WO2023019697A1 - Poudre d'alliage d'aluminium à haute résistance pour impression 3d et procédé de préparation de poudre d'alliage d'aluminium à haute résistance - Google Patents

Poudre d'alliage d'aluminium à haute résistance pour impression 3d et procédé de préparation de poudre d'alliage d'aluminium à haute résistance Download PDF

Info

Publication number
WO2023019697A1
WO2023019697A1 PCT/CN2021/121982 CN2021121982W WO2023019697A1 WO 2023019697 A1 WO2023019697 A1 WO 2023019697A1 CN 2021121982 W CN2021121982 W CN 2021121982W WO 2023019697 A1 WO2023019697 A1 WO 2023019697A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
aluminum alloy
alloy powder
powder
preparation
Prior art date
Application number
PCT/CN2021/121982
Other languages
English (en)
Chinese (zh)
Inventor
聂祚仁
郭彦梧
黄晖
魏午
文胜平
高坤元
吴晓蓝
荣莉
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023019697A1 publication Critical patent/WO2023019697A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of special materials for additive manufacturing (also known as 3D printing), and in particular relates to a 3D printing high-strength aluminum alloy powder and a preparation method thereof.
  • Additive manufacturing technology also known as 3D printing technology, quickly manufactures parts with extremely complex shapes and internal structures through the principle of "layer-by-layer manufacturing and layer-by-layer superposition", which saves a lot of materials and time compared with traditional subtractive manufacturing cost.
  • SLM selective laser melting
  • Aluminum and aluminum alloys are widely used in aerospace, transportation, mechanical construction, packaging, electrical engineering, etc. field has a wide range of applications.
  • the most widely used aluminum alloys are mainly AlSi alloys, such as AlSi10Mg and AlSi12.
  • AlSi alloy has good formability and no cracks under the SLM process, its mechanical properties are poor, the yield strength is generally lower than 300MPa, and the elongation is lower than 15%.
  • Airbus Group has developed a Sc-Zr modified AlMg alloy, which not only can suppress cracks after forming, but also has a yield strength of over 400MPa and an elongation of over 10% after heat treatment.
  • the price of Sc is too expensive, so that the price of AlMg alloy powder modified by Sc and Zr is much higher than that of AlSi alloy powder. Therefore, in terms of special materials for aluminum alloy additive manufacturing, there are common problems such as few types of materials that can be used, poor mechanical properties, and high prices.
  • the present invention replaces Sc-Zr composite microalloying with Er-Zr composite microalloying, and adjusts the added Er, Zr
  • the technical solution of the present invention provides a 3D printing high-strength aluminum alloy powder, mainly containing Mg, Er, Zr, Si, Mn elements, in terms of mass percentage, wherein Mg content is 3.0-8.0%, Er content is 0.1-1.2%, The content of Zr is 0.5-2.0%, the content of Mn is 0.3-1.0%, the content of Si is 0.01-2.0%, the total content of other unlisted metal elements except Al is not more than 0.5wt%, and the rest is Al.
  • the aluminum alloy material includes the following components in mass fraction: Mg content is 3.0-8.0%, Er content is 0.3-0.5%, Zr content is 1.0-1.2%, Mn content is 0.5% ⁇ 0.8%, Si content is 0.01 ⁇ 0.1%, and the rest is Al.
  • the aluminum alloy material includes the following components in mass fraction: Mg content is 3.0-8.0%, Er content is 0.5-0.8%, Zr content is 1.3-1.6%, Mn content is 0.5% ⁇ 0.8%, Si content is 0.01 ⁇ 0.1%, and the rest is Al.
  • the aluminum alloy material includes the following components in mass fraction: Mg content 3.0-8.0%, Er content 0.3-0.5%, Zr content 1.0-1.2%, Mn content 0.5- 0.8%, the Si content is 1.0-1.6%, and the rest is Al.
  • the aluminum alloy material includes the following components in mass fraction: Mg content 3.0-8.0%, Er content 0.5-0.8%, Zr content 1.3-1.6%, Mn content 0.5- 0.8%, the Si content is 1.0-1.6%, and the rest is Al.
  • the present invention also provides a method for preparing the above-mentioned aluminum alloy, comprising the following steps:
  • the atomization described in the preparation method is vacuum air atomization.
  • the inert gas described in the preparation method is argon.
  • the layer-by-layer melting and solidification forming described in the application method includes but is not limited to the selective laser melting (SLM) process.
  • SLM selective laser melting
  • the forming parameters used in the SLM process are: laser power 300-380W, scanning speed 800-1600mm/s, scanning distance 0.1-0.15mm, layer thickness 0.03-0.06mm;
  • Benefits of the present invention adding a large amount of Zr element forms Al 3 Zr primary phase to refine grain size and suppresses solidification cracks; adding Er element forms grain boundary Al 3 Er phase, which can effectively prevent grain size coarsening during heat treatment;
  • the addition of Si element can increase the diffusion rate of Er and Zr, promote the large amount of dispersed precipitation of Al 3 (Er, Zr) precipitate, and the Al 3 (Er, Zr) dispersed phase has a significant effect of precipitation strengthening. Therefore, after aging heat treatment, the yield strength exceeds 400MPa, the tensile strength exceeds 500MPa, and the elongation exceeds 10%. Its performance is better than that of AlSi alloy, and it is equivalent to that of Sc-Zr modified AlMg alloy.
  • the invention expands the types of added elements for 3D printing AlMg alloy microalloying, solves the problems of easy cracking and poor performance of high-strength aluminum alloys, and significantly reduces the cost of high-strength aluminum alloys for 3D printing.
  • Figure 1 is a morphological view of the 3D printed high-strength aluminum alloy powder prepared in Example 1 of the present invention.
  • Fig. 2 is a SEM structure diagram of the 3D printed high-strength aluminum alloy prepared in Example 1 of the present invention.
  • FIG. 3 is a SEM structure diagram of the 3D printed aluminum alloy prepared in Comparative Example 1 of the present invention.
  • the percentages in the present invention are percentages by mass, and the aluminum alloy composition adopts the general expression in this field, for example, the aluminum alloy composition of Al-6.0Mg-0.7Mn-0.4Er-1.2Zr is: 6.0%Mg, 0.7 %Mn, 0.4% Er, 1.2% Zr, and the rest are Al.
  • the melting composition in a vacuum furnace is Al-6.0Mg-0.7Mn-0.4Er-1.2Zr, and the content of other impurity elements is controlled to be less than 0.1%.
  • the aluminum alloy prepared by the above method suppresses internal cracks (as shown in Figure 2) and refines the grain size through the addition of a large amount of Zr elements, and the average grain size is only 3.3um.
  • the recrystallization and grain growth stabilized the grain size, and after 10 hours of heat treatment at 375 degrees, a large amount of Al 3 (Er, Zr) precipitated phase was precipitated, which greatly improved the strength of the sample.
  • the mechanical properties is tested, the yield strength is 430MPa, the tensile strength is 500MPa, and the elongation is 20%.
  • the smelting composition in a vacuum furnace is Al-4.0Mg-0.7Mn-0.8Er-1.5Zr-1.6Si, and the content of other impurity elements is controlled to be less than 0.1%.
  • the aluminum alloy prepared by the above method suppresses internal cracks and refines the grain size through the addition of a large amount of Zr elements.
  • the average grain size is about 2.0um, and the Er element inhibits recrystallization and grain growth during heat treatment.
  • the mechanical properties is tested, the yield strength is 480MPa, the tensile strength is 530MPa, and the elongation is 12%.
  • the smelting composition in a vacuum furnace is Al-5.0Mg-0.7Mn-0.4Er-0.3Zr, and the content of other impurity elements is controlled to be less than 0.1%.
  • the Zr element content of the aluminum alloy in the comparative example is not within the claims of the present invention, and a large number of cracks (as shown in Figure 3 ) have occurred inside the formed sample and the grain size is coarse, with an average grain size of 12um; the sample formed before aging The morphological hardness is 115HV, and the hardness of 122HV after peak aging has not increased significantly, which means that the number of precipitated phases is small and there is no significant precipitation strengthening effect; the mechanical properties are tested according to the GB/T 228.1-2010 standard. Due to the existence of cracks, the yield The strength is only 170MPa, the tensile strength is 210MPa, and the elongation is 2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Une poudre d'alliage d'aluminium à haute résistance pour impression 3D et un procédé de préparation de la poudre d'alliage d'aluminium à haute résistance, relevant du domaine technique des matériaux spéciaux pour la fabrication additive (également connue sous le nom d'impression 3D). Les compositions de l'alliage sont calculées selon un pourcentage en masse : 3,0 % à 8,0 % de Mg, 0,1 % à 1,2 % de Er, 0,5 % à 2,0 % de Zr, 0,3 % à 1,0 % de Mn, 0,01 % à 2,0 % de Si, la teneur totale des autres éléments métalliques non listés à l'exception de l'aluminium ne dépassant pas 0,5 % en poids, le reste étant de l'aluminium. La poudre d'alliage d'aluminium à haute résistance peut empêcher efficacement la fissuration d'un alliage AlMg dans le processus d'impression 3D et présente un effet remarquable de finesse des grains et de renforcement de la précipitation, la limite d'élasticité dépasse 400 MPa après traitement thermique, la résistance à la traction dépasse 500 MPa et le pourcentage d'allongement dépasse 10 %. La poudre d'alliage d'aluminium résout efficacement les problèmes selon lesquels l'alliage AlMg présente une faible résistance et une faible aptitude au formage.
PCT/CN2021/121982 2021-08-17 2021-09-30 Poudre d'alliage d'aluminium à haute résistance pour impression 3d et procédé de préparation de poudre d'alliage d'aluminium à haute résistance WO2023019697A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110945745.5A CN113684403A (zh) 2021-08-17 2021-08-17 一种用于3d打印的高强铝合金粉及其制备方法
CN202110945745.5 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023019697A1 true WO2023019697A1 (fr) 2023-02-23

Family

ID=78580341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121982 WO2023019697A1 (fr) 2021-08-17 2021-09-30 Poudre d'alliage d'aluminium à haute résistance pour impression 3d et procédé de préparation de poudre d'alliage d'aluminium à haute résistance

Country Status (2)

Country Link
CN (1) CN113684403A (fr)
WO (1) WO2023019697A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990669A (zh) * 2023-03-24 2023-04-21 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法
CN116174733A (zh) * 2023-04-27 2023-05-30 宁波众远新材料科技有限公司 一种合金粉末及其制备方法和应用、一种零件模型
CN116254443A (zh) * 2023-05-10 2023-06-13 钢研昊普科技有限公司 一种铝合金粉末及其制备方法和应用
CN116478679A (zh) * 2023-04-24 2023-07-25 西南石油大学 一种支撑剂及其制备方法
CN117245084A (zh) * 2023-11-20 2023-12-19 中航迈特增材科技(北京)有限公司 一种3d打印用高强耐温铝合金粉末及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309646B (zh) * 2021-12-14 2023-04-14 国营芜湖机械厂 一种飞机操纵系统铝合金摇臂材料与工艺双替代验证方法
CN114457267B (zh) * 2022-03-08 2022-10-14 西北工业大学 一种slm专用高强铝合金及其slm成型的方法
CN115896565A (zh) * 2022-10-31 2023-04-04 国营芜湖机械厂 一种3d打印高强铝合金粉末及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105369084A (zh) * 2015-12-04 2016-03-02 北京工业大学 一种微量添加Er的高镁铝合金均匀化退火及挤压变形工艺
CN108796320A (zh) * 2018-09-19 2018-11-13 湖南东方钪业股份有限公司 一种用于3d打印的铝合金粉及其制备方法
CN109338182A (zh) * 2018-11-14 2019-02-15 江苏科技大学 一种Al-Mg-Er-Zr系列铝合金及制备方法
CN110184512A (zh) * 2019-07-15 2019-08-30 中南大学 一种激光选区熔化用铝合金粉及其制备共晶强化铝合金的方法
WO2019194869A2 (fr) * 2017-11-28 2019-10-10 Questek Innovations Llc Alliages al-mg-si destinés à des applications telles que des opérations de fabrication additive
WO2020125553A1 (fr) * 2018-12-19 2020-06-25 中车工业研究院有限公司 Poudre d'alliage d'aluminium pouvant être utilisée pour l'impression 3d, son procédé de préparation et son application
CN111872386A (zh) * 2020-06-30 2020-11-03 同济大学 一种高强度铝镁合金的3d打印工艺方法
CN113025853A (zh) * 2021-05-26 2021-06-25 中航迈特粉冶科技(北京)有限公司 一种增材制造用高强铝合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60118313T2 (de) * 2000-10-10 2006-08-31 Illinois Tool Works Inc., Cook County Aluminium Schweisskerndraht
CN103225028A (zh) * 2013-03-15 2013-07-31 北京工业大学 一种Al-Er-Zr-Si耐热铝合金及其热处理工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105369084A (zh) * 2015-12-04 2016-03-02 北京工业大学 一种微量添加Er的高镁铝合金均匀化退火及挤压变形工艺
WO2019194869A2 (fr) * 2017-11-28 2019-10-10 Questek Innovations Llc Alliages al-mg-si destinés à des applications telles que des opérations de fabrication additive
CN108796320A (zh) * 2018-09-19 2018-11-13 湖南东方钪业股份有限公司 一种用于3d打印的铝合金粉及其制备方法
CN109338182A (zh) * 2018-11-14 2019-02-15 江苏科技大学 一种Al-Mg-Er-Zr系列铝合金及制备方法
WO2020125553A1 (fr) * 2018-12-19 2020-06-25 中车工业研究院有限公司 Poudre d'alliage d'aluminium pouvant être utilisée pour l'impression 3d, son procédé de préparation et son application
CN110184512A (zh) * 2019-07-15 2019-08-30 中南大学 一种激光选区熔化用铝合金粉及其制备共晶强化铝合金的方法
CN111872386A (zh) * 2020-06-30 2020-11-03 同济大学 一种高强度铝镁合金的3d打印工艺方法
CN113025853A (zh) * 2021-05-26 2021-06-25 中航迈特粉冶科技(北京)有限公司 一种增材制造用高强铝合金及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115990669A (zh) * 2023-03-24 2023-04-21 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法
CN115990669B (zh) * 2023-03-24 2023-06-27 湖南东方钪业股份有限公司 一种用于增材制造的钪铝合金粉末及其制备方法
CN116478679A (zh) * 2023-04-24 2023-07-25 西南石油大学 一种支撑剂及其制备方法
CN116174733A (zh) * 2023-04-27 2023-05-30 宁波众远新材料科技有限公司 一种合金粉末及其制备方法和应用、一种零件模型
CN116254443A (zh) * 2023-05-10 2023-06-13 钢研昊普科技有限公司 一种铝合金粉末及其制备方法和应用
CN117245084A (zh) * 2023-11-20 2023-12-19 中航迈特增材科技(北京)有限公司 一种3d打印用高强耐温铝合金粉末及其制备方法和应用
CN117245084B (zh) * 2023-11-20 2024-01-16 中航迈特增材科技(北京)有限公司 一种3d打印用高强耐温铝合金粉末及其制备方法和应用

Also Published As

Publication number Publication date
CN113684403A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023019697A1 (fr) Poudre d'alliage d'aluminium à haute résistance pour impression 3d et procédé de préparation de poudre d'alliage d'aluminium à haute résistance
CN109280820B (zh) 一种用于增材制造的高强度铝合金及其粉末的制备方法
CN109487126B (zh) 一种可用于3d打印的铝合金粉末及其制备方法和应用
CN111593234B (zh) 一种激光增材制造用铝合金材料
CN111496244A (zh) 一种增材制造高强铝合金粉及其制备方法和应用
CN111001800B (zh) 一种3D打印高强度Al-Cr-Sc合金
CN111778433B (zh) 一种3d打印用铝合金粉末材料及其制备方法与应用
CN115261686B (zh) 3d打印铝镁合金粉末及其制备方法与应用
CN108998699B (zh) 一种铝锂基复合材料粉末及其制备方法和应用
CN111168054B (zh) 一种高强铝合金3D打印专用无钪Al-Mg-Mn合金粉末及其制备方法
CN107937764B (zh) 一种液态模锻高强韧铝合金及其液态模锻方法
CN110684913B (zh) 一种超高强高韧铝合金的制备方法
CN113512671B (zh) 一种3D打印用高强韧AlCrSc合金粉末及其制备方法与应用
CN101876043A (zh) 一种适用于喷射成形7000系铝合金的均匀化热处理方法
CN114959379B (zh) 一种适用于激光选区熔化的耐热高强铝合金及其制备方法
CN116287913A (zh) 一种增材制造用微量元素改性铝锂合金粉末及其制备方法
CN114150189B (zh) 一种应用于激光选区熔化成型的高性能Al-Si-Mg合金
CN109913731A (zh) 一种高强韧Ti-Al系金属间化合物及其制备方法
CN115007869A (zh) 一种服役温度为850℃的粉末冶金用钛铝粉末的制备方法
TW202111136A (zh) 鋁合金粉末及其製造方法、鋁合金製品及其製造方法
CN109943738A (zh) 一种含铝高模量稀土镁合金及其制备方法
CN117144175B (zh) 一种铝锂合金及其制备方法
CN117245084B (zh) 一种3d打印用高强耐温铝合金粉末及其制备方法和应用
CN117187638A (zh) 一种增材制造用铝镁硅合金及其制备方法
CN117070810A (zh) 一种增材制造用铝镁合金粉末、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE