔11的底面的长度和宽度尺寸分别小于相变腔壳体15的顶面的长度和宽度尺寸。
另外,在相变腔壳体15的顶板上设置了微槽道散热器13,以增大冷却腔 11的换热面积。与冷却腔11相通的进液口和出液口分设在冷却腔腔盖16相对的两侧。从进液口进入的冷却液充分地与微槽道散热器13接触后,从冷却腔11另一侧的出液口流出。本实施例中相变腔12和冷却腔11的构造简单,易于加工制作。进液口与进液管17连通,出液口与出液管18连通。
实施例2
请参考附图5,在本实施例中,相变腔为凸型结构的腔。相变腔包括水平腔233和竖直腔231,水平腔233由水平腔壳体234围成,竖直腔231由竖直腔壳体232围成。竖直腔231凸出于水平腔233之上,且水平腔233与竖直腔231相通。冷却腔腔盖22罩在竖直腔231外,也即,竖直腔壳体232伸入到了冷却腔腔盖22内。
在相变腔内,冷却液位于水平腔233内,气化后的水蒸汽会上升至竖直腔231。由于竖直腔231位于冷却腔21内,冷却腔21内的冷却液能够与竖直腔壳体232直接接触,因此竖直腔231内的蒸汽能够充分地与冷却腔21内的冷却液进行换热,从而提高了换热效果。
需要说明的是,竖直腔壳体232的横向尺寸要小于水平腔壳体234的横向尺寸。水平腔壳体234与待冷却件27直接接触,因此要将水平腔壳体234的尺寸作的足够大,以覆盖待冷却件27的表面,从而充分地吸收待冷却件27的热量。即水平腔壳体234的底面的长度和宽度尺寸分别大于待冷却件27的顶面的长度和宽度尺寸。竖直腔壳体232要伸入到冷却腔21内,因此竖直腔壳体232的尺寸不能够作的特别大,如果竖直腔壳体232的尺寸较大,那么冷却腔腔盖22的尺寸会更大,如此会导致整个冷板装置的外形尺寸特别大,不利于产品的设计。因此,限定竖直腔壳体232的底面的长度和宽度尺寸分别小于水平腔壳体234的长度和宽度尺寸。
为了进一步提高相变腔内蒸汽与冷却腔21内冷却液的换热能力,本申请还在竖直腔壳体232的顶板上设置了微槽道散热器25。为了进一步提高对蒸汽的冷凝力,本申请还在竖直腔231内设置了冷凝板20。冷凝板20为竖直放置,且冷凝板20为多个,多个冷凝板20均匀地并排布置。冷凝板20用于增大冷凝面积,以利于蒸汽的液化。并且,液化后的液滴会沿着冷凝板20滑入 到水平腔233内。
在本实施例中,还在竖直腔壳体232的内表面上设置了毛细结构,该毛细解结构成型于竖直腔壳体232的内表面。液化后的液滴能够在毛细力的作用下重新流回水平腔233内。
请参考附图5、附图6、附图7:竖直腔壳体232的顶板与冷却腔腔盖22的顶板之间具有间隙,竖直腔壳体232的侧板与冷却腔腔盖22的侧板之间具有间隙。竖直腔壳体232的顶板上设置有微槽道散热器25,该微槽道散热器25位于竖直腔壳体232的顶板与冷却腔腔盖22的顶板之间。竖直腔壳体232的侧板上设置有微槽道散热器24,该微槽道散热器24位于竖直腔壳体232的侧板与冷却腔腔盖22的侧板之间。
本实施例中的进液口和出液管口设置在冷却腔腔盖22的第一侧板上,且进液口位于出液口的上方。进液口与进液管28连通,出液口与出液管29连通。在冷却腔腔盖22内,且在竖直腔壳体232的上方形成有上层通道,进液口与上层通道相通。冷却腔腔盖22的第二侧板与竖直腔壳体232之间具有间隙,上层通道与该间隙相通,冷却腔腔盖22的第一侧板与第二侧板相对。
冷却液从进液管28进入到上层通道,沿着上层通道流入到冷却腔21的另一侧,在这个过程中,冷却液会与竖直腔壳体232的顶板上的微槽道散热器25充分接触。冷却液流入到冷却腔21的另一侧后,调头返回到进液管28侧,或者说出液管29侧。如此的迂回设置,能够确保冷却液经过冷却腔21的每一个部位,从而提高了冷却的均衡性。在冷却液折返回流的过程中,冷却液能够与竖直腔壳体232的侧板上的微槽道散热器24充分接触。
需要说明的是,本实施例在竖直腔壳体232的顶板以及侧板上均设置了微槽道散热器,因此增加了换热面积,从而极大地提升了冷板装置的散热能力。
还需要说明的是,为了形成上层通道,本实施例设置了首端挡液板26和侧部挡液板。首端挡液板26位于竖直腔壳体232的顶板与冷却腔腔盖22的第一侧板之间。侧部挡液板设置在竖直腔壳体232的顶板与冷却腔腔盖22的第三侧板之间,以及设置在竖直腔壳体232的顶板与冷却腔腔盖22的第四侧板之间。冷却腔腔盖22的第一侧板上设置有进液口和出液口。第三侧板和第四侧板均与第一侧板相邻,且第三侧板和第四侧板相对。
实施例3
请参考附图8和附图9,实施例3与实施例2的不同之处在于,实施例3中的冷却腔31为水平放置的凹型腔。冷却腔腔盖32的顶板与竖直腔壳体332的顶板相互接触,即二者之间不存在间隙。冷却腔腔盖32一侧的侧板38与竖直腔壳体332的对应的侧板相互接触,并且在该侧,冷却腔腔盖32的侧板上形成有向着远离竖直腔壳体332的方向凸出的凸出部39,该凸出部39为两个,两个凸出部39分设在竖直腔壳体332的两侧。其中一个凸出部39的端面上设置有进液口,另一个凸出部39的端面上设置有出液口。冷却腔腔盖32其它的侧板与竖直腔壳体332的对应的侧板之间具有空隙。如此,冷却液通过进液管36进入到竖直腔331的一侧,之后90°拐弯,之后再90°拐弯,之后进入到竖直腔331的另一侧,最后从出液管37流出,即冷却液成C型路线流动。本实施例中的C型路线不仅延长了冷却液的流动路线,从而使冷却液与竖直腔壳体332充分接触,而且还确保了冷却液能够与竖直腔壳体332的每一个部位充分接触,从而提高了换热的均衡性。
需要说明的是,冷却腔腔盖32其它的侧板与竖直腔壳体332的对应的侧板之间设置有微槽道散热器34。
本申请另一实施例还提供了一种服务器,包括冷板装置,该冷板装置为上述任意一种冷板装置。上述冷板装置具有上述效果,具有上述冷板装置的服务器同样具有上述效果,故本文不再赘述。
以下是本申请中的冷板装置与传统冷板装置的热仿真对比:仿真条件:进水温度:45度;流量:1.0LPM;芯片功耗:530W(芯片结温规格为105℃)。
传统冷板装置热仿真结果:冷板装置中心温度:64.7℃;芯片结温:104.2℃;冷板装置热阻:0.037℃/W。
本申请中冷板装置热仿真结果:冷板装置中心温度:54℃;芯片结温:95.8℃;冷板热阻:0.017℃/W。
结论:在同等流量条件下,本申请中冷板装置比传统冷板装置中的冷板热阻减小了54%。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备 不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本申请所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种冷板装置,其特征在于,包括:
    相变腔,所述相变腔位于待冷却件的上方,所述相变腔的底部储存有冷却液,所述冷却液在吸收所述待冷却件的热量后会气化为蒸汽;
    冷却腔,所述冷却腔位于所述相变腔的上方,且所述相变腔与所述冷却腔为两个互不相通的腔,所述相变腔内的蒸汽向所述冷却腔释放热量后会液化为液滴。
  2. 根据权利要求1所述的冷板装置,其特征在于,所述相变腔由相变腔壳体围成,所述冷却腔由冷却腔腔盖扣合在所述相变腔壳体上形成。
  3. 根据权利要求2所述的冷板装置,其特征在于,所述冷却腔腔盖上设置有进液口和出液口,所述进液口供冷却液进入到所述冷却腔内,所述出液口供所述冷却腔内的冷却液流出。
  4. 根据权利要求3所述的冷板装置,其特征在于,所述冷却腔内设置有微槽道散热器。
  5. 根据权利要求4所述的冷板装置,其特征在于,所述相变腔壳体和所述冷却腔腔盖均为长方体空腔结构。
  6. 根据权利要求5所述的冷板装置,其特征在于,所述微槽道散热器设置在相变腔壳体的顶板上,所述进液口与所述出液口分设在所述冷却腔腔盖相对的两侧。
  7. 根据权利要求4所述的冷板装置,其特征在于,所述相变腔为凸型腔,包括相通的水平腔和竖直腔,所述竖直腔凸出在所述水平腔的上方,所述水平腔由水平腔壳体围成,所述竖直腔由竖直腔壳体围成,所述冷却腔腔盖罩在所述竖直腔壳外。
  8. 根据权利要求7所述的冷板装置,其特征在于,所述竖直腔内设置有冷凝板,所述冷凝板竖直放置,且所述冷凝板为多个,多个所述冷凝板成排布置。
  9. 根据权利要求7所述的冷板装置,其特征在于,所述竖直腔壳体的顶板与所述冷却腔腔盖的顶板之间具有间隙,所述竖直腔壳体的侧板与所述冷却 腔腔盖的侧板之间具有间隙;
    所述进液口和所述出液口设置在所述冷却腔腔盖的第一侧板上,且所述进液口位于所述出液口的上方;在所述冷却腔腔盖内,且在所述竖直腔壳体的上方形成有上层通道,所述进液口与所述上层通道的进口相通,所述冷却腔腔盖的第二侧板与所述竖直腔壳体之间具有间隙,所述上层通道的出口与该间隙相通,所述第一侧板与所述第二侧板相对。
  10. 根据权利要求9所述的冷板装置,其特征在于,所述竖直腔壳体的顶板与所述冷却腔盖体的第一侧板之间设置有首端挡液板,所述竖直腔壳体的顶板与所述冷却腔盖体的第三侧板和第四侧板之间均设置有侧部挡液板,所述第三侧板与所述第四侧板相对,所述首端挡液板、所述侧部挡液板、所述竖直腔壳体的顶板、所述冷却腔盖体的顶板围成所述上层通道。
  11. 根据权利要求9所述的冷板装置,其特征在于,所述竖直腔壳体的顶板上设置有所述微槽道散热器,所述竖直腔壳体的侧板上也设置有所述微槽道散热器。
  12. 根据权利要求7所述的冷板装置,其特征在于,所述冷却腔腔盖的顶板与所述竖直腔壳体的顶板相互接触,所述冷却腔腔盖一侧的侧板与所述竖直腔壳体的对应的侧板相互接触,且在该侧,所述冷却腔腔盖的侧板上形成有向着远离所述竖直腔壳体的方向凸出的凸出部,所述凸出部为两个,两个所述凸出部分设在所述竖直腔壳体的两侧,所述进液口设置在其中一个所述凸出部的端面上,所述出液口设置在另一个所述凸出部的端面上;
    所述冷却腔腔盖其它侧的侧板与所述竖直腔壳体的对应的侧板之间具有空隙。
  13. 根据权利要求12所述的冷板装置,其特征在于,所述冷却腔腔盖其它侧的侧板与所述竖直腔壳体的对应的侧板之间设置有所述微槽道散热器,且所述微槽道散热器设置在所述竖直腔壳体的侧板上。
  14. 根据权利要求1所述的冷板装置,其特征在于,所述相变腔的腔壁的内表面上设置有毛细结构。
  15. 一种服务器,包括冷板装置,其特征在于,所述冷板装置为如权利要求1-14任意一项所述的冷板装置。
PCT/CN2021/128631 2021-08-17 2021-11-04 冷板装置及服务器 WO2023019754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110942429.2 2021-08-17
CN202110942429.2A CN113641231A (zh) 2021-08-17 2021-08-17 一种冷板装置及一种服务器

Publications (1)

Publication Number Publication Date
WO2023019754A1 true WO2023019754A1 (zh) 2023-02-23

Family

ID=78422373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128631 WO2023019754A1 (zh) 2021-08-17 2021-11-04 冷板装置及服务器

Country Status (2)

Country Link
CN (1) CN113641231A (zh)
WO (1) WO2023019754A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100079940A1 (en) * 2008-09-30 2010-04-01 Rajiv Mongia Dual chamber sealed portable computer
CN204335281U (zh) * 2015-01-29 2015-05-13 象水国际股份有限公司 水冷散热装置及其水冷头
CN112860042A (zh) * 2021-02-09 2021-05-28 华勤技术股份有限公司 液冷装置及设备
CN213426737U (zh) * 2020-09-16 2021-06-11 建准电机工业股份有限公司 液冷散热装置及具有该液冷散热装置的液冷散热系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650612A (zh) * 2015-03-19 2016-06-08 常州市武进区半导体照明应用技术研究院 灯具及其散热方法
CN110035642A (zh) * 2019-05-21 2019-07-19 广东工业大学 一种液冷式导热块及水冷式散热器
US20200404805A1 (en) * 2019-06-19 2020-12-24 Baidu Usa Llc Enhanced cooling device
CN110595242A (zh) * 2019-10-11 2019-12-20 株洲时代金属制造有限公司 一种相变散热器
CN110718518A (zh) * 2019-10-25 2020-01-21 北京市鑫全盛科技有限公司 用于cpu散热器热交换的冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100079940A1 (en) * 2008-09-30 2010-04-01 Rajiv Mongia Dual chamber sealed portable computer
CN204335281U (zh) * 2015-01-29 2015-05-13 象水国际股份有限公司 水冷散热装置及其水冷头
CN213426737U (zh) * 2020-09-16 2021-06-11 建准电机工业股份有限公司 液冷散热装置及具有该液冷散热装置的液冷散热系统
CN112860042A (zh) * 2021-02-09 2021-05-28 华勤技术股份有限公司 液冷装置及设备

Also Published As

Publication number Publication date
CN113641231A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
US10260781B2 (en) Liquid cooling device having diversion mechanism
JP3654326B2 (ja) 沸騰冷却装置
TWM512883U (zh) 散熱模組、水冷式散熱模組及散熱系統
US20120012281A1 (en) Heat sink with multiple vapor chambers
TW201724959A (zh) 熱電致冷模組與包含熱電致冷模組的散熱裝置
JP7413387B2 (ja) 相転移放熱装置
TW200936024A (en) Heat dissipation module and supporting element thereof
US20190078846A1 (en) Parallel-connected condenser and cooling device using the same
WO2015146110A1 (ja) 相変化冷却器および相変化冷却方法
CN107062963A (zh) 一种用于毛细泵环的交错式微通道冷凝器
WO2023019754A1 (zh) 冷板装置及服务器
TWM586876U (zh) 複合水冷排結構
KR20070115312A (ko) 냉각장치용 히트파이프 모듈
JPWO2013005622A1 (ja) 冷却装置およびその製造方法
TW202022546A (zh) 散熱模組
TWM609021U (zh) 液冷散熱裝置及具有該液冷散熱裝置的液冷散熱系統
WO2024103670A1 (zh) 一种虹吸散热器及其散热翅片
WO2016031227A1 (ja) 受熱器、それを用いた冷却装置、およびそれを用いた電子機器
CN207379340U (zh) 并联式冷凝器及散热装置
CN114001336B (zh) 大功率热源散热装置及其结构
JP2011196632A (ja) 沸騰冷却装置
JP2015163831A (ja) 受熱器と、それを用いた冷却装置と、それを用いた電子機器
JP3456713B2 (ja) 半導体素子冷却ユニット
JPH10256445A (ja) 沸騰冷却装置及びその製造方法
JP5860728B2 (ja) 電子機器の冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21953990

Country of ref document: EP

Kind code of ref document: A1