WO2023019587A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2023019587A1
WO2023019587A1 PCT/CN2021/113892 CN2021113892W WO2023019587A1 WO 2023019587 A1 WO2023019587 A1 WO 2023019587A1 CN 2021113892 W CN2021113892 W CN 2021113892W WO 2023019587 A1 WO2023019587 A1 WO 2023019587A1
Authority
WO
WIPO (PCT)
Prior art keywords
ndpa
sensing
ndp
sends
perception
Prior art date
Application number
PCT/CN2021/113892
Other languages
English (en)
French (fr)
Inventor
周培
黄磊
罗朝明
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180099112.5A priority Critical patent/CN117480807A/zh
Priority to PCT/CN2021/113892 priority patent/WO2023019587A1/zh
Publication of WO2023019587A1 publication Critical patent/WO2023019587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and device.
  • WLAN sensing refers to the method and application of sensing people or objects in the environment by measuring the changes of WLAN signals scattered and/or reflected by people or objects.
  • Non-Trigger Based (non-TB) perception measurement is ranging between a pair of devices (Initiating Station (ISTA) and Responding Station (RSTA)), however, how Realizing non-TB perceptual measurement is an urgent problem to be solved.
  • Embodiments of the present application provide a wireless communication method and device, which can implement non-TB sensing measurement, and improve the flexibility of sensing measurement on the premise of complying with pairwise (Pairwise) sensing measurement.
  • a wireless communication method includes:
  • the first device sends NDPA to the second device
  • the NDPA includes first information, and the first information is used to indicate one of the following:
  • the device sending the NDPA sends NDP first or the device receiving the NDPA sends NDP first;
  • a wireless communication method in a second aspect, includes:
  • the second device receives the NDPA sent by the first device
  • the NDPA includes first information, and the first information is used to indicate one of the following:
  • the device sending the NDPA sends NDP first or the device receiving the NDPA sends NDP first;
  • a wireless communication device configured to execute the method in the first aspect above.
  • the wireless communication device includes a functional module configured to execute the method in the first aspect above.
  • a wireless communication device configured to perform the method in the second aspect above.
  • the wireless communication device includes a functional module configured to execute the method in the second aspect above.
  • a wireless communication device including a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in any one of the above first aspect to the second aspect.
  • an apparatus for realizing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the device that sends NDP can be indicated through NDPA; for two-way NDP transmission, the order of NDP transmission can be indicated through NDPA, so that non-TB sensing measurement can be realized, and when the pairwise (Pairwise ) under the premise of perceptual measurement, the flexibility of perceptual measurement is improved.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a paired sensing process provided by the present application.
  • Fig. 3 is a schematic diagram of a unidirectional LMR provided by the present application.
  • Fig. 4 is a schematic diagram of a bidirectional LMR provided by the present application.
  • Fig. 5 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of an NDPA frame format provided according to an embodiment of the present application.
  • 7 to 11 are respectively schematic diagrams of sending NDPA and NDP according to the embodiments of the present application.
  • Fig. 16 is a schematic diagram of a frame format of a perception setup request according to an embodiment of the present application.
  • Fig. 17 is a schematic diagram of a perception setup response frame format provided according to an embodiment of the present application.
  • Fig. 18 is a schematic diagram of a perception initiation request frame format provided according to an embodiment of the present application.
  • Fig. 19 is a schematic diagram of a frame format of a perception initiation response provided according to an embodiment of the present application.
  • 20 to 23 are respectively schematic diagrams of sending NDPA and NDP according to an embodiment of the present application.
  • 24 to 26 are respectively schematic diagrams of reporting perception reports provided according to embodiments of the present application.
  • 27 to 29 are schematic diagrams of perception establishment provided according to embodiments of the present application.
  • Fig. 30 is a schematic diagram of a perception report frame format provided according to an embodiment of the present application.
  • Fig. 31 is a schematic block diagram of a wireless communication device provided according to an embodiment of the present application.
  • Fig. 32 is a schematic block diagram of a wireless communication device according to an embodiment of the present application.
  • Fig. 33 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 34 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Fig. 35 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • Wireless Local Area Networks Wireless Local Area Networks, WLAN
  • Wireless Fidelity Wireless Fidelity, WiFi
  • other communication systems for example: Wireless Local Area Networks (Wireless Local Area Networks, WLAN), Wireless Fidelity (Wireless Fidelity, WiFi) or other communication systems.
  • the communication system 100 may include an access point station (Access Point Station, AP STA) 110, and a non-access point station (Non-Access Point Station, Non-AP STA) 120 accessing the network through the AP STA 110.
  • AP STA Access Point Station
  • Non-AP STA Non-Access Point Station
  • AP STA 110 and/or Non-AP STA 120 can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; can also be deployed on water (such as ships); can also be deployed in the air (such as on airplanes, balloons and satellites, etc.).
  • the Non-AP STA 120 can be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) device, an augmented reality (Augmented Reality, AR ) equipment, wireless devices in industrial control, wireless devices in self driving, wireless devices in remote medical, wireless devices in smart grid, transportation safety Wireless devices in (transportation safety), wireless devices in smart cities, or wireless devices in smart homes.
  • a virtual reality Virtual Reality, VR
  • AR Augmented Reality
  • the Non-AP STA 120 may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • Figure 1 exemplarily shows one AP STA and two Non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of Non-AP STAs. This is not limited.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include AP STA 110 and Non-AP STA 120 with communication functions, and the AP STA 110 and Non-AP STA 120 may be the specific equipment described above, here No more details are given here; the communication device may also include other devices in the communication system 100, such as network controllers, gateways and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition or “preconfiguration” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including STAs and network devices). Its specific implementation manner is not limited. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the WiFi protocol and related protocols applied to future WiFi communication systems, which is not limited in the present application.
  • Association Identifier (Association Identifier, AID), used to identify the terminal after establishing association with the access point.
  • UID Unassociation Identifier
  • MAC Media Access Control
  • Address the media access control address
  • the transmission opportunity refers to a period of time, during which a terminal with the transmission opportunity can actively initiate one or more transmissions.
  • a burst signal generally refers to a short period of time during which one or more signals are sent.
  • Burst Group refers to a combination of one or more burst signals.
  • the burst signals in the same burst signal group generally have some common characteristics.
  • WLAN Sensing senses people or objects in the environment by measuring changes in WLAN signals scattered and/or reflected by people or objects. That is to say, WLAN Sensing measures and perceives the surrounding environment through wireless signals, so that it can complete many functions such as detection of intrusion, movement, fall, etc. in the room, gesture recognition, and spatial three-dimensional image establishment.
  • WLAN devices participating in WLAN awareness may include the following roles:
  • Sensing Initiator a device that initiates a sensing session and wants to know the sensing results
  • Sensing Responder Non-Sensing Initiator device participating in the sensing session
  • Sensing Transmitter a device that initiates a sensing illumination signal
  • Sensing Receiver a device that receives sensing illumination signals
  • Sensing processor a device that processes sensing measurement results
  • Sensing Participant including Sensing Session Initiating Device, Sensing Signal Sending Device and Sensing Signal Receiving Device.
  • a WLAN terminal may have one or more roles in a perception session.
  • a perception initiator device can be only a perception initiator device, a perception sending device, a perception receiving device, or both a perception sending device and a perception receiving device. equipment.
  • sensing Type there may be multiple sensing types (Sensing Type).
  • the sensing type based on channel state information that is, CSI-based Sensing
  • the sensing type obtains the sensing measurement result by processing the CSI of the received sensing measurement signal.
  • the sensing type based on the reflection signal that is, Radar-based Sensing. This sensing type obtains the sensing measurement result by processing the reflection signal of the received sensing measurement signal.
  • the WLAN sensing session includes one or more of the following stages: session establishment, sensing measurement, sensing reporting, and session termination.
  • Session establishment phase establish a sensing session, determine the sensing session participants and their roles (including the sensing sending device and the sensing receiving device), determine the operating parameters related to the sensing session, and optionally exchange the parameters between terminals.
  • Perception measurement stage implement perception measurement, and the perception sending device sends a perception signal to the perception receiving device.
  • Sensing reporting stage report measurement results, depending on the application scenario, the sensing receiving device may need to report the measurement results to the sensing initiating device.
  • Session termination phase the terminal stops measuring and terminates the sensing session.
  • terminals When establishing a sensing session, terminals may need to negotiate sensing roles and operating parameters one by one, or terminals declare their own roles and operating parameters (for example, through beacon frames or other special frames).
  • the data volume of sensing measurement results is usually relatively large.
  • the Channel State Information (CSI) data of a measurement may reach 4K to 40K bits.
  • the measurement threshold can be set. When this When the variation between the second sensing measurement result and the previous sensing measurement result is less than the measurement threshold, the sensing receiving device reports the sensing measurement result, otherwise, it does not report the sensing measurement result.
  • the perception initiating device can set multiple sets of measurement parameters, and a set of measurement parameters (identified by the measurement setup ID (Measurment Setup ID), which can be equivalent to the burst signal group (Burst Group)) can be applied to multiple measurements (using the measurement instance Identification (Measurement Instance ID) to identify, can be equivalent to the burst signal (Burst)).
  • the measurement setup ID (Measurment Setup ID)
  • the measurement instance Identification Measurement Instance ID
  • Sensing measurement is a core step of WLAN sensing, however, how to specifically configure measurement information for sensing measurement is an urgent problem to be solved.
  • WLAN Sensing is performed in pairs (Pairwise), and includes the following two identifiers (ID), used to distinguish between setup (Setup) and measurement (measurement) instances:
  • Measurement Setup ID (Measurement Setup ID)
  • the measurement setup ID can be used to identify the attributes used in the perception measurement instance, the measurement setup is provided to each responding device during the negotiation phase, and the measurement setup ID is in the response program that shares the same measurement instance set to the same value.
  • Measurement instance ID (Measurement Instance ID), the measurement instance ID uniquely identifies the perception measurement instance according to the measurement establishment ID, and the measurement instance ID is used to identify frames belonging to the same perception measurement instance.
  • Measurement Setup ID there can be different measurement instances (Measurement Instance), and these Measurement Instances can adopt different measurement methods, such as different devices participating in the measurement , the parameters used in the measurement can also be different, and so on.
  • the sensing initiating device can set multiple sets of measurement parameters, and a set of measurement parameters (identified by Measurement Setup ID, which can be equivalent to a burst group (Burst Group)) can be applied to multiple measurements (using Measurement Setup ID Instance ID to identify, can be equivalent to the burst signal (Burst)).
  • Measurement Setup ID which can be equivalent to a burst group (Burst Group)
  • Measurement Setup ID Instance ID can be equivalent to the burst signal (Burst)
  • non-trigger-based (non-TB) ranging Ranging
  • Non-TB Ranging is ranging between a pair of devices (ISTA and RSTA).
  • ISTA declares (null data physical layer protocol data unit announcement, NDPA) + ISTA to RSTA (I2R) physical layer protocol data unit with no data through ranging (Ranging) (null data physical layer protocol data unit, NDP) initiates measurement, and then RSTA sends RSTA to ISTA(R2I) NDP for measurement.
  • the measurement reporting phase can be the one-way R2I location measurement report (Location Measurement Report, LMR) in Figure 3, or the two-way LMR (R2I LMR+I2R LMR) in Figure 4.
  • the WLAN Sensing mechanism only proposes Sensing Setup, Sensing Measurement, and Sensing Reporting in pairs. How to implement the above stages and how to design the frame structure is an urgent problem to be solved. question.
  • the above-mentioned non-TB Ranging is only suitable for ranging between WLAN devices, and does not support WLAN Sensing defined in the 802.11bf standard. Therefore, it is necessary to design a non- TB Sensing protocol and frame structure.
  • this application proposes a perception measurement solution.
  • the device that sends NDP can be indicated through NDPA; for two-way NDP transmission, the order of NDP transmission can be indicated through NDPA.
  • TB perceptual measurement improves the flexibility of perceptual measurement on the premise of conforming to pairwise perceptual measurement.
  • FIG. 5 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 5 , the wireless communication method 200 may include at least part of the following content:
  • the first device sends an NDPA to the second device; wherein, the NDPA includes first information, and the first information is used to indicate one of the following: one-way sending NDP or two-way sending NDP; the device sending the NDPA first sends NDP or The device that receives the NDPA sends NDP first; the device that sends the NDPA sends NDP in one direction, and the device that sends the NDPA sends NDP, and the device that receives the NDPA does not send NDP; the device that sends the NDPA sends NDP first, and the device that receives the NDPA sends NDP The device sends NDP first; sends NDP bidirectionally, and the device receiving the NDPA sends NDP first, and the device sending the NDPA sends NDP later; sends NDP one-way, and the device sending the NDPA does not send NDP, and the device receiving the NDPA sends NDP ;
  • the second device receives the NDPA sent by the first device.
  • the device that sends NDP can be indicated through NDPA, and for two-way NDP transmission, the order of NDP transmission can be indicated through NDPA, so that non-TB perception measurement can be realized, and when the paired (Pairwise) perceptual measurement, which improves the flexibility of perceptual measurement.
  • the first device is a sensing transmitter (Sensing Transmitter), and the second device is a sensing receiving device (Sensing Receiver); or, the first device is a sensing receiving device (Sensing Receiver), and the The second device is a sensing transmitter (Sensing Transmitter).
  • the first device may also be a sensing initiating device or a sensing responding device,
  • the first information may occupy 1 bit, and if it is set to 0, it means to send NDP in one direction, and if it is set to 1, it means to send NDP in two directions. Alternatively, set to 1 to send NDP in one direction, and set to 0 to send NDP in both directions. This application is not limited to this.
  • the first information may occupy 1 bit, and setting it to 0 means that the device sending the NDPA sends NDP first, and setting it to 1 means that the device receiving the NDPA sends NDP first. Or, setting it to 1 means that the device that sends the NDPA sends NDP first, and setting it to 0 means that the device that receives the NDPA sends NDP first. This application is not limited to this.
  • the first information can occupy 2 bits, and setting it to 00 means sending NDP in one direction, and the device sending the NDPA sends NDP, and the device receiving the NDPA does not send NDP; setting it to 01 means sending NDP in two directions, And the device that sends the NDPA sends NDP first, and the device that receives the NDPA sends NDP afterward; setting it to 10 means sending NDP in both directions, and the device receiving the NDPA sends NDP first, and the device sending the NDPA sends NDP afterward; setting it to 11 means Send NDP in one direction, and the device that sends the NDPA does not send NDP, and the device that receives the NDPA sends NDP.
  • the first information may also occupy more bits, and set a different value to indicate the above information, which is not limited in the present application.
  • the first information is an NDP order (NDP Order) field in a frame carrying the NDPA.
  • NDP Order NDP Order
  • the frame carrying the NDPA includes a general information field and a station information field, wherein the general information field includes a first field and the NDP sequence field, and the first field is used to indicate that this measurement is not based on a trigger Sensing measurement, the site information field includes a second field and a third field, the second field is used to indicate the number of space-time streams (spatial-time stream) of the NDP of the downlink measurement, and the third field is used to indicate the number of the downlink measurement The number of repetitions of the NDP's Long Training Field (LTF) symbol.
  • LTF Long Training Field
  • the first field is a trigger-based/non-trigger-based (TB/non-TB) field
  • the TB/non-TB field is used to indicate that this measurement is of TB or non-TB type, such as the The TB/non-TB field occupies 1 bit, and a value of 0 indicates that the current measurement is of the TB type, and a value of 1 indicates that the current measurement is of the non-TB type.
  • the second field is a downlink NDP space-time stream (DL N_STS) field
  • the DL N_STS field occupies 4 bits and is used to indicate the number of space-time streams (spatial-time stream) of the NDP measured in the downlink.
  • the third field is a downlink repetition (DL Rep) field
  • the DL Rep field occupies 4 bits, and is used to indicate the number of repetitions of the LTF symbols of the NDP for downlink measurement.
  • the frame carrying the NDPA may be an NDPA frame or a sensing announcement frame (Sensing Announcement).
  • the frame carrying the NDPA may also be other frames, which is not limited in this application.
  • the frame subtype (Subtype) value of 5 indicates that the frame is an extended control frame
  • the control frame extension (Control Frame Extension) value of 11 indicates that the frame is a perception control frame.
  • the value of the subtype (Sensing Subtype) is 1 (it can be any value from 0 to 15) indicating that the frame is a Sensing Announcement frame (Sensing Announcement).
  • the general information fields in the perception announcement frame include a TB/non-TB field and an NDP sequence field.
  • the TB/non-TB field is used to indicate that this measurement is of TB or non-TB type.
  • it can be determined by whether there is trigger sensing polling (TF SENS Poll).
  • NDP can only be sent in one direction.
  • the NDP sequence field is set to 00.
  • the site information field in the perception announcement frame includes a DL N_STS field and a DL Rep field, where the DL N_STS field occupies 4 bits and is used to indicate the number of space-time streams (spatial-time stream) of the NDP measured in the downlink ;
  • the DL Rep field occupies 4 bits and is used to indicate the number of repetitions of the LTF symbols of the NDP for downlink measurement.
  • the sensing measurement performed in the measurement instance corresponding to the NDPA includes at least one of the following: uplink sensing measurement, downlink sensing measurement, and bidirectional sensing measurement.
  • the NDP sequence field of the NDPA frame can be used to flexibly indicate a certain Each measurement instance only performs uplink sensing measurement, downlink sensing measurement, or bidirectional sensing measurement, etc.
  • sensing Measurement only one-way sensing measurement (Sensing Measurement) is performed, and the sensing transmitter (Sensing Transmitter) sends NDPA+NDP.
  • two-way sensing measurement (Sensing Measurement) is performed, and the device that first obtains the channel first sends NDPA+NDP.
  • two-way sensing measurement (Sensing Measurement) is performed, and the AP is forced to send NDPA+NDP first.
  • the AP when the measurement instance corresponding to the NDPA is set to support two-way sensing measurement during the sensing establishment phase, the AP sends the NDPA. That is, when the measurement instance corresponding to the NDPA is set to support two-way sensing measurement during the sensing establishment phase, the AP always sends the NDPA.
  • the measurement instance corresponding to the NDPA is set in the perception establishment phase: the AP sends the NDPA, and the Non-AP STA waits for the NDPA sent by the AP. That is, mandatory rules are set during the perception establishment phase: in the measurement instance where two-way sensing measurement is set during the perception establishment phase, the AP must send NDPA frames, and the Non-AP STA needs to wait for the NDPA frame sent by the AP without signaling instructions.
  • the Non-AP STA when entering the Sensing Measurement phase, the Non-AP STA cannot first send an NDPA frame to start the Sensing Measurement, but waits for the AP to send an NDPA frame to start the Sensing Measurement (Sensing Measurement).
  • the device that first obtains the channel usage right sends the NDPA.
  • the device that first obtains the channel use right Contention based access
  • the device sending the NDPA may send the NDP first by default, and the device receiving the NDPA sends the NDP afterward.
  • the AP obtains the right to use the channel first, then the AP sends NDPA, and the AP first sends NDP for sensing measurement (Sensing Measurement), and then the Non-AP STA sends NDP for sensing measurement (Sensing Measurement) .
  • Non-AP STA first obtains the right to use the channel, then the Non-AP STA sends NDPA, and the Non-AP STA first sends NDP for sensing measurement (Sensing Measurement), and then the AP sends NDP Perform Sensing Measurement.
  • the device that sends NDPA frames by default sends NDP directly after the Short Interframe Space (SIFS) time for perception measurement, and then another device sends another device after the SIFS time.
  • SMS Short Interframe Space
  • the sending order of the NDP may not be limited to the device sending the NDPA frame sending the NDP first, and the sending order of the next two NDP frames may also be indicated through the NDP sequence field in the NDPA frame.
  • the first information may indicate that the NDP is sent bidirectionally, and the device sending the NDPA sends the NDP first, and the device receiving the NDPA sends the NDP later.
  • the AP sends NDPA.
  • the first information can indicate: send NDP in both directions, and the device receiving NDPA sends NDP first, and the device sending NDPA sends NDP later. , that is, the Non-AP STA first sends NDP for sensing measurement (Sensing Measurement), and then the AP sends NDP for sensing measurement (Sensing Measurement).
  • the first information can indicate: send NDP in both directions, and the device receiving NDPA sends NDP first, The device that sends NDPA sends NDP after that, that is, the AP first sends NDP for sensing measurement (Sensing Measurement), and then the Non-AP STA sends NDP for sensing measurement (Sensing Measurement).
  • the measurement instance corresponding to the NDPA when the measurement instance corresponding to the NDPA is configured to support bidirectional sensing measurement during the perception establishment phase, the measurement instance corresponding to the NDPA is configured with second information during the perception establishment phase, wherein the second information is configured with The second information is used to instruct the AP to send the NDPA, or the second information is used to instruct the device that first obtains the channel use right to send the NDPA.
  • the second information is the NDPA sender (NDPA Sender) field in the first frame, wherein the first frame is a sensing setup request frame (Sensing Setup Request frame) or a sensing setup response frame (Sensing Setup Response frame).
  • NDPA Sender NDPA Sender
  • the first frame is a sensing setup request frame (Sensing Setup Request frame) or a sensing setup response frame (Sensing Setup Response frame).
  • the first frame includes an action field
  • the action field includes a sensory response device information field
  • the sensory response device information field includes the NDPA sender (NDPA Sender) field.
  • the device regardless of AP or STA
  • the device regardless of AP or STA
  • the NDPA frame is sent by the AP, and the Non-AP STA needs to wait for the AP to send NDPA frames.
  • the AP when the measurement instance corresponding to the NDPA is set to support two-way sensing measurement during the perception establishment phase, the AP is set to allow sensing as a sensing transmitter (Sensing Transmitter) and a sensing receiver (Sensing Receiver) during the sensing establishment phase.
  • the Non-AP STA is set to be allowed to act as a sensing transmitter (Sensing Transmitter) and a sensing receiver (Sensing Receiver) during the perception establishment phase.
  • the AP can be both a sensing transmitter (Sensing Transmitter) and a sensing receiver (Sensing Receiver), then the same Non-AP STA can also be a sensing transmitter
  • the device can also be a sensing receiver device (Sensing Receiver).
  • the first device sends an NDP to the second device according to the first information, and/or, the first device receives the NDP sent by the second device according to the first information.
  • the sensing initiator is the sensing sending device (Sensing Transmitter)
  • the sensing receiving device needs to send the sensing measurement Report (Sensing Report) to the Sensing Transmitter.
  • the sensing initiator (Sensing Initiator) is the sensing receiving device (Sensing Receiver), and the sensing receiving device (Sensing Receiver) does not need to send sensing Sensing Report.
  • the sensing reporting phase only one-way sensing measurement (Sensing Measurement) is performed, the sensing initiator (Sensing Initiator) does not participate in the sensing measurement (Sensing Measurement), and the sensing receiving device (Sensing Receiver) is a Non-AP STA, then the Non-AP STA needs to send the sensing measurement report (Sensing Report) to the AP, and the AP then sends the sensing measurement report (Sensing Report) to the sensing initiator (Sensing Initiator).
  • the sensing initiation device (Sensing Initiator) does not participate in the sensing measurement (Sensing Measurement)
  • the sensing receiving device (Sensing Receiver) is an AP, then The AP directly sends the Sensing Report to the Sensing Initiator.
  • a two-way sensing measurement (Sensing Measurement) is performed, and the sensing initiator (Sensing Initiator) is an AP and participates in the sensing measurement (Sensing Measurement), then the Non-AP STA needs to send a sensing measurement report (Sensing Report) to AP.
  • sensing Measurement two-way sensing measurement
  • the sensing initiator (Sensing Initiator) is a Non-AP STA and participates in sensing measurement (Sensing Measurement)
  • the AP needs to send a sensing measurement report (Sensing Report) to STA.
  • a two-way sensing measurement (Sensing Measurement) is performed, and the sensing initiator (Sensing Initiator) does not participate in the sensing measurement (Sensing Measurement), then the Non-AP STA needs to send a sensing measurement report (Sensing Report ) to the AP, and the AP sends the Sensing Report to the Sensing Initiator.
  • the sensing measurement results are sent to the device sending the sensing setup request (Sensing Setup Request):
  • the Sensing Initiator If the Sensing Initiator participates in the Sensing Measurement, the Sensing Initiator sends a Sensing Setup Request, and the sensing measurement results will be fed back to the Sensing Initiator;
  • the AP agent sends a Sensing Setup Request, and the sensing measurement results are sent to the AP and then fed back to the Sensing Initiator.
  • the sensing initiating device acquires the sensing measurement result through the AP.
  • the sensing initiator (Sensing Initiator) is a Non-AP STA, and the sensing initiator triggers the establishment of a sensing session between the AP and at least one Non-AP STA.
  • the first device when the sensing initiating device does not participate in the sensing measurement, when the first device is an AP and the second device is a Non-AP STA, the first device receives the information sent by the second device. perception measurement results.
  • the first device when the sensing initiating device does not participate in the sensing measurement, and when the first device is an AP and the second device is a Non-AP STA, the first device receives the sensing information sent by the sensing initiating device. Initiating a request (Sensing Initiating Request); the first device sends a perception establishment request to at least one Non-AP STA, wherein the at least one Non-AP STA includes the second device; the first device receives the at least one Non-AP The sensing establishment response sent by the STA; the first device sends a sensing initiating response (Sensing Initiating Response) to the sensing initiating device.
  • a sensing initiating response Sensing Initiating Response
  • the sensing initiating device when the sensing initiating device does not participate in the sensing measurement, if the first device is a Non-AP STA, and the second device is an AP, the first device sends to the second device Perceived measurement results.
  • the first device when the sensing initiating device does not participate in the sensing measurement, and when the first device is a Non-AP STA and the second device is an AP, the first device receives the sensing sent by the second device. A setup request; the first device sends a perception setup response to the second device.
  • the sensing initiator (Sensing Initiator) does not participate in the sensing measurement (Sensing Measurement)
  • the sensing initiator (Sensing Initiator) is a Non-AP STA.
  • first STA 2 needs to send the sensing measurement result (Sensing Report) to the AP, and then the AP sends the sensing measurement result (Sensing Report) to the sensing initiation device (STA 1).
  • the first device when the sensing initiating device participates in the sensing measurement and the first device is the sensing initiating device, the first device receives the sensing measurement result sent by the second device. Further, the first device does not send the perception measurement result to the second device.
  • the first device when the sensing initiating device participates in sensing measurement and the first device is the sensing initiating device, the first device sends a sensing establishment request to at least one Non-AP STA, wherein the at least one The Non-AP STA includes the second device; and the first device receives the perception establishment response sent by the at least one Non-AP STA.
  • the first device when the sensing initiating device participates in the sensing measurement and the second device is the sensing initiating device, the first device sends the sensing measurement result to the second device.
  • the first device when the sensing initiating device participates in the sensing measurement and the second device is the sensing initiating device, the first device receives the sensing establishment request sent by the second device; and the first device sends The second device sends an awareness setup response.
  • the sensing initiator (Sensing Initiator) participates in the sensing measurement (Sensing Measurement)
  • the AP is the Sensing Initiator
  • the STA needs to send the sensing measurement result (Sensing Report) to the AP, but the AP does not need to Send the sensing measurement result (Sensing Report) to the STA.
  • sensing Initiator participates in the sensing measurement (Sensing Measurement)
  • the AP needs to send the sensing measurement result (Sensing Report) to the STA, but the STA does not need to Send the sensing measurement result (Sensing Report) to the AP.
  • the perception establishment request is sent through a perception establishment request frame, wherein the perception establishment request frame includes an action field, the action field includes a perception response device information field, and the perception response device information field includes an NDPA sender field,
  • the value of the NDPA sender field is used to indicate that the AP sends the NDPA, or the value of the NDPA sender field is used to indicate that the device that first obtains the channel use right sends the NDPA.
  • a sensing action frame (Sensing Action frame) is defined: a new action frame (Action frame) or no confirmation action frame (Action No Ack), and the action category (Category) is 4 to indicate the
  • the frame is a public action frame (Public Action frame)
  • the value of the public action subclass (Public Action Field) is 46, indicating that the frame is a perception action frame (you can use any value within the range of 46 to 255 to indicate that the frame is a perception action frame)
  • the Sensing Subtype value is 2 (any value within the range of 0 to 255 can be used) indicating that it is a Sensing Setup Request frame.
  • the measurement setup ID (Measurement Setup ID) field: the measurement setup ID, generated by the AP.
  • Partial (Partial) Timing Synchronization Function (TSF) Timer (Timer): The suggested start time of the first burst signal (Burst), all 0 means no suggestion.
  • Burst Duration (Burst Duration) field: the time taken by a suggested burst signal (Burst), 4 means 1ms, 5 means 2ms, 6 means 4ms, 7 means 8ms, 8 means 16ms, 9 means 32ms, 10 means 64ms , 11 means 128ms, other values are reserved.
  • AID/UID field ID of the Sensing Responder, 0 is the AID of the associated AP.
  • NDPA sender field If both devices in a measurement instance (Measurement Instance) support the role of sensing transmitter (Sensing Transmitter), then setting the NDPA sender field to 0 means that any sensing transmitter that first obtains the right to use the channel
  • the device (Sensing Transmitter) (regardless of AP or STA) can send NDPA frames during the measurement phase (measurement phase) to enable sensing measurement; the NDPA sender field is set to 1 to indicate that only the AP can send NDPA frames during the measurement phase (measurement phase) to enable sensing Measurement.
  • the perception setup response is sent through a perception setup response frame, wherein the perception setup response frame includes an action field, the action field includes a perception response device information field, and the perception response device information field includes an NDPA sender field,
  • the value of the NDPA sender field is used to indicate that the AP sends the NDPA, or the value of the NDPA sender field is used to indicate that the device that first obtains the channel use right sends the NDPA.
  • a sensing action frame (Sensing Action frame) is defined: a new action frame (Action frame) or no confirmation action frame (Action No Ack), and the action category (Category) is 4 to indicate the
  • the frame is a public action frame (Public Action frame)
  • the value of the public action subclass (Public Action Field) is 46, indicating that the frame is a perception action frame (you can use any value within the range of 46 to 255 to indicate that the frame is a perception action frame)
  • the Sensing Subtype value is 3 (any value within the range of 0 to 255 can be used) indicating to establish a response frame (Sensing Setup Request frame) for sensing.
  • the measurement setup command (Setup Command) field 0 means accept (Accept); 1 means reject (Reject).
  • Reason Code (Reason Code) field When the measurement setup command (Setup Command) value indicates acceptance, this field is a reserved value of 0. When the measurement setup command (Setup Command) field value indicates rejection, 0 means that the role indicated in the measurement setup request is not supported; 1 means that the PPDU format and bandwidth indicated in the measurement setup request are not supported; 3 ⁇ 255 are reserved.
  • NDPA sender field If both devices in a measurement instance (Measurement Instance) support the role of sensing transmitter (Sensing Transmitter), then setting the NDPA sender field to 0 means that any sensing transmitter that first obtains the right to use the channel
  • the device (Sensing Transmitter) (regardless of AP or STA) can send NDPA frames during the measurement phase (measurement phase) to enable sensing measurement; the NDPA sender field is set to 1 to indicate that only the AP can send NDPA frames during the measurement phase (measurement phase) to enable sensing Measurement.
  • the sensing initiating request is sent through a sensing initiating request frame (Sensing Initiating Request frame).
  • a sensing action frame (Sensing Action frame) is defined: a new action frame (Action frame) or no confirmation action frame (Action No Ack), and the action category (Category) is 4 to indicate the
  • the frame is a public action frame (Public Action frame)
  • the value of the public action subclass (Public Action Field) is 46, indicating that the frame is a perception action frame (you can use any value within the range of 46 to 255 to indicate that the frame is a perception action frame)
  • Sensing Subtype (Sensing Subtype) value is 0 (any value within the range of 0 to 255 can be used) to indicate Sensing Init Request frame (Sensing Init Request frame).
  • the sensing subtype (SENS Subtype) field 0 indicates the sensing initiation request frame (SENS Init Request frame); 1 indicates the sensing initiation response frame (SENS Init Response frame); 2 indicates Sensing establishment request frame (SENS Setup Request frame); 3 means sensing establishment response frame (SENS Setup Response frame); 4 means sensing feedback request frame (SENS Feedback Response frame); 5 means sensing feedback response frame (SENS Feedback Response frame); 6 means SENS Report frame; 7 ⁇ 15 are reserved.
  • the value stated in this field is only an exemplary introduction, and it can also be set to other values, as long as the value corresponding to each perception subtype is different from the value of other perception subtypes; for example, the value 2 can represent A sensory initiation request frame; a value of 1 may indicate a sensory initiation response frame; for another example, a value of 8 may indicate a sensory initiation request frame; a value of 15 may indicate a sensory initiation response frame, and so on.
  • the measurement setup command (Setup Command) field 0 means mandatory (Demand); 1 means suggestion (Suggest); 2 ⁇ 255 are reserved.
  • the value stated in this field is only an example introduction, and it can also be set to other values, as long as the value corresponding to each command is different from the value of other commands; for example, the value 2 can indicate mandatory; the value 1 It can represent a suggestion; for another example, a value of 8 can represent mandatory; a value of 15 can represent a suggestion, and so on.
  • based on the trigger frame (TB/non-TB) field indicates that the AP is recommended to establish a TB or non-TB type measurement process.
  • setting it to 1 indicates the TB type
  • setting it to 0 indicates the non-TB type.
  • it can also be set to 0 to indicate the TB type, and set to 1 to indicate the non-TB type.
  • the original report data (Raw Report) field indicates whether the AP forwards the raw measurement results reported by the receiving device (Receiver). In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • report result analysis (Analysis) field indicates whether the AP analyzes and processes the reported measurement result. In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • the Compress Method field of the reported results indicates the algorithm used by the AP to compress the reported measurement results, 0 means no compression, and 1 means the right singular matrix transpose of the CSI matrix (Rotation of V matrix based on the SVD of CSI matrix), 2 represents the reduced power delay profile (truncated power delay profile), and 3 represents the compressed beamforming feedback matrix (compressed beamforming feedback matrix).
  • the value described in this field is only an exemplary introduction, and it can also be set to other values, as long as it is ensured that the value corresponding to each algorithm is different from the value of other algorithms.
  • the analysis information (Analysis Info) field indicates the parameters required by the AP to analyze the reported measurement results. If the reporting result analysis (Analysis) field indicates No, this field does not exist.
  • application type (Use Case KPI): Indicates the type of perception use, 0 indicates the presence of people, 1 indicates the number of people, 2 indicates the position of people, 3 indicates posture detection, 4 indicates vital signs detection, 5 indicates Sleep detection, 6 ⁇ 255 reserved.
  • the value described in this field is only an exemplary introduction, and it can also be set to other values, as long as it is ensured that the value corresponding to each type is different from the value of other types.
  • the range accuracy (Range Accuracy) field indicates the accuracy of the distance data after the measurement result is calculated.
  • Velocity Accuracy (Velocity Accuracy) field Indicates the accuracy of the velocity data after the measurement results are calculated.
  • Angular Accuracy (Angular Accuracy) field Indicates the accuracy of the angle data after the measurement result is calculated.
  • Number of Responders Indicates the number of Responder Info fields contained in the frame.
  • Responder Info field Indicates the perception response device information.
  • Responding device identity Indicates the ID of the perceived responding device (Responder), which is an associated ID (AID, Associated ID) for an associated STA, and an unassociated ID (UID, Unassociated ID, UID) for an unassociated STA Allocated by the AP, the allocated space is consistent with the AID), 0 is the AID of the associated AP.
  • Sensing signal receiving device Sensing signal receiving device (Receiver): indicates whether the sensing responding device (Responder) participates in the measurement as a sensing signal receiving device (Receiver). In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • the sensing sending device indicates whether the sensing responding device (Responder) participates in the measurement as a sensing signal sending device (Transmitter). In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • the result is immediately reported (Immediate Report): indicates whether the measurement result needs to be reported immediately when the sensing response device (Responder) participates in the measurement as a sensing receiving device (Receiver).
  • a setting of 1 indicates yes and a setting of 0 indicates no.
  • Threshold Measurement Info Setting information based on threshold measurement.
  • the sensing initiating response is sent through a sensing initiating response frame (Sensing Initiating Response frame).
  • the Sensing Action frame is defined: a new action frame (Action frame) or no confirmation action frame (Action No Ack), and the action category (Category) is 4, indicating that the frame is public Action frame (Public Action frame), the public action subclass (Public Action Field) value of 46 indicates that the frame is a perception action frame (you can use any value in the range of 46 to 255 to indicate that the frame is a perception action frame), perception subclass
  • the (Sensing Subtype) value is 1 (any value within the range of 0 to 255 can be used) to indicate a Sensing Init Response frame (Sensing Init Response frame).
  • the measurement setup command (Setup Command) field 0 means accept (Accept); 1 means reject (Reject); 2 ⁇ 255 are reserved.
  • the value described in this field is only an exemplary introduction, and it can also be set to other values, as long as it is ensured that the value corresponding to each command is different from the value of other commands.
  • reason code (Reason Code) field when the measurement setup command (Setup Command) value indicates acceptance, this field is a reserved value of 0.
  • 0 means that it does not support the establishment of perception measurement as a proxy; 1 to 255 are reserved; the value described in this field is only an exemplary introduction, and it can also be set to other values. Just make sure that the value corresponding to each reason code is different from the value of other reason codes.
  • the measurement setup ID (Measurement Setup ID) field indicates the measurement setup ID, which can identify the measurement parameters used by the measurement instance to which it belongs. To ensure the uniqueness within the ESS range, the value of this field is generated by the AP. This field is present when the measurement Setup Command value indicates acceptance. When the value of the measurement setup command (Setup Command) indicates rejection, this field may not exist or be a reserved value of 0.
  • based on the trigger frame (TB/non-TB) field determine the measurement process of the established TB or non-TB type. In one embodiment, setting it to 1 indicates the TB type, and setting it to 0 indicates the non-TB type. In another embodiment, it can also be set to 0 to indicate the TB type, and set to 1 to indicate the non-TB type.
  • the original report data (Raw Report) field determine whether the AP forwards the raw measurement results reported by the receiving device (Receiver). In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • report result analysis (Analysis) field determine whether the AP analyzes and processes the reported measurement results. In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • the Compress Method field of the reported results determines the algorithm used by the AP to compress the reported measurement results, 0 means no compression, and 1 means the right singular matrix transpose of the CSI matrix (Rotation of V matrix based on the SVD of CSI matrix), 2 represents the reduced power delay profile (truncated power delay profile), and 3 represents the compressed beamforming feedback matrix (compressed beamforming feedback matrix).
  • the value stated in this field is only an example introduction, and it can also be set to other values, as long as the value corresponding to each algorithm is different from the value of other algorithms.
  • the schedule information (Schedule Info) field the time schedule information of the measurement.
  • Number of Responders Indicates the number of Responder Info fields contained in the frame.
  • Responder Info field Indicates the perception response device information.
  • Reason Code (Reason Code) field: When the measurement setup command (Setup Command) value indicates acceptance, this field is a reserved value of 0. When the value of the measurement setup command (Setup Command) indicates rejection, 0 means that the set role is not supported; 1 means that immediate reporting is not supported; 2 means that the set threshold is not supported; 3 to 255 are reserved.
  • the value described in this field is only an exemplary introduction, and it can also be set to other values, as long as the value corresponding to each reason code is different from the value of other reason codes.
  • the sensing sending device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, the sensing sending device sends the NDPA.
  • sensing Receiver if only one-way sensing measurement is supported, it means that among the AP and the Non-AP STA, one of them only supports the sensing transmitter (Sensing Transmitter), and the other only supports the sensing receiver (Sensing Receiver).
  • the Sensing Transmitter can directly send NDPA+NDP to perform unidirectional Sensing Measurement. That is, the device that sends NDPA frames by default sends NDP directly after the SIFS time for one-way perception measurement.
  • a measurement instance (Measurement Instance) is set in the sensing setup (Sensing Setup) phase: the AP is the sensing transmitter (Sensing Transmitter), and the Non-AP STA is the sensing receiver (Sensing Receiver), then the AP sends NDPA+NDP for sensing measurement.
  • the Sensing Transmitter can directly send the NDPA, and then the Sensing Transmitter and/or the Sensing Receiver determine whether to send the NDPA according to the first information. NDP.
  • the first information indicates that the device sending the NDPA sends NDP, and the device receiving the NDPA does not In the case of sending the NDP, the first device sends the NDP to the second device.
  • Non-AP STA is the sensing transmitter (Sensing Transmitter)
  • AP is the sensing receiver ( Sensing Receiver)
  • the Non-AP STA sends NDPA+NDP for sensing measurement.
  • a measurement instance (Measurement Instance) is set in the sensing setup (Sensing Setup) phase: the AP is the sensing transmitter (Sensing Transmitter), and the Non-AP STA is the sensing receiver (Sensing Receiver), then the AP sends NDPA, and the first information indicates: one-way sending NDP, and the device sending NDPA sends NDP, the device receiving NDPA does not send NDP, in this case, AP sends NDP for sensing measurement (sensing measurement) .
  • Non-AP STA is the sensing transmitter (Sensing Transmitter)
  • AP is the sensing receiver ( Sensing Receiver)
  • the Non-AP STA sends NDPA
  • the first information indicates: one-way sending NDP
  • the device sending NDPA sends NDP
  • the device receiving NDPA does not send NDP.
  • Non-AP STA sends NDP Take a sensing measurement.
  • the first device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, and the first information indicates that the device sending the NDPA does not send NDP, and the device receiving the NDPA In the case of sending the NDP, the first device receives the NDP sent by the second device.
  • a measurement instance (Measurement Instance) is set in the sensing setup (Sensing Setup) phase: the AP is the sensing transmitter (Sensing Transmitter), and the Non-AP STA is the sensing receiver (Sensing Receiver), then the AP sends NDPA, and the first information indicates: one-way sending NDP, and the device sending NDPA does not send NDP, and the device receiving NDPA sends NDP, in this case, Non-AP STA sends NDP to perform perception measurement ( sensing measurement).
  • Non-AP STA is the Sensing Transmitter
  • the AP is the Sensing Receiver ( Sensing Receiver)
  • the Non-AP STA sends NDPA
  • the first information indicates: one-way sending NDP
  • the device sending NDPA does not send NDP
  • the device receiving NDPA sends NDP
  • AP sends NDP for sensing measurement (sensing measurement).
  • the first device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, and when the first device is the sensing initiating device, the first device receives the second Second, the perception measurement result sent by the device.
  • the first device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement during the sensing establishment phase, and when the first device is the sensing initiating device, the first device does not send the The second device sends the perception measurement.
  • the first device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, and when the second device is the sensing initiating device, the first device sends the The second device sends the sensing measurements.
  • the sensing initiator (Sensing Initiator) participates in the sensing measurement (Sensing Measurement)
  • the sensing transmitter (Sensing Transmitter) (AP or STA)
  • AP or STA sensing transmitter
  • the Sensing Initiator and the Sensing Receiver do not need to send a Sensing Report to the Sensing Initiator, because the Sensing Initiator can directly obtain the sensing results through NDP.
  • the Sensing Receiver (STA or AP) needs to send a Sensing Report to the Sensing Transmitter, and the Sensing Transmitter can obtain the sensing result through the Sensing Report.
  • the sensing initiator (Sensing Initiator) does not participate in the sensing measurement (Sensing Measurement), for one-way sensing measurement, the sensing initiator (Sensing Initiator) is a Non-AP STA (that is, STA1 ), as shown in Figure 25, the Sensing Receiver (Sensing Receiver) is a Non-AP STA (i.e. STA2), then STA2 sends the Sensing Report to the AP, and the AP then forwards the Sensing Report to the Sensing Initiator (ie STA1).
  • the Sensing Initiator when the Sensing Initiator does not participate in the Sensing Measurement, for the one-way sensing measurement, the Sensing Initiator is a Non-AP STA (i.e. STA1), as shown in Figure 26, the sensing receiver (Sensing Receiver) is an AP, then the AP sends the sensing report (Sensing Report) directly to the sensing initiator (Sensing Initiator) (that is, STA1).
  • STA1 Non-AP STA
  • the sensing receiver Sensing Receiver
  • the AP sends the sensing report (Sensing Report) directly to the sensing initiator (Sensing Initiator) (that is, STA1).
  • the first device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, and when the first device is the sensing initiating device, the first device sends the The second device sends a perception establishment request; the first device receives a perception establishment response sent by the second device.
  • the first device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, and when the second device is the sensing initiating device, the first device receives the second A perception establishment request sent by the second device; the first device sends a perception establishment response to the second device.
  • Sensing Initiator if only one pair of devices participates in Sensing Measurement, in the Sensing Setup phase, one of the pair of devices is the Sensing Initiator and the other is the Sensing Response device (Sensing Responder).
  • Sensing Responder the Sensing Initiator sends a Sensing Setup Request frame (Sensing Setup Request frame) to initiate the Sensing Setup (Sensing Setup), and then the Sensing Responder replies The Sensing Setup Response frame completes the Sensing Setup phase.
  • the Sensing Initiator in the Sensing Setup phase, if there are multiple pairs of devices participating in Sensing Measurement, and the Sensing Initiator can participate in all Sensing Measurements or Sensing Measurements Instance (Sensing Measurement Instance), then it means that the sensing initiator (Sensing Initiator) is an AP. As shown in Figure 28, in this scenario, the AP (Sensing Initiator) can perform Sensing Setup one-to-one with each STA (Sensing Responder 1 ⁇ N) to comply with the pairwise sensing (sensing) rules .
  • the sensing setup phase (Sensing Setup phase) if there are multiple pairs of devices participating in the sensing measurement (Sensing Measurement), and the sensing initiator (Sensing Initiator) does not participate or participate in part of the sensing measurement (Sensing Measurement) or sensing Measurement instance (Sensing Measurement Instance), then it means that the sensing initiator (Sensing Initiator) is a Non-AP STA (namely STA1).
  • STA1 can send a sensing initialing request frame (Sensing Initialing Request frame) to the AP (that is, the sensing response device 1), so that the AP can respond to each participating sensing measurement (Sensing Measurement) Devices (Sensing Responder) (2 ⁇ N or can also include Sensing Initiator) perform one-to-one sensing setup (Sensing Setup), and finally the AP feeds back the result of Sensing Setup to Sensing Initiator through Sensing Initiating Response frame .
  • Sensing Initialing Request frame that is, the sensing response device 1
  • the AP can respond to each participating sensing measurement (Sensing Measurement) Devices (Sensing Responder) (2 ⁇ N or can also include Sensing Initiator) perform one-to-one sensing setup (Sensing Setup), and finally the AP feeds back the result of Sensing Setup to Sensing Initiator through Sensing Initiating Response frame .
  • the sensing measurement result is sent through a sensing report frame (Sensing Report frame).
  • a sensing action frame (Sensing Action frame) is defined: a new action frame (Action frame) or no confirmation action frame (Action No Ack), and the action category (Category) is 4 to indicate the
  • the frame is a public action frame (Public Action frame)
  • the value of the public action subclass (Public Action Field) is 46, indicating that the frame is a perception action frame (you can use any value within the range of 46 to 255 to indicate that the frame is a perception action frame)
  • Sensing Subtype (Sensing Subtype) value 6 (any value within the range of 0 to 255 can be used) indicates a Sensing Report frame (Sensing Report frame).
  • the number of reports (Number of Reports) field: the number of measurement results contained in the frame, 0 means 1 measurement result, and 255 means 256 measurement results.
  • the original reported data (Raw Report) field indicates whether the frame contains the raw measurement results reported by the sensing receiving device (Receiver). In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • report result analysis (Analysis) field indicates whether the frame includes analysis processing of the reported original measurement result. In one embodiment, set to 1 for yes, otherwise set to 0. In another embodiment, it can also be set to 0 to indicate yes, otherwise set to 1.
  • the Compress Method field of the reported result indicates the algorithm for compressing the original measurement results reported in the frame, 0 means no compression, and 1 means the right singular matrix transposition (Rotation of V) of the CSI matrix matrix based on the SVD of CSI matrix), 2 represents the reduced power delay profile (truncated power delay profile), and 3 represents the compressed beamforming feedback matrix (compressed beamforming feedback matrix).
  • the value described in this field is only an exemplary introduction, and it can also be set to other values, as long as it is ensured that the value corresponding to each algorithm is different from the value of other algorithms.
  • the analysis result (Analysis Result) field indicates the result after the analysis and processing of the reported original measurement results by the AP, such as the presence of people detected, the number of people detected, the number of breaths of people detected, etc. wait.
  • the report result analysis (Analysis) field is indicated as including the analysis processing of the reported original measurement result, this field exists, otherwise it does not exist.
  • Measurement timestamp (Timestamp): the occurrence time of the measurement instance.
  • the sensing initiator (Sensing Initiator) participates in the subsequent sensing measurement (Sensing Measurement)
  • the sensing initiator (Sensing Initiator) is designed to directly communicate with at least one sensing response
  • the device (Sensing Responder) performs a pairwise (Pairwise) sensing setup (Sensing Setup) mechanism and the sensing initiator (Sensing Initiator) requests the AP agent to perform pairwise (Pairwise) sensing setup with each sensing responder (Sensing Responder) ( Sensing Setup) mechanism.
  • the efficiency of Sensing Setup is improved.
  • a two-way sensing measurement (Sensing Measurement) mechanism
  • the designed NDPA frame can also indicate a certain sensing measurement The instance (Sensing Measurement Instance) performs one-way Sensing Measurement or two-way Sensing Measurement.
  • the NDPA frame can indicate who sends the NDP during the one-way Sensing Measurement, and can also indicate the order in which the NDP is sent when the two-way Sensing Measurement is performed. Improved flexibility of perception measurement.
  • the device that sends NDP can be indicated through NDPA; for bidirectional NDP transmission, NDPA can be used to indicate the order of sending NDP, so that non-TB sensing measurement can be realized.
  • NDPA can be used to indicate the order of sending NDP, so that non-TB sensing measurement can be realized.
  • Fig. 31 shows a schematic block diagram of a wireless communication device 300 according to an embodiment of the present application.
  • the wireless communication device 300 is a first device.
  • the wireless communication device 300 includes:
  • a communication unit 310 configured to send NDPA to the second device
  • the NDPA includes first information, and the first information is used to indicate one of the following:
  • the device sending the NDPA sends NDP first or the device receiving the NDPA sends NDP first;
  • the first information is an NDP sequence field in a frame carrying the NDPA.
  • the frame carrying the NDPA includes a general information field and a station information field, wherein the general information field includes a first field and the NDP sequence field, and the first field is used to indicate that this measurement is not based on a trigger
  • the perception measurement of the site information field includes a second field and a third field, the second field is used to indicate the number of space-time flows of the NDP measured in the downlink, and the third field is used to indicate the long training field LTF of the NDP measured in the downlink The number of repetitions of the symbol.
  • the sensing measurement performed in the measurement instance corresponding to the NDPA includes at least one of the following: uplink sensing measurement, downlink sensing measurement, and bidirectional sensing measurement.
  • the access point AP when the measurement instance corresponding to the NDPA is set to support two-way sensing measurement during the sensing establishment phase, the access point AP sends the NDPA.
  • the measurement instance corresponding to the NDPA is set to:
  • the AP sends NDPA, and the non-AP STA waits for the NDPA sent by the AP.
  • the device that first obtains the channel usage right sends the NDPA.
  • the measurement instance corresponding to the NDPA when the measurement instance corresponding to the NDPA is configured to support bidirectional sensing measurement during the perception establishment phase, the measurement instance corresponding to the NDPA is configured with second information during the perception establishment phase, wherein the second information is configured with The second information is used to instruct the AP to send the NDPA, or the second information is used to instruct the device that first obtains the channel use right to send the NDPA.
  • the second information is an NDPA sender field in the first frame, wherein the first frame is a sensory setup request frame or a sensory setup response frame.
  • the first frame includes an action field
  • the action field includes a sensory-responsive device information field
  • the sensory-responsive device information field includes the NDPA sender field.
  • the AP is set to be allowed to act as a sensing sending device and a sensing receiving device during the perception establishment phase
  • the Non-AP STA is set to be allowed to be a sensing sending device and a sensing receiving device during the sensing establishment phase.
  • the communication unit 310 is configured to send an NDP to the second device according to the first information, and/or, the communication unit 310 is configured to receive the NDP sent by the second device according to the first information.
  • the sensing initiating device acquires the sensing measurement result through the AP.
  • the sensing initiating device is a Non-AP STA, and the sensing initiating device triggers the establishment of a sensing session between the AP and at least one Non-AP STA.
  • the communication unit 310 is configured to receive the sensing measurement result sent by the second device.
  • the communication unit 310 is configured to receive a sensing initiation request sent by the sensing initiating device
  • the communication unit 310 is configured to send a perception establishment request to at least one Non-AP STA, where the at least one Non-AP STA includes the second device;
  • the communication unit 310 is configured to receive the perception setup response sent by the at least one Non-AP STA;
  • the communication unit 310 is configured to send a sensing initiation response to the sensing initiating device.
  • the communication unit 310 is configured to send the perception measurement result to the second device.
  • the communication unit 310 is configured to receive a perception establishment request sent by the second device
  • the communication unit 310 is configured to send a perception setup response to the second device.
  • the communication unit 310 is configured to receive the sensing measurement result sent by the second device.
  • the communication unit 310 is configured not to send the perception measurement result to the second device.
  • the communication unit 310 is configured to send a perception establishment request to at least one Non-AP STA, where the at least one Non-AP STA includes the second device;
  • the communication unit 310 is configured to receive the perception establishment response sent by the at least one Non-AP STA.
  • the communication unit 310 is configured to send the sensing measurement result to the second device.
  • the communication unit 310 is configured to receive a perception establishment request sent by the second device
  • the communication unit 310 is configured to send a perception setup response to the second device.
  • the perception establishment request is sent through a perception establishment request frame, wherein the perception establishment request frame includes an action field, the action field includes a perception response device information field, and the perception response device information field includes an NDPA sender field,
  • the value of the NDPA sender field is used to indicate that the AP sends the NDPA, or the value of the NDPA sender field is used to indicate that the device that first obtains the channel use right sends the NDPA.
  • the perception setup response is sent through a perception setup response frame, wherein the perception setup response frame includes an action field, the action field includes a perception response device information field, and the perception response device information field includes an NDPA sender field,
  • the value of the NDPA sender field is used to indicate that the AP sends the NDPA, or the value of the NDPA sender field is used to indicate that the device that first obtains the channel use right sends the NDPA.
  • the sensing sending device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, the sensing sending device sends the NDPA.
  • the communication unit 310 when the first information indicates that the device sending the NDPA sends NDP, and the device receiving the NDPA does not send NDP, the communication unit 310 is configured to send NDP to the second device.
  • the communication unit 310 is configured to receive the sensing measurement result sent by the second device.
  • the communication unit 310 is configured to receive the NDP sent by the second device.
  • the communication unit 310 when the first device is the sensing initiating device, the communication unit 310 is configured not to send the sensing measurement result to the second device.
  • the communication unit 310 is configured to send the sensing measurement result to the second device.
  • the communication unit 310 is configured to send a perception establishment request to the second device
  • the communication unit 310 is configured to receive the perception establishment response sent by the second device.
  • the communication unit 310 is configured to receive a perception establishment request sent by the second device
  • the communication unit 310 is configured to send a perception setup response to the second device.
  • the first device is a sensing sending device and the second device is a sensing receiving device; or,
  • the first device is a perception receiving device
  • the second device is a perception sending device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the wireless communication device 300 may correspond to the first device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the wireless communication device 300 are respectively In order to realize the corresponding flow of the first device in the method 200 shown in FIG. 5 to FIG. 30 , for the sake of brevity, details are not repeated here.
  • Fig. 32 shows a schematic block diagram of a wireless communication device 400 according to an embodiment of the present application.
  • the wireless communication device 400 is a second device. As shown in FIG. 32, the wireless communication device 400 includes:
  • a communication unit 410 configured to receive the NDPA sent by the first device
  • the NDPA includes first information, and the first information is used to indicate one of the following:
  • the device sending the NDPA sends NDP first or the device receiving the NDPA sends NDP first;
  • the first information is an NDP sequence field in a frame carrying the NDPA.
  • the frame carrying the NDPA includes a general information field and a station information field, wherein the general information field includes a first field and the NDP command field, and the first field is used to indicate that this measurement is not based on a trigger
  • the perception measurement of the site information field includes a second field and a third field, the second field is used to indicate the number of space-time flows of the NDP measured in the downlink, and the third field is used to indicate the long training field LTF of the NDP measured in the downlink The number of repetitions of the symbol.
  • the sensing measurement performed in the measurement instance corresponding to the NDPA includes at least one of the following: uplink sensing measurement, downlink sensing measurement, and bidirectional sensing measurement.
  • the access point AP when the measurement instance corresponding to the NDPA is set to support two-way sensing measurement during the sensing establishment phase, the access point AP sends the NDPA.
  • the measurement instance corresponding to the NDPA is set to:
  • the AP sends NDPA, and the non-AP STA waits for the NDPA sent by the AP.
  • the device that first obtains the channel usage right sends the NDPA.
  • the measurement instance corresponding to the NDPA when the measurement instance corresponding to the NDPA is configured to support bidirectional sensing measurement during the perception establishment phase, the measurement instance corresponding to the NDPA is configured with second information during the perception establishment phase, wherein the second information is configured with The second information is used to instruct the AP to send the NDPA, or the second information is used to instruct the device that first obtains the channel use right to send the NDPA.
  • the second information is the NDPA sender field in the first frame, wherein the first frame is a sensory setup request frame or a sensory setup response frame.
  • the first frame includes an action field
  • the action field includes a sensory-responsive device information field
  • the sensory-responsive device information field includes the NDPA sender field.
  • the AP is set to be allowed to act as a sensing sending device and a sensing receiving device during the perception establishment phase
  • the Non-AP STA is set to be allowed to be a sensing sending device and a sensing receiving device during the sensing establishment phase.
  • the communication unit 410 is further configured to send an NDP to the first device according to the first information, and/or, the communication unit 410 is further configured to receive the NDP sent by the first device according to the first information .
  • the sensing initiating device acquires the sensing measurement result through the AP.
  • the sensing initiating device is a Non-AP STA, and the sensing initiating device triggers the establishment of a sensing session between the AP and at least one Non-AP STA.
  • the communication unit 410 is further configured to send a perception measurement result to the first device.
  • the communication unit 410 is further configured to receive a perception establishment request sent by the first device;
  • the communication unit 410 is also configured to send a perception setup response to the first device.
  • the communication unit 410 is further configured to receive the perception measurement result sent by the first device.
  • the communication unit 410 is also configured to receive a sensing initiation request sent by the sensing initiation device;
  • the communication unit 410 is also configured to send a perception establishment request to at least one Non-AP STA, where the at least one Non-AP STA includes the first device;
  • the communication unit 410 is also configured to receive the perception establishment response sent by the at least one Non-AP STA;
  • the communication unit 410 is also configured to send a sensing initiation response to the sensing initiating device.
  • the communication unit 410 is further configured to send the sensing measurement result to the first device.
  • the communication unit 410 is further configured not to send the perception measurement result to the first device.
  • the communication unit 410 is further configured to receive a perception establishment request sent by the first device;
  • the communication unit 410 is also configured to send a perception establishment response to the first device.
  • the communication unit 410 is further configured to receive the sensing measurement result sent by the first device.
  • the second device does not send perception measurements to the first device.
  • the communication unit 410 is further configured to send a perception establishment request to at least one Non-AP STA, where the at least one Non-AP STA includes the first device;
  • the communication unit 410 is also configured to receive the perception establishment response sent by the at least one Non-AP STA.
  • the perception establishment request is sent through a perception establishment request frame, wherein the perception establishment request frame includes an action field, the action field includes a perception response device information field, and the perception response device information field includes an NDPA sender field,
  • the value of the NDPA sender field is used to indicate that the AP sends the NDPA, or the value of the NDPA sender field is used to indicate that the device that first obtains the channel use right sends the NDPA.
  • the perception setup response is sent through a perception setup response frame, wherein the perception setup response frame includes an action field, the action field includes a perception response device information field, and the perception response device information field includes an NDPA sender field,
  • the value of the NDPA sender field is used to indicate that the AP sends the NDPA, or the value of the NDPA sender field is used to indicate that the device that first obtains the channel use right sends the NDPA.
  • the sensing sending device when the measurement instance corresponding to the NDPA is set to support one-way sensing measurement in the sensing establishment phase, the sensing sending device sends the NDPA.
  • the communication unit 410 is further configured to receive the NDP sent by the first device.
  • the communication unit 410 is further configured to send the sensing measurement result to the first device.
  • the second device if the second device is the sensing initiating device, the second device does not send the sensing measurement result to the first device.
  • the communication unit 410 is further configured to send NDP to the first device.
  • the communication unit 410 is further configured to receive the sensing measurement result sent by the first device.
  • the communication unit 410 is further configured to receive a perception establishment request sent by the first device;
  • the communication unit 410 is also configured to send a perception setup response to the first device.
  • the communication unit 410 is further configured to send a perception establishment request to the first device
  • the communication unit 410 is also configured to receive a perception establishment response sent by the first device.
  • the first device is a sensing sending device and the second device is a sensing receiving device; or,
  • the first device is a perception receiving device
  • the second device is a perception sending device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the wireless communication device 400 may correspond to the second device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the wireless communication device 400 are respectively In order to realize the corresponding flow of the second device in the method 200 shown in FIG. 5 to FIG. 30 , for the sake of brevity, details are not repeated here.
  • FIG. 33 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 33 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520 .
  • the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
  • the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the first device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the first device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the communication device 500 may specifically be the second device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the second device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • Fig. 34 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 34 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the device 600 may further include an input interface 630 .
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the first device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the first device in the various methods of the embodiments of the present application. For the sake of brevity, no further repeat.
  • the device can be applied to the second device in the embodiment of the present application, and the device can realize the corresponding process implemented by the second device in each method of the embodiment of the present application, for the sake of brevity, no longer repeat.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 35 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 35 , the communication system 700 includes a first device 710 and a second device 720 .
  • the first device 710 can be used to realize the corresponding functions realized by the first device in the above method
  • the second device 720 can be used to realize the corresponding functions realized by the second device in the above method.
  • the sake of brevity in This will not be repeated here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, and the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the first device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first device in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the second device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the second device in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the first device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the first device in the various methods of the embodiments of the present application.
  • the computer program product can be applied to the second device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the second device in the various methods of the embodiments of the present application.
  • the computer program can be applied to the first device in the embodiments of the present application, and when the computer program is run on the computer, the computer can execute the corresponding functions implemented by the first device in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the second device in the embodiment of the present application.
  • the computer program can execute the corresponding functions implemented by the second device in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备,设计了非基于触发(non-TB)的感知测量方案,可以实现单向感知测量和/或双向感知测量。该无线通信的方法包括:第一设备向第二设备发送无数据的物理层协议数据单元宣告NDPA;其中,所述NDPA包括第一信息,所述第一信息用于指示以下之一:单向发送无数据的物理层协议数据单元NDP或双向发送NDP;发送所述NDPA的设备先发送NDP或接收所述NDPA的设备先发送NDP;单向发送NDP,且发送所述NDPA的设备发送NDP,接收所述NDPA的设备不发送NDP;双向发送NDP,且发送所述NDPA的设备先发送NDP,接收所述NDPA的设备后发送NDP;双向发送NDP,且接收所述NDPA的设备先发送NDP,发送所述NDPA的设备后发送NDP;单向发送NDP,且发送所述NDPA的设备不发送NDP,接收所述NDPA的设备发送NDP。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
无线局域网(Wireless Local Area Networks,WLAN)感知(Sensing)是指通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物的方法和应用。非基于触发的(Non-Trigger Based,non-TB)感知测量是在一对设备(发起站点(Initiating Station,ISTA)和响应站点(Responding Station,RSTA))之间进行测距,然而,具体如何实现non-TB感知测量,是一项急需解决的问题。发明内容
本申请实施例提供了一种无线通信的方法及设备,能够实现non-TB感知测量,在符合成对(Pairwise)感知测量的前提下,提升了感知测量的灵活性。
第一方面,提供了一种无线通信的方法,该方法包括:
第一设备向第二设备发送NDPA;
其中,该NDPA包括第一信息,该第一信息用于指示以下之一:
单向发送NDP或双向发送NDP;
发送该NDPA的设备先发送NDP或接收该NDPA的设备先发送NDP;
单向发送NDP,且发送该NDPA的设备发送NDP,接收该NDPA的设备不发送NDP;
双向发送NDP,且发送该NDPA的设备先发送NDP,接收该NDPA的设备后发送NDP;
双向发送NDP,且接收该NDPA的设备先发送NDP,发送该NDPA的设备后发送NDP;
单向发送NDP,且发送该NDPA的设备不发送NDP,接收该NDPA的设备发送NDP。
第二方面,提供了一种无线通信的方法,该方法包括:
第二设备接收第一设备发送的NDPA;
其中,该NDPA包括第一信息,该第一信息用于指示以下之一:
单向发送NDP或双向发送NDP;
发送该NDPA的设备先发送NDP或接收该NDPA的设备先发送NDP;
单向发送NDP,且发送该NDPA的设备发送NDP,接收该NDPA的设备不发送NDP;
双向发送NDP,且发送该NDPA的设备先发送NDP,接收该NDPA的设备后发送NDP;
双向发送NDP,且接收该NDPA的设备先发送NDP,发送该NDPA的设备后发送NDP;
单向发送NDP,且发送该NDPA的设备不发送NDP,接收该NDPA的设备发送NDP。
第三方面,提供了一种无线通信的设备,用于执行上述第一方面中的方法。
具体地,该无线通信的设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种无线通信的设备,用于执行上述第二方面中的方法。
具体地,该无线通信的设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种无线通信的设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第二方面中的任一方面中的方法。
第六方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,对于单向发送NDP,可以通过NDPA指示发送NDP的设备,对于双向发送NDP,能够通过NDPA指示发送NDP的顺序,从而,可以实现non-TB感知测量,在符合成对(Pairwise)感知测量的前提下,提升了感知测量的灵活性。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种成对的感知流程的示意性图。
图3是本申请提供的一种单向LMR的示意性图。
图4是本申请提供的一种双向LMR的示意性图。
图5是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图6是根据本申请实施例提供的一种NDPA帧格式的示意性图。
图7至11分别是根据本申请实施例提供的发送NDPA和NDP的示意性图。
图12至15分别是根据本申请实施例提供的上报感知报告的示意性图。
图16是根据本申请实施例提供的一种感知建立请求帧格式的示意性图。
图17是根据本申请实施例提供的一种感知建立响应帧格式的示意性图。
图18是根据本申请实施例提供的一种感知发起请求帧格式的示意性图。
图19是根据本申请实施例提供的一种感知发起响应帧格式的示意性图。
图20至23分别是根据本申请实施例提供的发送NDPA和NDP的示意性图。
图24至26分别是根据本申请实施例提供的上报感知报告的示意性图。
图27至29分别是根据本申请实施例提供的感知建立的示意性图。
图30是根据本申请实施例提供的一种感知报告帧格式的示意性图。
图31是根据本申请实施例提供的一种无线通信的设备的示意性框图。
图32是根据本申请实施例提供的一种无线通信的设备的示意性框图。
图33是根据本申请实施例提供的一种通信设备的示意性框图。
图34是根据本申请实施例提供的一种装置的示意性框图。
图35是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点站点(Access Point Station,AP STA)110,以及通过AP STA 110接入网络的非接入点站点(Non-Access Point Station,Non-AP STA)120。
在一些实施例中,AP STA 110和/或Non-AP STA 120可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,Non-AP STA 120可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、无人驾驶(self driving)中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备等。
作为示例而非限定,在本申请实施例中,Non-AP STA 120还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图1示例性地示出了一个AP STA和两个Non-AP STA,在一些实施例中,该通信系统100可以包括多个AP STA以及包括其它数量的Non-AP STA,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的AP STA 110和Non-AP STA 120,AP STA 110和Non-AP STA 120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、网关等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在 A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括STA和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括WiFi协议以及应用于未来的WiFi通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请相关术语进行说明。
关联标识符(Association Identifier,AID),用于标识跟接入点建立关联后的终端。
未关联的标识符(Unassociation Identifier,UID),用于标识未跟接入点建立关联后的终端。
媒体访问控制(Medium Access Control,MAC)。常用来做为MAC地址(Address)即媒体访问控制地址的简称。
传输机会(Transmission Opportunity,TXOP),指的是一段时间,在该时间段内,拥有该传输机会的终端可以主动发起一次或多次传输。
突发信号(Burst),一般指一小段时间,在该时间段内发送一个或多个信号。
突发信号组(Burst Group),指一个或多个突发信号的组合。同一个突发信号组中的突发信号一般具有一些共同的特征。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
WLAN Sensing通过测量WLAN信号经过人或物散射和/或反射的变化来感知环境中的人或物。也即,WLAN Sensing通过无线信号来对周围环境进行测量和感知,从而可以完成室内是否有人入侵、移动、跌倒等的检测,姿势识别以及空间三维图像建立等诸多功能。
为便于理解本申请实施例的技术方案,以下对本申请相关WLAN感知进行说明。
参与WLAN感知的WLAN设备可能包括如下角色(role):
感知发起设备(Sensing Initiator),发起感知会话(sensing session)并想要获知感知结果的设备;
感知响应设备(Sensing Responder),参与sensing session的非Sensing Initiator的设备;
感知发送设备(Sensing Transmitter),发起感知测量信号(sensing illumination signal)的设备;
感知接收设备(Sensing Receiver),接收感知测量信号(sensing illumination signal)的设备;
感知处理设备(Sensing processor),处理感知测量结果的设备;
感知参与设备(Sensing Participant),包括感知会话发起设备,感知信号发送设备和感知信号接收设备。
WLAN终端在一个感知会话中可能有一个或多个角色,例如感知发起设备可以仅仅是感知发起设备,也可以成为感知发送设备,也可以成为感知接收设备,还可以同时是感知发送设备和感知接收设备。
在一些实施例中,可以具有多种感知类型(Sensing Type)。例如,基于信道状态信息(Channel State Information,CSI)的感知类型,即CSI-based Sensing,该感知类型是通过处理接收到的感知测量信号的CSI获得sensing测量结果。又例如,基于反射信号的感知类型,即Radar-based Sensing,该感知类型是通过处理接收到的感知测量信号的反射信号获得sensing测量结果。
WLAN感知会话包括以下一个或多个阶段:会话建立、感知测量、感知上报、会话终止。
会话建立阶段:建立感知会话,确定感知会话参与者及其角色(包括感知发送设备和感知接收设备),决定感知会话相关的操作参数,并且可选的在终端之间交互该参数。
感知测量阶段:实施感知测量,感知发送设备发送感知信号给感知接收设备。
感知上报阶段:上报测量结果,由应用场景决定,感知接收设备可能需要给感知发起设备上报测量结果。
会话终止阶段:终端停止测量,终止感知会话。
在感知会话建立时,终端间可能需要一一协商感知角色和操作参数,或者终端声明自身的角色和操作参数(例如通过信标帧或者其他特殊帧)。
感知测量结果的数据量通常比较大,例如一次测量的信道状态信息(Channel State Information,CSI)数据可能达到4K~40K比特,为了降低上报感知测量结果导致的网络负载,可以设置测量阈值,当本次感知测量结果与上次的感知测量结果的变化量小于该测量阈值时,感知接收设备上报感知测量结果,否则不上报感知测量结果。
感知发起设备可以设置多组测量参数,一组测量参数(用测量设置标识(Measurment Setup ID)来标识,可以等价于突发信号组(Burst Group))可以应用于多次测量(用测量实例标识(Measurement Instance ID)来标识,可以等价于突发信号(Burst))。
感知测量是WLAN感知的一个核心步骤,然而,具体如何配置针对感知测量的测量信息是一项急需解决的问题。
WLAN Sensing采用成对(Pairwise)的方式进行,并且包含以下两个标识(ID),用于区分建立(Setup)和测量(measurement)实例:
1)测量建立标识(Measurement Setup ID),测量建立标识可用于识别感知测量实例中使用的属性,测量建立在协商阶段分别提供给每个响应设备,测量建立标识在共享相同测量实例的响应程序中设置为相同的值。
2)测量实例标识(Measurement Instance ID),测量实例标识根据测量建立标识唯一标识感知测量实例,测量实例标识用于识别属于同一感知测量实例的帧。
值得注意的是,如图2所示,在一个测量建立标识(Measurement Setup ID)下,可以有不同的测量实例(Measurement Instance),这些Measurement Instance可以采用不同的测量方式,例如参与测量的设备不同,测量采用的参数也可以不同,等等。
如图2所示,感知发起设备可以设置多组测量参数,一组测量参数(用Measurment Setup ID来标识,可以等价于突发信号组(Burst Group))可以应用于多次测量(用Measurement Instance ID来标识,可以等价于突发信号(Burst))。
为便于更好的理解本申请实施例,对本申请相关的非基于触发的(non-TB)测距(Ranging)进行说明。
non-TB Ranging是在一对设备(ISTA和RSTA)之间进行测距。在设置好的测量窗口,ISTA通过测距(Ranging)无数据的物理层协议数据单元宣告(null data physical layer protocol data unit announcement,NDPA)+ISTA至RSTA(I2R)无数据的物理层协议数据单元(null data physical layer protocol data unit,NDP)发起测量,然后RSTA发送RSTA至ISTA(R2I)NDP进行测量。根据ISTA和RSTA的设置,测量报告阶段(Measurement Reporting phase)可以是图3的单向R2I位置测量报告(Location Measurement Report,LMR),也可以是图4双向的LMR(R2I LMR+I2R LMR)。
现阶段,WLAN Sensing机制只提出了成对进行感知建立(Sensing Setup),感知测量(Sensing Measurement)以及感知上报(Sensing Reporting),以上各个阶段具体如何实现及帧结构如何设计,是一个亟待解决的问题。此外,上述non-TB Ranging只适用于WLAN设备之间进行测距,不支持802.11bf标准中定义的WLAN Sensing,因此有必要以802.11az non-TB Ranging协议为基础设计适用于802.11bf的non-TB Sensing协议和帧结构。
基于上述问题,本申请提出了一种感知测量的方案,对于单向发送NDP,可以通过NDPA指示发送NDP的设备,对于双向发送NDP,能够通过NDPA指示发送NDP的顺序,从而,可以实现non-TB感知测量,在符合成对(Pairwise)感知测量的前提下,提升了感知测量的灵活性。
以下通过具体实施例详述本申请的技术方案。
图5是根据本申请实施例的无线通信的方法200的示意性流程图,如图5所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,第一设备向第二设备发送NDPA;其中,该NDPA包括第一信息,该第一信息用于指示以下之一:单向发送NDP或双向发送NDP;发送该NDPA的设备先发送NDP或接收该NDPA的设备先发送NDP;单向发送NDP,且发送该NDPA的设备发送NDP,接收该NDPA的设备不发送NDP;双向发送NDP,且发送该NDPA的设备先发送NDP,接收该NDPA的设备后发送NDP;双向发送NDP,且接收该NDPA的设备先发送NDP,发送该NDPA的设备后发送NDP;单向发送NDP,且发送该NDPA的设备不发送NDP,接收该NDPA的设备发送NDP;
S220,该第二设备接收该第一设备发送的该NDPA。
在本申请实施例中,对于单向发送NDP,可以通过NDPA指示发送NDP的设备,对于双向发送NDP,能够通过NDPA指示发送NDP的顺序,从而,可以实现non-TB感知测量,在符合成对(Pairwise)感知测量的前提下,提升了感知测量的灵活性。
在一些实施例中,该第一设备为感知发送设备(Sensing Transmitter),且该第二设备为感知接收设备(Sensing Receiver);或者,该第一设备为感知接收设备(Sensing Receiver),且该第二设备为感知发送设备(Sensing Transmitter)。
在一些实施例中,该第一设备也可以为感知发起设备或感知响应设备,
在一些实施例中,该第一信息可以占用1比特,设置为0表示单向发送NDP,设置为1表示双向发送NDP。或者,设置为1表示单向发送NDP,设置为0表示双向发送NDP。本申请对此并不限定。
在一些实施例中,在双向发送NDP的情况下,该第一信息可以占用1比特,设置为0表示发送该NDPA的设备先发送NDP,设置为1表示接收该NDPA的设备先发送NDP。或者,设置为1表示发送该NDPA的设备先发送NDP,设置为0表示接收该NDPA的设备先发送NDP。本申请对此并不限定。
在一些实施例中,该第一信息可以占用2比特,设置为00表示单向发送NDP,且发送该NDPA的设备发送NDP,接收该NDPA的设备不发送NDP;设置为01表示双向发送NDP,且发送该NDPA的设备先发送NDP,接收该NDPA的设备后发送NDP;设置为10表示双向发送NDP,且接收该NDPA的设备先发送NDP,发送该NDPA的设备后发送NDP;设置为11表示单向发送NDP,且发送该NDPA的设备不发送NDP,接收该NDPA的设备发送NDP。当然,该第一信息也可以占用更多的比特,以及通过设置于此不同的取值指示上述信息,本申请对此并不限定。
在一些实施例中,该第一信息为承载该NDPA的帧中的NDP顺序(NDP Order)字段。
在一些实施例中,承载该NDPA的帧包括通用信息字段和站点信息字段,其中,该通用信息字段包括第一字段和该NDP顺序字段,该第一字段用于指示本次测量为非基于触发的感知测量,该站点信息字段包括第二字段和第三字段,该第二字段用于指示下行测量的NDP的空时流(spatial-time stream)数量,该第三字段用于指示下行测量的NDP的长训练域(Long Training Field,LTF)符号的重复数量。
在一些实施例中,该第一字段为基于触发/非基于触发的(TB/non-TB)字段,该TB/non-TB字段用于指示本次测量为TB或non-TB类型,如该TB/non-TB字段占用1比特,取值为0指示本次测量为TB类型,取值为1指示本次测量为non-TB类型。
在一些实施例中,该第二字段为下行NDP空时流(DL N_STS)字段,该DL N_STS字段占用4比特,用于指示下行测量的NDP的空时流(spatial-time stream)数量。
在一些实施例中,该第三字段为下行重复(DL Rep)字段,该DL Rep字段占用4比特,用于指示下行测量的NDP的LTF符号的重复数量。
在一些实施例中,承载该NDPA的帧可以是NDPA帧或感知宣告帧(Sensing Announcement)。当然,承载该NDPA的帧也可以是其他帧,本申请对此并不限定。
在一些实施例中,在承载NDPA的帧为感知宣告帧的情况下,如图6所示,定义了感知控制帧:一种新的控制帧,帧类型(Type)为1表示该帧为控制帧,帧子类型(Subtype)值为5表示该帧为扩展控制帧,控制帧扩展(Control Frame Extension)值为11(可以为11~15中任一值)表示该帧为感知控制帧,感知子类型(Sensing Subtype)值为1(可以为0~15中任一值)表示该帧为感知宣告帧(Sensing Announcement)。
如图6所示,感知宣告帧中的通用信息字段包括TB/non-TB字段和NDP顺序字段。
TB/non-TB字段用于指示本次测量为TB或non-TB类型。可选地,可由是否有触发感知轮询(TF SENS Poll)来判定。
NDP顺序字段占用2比特,具体的,NDP顺序=00:单向发送NDP,发送NDPA的设备发送NDP,接收NDPA的设备不发送NDP;NDP顺序=01:双向发送NDP,发送NDPA的设备先发送NDP,接收NDPA的设备后发送NDP;NDP顺序=10:双向发送NDP,接收NDPA的设备先发送NDP,发送NDPA的设备后发送NDP;或者NDP顺序=10为预留值(reserved);NDP顺序=11:单向发送NDP,发送NDPA的设备不发送NDP,接收NDPA的设备发送NDP。
例如,在感知建立(Sensing Setup)时如果设定一个设备只能是感知发送设备(Sensing Transmitter),另一个设备只能是感知接收设备(Sensing Receiver),那么只能单向发送NDP,此时NDP顺序字段设为00。
如图6所示,感知宣告帧中的站点信息字段包括DL N_STS字段和DL Rep字段,其中,DL N_STS字段占用4比特,用于指示下行测量的NDP的空时流(spatial-time stream)数量;DL Rep字段占用4比特,用于指示下行测量的NDP的LTF符号的重复数量。
在一些实施例中,该NDPA对应的测量实例中执行的感知测量包括以下至少之一:上行感知测量,下行感知测量,双向感知测量。
在一些实施例中,如果在感知建立(Sensing Setup)阶段设置了设备既支持发送(TX)又支持接收(RX),那么在不同的测量实例中,可以通过NDPA帧的NDP顺序字段灵活指示某个测量实例仅做上行感知测量或下行感知测量或双向感知测量等。
在一些实施例中,在感知测量阶段,只进行单向感知测量(Sensing Measurement),感知发送设备(Sensing Transmitter)发送NDPA+NDP。
在一些实施例中,在感知测量阶段,进行双向感知测量(Sensing Measurement),先获得信道的设备先发送NDPA+NDP。
在一些实施例中,在感知测量阶段,进行双向感知测量(Sensing Measurement),强制AP先发送NDPA+NDP。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由AP发送NDPA。也即,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,总是由AP发送NDPA。
在一些实施例中,该NDPA对应的测量实例在感知建立阶段设置为:AP发送NDPA,且Non-AP STA等待AP发送的NDPA。也即,在感知建立阶段设置强制规则:在感知建立阶段设置了双向感知测量的测量实例中,必须由AP发送NDPA帧,Non-AP STA需要等待AP发送的NDPA帧,无需信令指示。
具体例如,如图7所示,进入感知测量阶段(Sensing Measurement phase)时,Non-AP STA不可以首先发送NDPA帧开启感知测量(Sensing Measurement),而是要等待AP发送NDPA帧来开启感知测量(Sensing Measurement)。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由先获取信道使用权的设备发送NDPA。例如,先获得信道使用权(Contention based access)的设备先发送NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,也可以默认发送NDPA的设备先发送NDP,接收NDPA的设备后发送NDP。
具体例如,如图8所示,如果AP先获得信道使用权,那么由AP发送NDPA,且AP先发送NDP进行感知测量(Sensing Measurement),然后Non-AP STA发送NDP进行感知测量(Sensing Measurement)。
具体又例如,如图9所示,如果Non-AP STA先获得信道使用权,那么由Non-AP STA发送NDPA,且Non-AP STA先发送NDP进行感知测量(Sensing Measurement),然后AP发送NDP进行感知测量(Sensing Measurement)。
需要说明的是,在上述图8和图9中,默认发送NDPA帧的设备在短帧间间隔(Short Interframe Space,SIFS)时间之后直接发送NDP进行感知测量,然后另一个设备在SIFS时间之后再发NDP进行反向的感知测量。但NDP的发送顺序可以不限定为发送NDPA帧的设备先发送NDP,还可以通过NDPA帧中的NDP顺序字段来指示后面两个NDP帧的发送顺序。
例如,在上述图8和图9中,该第一信息可以指示:双向发送NDP,且发送NDPA的设备先发送NDP,接收NDPA的设备后发送NDP。
具体例如,如图10所示,如果AP先获得信道使用权,那么由AP发送NDPA,该第一信息可以指示:双向发送NDP,且接收NDPA的设备先发送NDP,发送NDPA的设备后发送NDP,也即,Non-AP STA先发送NDP进行感知测量(Sensing Measurement),然后AP发送NDP进行感知测量(Sensing Measurement)。
具体又例如,如图11所示,如果Non-AP STA先获得信道使用权,那么由Non-AP STA发送NDPA,该第一信息可以指示:双向发送NDP,且接收NDPA的设备先发送NDP,发送NDPA的设备后发送NDP,也即,且AP先发送NDP进行感知测量(Sensing Measurement),然后Non-AP STA发送NDP进行感知测量(Sensing Measurement)。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,该NDPA对应的测量实例在感知建立阶段配置有第二信息,其中,该第二信息用于指示由AP发送NDPA,或者,该第二信息用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,该第二信息为第一帧中的NDPA发送者(NDPA Sender)字段,其中,该第一帧为感知建立请求帧(Sensing Setup Request frame)或感知建立响应帧(Sensing Setup Response frame)。
在一些实施例中,该第一帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括该NDPA发送者(NDPA Sender)字段。
具体例如,当NDPA发送者=0,先获得信道使用权的设备(无论AP还是STA)先发送NDPA;当NDPA发送者=1,则采用由AP发送NDPA帧,Non-AP STA需要等待AP发送的NDPA帧。或者,当NDPA发送者=1,先获得信道使用权的设备(无论AP还是STA)先发送NDPA;当NDPA发送者=0,则采用由AP发送NDPA帧,Non-AP STA需要等待AP发送的NDPA帧。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,AP在感知建立阶段设置为允许作为感知发送设备(Sensing Transmitter)和感知接收设备(Sensing Receiver),Non-AP STA在感知建立阶段设置为允许作为感知发送设备(Sensing Transmitter)和感知接收设备(Sensing Receiver)。也即,如果某个测量实例在感知建立阶段的设置为:AP既可以是感知发送设备(Sensing Transmitter)又可以是感知接收设备(Sensing Receiver),那么同样Non-AP STA也既可以是感知发送设备(Sensing Transmitter)又可以是感知接收设备(Sensing Receiver)。
在一些实施例中,该第一设备根据该第一信息向该第二设备发送NDP,和/或,该第一设备根据该第一信息接收该第二设备发送的NDP。
在一些实施例中,在感知上报阶段,只进行了单向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)是感知发送设备(Sensing Transmitter),感知接收设备(Sensing Receiver)需要发送感知测量报告(Sensing Report)给感知发送设备(Sensing Transmitter)。
在一些实施例中,在感知上报阶段,只进行了单向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)是感知接收设备(Sensing Receiver),感知接收设备(Sensing Receiver)不需要发送感知测量报告(Sensing Report)。
在一些实施例中,在感知上报阶段,只进行了单向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)未参与感知测量(Sensing Measurement),感知接收设备(Sensing Receiver)是Non-AP STA,那么Non-AP STA需要发送感知测量报告(Sensing Report)给AP,AP再将感知测量报告(Sensing Report)发给感知发起设备(Sensing Initiator)。
在一些实施例中,在感知上报阶段,只进行了单向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)未参与感知测量(Sensing Measurement),感知接收设备(Sensing Receiver)是AP,那么AP直接将感知测量报告(Sensing Report)发给感知发起设备(Sensing Initiator)。
在一些实施例中,在感知上报阶段,进行了双向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)是AP且参与了感知测量(Sensing Measurement),那么Non-AP STA需要发送感知测量报告(Sensing Report)给AP。
在一些实施例中,在感知上报阶段,进行了双向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)是Non-AP STA且参与了感知测量(Sensing Measurement),那么AP需要发送感知测量报告(Sensing Report)给STA。
在一些实施例中,在感知上报阶段,进行了双向感知测量(Sensing Measurement),感知发起设备(Sensing Initiator)未参与感知测量(Sensing Measurement),那么Non-AP STA需要发送感知测量报告(Sensing Report)给AP,AP再将感知测量报告(Sensing Report)发给感知发起设备(Sensing Initiator)。
在一些实施例中,感知测量结果要发给发送感知建立请求(Sensing Setup Request)的设备:
如果Sensing Initiator参与Sensing Measurement,那么Sensing Initiator发送Sensing Setup Request,感知测量结果会反馈给Sensing Initiator;
如果Sensing Initiator不参与Sensing Measurement,那么由AP代理发送Sensing Setup Request,感知测量结果会发送给AP然后由反馈给Sensing Initiator。
在一些实施例中,在感知发起设备未参与感知测量的情况下,该感知发起设备通过AP获取感知测量结果。例如,该感知发起设备(Sensing Initiator)为Non-AP STA,且该感知发起设备触发建立了AP与至少一个Non-AP STA之间的感知会话。
在一些实施例中,在感知发起设备未参与感知测量的情况下,在该第一设备为AP,且该第二设备为Non-AP STA的情况下,该第一设备接收该第二设备发送的感知测量结果。
在一些实施例中,在感知发起设备未参与感知测量,以及在该第一设备为AP,且该第二设备为Non-AP STA的情况下,该第一设备接收该感知发起设备发送的感知发起请求(Sensing Initiating Request);该第一设备向至少一个Non-AP STA发送感知建立请求,其中,该至少一个Non-AP STA 包括该第二设备;该第一设备接收该至少一个Non-AP STA发送的感知建立响应;该第一设备向该感知发起设备发送感知发起响应(Sensing Initiating Response)。
在一些实施例中,在感知发起设备未参与感知测量的情况下,在该第一设备为Non-AP STA,且该第二设备为AP的情况下,该第一设备向该第二设备发送感知测量结果。
在一些实施例中,在感知发起设备未参与感知测量,以及在该第一设备为Non-AP STA,且该第二设备为AP的情况下,该第一设备接收该第二设备发送的感知建立请求;该第一设备向该第二设备发送感知建立响应。
具体例如,如果感知发起设备(Sensing Initiator)未参与感知测量(Sensing Measurement),那么感知发起设备(Sensing Initiator)是Non-AP STA。如图12和图13所示,首先STA 2需要发送感知测量结果(Sensing Report)给AP,然后AP将感知测量结果(Sensing Report)发送给感知发起设备(STA 1)。
在一些实施例中,在感知发起设备参与了感知测量,且该第一设备为该感知发起设备的情况下,该第一设备接收该第二设备发送的感知测量结果。进一步地,该第一设备不向该第二设备发送感知测量结果。
在一些实施例中,在感知发起设备参与了感知测量,且该第一设备为该感知发起设备的情况下,该第一设备向至少一个Non-AP STA发送感知建立请求,其中,该至少一个Non-AP STA包括该第二设备;以及该第一设备接收该至少一个Non-AP STA发送的感知建立响应。
在一些实施例中,在感知发起设备参与了感知测量,且该第二设备为该感知发起设备的情况下,该第一设备向该第二设备发送感知测量结果。
在一些实施例中,在感知发起设备参与了感知测量,且该第二设备为该感知发起设备的情况下,该第一设备接收该第二设备发送的感知建立请求;以及该第一设备向该第二设备发送感知建立响应。
具体例如,如果感知发起设备(Sensing Initiator)参与了感知测量(Sensing Measurement),如图14所示,如果AP是Sensing Initiator,那么STA需要发送感知测量结果(Sensing Report)给AP,但AP不需要发送感知测量结果(Sensing Report)给STA。
具体例如,如果感知发起设备(Sensing Initiator)参与了感知测量(Sensing Measurement),如图15所示,如果STA是Sensing Initiator,那么AP需要发送感知测量结果(Sensing Report)给STA,但STA不需要发送感知测量结果(Sensing Report)给AP。
在一些实施例中,该感知建立请求通过感知建立请求帧发送,其中,该感知建立请求帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括NDPA发送者字段,该NDPA发送者字段的取值用于指示由AP发送NDPA,或者,该NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
具体例如,如图16所示,定义了感知动作帧(Sensing Action frame):一种新的动作帧(Action frame)或无确认动作帧(Action No Ack),动作类别(Category)为4表示该帧为公共动作帧(Public Action frame),公共动作子类(Public Acton Field)值为46表示该帧为感知动作帧(可以用46~255范围内任意数值来表示该帧为感知动作帧),感知子类(Sensing Subtype)值为2(可以用0~255范围内任意数值)指示为感知建立请求帧(Sensing Setup Request frame)。
如图16所示,在感知建立请求帧中,测量建立标识(Measurement Setup ID)字段:测量建立标识,由AP生成。部分(Partial)时间同步功能(Timing Synchronization Function,TSF)定时器(Timer):建议的第一个突发信号(Burst)的开始时间,全0表示无建议。突发信号周期(Burst Period)字段:建议的两个相邻突发信号(Burst)间的时间间隔,单位为100ms,0值表示无建议。突发信号时长(Burst Duration)字段:建议的一个突发信号(Burst)占用的时间,4表示1ms,5表示2ms,6表示4ms,7表示8ms,8表示16ms,9表示32ms,10表示64ms,11表示128ms,其他值保留。AID/UID字段:感知响应设备(Sensing Responder)的ID,0为关联的AP的AID。立即报告(Immediate Report)字段:该感知响应设备(Sensing Responder)作为感知接收设备(Sensing Receiver)参与测量时,测量结果是否需要立即上报;该感知响应设备(Sensing Responder)作为感知发送设备(Sensing Transmitter)参与测量时为保留字段。NDPA发送者字段:如果某个测量实例(Measurement Instance)中的两个设备都支持感知发送设备(Sensing Transmitter)的角色,那么NDPA发送者字段置为0代表任何一个先获得信道使用权的感知发送设备(Sensing Transmitter)(无论AP或STA)可以在测量阶段(measurement phase)发送NDPA帧开启感知测量;NDPA发送者字段置为1代表只有AP才可以在测量阶段(measurement phase)发送NDPA帧开启感知测量。格式和带宽(Format And Bandwidth)字段:当作为感知发送设备(Sensing Transmitter)参与测量时,该字段存在,表示建议使用的物理层协议数据单元(Physical layer protocol data unit,PPDU)格式和带宽。
在一些实施例中,该感知建立响应通过感知建立响应帧发送,其中,该感知建立响应帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括NDPA发送者字段,该NDPA发送者字段的取值用于指示由AP发送NDPA,或者,该NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
具体例如,如图17所示,定义了感知动作帧(Sensing Action frame):一种新的动作帧(Action frame)或无确认动作帧(Action No Ack),动作类别(Category)为4表示该帧为公共动作帧(Public Action frame),公共动作子类(Public Acton Field)值为46表示该帧为感知动作帧(可以用46~255范围内任意数值来表示该帧为感知动作帧),感知子类(Sensing Subtype)值为3(可以用0~255范围内任意数值)指示为感知建立响应帧(Sensing Setup Request frame)。
如图17所示,在感知建立响应帧中,测量建立命令(Setup Command)字段:0表示接受(Accept);1表示拒绝(Reject)。原因代码(Reason Code)字段:当测量建立命令(Setup Command)值表示接受时,此字段为保留值0。当测量建立命令(Setup Command)字段值表示拒绝时,0表示不支持测量建立请求中指示的角色;1表示不支持测量建立请求中指示的PPDU格式和带宽;3~255保留。NDPA发送者字段:如果某个测量实例(Measurement Instance)中的两个设备都支持感知发送设备(Sensing Transmitter)的角色,那么NDPA发送者字段置为0代表任何一个先获得信道使用权的感知发送设备(Sensing Transmitter)(无论AP或STA)可以在测量阶段(measurement phase)发送NDPA帧开启感知测量;NDPA发送者字段置为1代表只有AP才可以在测量阶段(measurement phase)发送NDPA帧开启感知测量。
在一些实施例中,该感知发起请求(Sensing Initiating Request)通过感知发起请求帧(Sensing Initiating Request frame)发送。具体例如,如图18所示,定义了感知动作帧(Sensing Action frame):一种新的动作帧(Action frame)或无确认动作帧(Action No Ack),动作类别(Category)为4表示该帧为公共动作帧(Public Action frame),公共动作子类(Public Acton Field)值为46表示该帧为感知动作帧(可以用46~255范围内任意数值来表示该帧为感知动作帧),感知子类(Sensing Subtype)值为0(可以用0~255范围内任意数值)指示为感知发起请求帧(Sensing Init Request frame)。
如图18所示,在感知发起请求帧中,感知子类(SENS Subtype)字段:0表示感知发起请求帧(SENS Init Request frame);1表示感知发起响应帧(SENS Init Response frame);2表示感知建立请求帧(SENS Setup Request frame);3表示感知建立响应帧(SENS Setup Response frame);4表示感知反馈请求帧(SENS Feedback Response frame);5表示感知反馈响应帧(SENS Feedback Response frame);6表示感知上报帧(SENS Report frame);7~15保留。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种感知子类型对应的值与其它感知子类型的值不同即可;例如,数值2可以表示感知发起请求帧;数值1可以表示感知发起响应帧;再例如,数值8可以表示感知发起请求帧;数值15可以表示感知发起响应帧等等。
如图18所示,测量建立命令(Setup Command)字段:0表示强制(Demand);1表示建议(Suggest);2~255保留。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种命令对应的值与其它命令的值不同即可;例如,数值2可以表示强制;数值1可以表示建议;再例如,数值8可以表示强制;数值15可以表示建议等等。
如图18所示,基于触发帧(TB/non-TB)字段:指示建议AP建立TB或non-TB类型的测量流程。在一种实施例中,设置为1表示TB类型,设置为0表示non-TB类型。在另一种实施例中,也可以设置为0表示TB类型,设置为1表示non-TB类型。
如图18所示,原始上报数据(Raw Report)字段:指示AP是否转发感知接收设备(Receiver)上报的原始测量结果。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图18所示,上报结果分析(Analysis)字段:指示AP是否对上报的测量结果进行分析处理。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图18所示,上报结果压缩方法(Compress Method)字段:指示AP对上报的测量结果进行压缩的算法,0表示不压缩,1表示CSI矩阵的右奇异矩阵转置(Rotation of V matrix based on the SVD of CSI matrix),2表示缩减的功率时延谱(truncated power delay profile),3表示压缩的波束赋形反馈矩阵(compressed beamforming feedback matrix)。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种算法对应的值与其它算法的值不同即可。
如图18所示,分析信息(Analysis Info)字段:指示AP对上报的测量结果进行分析所需的参数。若上报结果分析(Analysis)字段指示为否,则本字段不存在。
如图18所示,应用类型(Use Case KPI):指示感知用途类型,0表示人物存在检测,1表示人物数量检测,2表示人物位置检测,3表示姿态检测,4表示生命体征检测,5表示睡眠检测,6~255保留。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种类型对应的值与其它类型的值不同即可。
如图18所示,距离精度(Range Accuracy)字段:指示测量结果经过计算后的距离数据的精度。速度精度(Velocity Accuracy)字段:指示测量结果经过计算后的速度数据的精度。角度精度(Angular Accuracy)字段:指示测量结果经过计算后的角度数据的精度。
如图18所示,响应设备数量(Number of Responders):指示帧中包含的感知响应设备信息(Responder Info)字段的个数。响应设备信息(Responder Info)字段:指示感知响应设备信息。响应设备身份标识(AID/UID):指示感知响应设备(Responder)的ID,对于关联的STA为关联标识(AID,Associated ID),对于非关联的STA为非关联标识(UID,Unassociated ID,UID为AP所分配,分配空间与AID一致),0为所关联的AP的AID。感知信号接收设备(Receiver):指示该感知响应设备(Responder)是否作为感知信号接收设备(Receiver)参与测量。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图18所示,感知发送设备(Transmitter):指示该感知响应设备(Responder)是否作为感知信号发送设备(Transmitter)参与测量。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图18所示,结果立即上报(Immediate Report):指示该感知响应设备(Responder)作为感知接收设备(Receiver)参与测量时,测量结果是否需要立即上报。在一种实施例中,设置为1表示是,设置为0表示否。
如图18所示,该感知响应设备(Responder)作为感知发送设备(Transmitter)参与测量时本字段为保留字段。测量的阈值信息(Threashold Measurement Info):基于阈值测量的设置信息。
在一些实施例中,该感知发起响应(Sensing Initiating Response)通过感知发起响应帧(Sensing Initiating Response frame)发送。如图19所示,定义了感知动作帧(Sensing Action frame):一种新的动作帧(Action frame)或无确认动作帧(Action No Ack),动作类别(Category)为4表示该帧为公共动作帧(Public Action frame),公共动作子类(Public Acton Field)值为46表示该帧为感知动作帧(可以用46~255范围内任意数值来表示该帧为感知动作帧),感知子类(Sensing Subtype)值为1(可以用0~255范围内任意数值)指示为感知发起响应帧(Sensing Init Response frame)。
如图19所示,在感知发起响应帧中,测量建立命令(Setup Command)字段:0表示接受(Accept);1表示拒绝(Reject);2~255保留。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种命令对应的值与其它命令的值不同即可。
如图19所示,原因代码(Reason Code)字段:当测量建立命令(Setup Command)值表示接受时,此字段为保留值0。当测量建立命令(Setup Command)值表示拒绝时,0表示不支持作为代理建立感知测量;1~255保留;其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种原因代码对应的值与其它原因代码的值不同即可。
如图19所示,测量建立ID(Measurement Setup ID)字段:指示测量建立标识,可以标识所属测量实例所使用的测量参数,为保证ESS范围内的唯一性,此字段值由AP生成。当测量建立命令(Setup Command)值表示接受时,此字段存在。当测量建立命令(Setup Command)值表示拒绝时,此字段可以不存在或者为保留值0。
如图19所示,基于触发帧(TB/non-TB)字段:确定建立的TB或non-TB类型的测量流程。在一种实施例中,设置为1表示TB类型,设置为0表示non-TB类型。在另一种实施例中,也可以设置为0表示TB类型,设置为1表示non-TB类型。
如图19所示,原始上报数据(Raw Report)字段:确定AP是否转发感知接收设备(Receiver)上报的原始测量结果。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图19所示,上报结果分析(Analysis)字段:确定AP是否对上报的测量结果进行分析处理。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图19所示,上报结果压缩方法(Compress Method)字段:确定AP对上报的测量结果进行压缩的算法,0表示不压缩,1表示CSI矩阵的右奇异矩阵转置(Rotation of V matrix based on the SVD of CSI matrix),2表示缩减的功率时延谱(truncated power delay profile),3表示压缩的波束赋形反馈矩阵(compressed beamforming feedback matrix)。其中,本字段所述数值仅是一个示例性介绍,其也可以设 置为其它值,只要保证每一种算法对应的值与其它算法的值不同即可。
如图19所示,调度信息(Schedule Info)字段:测量的时间调度信息。同步时间点(Partial TSF Timer):确定的第一个测量信号的开始时间,全0为保留值。测量突发周期(Burst Period):确定的两个相邻测量信号间的时间间隔,单位为100毫秒(ms),0值为保留值。测量突发时长(Burst Duration):确定的一个测量信号占用的时间,4表示1ms,5表示2ms,6表示4ms,7表示8ms,8表示16ms,9表示32ms,10表示64ms,11表示128ms,其他值保留。响应设备数量(Number of Responders):指示帧中包含的感知响应设备信息(Responder Info)字段的个数。响应设备信息(Responder Info)字段:指示感知响应设备信息。原因代码(Reason Code)字段:当测量建立命令(Setup Command)值表示接受时,此字段为保留值0。当测量建立命令(Setup Command)值表示拒绝时,0表示不支持所设置的角色;1表示不支持立即上报;2表示不支持所设置的阈值;3~255保留。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种原因代码对应的值与其它原因代码的值不同即可。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,由感知发送设备发送NDPA。
具体的,如果仅支持单向的感知测量,意味着在AP与Non-AP STA之中,其中一个仅支持感知发送设备(Sensing Transmitter),另一个仅支持感知接收设备(Sensing Receiver)。
在一些实施例中,感知发送设备(Sensing Transmitter)获得信道使用权后(Contention based access),可以直接发送NDPA+NDP进行单向的Sensing Measurement。即默认发送NDPA帧的设备在SIFS时间之后直接发送NDP进行单向的感知测量。
具体例如,如图20所示,如果某个测量实例(Measurement Instance)在感知建立(Sensing Setup)阶段的设置为:AP是感知发送设备(Sensing Transmitter),Non-AP STA是感知接收设备(Sensing Receiver),那么AP发送NDPA+NDP进行感知测量(sensing measurement)。
在一些实施例中,感知发送设备(Sensing Transmitter)获得信道使用权后(Contention based access),感知发送设备可以直接发送NDPA,然后,感知发送设备和/或感知接收设备根据第一信息确定是否发送NDP。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第一信息指示发送该NDPA的设备发送NDP,且接收该NDPA的设备不发送NDP的情况下,该第一设备向该第二设备发送NDP。
具体又例如,如图21所示,如果某个测量实例(Measurement Instance)在感知建立(Sensing Setup)阶段的设置为:Non-AP STA是感知发送设备(Sensing Transmitter),AP是感知接收设备(Sensing Receiver),那么Non-AP STA发送NDPA+NDP进行感知测量(sensing measurement)。
具体例如,如图20所示,如果某个测量实例(Measurement Instance)在感知建立(Sensing Setup)阶段的设置为:AP是感知发送设备(Sensing Transmitter),Non-AP STA是感知接收设备(Sensing Receiver),那么AP发送NDPA,以及第一信息指示:单向发送NDP,且发送NDPA的设备发送NDP,接收NDPA的设备不发送NDP,此种情况下,AP发送NDP进行感知测量(sensing measurement)。
具体又例如,如图21所示,如果某个测量实例(Measurement Instance)在感知建立(Sensing Setup)阶段的设置为:Non-AP STA是感知发送设备(Sensing Transmitter),AP是感知接收设备(Sensing Receiver),那么Non-AP STA发送NDPA,以及第一信息指示:单向发送NDP,且发送NDPA的设备发送NDP,接收NDPA的设备不发送NDP,此种情况下,Non-AP STA发送NDP进行感知测量(sensing measurement)。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第一信息指示发送该NDPA的设备不发送NDP,且接收该NDPA的设备发送NDP的情况下,该第一设备接收该第二设备发送的NDP。
具体例如,如图22所示,如果某个测量实例(Measurement Instance)在感知建立(Sensing Setup)阶段的设置为:AP是感知发送设备(Sensing Transmitter),Non-AP STA是感知接收设备(Sensing Receiver),那么AP发送NDPA,以及第一信息指示:单向发送NDP,且发送NDPA的设备不发送NDP,接收NDPA的设备发送NDP,此种情况下,Non-AP STA发送NDP进行感知测量(sensing measurement)。
具体又例如,如图23所示,如果某个测量实例(Measurement Instance)在感知建立(Sensing Setup)阶段的设置为:Non-AP STA是感知发送设备(Sensing Transmitter),AP是感知接收设备(Sensing Receiver),那么Non-AP STA发送NDPA,以及第一信息指示:单向发送NDP,且发送NDPA的设备不发送NDP,接收NDPA的设备发送NDP,此种情况下,AP发送NDP进行感知测量(sensing measurement)。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第一设备为该感知发起设备的情况下,该第一设备接收该第二设备发送的感知测量结果。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第一设备为该感知发起设备的情况下,该第一设备不向该第二设备发送感知测量结果。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第二设备为该感知发起设备的情况下,该第一设备向该第二设备发送感知测量结果。
具体例如,如图24所示,在感知发起设备(Sensing Initiator)参与了感知测量(Sensing Measurement)的情况下,对于单向感知测量,如果感知发送设备(Sensing Transmitter)(AP or STA)是感知发起设备(Sensing Initiator),感知接收设备(Sensing Receiver)不需要发感知报告(Sensing Report)给Sensing Initiator,因为Sensing Initiator可通过NDP直接获得感知结果。感知接收设备(Sensing Receiver)(STA or AP)需要发送感知报告(Sensing Report)给感知发送设备(Sensing Transmitter),感知发送设备(Sensing Transmitter)可通过感知报告(Sensing Report)获得感知结果。
具体例如,如图25所示,在感知发起设备(Sensing Initiator)未参与感知测量(Sensing Measurement)的情况下,对于单向感知测量,感知发起设备(Sensing Initiator)是Non-AP STA(即STA1),如图25所示,感知接收设备(Sensing Receiver)是Non-AP STA(即STA2),那么STA2将感知报告(Sensing Report)发送给AP,AP再将感知报告(Sensing Report)转发给Sensing Initiator(即STA1)。
具体又例如,如图26所示,在感知发起设备(Sensing Initiator)未参与感知测量(Sensing Measurement)的情况下,对于单向感知测量,感知发起设备(Sensing Initiator)是Non-AP STA(即STA1),如图26所示,感知接收设备(Sensing Receiver)是AP,那么AP将感知报告(Sensing Report)直接发送给感知发起设备(Sensing Initiator)(即STA1)。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第一设备为该感知发起设备的情况下,该第一设备向该第二设备发送感知建立请求;该第一设备接收该第二设备发送的感知建立响应。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,以及在该第二设备为该感知发起设备的情况下,该第一设备接收该第二设备发送的感知建立请求;该第一设备向该第二设备发送感知建立响应。
在一些实施例中,如果只有1对设备参与感知测量(Sensing Measurement),在感知建立阶段(Sensing Setup phase),1对设备中的一个是感知发起设备(Sensing Initiator),另一个是感知响应设备(Sensing Responder)。如图27所示,在这种场景下,无论Sensing Initiator和Sensing Responder是AP还是STA,均由Sensing Initiator发送感知建立请求帧(Sensing Setup Request frame)发起感知建立(Sensing Setup),然后Sensing Responder回复感知建立响应(Sensing Setup Response frame)完成感知建立阶段(Sensing Setup phase)。
在一些实施例中,在感知建立阶段(Sensing Setup phase),如果有多对设备参与感知测量(Sensing Measurement),且感知发起设备(Sensing Initiator)能够参与所有的感知测量(Sensing Measurement)或者感知测量实例(Sensing Measurement Instance),那么意味着该感知发起设备(Sensing Initiator)是AP。如图28所示,在这种场景下,AP(Sensing Initiator)可以与各个STA(Sensing Responder 1~N)分别一对一的进行Sensing Setup,以符合成对(Pairwise)的感知(sensing)规则。
在一些实施例中,在感知建立阶段(Sensing Setup phase),如果有多对设备参与感知测量(Sensing Measurement),且感知发起设备(Sensing Initiator)不参与或参与部分感知测量(Sensing Measurement)或者感知测量实例(Sensing Measurement Instance),那么意味着该感知发起设备(Sensing Initiator)是Non-AP STA(即STA1)。如图29所示,在这种场景下,STA1可以发送感知发起请求帧(Sensing Initialing Request frame)给AP(即感知响应设备1),让AP去跟各个参与感知测量(Sensing Measurement)的感知响应设备(Sensing Responder)(2~N或者也可以包括Sensing Initiator)进行一对一的感知建立(Sensing Setup),最后AP将Sensing Setup的结果通过感知发起响应帧(Sensing Initiating Response frame)反馈给Sensing Initiator。
在一些实施例中,感知测量结果通过感知报告帧(Sensing Report frame)发送。具体的,如图30所示,定义了感知动作帧(Sensing Action frame):一种新的动作帧(Action frame)或无确认动作帧(Action No Ack),动作类别(Category)为4表示该帧为公共动作帧(Public Action frame),公共动作子类(Public Acton Field)值为46表示该帧为感知动作帧(可以用46~255范围内任意数值来表示该帧为感知动作帧),感知子类(Sensing Subtype)值为6(可以用0~255范围内任意数值)指示为感知上报帧(Sensing Report frame)。
如图30所示,报告数量(Number of Reports)字段:该帧中包含的测量结果数量,0表示1个测量结果,255表示256个测量结果。
如图30所示,原始上报数据(Raw Report)字段:指示该帧中是否包含感知接收设备(Receiver)上报的原始测量结果。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图30所示,上报结果分析(Analysis)字段:指示该帧中是否包含对上报的原始测量结果的分析处理。在一种实施例中,设置为1表示是,否则设置为0。在另一种实施例中,也可以设置为0表示是,否则设置为1。
如图30所示,上报结果压缩方法(Compress Method)字段:指示该帧中对上报的原始测量结果进行压缩的算法,0表示不压缩,1表示CSI矩阵的右奇异矩阵转置(Rotation of V matrix based on the SVD of CSI matrix),2表示缩减的功率时延谱(truncated power delay profile),3表示压缩的波束赋形反馈矩阵(compressed beamforming feedback matrix)。其中,本字段所述数值仅是一个示例性介绍,其也可以设置为其它值,只要保证每一种算法对应的值与其它算法的值不同即可。
如图30所示,分析结果(Analysis Result)字段:指示AP对上报的原始测量结果的分析处理后的结果,例如检测到人的存在,检测到人的数量,检测到人的呼吸次数,等等。上报结果分析(Analysis)字段指示为包含对上报的原始测量结果的分析处理时,此字段存在,否则不存在。测量结果数据(Number of Reports)字段:该帧中包含的测量结果数量;0表示1个测量结果,1表示2个测量结果,依次类推,255表示256个测量结果。控制测量结果(Measurement Report)字段:测量结果数据。控制域(Report Control)字段:控制测量结果(Measurement Report)字段中包含的各子字段的存在性。感知信号发送设备标识(TX ID)字段:该测量结果对应的感知信号发送设备标识(Transmitter)的AID/UID感知信号接收设备标识(RX ID)字段:该测量结果对应的感知信号接收设备标(Receiver)的AID/UID测量实例标识(Measurement Instance ID):该测量结果对应的测量实例标识。测量时间戳(Timestamp):该测量实例的发生时间。结果数据(Report):测量结果数据,例如CSI数据。
本申请实施例中,当有多个设备参与感知测量时,根据感知发起设备(Sensing Initiator)是否参与后续的感知测量(Sensing Measurement),设计了感知发起设备(Sensing Initiator)直接与至少一个感知响应设备(Sensing Responder)进行成对(Pairwise)的感知建立(Sensing Setup)的机制和感知发起设备(Sensing Initiator)请求AP代理与各个感知响应设备(Sensing Responder)进行成对(Pairwise)的感知建立(Sensing Setup)的机制。在符合成对(Pairwise)的感知规则的前提下,提升了感知建立(Sensing Setup)的效率。
本申请实施例中,当参与感知测量的设备既支持发送(Transmit)又支持接收(Receive)时,设计了双向的感知测量(Sensing Measurement)机制,同时设计的NDPA帧还可以指示某个感知测量实例(Sensing Measurement Instance)执行单向Sensing Measurement还是双向Sensing Measurement。此外,NDPA帧可以指示单向Sensing Measurement时由谁发送NDP,且还可以指示在执行双向Sensing Measurement时NDP的发送顺序。提升了感知测量的灵活度。
因此,本申请实施例中,对于单向发送NDP,可以通过NDPA指示发送NDP的设备,对于双向发送NDP,能够通过NDPA指示发送NDP的顺序,从而,可以实现non-TB感知测量,在符合成对(Pairwise)感知测量的前提下,提升了感知建立的效率和感知测量的灵活性。
上文结合图5至图30,详细描述了本申请的方法实施例,下文结合图31至图32,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图31示出了根据本申请实施例的无线通信的设备300的示意性框图。该无线通信的设备300为第一设备,如图31所示,该无线通信的设备300包括:
通信单元310,用于向第二设备发送NDPA;
其中,该NDPA包括第一信息,该第一信息用于指示以下之一:
单向发送NDP或双向发送NDP;
发送该NDPA的设备先发送NDP或接收该NDPA的设备先发送NDP;
单向发送NDP,且发送该NDPA的设备发送NDP,接收该NDPA的设备不发送NDP;
双向发送NDP,且发送该NDPA的设备先发送NDP,接收该NDPA的设备后发送NDP;
双向发送NDP,且接收该NDPA的设备先发送NDP,发送该NDPA的设备后发送NDP;
单向发送NDP,且发送该NDPA的设备不发送NDP,接收该NDPA的设备发送NDP。
在一些实施例中,该第一信息为承载该NDPA的帧中的NDP顺序字段。
在一些实施例中,承载该NDPA的帧包括通用信息字段和站点信息字段,其中,该通用信息字段包括第一字段和该NDP顺序字段,该第一字段用于指示本次测量为非基于触发的感知测量,该站点 信息字段包括第二字段和第三字段,该第二字段用于指示下行测量的NDP的空时流数量,该第三字段用于指示下行测量的NDP的长训练域LTF符号的重复数量。
在一些实施例中,该NDPA对应的测量实例中执行的感知测量包括以下至少之一:上行感知测量,下行感知测量,双向感知测量。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由接入点AP发送NDPA。
在一些实施例中,该NDPA对应的测量实例在感知建立阶段设置为:
AP发送NDPA,且非接入点站点Non-AP STA等待AP发送的NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由先获取信道使用权的设备发送NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,该NDPA对应的测量实例在感知建立阶段配置有第二信息,其中,该第二信息用于指示由AP发送NDPA,或者,该第二信息用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,该第二信息为第一帧中的NDPA发送者字段,其中,该第一帧为感知建立请求帧或感知建立响应帧。
在一些实施例中,该第一帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括该NDPA发送者字段。
在一些实施例中,AP在感知建立阶段设置为允许作为感知发送设备和感知接收设备,Non-AP STA在感知建立阶段设置为允许作为感知发送设备和感知接收设备。
在一些实施例中,该通信单元310用于根据该第一信息向该第二设备发送NDP,和/或,该通信单元310用于根据该第一信息接收该第二设备发送的NDP。
在一些实施例中,在感知发起设备未参与感知测量的情况下,该感知发起设备通过AP获取感知测量结果。
在一些实施例中,该感知发起设备为Non-AP STA,且该感知发起设备触发建立了AP与至少一个Non-AP STA之间的感知会话。
在一些实施例中,在该第一设备为AP,且该第二设备为Non-AP STA的情况下,该通信单元310用于接收该第二设备发送的感知测量结果。
在一些实施例中,该通信单元310用于接收该感知发起设备发送的感知发起请求;
该通信单元310用于向至少一个Non-AP STA发送感知建立请求,其中,该至少一个Non-AP STA包括该第二设备;
该通信单元310用于接收该至少一个Non-AP STA发送的感知建立响应;
该通信单元310用于向该感知发起设备发送感知发起响应。
在一些实施例中,在该第一设备为Non-AP STA,且该第二设备为AP的情况下,该通信单元310用于向该第二设备发送感知测量结果。
在一些实施例中,该通信单元310用于接收该第二设备发送的感知建立请求;
该通信单元310用于向该第二设备发送感知建立响应。
在一些实施例中,在感知发起设备参与了感知测量,且该第一设备为该感知发起设备的情况下,该通信单元310用于接收该第二设备发送的感知测量结果。
在一些实施例中,该通信单元310用于不向该第二设备发送感知测量结果。
在一些实施例中,该通信单元310用于向至少一个Non-AP STA发送感知建立请求,其中,该至少一个Non-AP STA包括该第二设备;
该通信单元310用于接收该至少一个Non-AP STA发送的感知建立响应。
在一些实施例中,在感知发起设备参与了感知测量,且该第二设备为该感知发起设备的情况下,该通信单元310用于向该第二设备发送感知测量结果。
在一些实施例中,该通信单元310用于接收该第二设备发送的感知建立请求;
该通信单元310用于向该第二设备发送感知建立响应。
在一些实施例中,该感知建立请求通过感知建立请求帧发送,其中,该感知建立请求帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括NDPA发送者字段,该NDPA发送者字段的取值用于指示由AP发送NDPA,或者,该NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,该感知建立响应通过感知建立响应帧发送,其中,该感知建立响应帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括NDPA发送者字段,该NDPA 发送者字段的取值用于指示由AP发送NDPA,或者,该NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,由感知发送设备发送NDPA。
在一些实施例中,在该第一信息指示发送该NDPA的设备发送NDP,且接收该NDPA的设备不发送NDP的情况下,该通信单元310用于向该第二设备发送NDP。
在一些实施例中,在该第一设备为该感知发起设备的情况下,该通信单元310用于接收该第二设备发送的感知测量结果。
在一些实施例中,在该第一信息指示发送该NDPA的设备不发送NDP,且接收该NDPA的设备发送NDP的情况下,该通信单元310用于接收该第二设备发送的NDP。
在一些实施例中,在该第一设备为该感知发起设备的情况下,该通信单元310用于不向该第二设备发送感知测量结果。
在一些实施例中,在该第二设备为该感知发起设备的情况下,该通信单元310用于向该第二设备发送感知测量结果。
在一些实施例中,该通信单元310用于向该第二设备发送感知建立请求;
该通信单元310用于接收该第二设备发送的感知建立响应。
在一些实施例中,该通信单元310用于接收该第二设备发送的感知建立请求;
该通信单元310用于向该第二设备发送感知建立响应。
在一些实施例中,该第一设备为感知发送设备,且该第二设备为感知接收设备;或者,
该第一设备为感知接收设备,且该第二设备为感知发送设备。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的该无线通信的设备300可对应于本申请方法实施例中的第一设备,并且该无线通信的设备300中的各个单元的上述和其它操作和/或功能分别为了实现图5至图30所示方法200中第一设备的相应流程,为了简洁,在此不再赘述。
图32示出了根据本申请实施例的无线通信的设备400的示意性框图。该无线通信的设备400为第二设备,如图32所示,该无线通信的设备400包括:
通信单元410,用于接收第一设备发送的NDPA;
其中,该NDPA包括第一信息,该第一信息用于指示以下之一:
单向发送NDP或双向发送NDP;
发送该NDPA的设备先发送NDP或接收该NDPA的设备先发送NDP;
单向发送NDP,且发送该NDPA的设备发送NDP,接收该NDPA的设备不发送NDP;
双向发送NDP,且发送该NDPA的设备先发送NDP,接收该NDPA的设备后发送NDP;
双向发送NDP,且接收该NDPA的设备先发送NDP,发送该NDPA的设备后发送NDP;
单向发送NDP,且发送该NDPA的设备不发送NDP,接收该NDPA的设备发送NDP。
在一些实施例中,该第一信息为承载该NDPA的帧中的NDP顺序字段。
在一些实施例中,承载该NDPA的帧包括通用信息字段和站点信息字段,其中,该通用信息字段包括第一字段和该NDP命令字段,该第一字段用于指示本次测量为非基于触发的感知测量,该站点信息字段包括第二字段和第三字段,该第二字段用于指示下行测量的NDP的空时流数量,该第三字段用于指示下行测量的NDP的长训练域LTF符号的重复数量。
在一些实施例中,该NDPA对应的测量实例中执行的感知测量包括以下至少之一:上行感知测量,下行感知测量,双向感知测量。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由接入点AP发送NDPA。
在一些实施例中,该NDPA对应的测量实例在感知建立阶段设置为:
AP发送NDPA,且非接入点站点Non-AP STA等待AP发送的NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由先获取信道使用权的设备发送NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,该NDPA对应的测量实例在感知建立阶段配置有第二信息,其中,该第二信息用于指示由AP发送NDPA,或者,该第二信息用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,该第二信息为第一帧中的NDPA发送者字段,其中,该第一帧为感知建立请求 帧或感知建立响应帧。
在一些实施例中,该第一帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括该NDPA发送者字段。
在一些实施例中,AP在感知建立阶段设置为允许作为感知发送设备和感知接收设备,Non-AP STA在感知建立阶段设置为允许作为感知发送设备和感知接收设备。
在一些实施例中,该通信单元410还用于根据该第一信息向该第一设备发送NDP,和/或,该通信单元410还用于根据该第一信息接收该第一设备发送的NDP。
在一些实施例中,在感知发起设备未参与感知测量的情况下,该感知发起设备通过AP获取感知测量结果。
在一些实施例中,该感知发起设备为Non-AP STA,且该感知发起设备触发建立了AP与至少一个Non-AP STA之间的感知会话。
在一些实施例中,在该第一设备为AP,且该第二设备为Non-AP STA的情况下,该通信单元410还用于向该第一设备发送感知测量结果。
在一些实施例中,该通信单元410还用于接收该第一设备发送的感知建立请求;
该通信单元410还用于向该第一设备发送感知建立响应。
在一些实施例中,在该第一设备为Non-AP STA,且该第二设备为AP的情况下,该通信单元410还用于接收该第一设备发送的感知测量结果。
18、如权利要求17该的方法,其特征在于,该方法还包括:
该通信单元410还用于接收该感知发起设备发送的感知发起请求;
该通信单元410还用于向至少一个Non-AP STA发送感知建立请求,其中,该至少一个Non-AP STA包括该第一设备;
该通信单元410还用于接收该至少一个Non-AP STA发送的感知建立响应;
该通信单元410还用于向该感知发起设备发送感知发起响应。
在一些实施例中,在感知发起设备参与了感知测量,且该第一设备为该感知发起设备的情况下,该通信单元410还用于向该第一设备发送感知测量结果。
在一些实施例中,该通信单元410还用于不向该第一设备发送感知测量结果。
在一些实施例中,该通信单元410还用于接收该第一设备发送的感知建立请求;
该通信单元410还用于向该第一设备发送感知建立响应。
在一些实施例中,在感知发起设备参与了感知测量,且该第二设备为该感知发起设备的情况下,该通信单元410还用于接收该第一设备发送的感知测量结果。
在一些实施例中,该第二设备不向该第一设备发送感知测量结果。
在一些实施例中,该通信单元410还用于向至少一个Non-AP STA发送感知建立请求,其中,该至少一个Non-AP STA包括该第一设备;
该通信单元410还用于接收该至少一个Non-AP STA发送的感知建立响应。
在一些实施例中,该感知建立请求通过感知建立请求帧发送,其中,该感知建立请求帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括NDPA发送者字段,该NDPA发送者字段的取值用于指示由AP发送NDPA,或者,该NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,该感知建立响应通过感知建立响应帧发送,其中,该感知建立响应帧包括动作域,该动作域包括感知响应设备信息字段,该感知响应设备信息字段包括NDPA发送者字段,该NDPA发送者字段的取值用于指示由AP发送NDPA,或者,该NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
在一些实施例中,在该NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,由感知发送设备发送NDPA。
在一些实施例中,在该第一信息指示发送该NDPA的设备发送NDP,且接收该NDPA的设备不发送NDP的情况下,该通信单元410还用于接收该第一设备发送的NDP。
在一些实施例中,在该第一设备为该感知发起设备的情况下,该通信单元410还用于向该第一设备发送感知测量结果。
在一些实施例中,在该第二设备为该感知发起设备的情况下,该第二设备不向该第一设备发送感知测量结果。
在一些实施例中,在该第一信息指示发送该NDPA的设备不发送NDP,且接收该NDPA的设备发送NDP的情况下,该通信单元410还用于向该第一设备发送NDP。
在一些实施例中,在该第二设备为该感知发起设备的情况下,该通信单元410还用于接收该第一设备发送的感知测量结果。
在一些实施例中,该通信单元410还用于接收该第一设备发送的感知建立请求;
该通信单元410还用于向该第一设备发送感知建立响应。
在一些实施例中,该通信单元410还用于向该第一设备发送感知建立请求;
该通信单元410还用于接收该第一设备发送的感知建立响应。
在一些实施例中,该第一设备为感知发送设备,且该第二设备为感知接收设备;或者,
该第一设备为感知接收设备,且该第二设备为感知发送设备。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的该无线通信的设备400可对应于本申请方法实施例中的第二设备,并且该无线通信的设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5至图30所示方法200中第二设备的相应流程,为了简洁,在此不再赘述。
图33是本申请实施例提供的一种通信设备500示意性结构图。图33所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图33所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图33所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的第一设备,并且该通信设备500可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的第二设备,并且该通信设备500可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图34是本申请实施例的装置的示意性结构图。图34所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图34所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的第一设备,并且该装置可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的第二设备,并且该装置可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图35是本申请实施例提供的一种通信系统700的示意性框图。如图35所示,该通信系统700包括第一设备710和第二设备720。
其中,该第一设备710可以用于实现上述方法中由第一设备实现的相应的功能,该第二设备720可以用于实现上述方法中由第二设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规 的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第一设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的第二设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第一设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的第二设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的第一设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的第二设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (76)

  1. 一种无线通信的方法,其特征在于,包括:
    第一设备向第二设备发送无数据的物理层协议数据单元宣告NDPA;
    其中,所述NDPA包括第一信息,所述第一信息用于指示以下之一:
    单向发送无数据的物理层协议数据单元NDP或双向发送NDP;
    发送所述NDPA的设备先发送NDP或接收所述NDPA的设备先发送NDP;
    单向发送NDP,且发送所述NDPA的设备发送NDP,接收所述NDPA的设备不发送NDP;
    双向发送NDP,且发送所述NDPA的设备先发送NDP,接收所述NDPA的设备后发送NDP;
    双向发送NDP,且接收所述NDPA的设备先发送NDP,发送所述NDPA的设备后发送NDP;
    单向发送NDP,且发送所述NDPA的设备不发送NDP,接收所述NDPA的设备发送NDP。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息为承载所述NDPA的帧中的NDP顺序字段。
  3. 如权利要求2所述的方法,其特征在于,承载所述NDPA的帧包括通用信息字段和站点信息字段,其中,所述通用信息字段包括第一字段和所述NDP顺序字段,所述第一字段用于指示本次测量为非基于触发的感知测量,所述站点信息字段包括第二字段和第三字段,所述第二字段用于指示下行测量的NDP的空时流数量,所述第三字段用于指示下行测量的NDP的长训练域LTF符号的重复数量。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述NDPA对应的测量实例中执行的感知测量包括以下至少之一:上行感知测量,下行感知测量,双向感知测量。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,在所述NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由接入点AP发送NDPA。
  6. 如权利要求5所述的方法,其特征在于,所述NDPA对应的测量实例在感知建立阶段设置为:
    AP发送NDPA,且非接入点站点Non-AP STA等待AP发送的NDPA。
  7. 如权利要求1至4中任一项所述的方法,其特征在于,在所述NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由先获取信道使用权的设备发送NDPA。
  8. 如权利要求1至4中任一项所述的方法,其特征在于,
    在所述NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,所述NDPA对应的测量实例在感知建立阶段配置有第二信息,其中,所述第二信息用于指示由AP发送NDPA,或者,所述第二信息用于指示由先获取信道使用权的设备发送NDPA。
  9. 如权利要求8所述的方法,其特征在于,所述第二信息为第一帧中的NDPA发送者字段,其中,所述第一帧为感知建立请求帧或感知建立响应帧。
  10. 如权利要求9所述的方法,其特征在于,所述第一帧包括动作域,所述动作域包括感知响应设备信息字段,所述感知响应设备信息字段包括所述NDPA发送者字段。
  11. 如权利要求5至10中任一项所述的方法,其特征在于,
    AP在感知建立阶段设置为允许作为感知发送设备和感知接收设备,Non-AP STA在感知建立阶段设置为允许作为感知发送设备和感知接收设备。
  12. 如权利要求5至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据所述第一信息向所述第二设备发送NDP,和/或,所述第一设备根据所述第一信息接收所述第二设备发送的NDP。
  13. 如权利要求5至12中任一项所述的方法,其特征在于,在感知发起设备未参与感知测量的情况下,所述感知发起设备通过AP获取感知测量结果。
  14. 如权利要求13所述的方法,其特征在于,所述感知发起设备为Non-AP STA,且所述感知发起设备触发建立了AP与至少一个Non-AP STA之间的感知会话。
  15. 如权利要求13或14所述的方法,其特征在于,在所述第一设备为AP,且所述第二设备为Non-AP STA的情况下,所述方法还包括:
    所述第一设备接收所述第二设备发送的感知测量结果。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述感知发起设备发送的感知发起请求;
    所述第一设备向至少一个Non-AP STA发送感知建立请求,其中,所述至少一个Non-AP STA包括所述第二设备;
    所述第一设备接收所述至少一个Non-AP STA发送的感知建立响应;
    所述第一设备向所述感知发起设备发送感知发起响应。
  17. 如权利要求13或14所述的方法,其特征在于,在所述第一设备为Non-AP STA,且所述第二设备为AP的情况下,所述方法还包括:
    所述第一设备向所述第二设备发送感知测量结果。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的感知建立请求;
    所述第一设备向所述第二设备发送感知建立响应。
  19. 如权利要求5至12中任一项所述的方法,其特征在于,在感知发起设备参与了感知测量,且所述第一设备为所述感知发起设备的情况下,所述方法还包括:
    所述第一设备接收所述第二设备发送的感知测量结果。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第一设备不向所述第二设备发送感知测量结果。
  21. 如权利要求19或20所述的方法,其特征在于,所述方法还包括:
    所述第一设备向至少一个Non-AP STA发送感知建立请求,其中,所述至少一个Non-AP STA包括所述第二设备;
    所述第一设备接收所述至少一个Non-AP STA发送的感知建立响应。
  22. 如权利要求5至12中任一项所述的方法,其特征在于,在感知发起设备参与了感知测量,且所述第二设备为所述感知发起设备的情况下,所述方法还包括:
    所述第一设备向所述第二设备发送感知测量结果。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的感知建立请求;
    所述第一设备向所述第二设备发送感知建立响应。
  24. 如权利要求16、18、21或23所述的方法,其特征在于,所述感知建立请求通过感知建立请求帧发送,其中,所述感知建立请求帧包括动作域,所述动作域包括感知响应设备信息字段,所述感知响应设备信息字段包括NDPA发送者字段,所述NDPA发送者字段的取值用于指示由AP发送NDPA,或者,所述NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
  25. 如权利要求16、18、21或23所述的方法,其特征在于,所述感知建立响应通过感知建立响应帧发送,其中,所述感知建立响应帧包括动作域,所述动作域包括感知响应设备信息字段,所述感知响应设备信息字段包括NDPA发送者字段,所述NDPA发送者字段的取值用于指示由AP发送NDPA,或者,所述NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
  26. 如权利要求1至4中任一项所述的方法,其特征在于,在所述NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,由感知发送设备发送NDPA。
  27. 如权利要求26所述的方法,其特征在于,在所述第一信息指示发送所述NDPA的设备发送NDP,且接收所述NDPA的设备不发送NDP的情况下,所述方法还包括:
    所述第一设备向所述第二设备发送NDP。
  28. 如权利要求27所述的方法,其特征在于,在所述第一设备为所述感知发起设备的情况下,所述方法还包括:
    所述第一设备接收所述第二设备发送的感知测量结果。
  29. 如权利要求26所述的方法,其特征在于,在所述第一信息指示发送所述NDPA的设备不发送NDP,且接收所述NDPA的设备发送NDP的情况下,所述方法还包括:
    所述第一设备接收所述第二设备发送的NDP。
  30. 如权利要求29所述的方法,其特征在于,在所述第一设备为所述感知发起设备的情况下,所述方法还包括:
    所述第一设备不向所述第二设备发送感知测量结果。
  31. 如权利要求30所述的方法,其特征在于,在所述第二设备为所述感知发起设备的情况下,所述方法还包括:
    所述第一设备向所述第二设备发送感知测量结果。
  32. 如权利要求28或30所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送感知建立请求;
    所述第一设备接收所述第二设备发送的感知建立响应。
  33. 如权利要求31所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的感知建立请求;
    所述第一设备向所述第二设备发送感知建立响应。
  34. 如权利要求1至33中任一项所述的方法,其特征在于,
    所述第一设备为感知发送设备,且所述第二设备为感知接收设备;或者,
    所述第一设备为感知接收设备,且所述第二设备为感知发送设备。
  35. 一种无线通信的方法,其特征在于,包括:
    第二设备接收第一设备发送的无数据的物理层协议数据单元宣告NDPA;
    其中,所述NDPA包括第一信息,所述第一信息用于指示以下之一:
    单向发送无数据的物理层协议数据单元NDP或双向发送NDP;
    发送所述NDPA的设备先发送NDP或接收所述NDPA的设备先发送NDP;
    单向发送NDP,且发送所述NDPA的设备发送NDP,接收所述NDPA的设备不发送NDP;
    双向发送NDP,且发送所述NDPA的设备先发送NDP,接收所述NDPA的设备后发送NDP;
    双向发送NDP,且接收所述NDPA的设备先发送NDP,发送所述NDPA的设备后发送NDP;
    单向发送NDP,且发送所述NDPA的设备不发送NDP,接收所述NDPA的设备发送NDP。
  36. 如权利要求35所述的方法,其特征在于,所述第一信息为承载所述NDPA的帧中的NDP顺序字段。
  37. 如权利要求36所述的方法,其特征在于,承载所述NDPA的帧包括通用信息字段和站点信息字段,其中,所述通用信息字段包括第一字段和所述NDP命令字段,所述第一字段用于指示本次测量为非基于触发的感知测量,所述站点信息字段包括第二字段和第三字段,所述第二字段用于指示下行测量的NDP的空时流数量,所述第三字段用于指示下行测量的NDP的长训练域LTF符号的重复数量。
  38. 如权利要求35至37中任一项所述的方法,其特征在于,所述NDPA对应的测量实例中执行的感知测量包括以下至少之一:上行感知测量,下行感知测量,双向感知测量。
  39. 如权利要求35至38中任一项所述的方法,其特征在于,在所述NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由接入点AP发送NDPA。
  40. 如权利要求39所述的方法,其特征在于,所述NDPA对应的测量实例在感知建立阶段设置为:
    AP发送NDPA,且非接入点站点Non-AP STA等待AP发送的NDPA。
  41. 如权利要求35至38中任一项所述的方法,其特征在于,在所述NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,由先获取信道使用权的设备发送NDPA。
  42. 如权利要求35至38中任一项所述的方法,其特征在于,
    在所述NDPA对应的测量实例在感知建立阶段设置为支持双向感知测量的情况下,所述NDPA对应的测量实例在感知建立阶段配置有第二信息,其中,所述第二信息用于指示由AP发送NDPA,或者,所述第二信息用于指示由先获取信道使用权的设备发送NDPA。
  43. 如权利要求42所述的方法,其特征在于,所述第二信息为第一帧中的NDPA发送者字段,其中,所述第一帧为感知建立请求帧或感知建立响应帧。
  44. 如权利要求43所述的方法,其特征在于,所述第一帧包括动作域,所述动作域包括感知响应设备信息字段,所述感知响应设备信息字段包括所述NDPA发送者字段。
  45. 如权利要求39至44中任一项所述的方法,其特征在于,
    AP在感知建立阶段设置为允许作为感知发送设备和感知接收设备,Non-AP STA在感知建立阶段设置为允许作为感知发送设备和感知接收设备。
  46. 如权利要求39至45中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备根据所述第一信息向所述第一设备发送NDP,和/或,所述第二设备根据所述第一信息接收所述第一设备发送的NDP。
  47. 如权利要求39至46中任一项所述的方法,其特征在于,在感知发起设备未参与感知测量的情况下,所述感知发起设备通过AP获取感知测量结果。
  48. 如权利要求47所述的方法,其特征在于,所述感知发起设备为Non-AP STA,且所述感知发起设备触发建立了AP与至少一个Non-AP STA之间的感知会话。
  49. 如权利要求47或48所述的方法,其特征在于,在所述第一设备为AP,且所述第二设备为Non-AP STA的情况下,所述方法还包括:
    所述第二设备向所述第一设备发送感知测量结果。
  50. 如权利要求49所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的感知建立请求;
    所述第二设备向所述第一设备发送感知建立响应。
  51. 如权利要求47或48所述的方法,其特征在于,在所述第一设备为Non-AP STA,且所述第二设备为AP的情况下,所述方法还包括:
    所述第二设备接收所述第一设备发送的感知测量结果。
  52. 如权利要求51所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述感知发起设备发送的感知发起请求;
    所述第二设备向至少一个Non-AP STA发送感知建立请求,其中,所述至少一个Non-AP STA包括所述第一设备;
    所述第二设备接收所述至少一个Non-AP STA发送的感知建立响应;
    所述第二设备向所述感知发起设备发送感知发起响应。
  53. 如权利要求39至46中任一项所述的方法,其特征在于,在感知发起设备参与了感知测量,且所述第一设备为所述感知发起设备的情况下,所述方法还包括:
    所述第二设备向所述第一设备发送感知测量结果。
  54. 如权利要求53所述的方法,其特征在于,所述方法还包括:
    所述第二设备不向所述第一设备发送感知测量结果。
  55. 如权利要求53或54所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的感知建立请求;
    所述第二设备向所述第一设备发送感知建立响应。
  56. 如权利要求39至46中任一项所述的方法,其特征在于,在感知发起设备参与了感知测量,且所述第二设备为所述感知发起设备的情况下,所述方法还包括:
    所述第二设备接收所述第一设备发送的感知测量结果。
  57. 如权利要求56所述的方法,其特征在于,所述方法还包括:
    所述第二设备不向所述第一设备发送感知测量结果。
  58. 如权利要求56或57所述的方法,其特征在于,所述方法还包括:
    所述第二设备向至少一个Non-AP STA发送感知建立请求,其中,所述至少一个Non-AP STA包括所述第一设备;
    所述第二设备接收所述至少一个Non-AP STA发送的感知建立响应。
  59. 如权利要求50、52、55或58所述的方法,其特征在于,所述感知建立请求通过感知建立请求帧发送,其中,所述感知建立请求帧包括动作域,所述动作域包括感知响应设备信息字段,所述感知响应设备信息字段包括NDPA发送者字段,所述NDPA发送者字段的取值用于指示由AP发送NDPA,或者,所述NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
  60. 如权利要求50、52、55或58所述的方法,其特征在于,所述感知建立响应通过感知建立响应帧发送,其中,所述感知建立响应帧包括动作域,所述动作域包括感知响应设备信息字段,所述感知响应设备信息字段包括NDPA发送者字段,所述NDPA发送者字段的取值用于指示由AP发送NDPA,或者,所述NDPA发送者字段的取值用于指示由先获取信道使用权的设备发送NDPA。
  61. 如权利要求35至38中任一项所述的方法,其特征在于,在所述NDPA对应的测量实例在感知建立阶段设置为支持单向感知测量的情况下,由感知发送设备发送NDPA。
  62. 如权利要求61所述的方法,其特征在于,在所述第一信息指示发送所述NDPA的设备发送NDP,且接收所述NDPA的设备不发送NDP的情况下,所述方法还包括:
    所述第二设备接收所述第一设备发送的NDP。
  63. 如权利要求62所述的方法,其特征在于,在所述第一设备为所述感知发起设备的情况下,所述方法还包括:
    所述第二设备向所述第一设备发送感知测量结果。
  64. 如权利要求62所述的方法,其特征在于,在所述第二设备为所述感知发起设备的情况下,所述方法还包括:
    所述第二设备不向所述第一设备发送感知测量结果。
  65. 如权利要求61所述的方法,其特征在于,在所述第一信息指示发送所述NDPA的设备不发送NDP,且接收所述NDPA的设备发送NDP的情况下,所述方法还包括:
    所述第二设备向所述第一设备发送NDP。
  66. 如权利要求65所述的方法,其特征在于,在所述第二设备为所述感知发起设备的情况下,所述方法还包括:
    所述第二设备接收所述第一设备发送的感知测量结果。
  67. 如权利要求63所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的感知建立请求;
    所述第二设备向所述第一设备发送感知建立响应。
  68. 如权利要求64或66所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送感知建立请求;
    所述第二设备接收所述第一设备发送的感知建立响应。
  69. 如权利要求35至68中任一项所述的方法,其特征在于,
    所述第一设备为感知发送设备,且所述第二设备为感知接收设备;或者,
    所述第一设备为感知接收设备,且所述第二设备为感知发送设备。
  70. 一种无线通信的设备,其特征在于,所述无线通信的设备为第一设备,所述无线通信的设备包括:
    通信单元,用于向第二设备发送无数据的物理层协议数据单元宣告NDPA;
    其中,所述NDPA包括第一信息,所述第一信息用于指示以下之一:
    单向发送无数据的物理层协议数据单元NDP或双向发送NDP;
    发送所述NDPA的设备先发送NDP或接收所述NDPA的设备先发送NDP;
    单向发送NDP,且发送所述NDPA的设备发送NDP,接收所述NDPA的设备不发送NDP;
    双向发送NDP,且发送所述NDPA的设备先发送NDP,接收所述NDPA的设备后发送NDP;
    双向发送NDP,且接收所述NDPA的设备先发送NDP,发送所述NDPA的设备后发送NDP;
    单向发送NDP,且发送所述NDPA的设备不发送NDP,接收所述NDPA的设备发送NDP。
  71. 一种无线通信的设备,其特征在于,所述无线通信的设备为第二设备,所述无线通信的设备包括:
    通信单元,用于接收第一设备发送的无数据的物理层协议数据单元宣告NDPA;
    其中,所述NDPA包括第一信息,所述第一信息用于指示以下之一:
    单向发送无数据的物理层协议数据单元NDP或双向发送NDP;
    发送所述NDPA的设备先发送NDP或接收所述NDPA的设备先发送NDP;
    单向发送NDP,且发送所述NDPA的设备发送NDP,接收所述NDPA的设备不发送NDP;
    双向发送NDP,且发送所述NDPA的设备先发送NDP,接收所述NDPA的设备后发送NDP;
    双向发送NDP,且接收所述NDPA的设备先发送NDP,发送所述NDPA的设备后发送NDP;
    单向发送NDP,且发送所述NDPA的设备不发送NDP,接收所述NDPA的设备发送NDP。
  72. 一种无线通信的设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至34中任一项所述的方法,或者,执行如权利要求35至69中任一项所述的方法。
  73. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至34中任一项所述的方法,或者,执行如权利要求35至69中任一项所述的方法。
  74. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法,或者,执行如权利要求35至69中任一项所述的方法。
  75. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至34中任一项所述的方法,或者,执行如权利要求35至69中任一项所述的方法。
  76. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至34中任一项所述的方法,或者,执行如权利要求35至69中任一项所述的方法。
PCT/CN2021/113892 2021-08-20 2021-08-20 无线通信的方法及设备 WO2023019587A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099112.5A CN117480807A (zh) 2021-08-20 2021-08-20 无线通信的方法及设备
PCT/CN2021/113892 WO2023019587A1 (zh) 2021-08-20 2021-08-20 无线通信的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113892 WO2023019587A1 (zh) 2021-08-20 2021-08-20 无线通信的方法及设备

Publications (1)

Publication Number Publication Date
WO2023019587A1 true WO2023019587A1 (zh) 2023-02-23

Family

ID=85239345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113892 WO2023019587A1 (zh) 2021-08-20 2021-08-20 无线通信的方法及设备

Country Status (2)

Country Link
CN (1) CN117480807A (zh)
WO (1) WO2023019587A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102247A2 (en) * 2016-11-28 2018-06-07 Intel IP Corporation Apparatus, system and method of ranging measurement
CN109547072A (zh) * 2017-09-22 2019-03-29 华为技术有限公司 信道探测的方法、通信设备和计算机可读存储介质
US20190373499A1 (en) * 2018-06-18 2019-12-05 Feng Jiang Null data packet frame format
CN110876186A (zh) * 2018-08-29 2020-03-10 苹果公司 针对非基于触发器的测距的功率节省
US20200132857A1 (en) * 2018-10-31 2020-04-30 Marvell World Trade Ltd. Null data packet (ndp) announcement frame for ndp ranging
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102247A2 (en) * 2016-11-28 2018-06-07 Intel IP Corporation Apparatus, system and method of ranging measurement
CN109547072A (zh) * 2017-09-22 2019-03-29 华为技术有限公司 信道探测的方法、通信设备和计算机可读存储介质
US20190373499A1 (en) * 2018-06-18 2019-12-05 Feng Jiang Null data packet frame format
CN110876186A (zh) * 2018-08-29 2020-03-10 苹果公司 针对非基于触发器的测距的功率节省
US20200132857A1 (en) * 2018-10-31 2020-04-30 Marvell World Trade Ltd. Null data packet (ndp) announcement frame for ndp ranging
CN112218328A (zh) * 2019-07-11 2021-01-12 华为技术有限公司 一种感知测量方法及装置

Also Published As

Publication number Publication date
CN117480807A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US20230362990A1 (en) Method and apparatus for performing sensing in wireless lan system
US20230388778A1 (en) Wireless communication method and device
KR20230078708A (ko) 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
WO2023019587A1 (zh) 无线通信的方法及设备
WO2023016441A1 (zh) 通信方法以及装置
WO2023060602A1 (zh) 感知方法和设备
US20240137813A1 (en) Method and device for performing sensing in wireless lan system
WO2023019586A1 (zh) 无线通信的方法和设备
WO2023130388A1 (zh) 无线通信的方法及设备
KR20230020979A (ko) 무선랜 시스템에서 센싱을 위한 그루핑을 수행하는 방법 및 장치
WO2023039798A1 (zh) 无线通信的方法和设备
WO2023092364A1 (zh) 无线通信方法和设备
WO2023272455A1 (zh) 无线通信的方法及设备
WO2023130385A1 (zh) 感知方法、感知代理请求设备和感知代理响应设备
WO2023141996A1 (zh) 通信方法和设备
CN109729572B (zh) 无线唤醒包发送与接收方法与装置
WO2024040612A1 (zh) 无线通信的方法和设备
CN118140519A (zh) 无线通信方法和设备
WO2023284544A1 (zh) 一种感知会话建立方法及通信装置
WO2024050849A1 (zh) 感知测量方法、装置、设备及存储介质
WO2023206861A1 (zh) 感知测量方法、装置、设备及存储介质
KR20200096638A (ko) 무선 웨이크업 패킷을 송신 및 수신하는 방법 및 디바이스
CN116709287B (zh) 一种通信方法和通信装置
US20240007885A1 (en) Method for sending measurement packet and communication apparatus
WO2024060101A1 (zh) 感知测量方法、装置、设备、芯片及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099112.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE