WO2023018071A1 - 배터리 데이터 관리 시스템 및 그것의 동작 방법 - Google Patents

배터리 데이터 관리 시스템 및 그것의 동작 방법 Download PDF

Info

Publication number
WO2023018071A1
WO2023018071A1 PCT/KR2022/011064 KR2022011064W WO2023018071A1 WO 2023018071 A1 WO2023018071 A1 WO 2023018071A1 KR 2022011064 W KR2022011064 W KR 2022011064W WO 2023018071 A1 WO2023018071 A1 WO 2023018071A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
battery
key
terminal
encrypted
Prior art date
Application number
PCT/KR2022/011064
Other languages
English (en)
French (fr)
Inventor
권정현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/254,561 priority Critical patent/US20240012914A1/en
Priority to EP22856070.2A priority patent/EP4228201A4/en
Priority to JP2023519981A priority patent/JP7586401B2/ja
Priority to CN202280007658.8A priority patent/CN116491099A/zh
Publication of WO2023018071A1 publication Critical patent/WO2023018071A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3234Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving additional secure or trusted devices, e.g. TPM, smartcard, USB or software token
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/018Certifying business or products
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/061Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0822Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using key encryption key
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0877Generation of secret information including derivation or calculation of cryptographic keys or passwords using additional device, e.g. trusted platform module [TPM], smartcard, USB or hardware security module [HSM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0894Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage
    • H04L9/0897Escrow, recovery or storing of secret information, e.g. secret key escrow or cryptographic key storage involving additional devices, e.g. trusted platform module [TPM], smartcard or USB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/321Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving a third party or a trusted authority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3226Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a predetermined code, e.g. password, passphrase or PIN
    • H04L9/3228One-time or temporary data, i.e. information which is sent for every authentication or authorization, e.g. one-time-password, one-time-token or one-time-key
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2220/00Business processing using cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/84Vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0442Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply asymmetric encryption, i.e. different keys for encryption and decryption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments disclosed in this document relate to a battery data management system and an operating method thereof.
  • Electric vehicles receive power from the outside to charge the battery, and then drive the motor with the voltage charged in the battery to obtain power.
  • Electric vehicle batteries can generate heat due to chemical reactions that occur during the process of charging and discharging electricity, and this heat can damage the performance and lifespan of the battery.
  • a battery management system monitors battery data including temperature, voltage, and current of the battery and manages the battery.
  • One object of the embodiments disclosed in this document is to provide a battery data management system capable of directly obtaining battery data through a wired/wireless network and creating a battery data communication environment with enhanced security and an operating method thereof. .
  • a terminal transmits battery-related information to an authentication server to obtain a public key and a first message, encrypt the first message with the public key, and Transmitting an encrypted first message to a battery authentication module, wherein the battery authentication module decrypts the encrypted first message using a pre-stored first key to obtain the first message, and obtains the first message based on random number information.
  • the operating method of the battery data management system may further include obtaining, by the terminal, the second key by decrypting the encrypted second key using the public key.
  • the operating method of the battery data management system may further include encrypting the battery data with the second key by the battery authentication module and transmitting the encrypted battery data to the terminal.
  • the battery authentication module obtains the first message by decrypting the encrypted first message using a pre-stored first key, generates a second message based on random number information, and In the step of encrypting the second message with 1 key and transmitting the encrypted second message to the terminal, a message corresponding to the first message is generated, and the first message and the message corresponding to the first message are identical. It is possible to verify the stability of the terminal by determining whether or not.
  • the battery authentication module obtains the first message by decrypting the encrypted first message using a pre-stored first key, generates a second message based on random number information, and In the step of encrypting the second message with 1 key and transmitting the encrypted second message to the terminal, the second message may be generated using OTP information.
  • the step of generating and transmitting, by the authentication server, a third message based on the random number information to the terminal corresponds to the second message based on the random number information when the inferred battery serial number information is suitable.
  • stability of the battery authentication module may be verified by generating a message corresponding to the second message and determining whether the second message and a message corresponding to the second message are identical.
  • the third message in the step of generating and transmitting, by the authentication server, a third message based on the random number information to the terminal, the third message may be generated using OTP information.
  • the battery authentication module obtains the third message by decrypting the encrypted third message using the first key, generates a second key that is a shared session key, and uses the second key
  • the step of encrypting with the first key and transmitting the encrypted second key to the terminal generates a message corresponding to the third message based on the random number information, and generates a message corresponding to the third message and the third message.
  • the third message may be verified by determining whether the messages are identical.
  • the terminal transmits battery-related information to an authentication server to obtain a public key and a first message, encrypts the first message with the public key, and transmits the encrypted first message to a battery authentication module.
  • the terminal may acquire the battery-related information by scanning the battery.
  • the battery-related information may include vehicle information or vehicle identification number of the vehicle in which the battery is mounted.
  • a battery data management system obtains a public key and a first message based on battery-related information, encrypts the first message with the public key, and obtains battery data based on the encrypted first message.
  • a terminal requesting transmission of, obtaining the first message by decrypting the encrypted first message with a pre-stored first key, generating a second message based on random number information, and sending the second message with the first key
  • a battery authentication module that encrypts and transmits the encrypted second message to the terminal to verify stability of the terminal, and generates a third message based on the random number information and transmits the third message to the terminal to verify stability of the battery authentication module It may include an authentication server that
  • the terminal receives the encrypted second message from the battery authentication module, decrypts the second message with the public key to obtain the second message, and obtains the first message and the second message. may be transmitted to the authentication server.
  • the terminal may receive the third message from the authentication server, encrypt the third message with the public key, and transmit the encrypted third message to the battery authentication module.
  • the battery authentication module obtains the third message by decrypting the encrypted third message using the first key, generates a second key that is a shared session key, and uses the second key It is possible to encrypt with the first key and transmit the encrypted second key to the terminal.
  • the terminal obtains the second key by decrypting the encrypted second key using the public key, and the terminal and the battery authentication module encrypt the battery data with the second key and Data communication can be performed by decoding.
  • battery data can be directly obtained through a wired or wireless network, and a battery data communication environment with enhanced security can be created.
  • FIG. 1 is a diagram showing the configuration of a battery pack according to an embodiment disclosed in this document.
  • FIG. 2 is a block diagram showing the configuration of a battery data management system according to an embodiment disclosed in this document.
  • FIG. 3 is a block diagram showing the configuration of a battery authentication module according to an embodiment disclosed in this document.
  • FIG. 4 is a block diagram showing the configuration of a terminal according to an embodiment disclosed in this document.
  • FIG. 5 is a block diagram showing the configuration of an authentication server according to an embodiment disclosed in this document.
  • FIG. 6 is a flowchart illustrating an operating method of a battery data management system according to an embodiment disclosed in this document.
  • FIGS. 7A and 7B are diagrams for generally describing a battery data management system according to an embodiment disclosed in this document.
  • FIG. 1 is a diagram showing a battery pack according to an embodiment disclosed in this document.
  • a battery pack 100 may include a battery module 110, a battery management device 120, a battery authentication module 130, and a relay 140.
  • the battery module 110 may include a first battery cell 111 , a second battery cell 112 , a third battery cell 113 , and a fourth battery cell 114 . Although the number of battery cells is illustrated in FIG. 1 as four, it is not limited thereto, and the battery module 110 may include n (n is a natural number equal to or greater than 2) battery cells.
  • the battery module 110 may supply power to a target device (not shown). To this end, the battery module 110 may be electrically connected to the target device.
  • the target device may include an electrical, electronic, or mechanical device operating by receiving power from the battery pack 100 including the plurality of battery cells 111, 112, 113, and 114, for example , the target device may be an electric vehicle (EV), but is not limited thereto.
  • EV electric vehicle
  • the plurality of battery cells 111, 112, 113, and 114 include a lithium ion (Li-iOn) battery, a lithium ion polymer (Li-iOn polymer) battery, a nickel cadmium (Ni-Cd) battery, a nickel hydrogen (Ni-MH) It may be a battery or the like, but is not limited thereto. Meanwhile, although FIG. 1 shows a case in which one battery module 110 is provided, a plurality of battery modules 110 may be configured according to embodiments.
  • the battery management system (BMS) 120 may manage and/or control the state and/or operation of the battery module 110 .
  • the battery management device 120 may manage and/or control states and/or operations of the plurality of battery cells 111, 112, 113, and 114 included in the battery module 110.
  • the battery management device 120 may manage charging and/or discharging of the battery module 110 .
  • the battery management device 120 may monitor the battery module 110 and/or the voltage, current, temperature, etc. of each of the plurality of battery cells 111, 112, 113, and 114 included in the battery module 110. there is.
  • sensors or various measuring modules may be additionally installed in the battery module 110, a charge/discharge path, or an arbitrary position such as the battery module 110.
  • the battery management device 120 determines a parameter indicating the state of the battery module 110, for example, SOC (State of Charge) or SOH (State of Health), based on measured values such as monitored voltage, current, and temperature. can be calculated
  • the battery management device 120 may control the operation of the relay 140 .
  • the battery management device 120 may short the relay 140 to supply power to the target device.
  • the battery management device 120 may short-circuit the relay 140 when a charging device is connected to the battery pack 100 .
  • the battery management device 120 may calculate the cell balancing time of each of the plurality of battery cells 111 , 112 , 113 , and 114 .
  • the cell balancing time may be defined as a time required for balancing battery cells.
  • the battery management device 120 may calculate a cell balancing time based on a state of charge (SOC), battery capacity, and balancing efficiency of each of the plurality of battery cells 111, 112, 113, and 114.
  • SOC state of charge
  • the battery authentication module 130 may transmit battery data to the external device by verifying stability of an external device requesting battery data.
  • the battery authentication module 130 may be electrically connected to the battery management device 120 or mounted inside the battery management device 120 to obtain battery data from the battery management device 120 .
  • the battery module 110 may include a plurality of battery cells 111 , 112 , 113 , and 114 , the first battery cell 111 will be described as an example.
  • the battery data management system 1000 may include a battery authentication module 130 , a terminal 200 and an authentication server 300 .
  • the battery authentication module 130 may verify the stability of the terminal 200 by receiving and transmitting an encrypted message with the terminal 200 .
  • Conventional data communication applies encryption to ensure confidentiality of important messages. This is because if the message received during data communication is not verified without a separate encryption/decryption process, it can pose a fatal threat to users by allowing manipulated external intrusion messages on the network.
  • the terminal 200 may obtain battery data of the first battery cell 111 by communicating with the battery authentication module 130 .
  • the terminal 200 requests battery data of the first battery cell 111 from the battery authentication module 130 and performs a mutual stability verification process with the battery authentication module 130 to verify the first battery cell 111 ) of the encrypted battery data can be obtained.
  • the terminal 200 may be implemented in the form of a portable terminal or a stationary terminal.
  • the authentication server 300 may support a mutual stability verification process of the terminal 200 and the battery authentication module 130 .
  • the authentication server 300 may verify the stability of the battery authentication module 130 by verifying the message received by the terminal 200 from the battery authentication module 130 .
  • the authentication server 300 may generate a message necessary for the terminal 200 to receive safety certification from the battery authentication module 130 and transmit the message to the terminal 200 .
  • the battery authentication module 130 may include a first information storage unit 131 , a first communication unit 132 and a first processing unit 133 .
  • the first information storage unit 131 may store battery-related information of the first battery cell. Also, the first information storage unit 131 may store authentication information required to generate a message corresponding to the message received from the terminal 200 .
  • the authentication information may include at least one of serial information of the first battery cell 111 , serial information of the battery module 110 , an address of the authentication server 300 , or a random number generating algorithm.
  • the first communication unit 132 may receive an encrypted message from the terminal 200 and transmit the encrypted message to the terminal 200 . Specifically, the first communication unit 132 may transmit an encrypted second message or an encrypted second key to the terminal 200 .
  • the first communication unit 132 may transmit the encrypted battery data to the terminal 200 through a wired or wireless network.
  • the first communication unit 132 may transmit encrypted battery data to the terminal 200 through BlueTooth, Wi-Fi, or ZigBee.
  • the first processor 133 may verify the stability of the terminal 200 by generating a message corresponding to the message received from the terminal 200 .
  • the first processing unit 133 may obtain the first message by decrypting the encrypted first message using a pre-stored first key.
  • the first processing unit 133 can verify the stability of the terminal 200 by generating a message corresponding to the first message and determining whether the first message and the message corresponding to the first message are the same.
  • the first processing unit 133 may generate a second message when the first message and the message corresponding to the first message are the same.
  • the first processor 133 may generate an encrypted second message by encrypting the second message with the first key.
  • the first processing unit 133 may decrypt the encrypted third message using the first key to obtain the third message.
  • the first processor 133 may generate a message corresponding to the third message and verify the third message by determining whether the third message and the message corresponding to the third message are the same.
  • the first processing unit 133 may encrypt battery data obtained from the battery management device 120 and transmit the encrypted battery data to the terminal 200 .
  • the battery data may include, for example, voltage, current, temperature, SOC, and the like of the first battery cell 111 .
  • the first processor 133 may generate a second key that is a shared session key and encrypt battery data with the second key.
  • the terminal 200 may include a battery scan unit 210 , a second communication unit 220 and a second processing unit 230 .
  • the battery scan unit 210 may acquire battery-related information of the first battery cell 111 by scanning the first battery cell 111 . In addition, the battery scan unit 210 may directly receive battery-related information of the first battery cell 111 from a user and store the information.
  • the battery-related information is information including battery-related data, which is disclosed to the outside and can be acquired by the terminal 200 without a separate verification process.
  • the battery-related information may include vehicle information or a VIN of the vehicle in which the battery is installed.
  • the second communication unit 220 may transmit the encrypted first message to the battery authentication module 130 . Also, the second communication unit 220 may transmit the first message and the second message to the authentication server 300 . The second communication unit 220 may transmit the encrypted third message to the battery authentication module 130 .
  • the second processing unit 230 may generate an encrypted message or decrypt an encrypted message. Specifically, the second processing unit 230 may encrypt the first message or the third message using the public key. Also, the second processing unit 230 may obtain the second message by decrypting the second message using the public key.
  • the authentication server 300 may include a third information storage unit 310 , a third communication unit 320 and a third processing unit 330 .
  • the third information storage unit 310 may store battery-related information of the first battery cell.
  • the third information storage unit 310 may store authentication information required to generate a message corresponding to the message received from the terminal 200 .
  • the authentication information may include at least one of serial information of the first battery cell 111 , serial information of the battery module 110 , an address of the authentication server 300 , or a random number generating algorithm.
  • the third communication unit 320 may transmit the public key and the first message to the terminal 200. Also, the third communication unit 320 may transmit a message corresponding to the second message to the terminal 200.
  • the third processor 330 may verify the stability of the battery authentication module 130 by generating a message corresponding to the message generated by the battery authentication module 130 .
  • the third processing unit 330 may generate a message corresponding to the second message.
  • the third processing unit 330 may verify the stability of the battery authentication module 130 by determining whether the second message and the message corresponding to the second message are the same.
  • the third processing unit 330 may generate a third message when the second message and the message corresponding to the second message are the same.
  • battery data can be directly acquired through a wired or wireless network, and a battery data communication environment with enhanced security can be created. .
  • One object of the embodiments disclosed in this document is to directly obtain battery data through a wired/wireless network, and to provide a battery data management system and an operation method thereof.
  • the battery data management system 1000 may detect an external intruder attempting to infiltrate using a manipulated message by performing communication to decrypt an encrypted message.
  • the battery data management system 1000 may transmit battery cell data to the outside in real time so that a battery data manager or a battery producer can immediately determine whether a battery cell is defective.
  • the battery data management system 1000 acquires and transmits battery data without transporting the battery pack 100 as a separate device after manufacturing the battery pack 100 or detaching/attaching the battery pack 100 from the vehicle. management efficiency can be improved.
  • FIG. 6 is a flowchart illustrating an operating method of a battery data management system according to an embodiment disclosed in this document.
  • a terminal 200 transmits battery-related information to an authentication server 300 to obtain a public key and a first message, Encrypting the first message with the public key and transmitting the encrypted first message to the battery authentication module 130 (S101), the battery authentication module 130 sends the encrypted first message using the pre-stored first key Obtaining a first message by decryption, generating a second message based on random number information, encrypting the second message with the first key, and transmitting the encrypted second message to the terminal 200 (S102), the terminal ( 200) decrypts the second message with the public key to obtain the second message, and transmits the first message and the second message to the authentication server 300 (S103), wherein the authentication server 300 is based on random number information Generating and transmitting a third message to the terminal 200 (S104), encrypting the third message with the public key by the terminal 200, and transmitting the encrypted third message to the battery authentication module 130
  • the terminal 200 may obtain battery-related information by scanning the battery. Also, for example, the terminal 200 may directly receive battery-related information from a user and store the battery-related information.
  • step S101 the terminal 200 may transmit the obtained battery-related information to the authentication server 300.
  • the authentication server 300 may transmit the public key and the first message to the terminal 200.
  • step S101 the terminal 200 may encrypt the first message with the public key and transmit the encrypted first message to the battery authentication module 130 .
  • the battery authentication module 130 may obtain a first message by decrypting the encrypted first message using a pre-stored first key.
  • step S102 the battery authentication module 130 may generate a second message.
  • the battery authentication module 130 may encrypt the second message with the first key and transmit the encrypted second message to the terminal 200 .
  • step S103 the terminal 200 may obtain the second message by decrypting the second message with the public key.
  • step S103 the terminal 200 may transmit the first message and the second message to the authentication server 300.
  • step S104 the authentication server 300 may generate a third message and transmit it to the terminal 200.
  • step S105 the terminal 200 may encrypt the third message with the public key received from the authentication server 300 and transmit the encrypted third message to the battery authentication module 130 .
  • the battery authentication module 130 may obtain a third message by decrypting the encrypted third message using the first key.
  • the battery authentication module 130 may generate a second key that is a shared session key.
  • the second key is a shared key that the terminal 200 and the battery authentication module 130 can use for data communication by encrypting and decrypting battery data or messages.
  • step S106 the battery authentication module 130 may encrypt the second key with the first key and transmit the encrypted second key to the terminal 200 .
  • FIGS. 7A and 7B are diagrams for generally describing a battery data management system according to an embodiment disclosed in this document.
  • FIG. 7B may be viewed as showing operations following a series of operations (S201 to S214) of the battery data management system 1000 shown in FIG. 7A.
  • the terminal 200 may obtain battery-related information by scanning the battery.
  • step S202 the terminal 200 may transmit the obtained battery-related information to the authentication server 300.
  • the authentication server 300 may check the battery-related information received from the terminal 200 to determine suitability of the battery-related information.
  • the authentication server 300 may transmit the public key and the first message to the terminal 200.
  • step S205 the terminal 200 may encrypt the first message with the public key.
  • step S206 the terminal 200 may transmit the encrypted first message to the battery authentication module 130.
  • the battery authentication module 130 may obtain the first message by decrypting the encrypted first message using the pre-stored first key.
  • the battery authentication module 130 may generate a message corresponding to the first message. For example, in step S208, the battery authentication module 130 performs at least one of the previously stored serial information of the first battery cell 111, the serial information of the battery module 110, the address of the authentication server 300, or a random number generation algorithm. A message corresponding to the first message may be generated using any one.
  • the battery authentication module 130 may verify the stability of the terminal 200 by determining whether the first message and the message corresponding to the first message are the same.
  • the battery authentication module 130 may generate a second message based on random number information when the first message and the message corresponding to the first message are the same. For example, in step S210, the battery authentication module 130 may generate a second message using OTP information.
  • the battery authentication module 130 may generate an encrypted second message by encrypting the second message with the first key.
  • step S212 the battery authentication module 130 may transmit an encrypted second message to the terminal 200 .
  • the terminal 200 may obtain the second message by decrypting the second message with the public key. For example, in step S213, the terminal 200 may determine suitability of the second message by checking basic information of the second message, such as the number of digits or the data length of the second message.
  • step S214 the terminal 200 may transmit the first message and the second message to the authentication server 300 when the second message is appropriate.
  • the authentication server 300 may infer battery serial number information based on the received first message, and determine whether the inferred battery serial number information is appropriate.
  • the authentication server 300 may generate a message corresponding to the second message based on random number information when the inferred battery serial number information is suitable. For example, in step S216, the authentication server 300 performs at least one of the previously stored serial information of the first battery cell 111, the serial information of the battery module 110, the address of the authentication server 300, or a random number generation algorithm. A message corresponding to the second message can be created using one.
  • the authentication server 300 may verify the stability of the battery authentication module 130 by determining whether the second message and the message corresponding to the second message are the same.
  • the authentication server 300 may generate a third message based on random number information when the two messages and the message corresponding to the second message are the same. For example, in step S218, the authentication server 300 may generate a third message using OTP information.
  • step S219 the authentication server 300 may transmit a message corresponding to the second message to the terminal 200 .
  • step S220 the terminal 200 may encrypt the third message with the public key received from the authentication server 300.
  • step S221 the terminal 200 may transmit an encrypted third message to the battery authentication module 130.
  • the battery authentication module 130 may obtain a third message by decrypting the encrypted third message using the first key.
  • the battery authentication module 130 may generate a message corresponding to the third message based on the random number information.
  • the battery authentication module 130 may verify the third message by determining whether the third message and a message corresponding to the third message are the same.
  • the battery authentication module 130 may generate a second key that is a shared session key when the third message and the message corresponding to the third message are the same.
  • the battery authentication module 130 may generate an encrypted second key by encrypting the second key with the first key.
  • step S227 the battery authentication module 130 may transmit the encrypted second key to the terminal 200.
  • step S228, the terminal 200 may obtain the second key by decrypting the encrypted second key using the public key.
  • the battery authentication module 130 may encrypt battery data with the second key.
  • the battery authentication module 130 may transmit encrypted battery data to the terminal 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Bioethics (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 동작 방법은 단말이 배터리 연관 정보를 인증 서버에 전송하여 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하고, 상기 암호화된 제1 메시지를 배터리 인증 모듈에 전송하는 단계, 상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계, 상기 단말이 상기 공개 키로 상기 제2 메시지를 복호화하여 상기 제2 메시지를 획득하고, 상기 제1 메시지 및 제2 메시지를 상기 인증 서버에 전송하는 단계, 상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계, 상기 단말이 상기 공개 키로 상기 제3 메시지를 암호화하고, 상기 암호화된 제3 메시지를 상기 배터리 인증 모듈에 전송하는 단계 및 상기 배터리 인증 모듈이 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송하는 단계를 포함할 수 있다.

Description

배터리 데이터 관리 시스템 및 그것의 동작 방법
관련출원과의 상호인용
본 문서에 개시된 실시예들은 2021.08.13.에 출원된 한국 특허 출원 제10-2021-0107251호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
기술분야
본 문서에 개시된 실시예들은 배터리 데이터 관리 시스템 및 그것의 동작 방법에 관한 것이다.
전기차는 외부로부터 전기를 공급받아 배터리를 충전한 후, 배터리에 충전된 전압으로 모터를 구동시켜 동력을 얻는다. 전기차의 배터리는 전기를 충전 및 방전하는 과정에서 발생하는 화학적 반응으로 열이 발생할 수 있고, 이러한 열은 배터리 의 성능 및 수명을 손상시킬 수 있다. 따라서 배터리 관리 장치(BMS, Battery Management System)가 배터리의 온도, 전압 및 전류를 포함하는 배터리 데이터를 모니터링 하며 배터리를 관리한다.
그러나, 통상적인 배터리의 데이터는 배터리 팩을 차량으로부터 물리적으로 분리하여 획득한다. 따라서 배터리 데이터를 획득하려면 차량에서 배터리 팩을 탈/부착 해야하는 불편함이 있다. 또한 배터리 데이터를 획득하는 과정에서 기밀성의 보장이 필요한 중요한 데이터에 대해 안전성을 보장할 수 있는 장치가 없어 네트워크 상에서 조작된 외부 침입 메시지를 허용하여 차량 및 운전자에게 치명적인 위협을 줄 수 있는 문제가 있다.
본 문서에 개시되는 실시예들의 일 목적은 배터리의 데이터를 유무선 네트워크를 통해 직접 획득하고, 보안이 강화된 배터리 데이터 통신 환경을 생성할 수 있는 배터리 데이터 관리 시스템 및 그것의 동작 방법을 제공하는 데 있다.
본 문서에 개시된 실시예들의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 동작 방법은 단말이 배터리 연관 정보를 인증 서버에 전송하여 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하고, 상기 암호화된 제1 메시지를 배터리 인증 모듈에 전송하는 단계, 상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계, 상기 단말이 상기 공개 키로 상기 제2 메시지를 복호화하여 상기 제2 메시지를 획득하고, 상기 제1 메시지 및 제2 메시지를 상기 인증 서버에 전송하는 단계, 상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계, 상기 단말이 상기 공개 키로 상기 제3 메시지를 암호화하고, 상기 암호화된 제3 메시지를 상기 배터리 인증 모듈에 전송하는 단계 및 상기 배터리 인증 모듈이 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송하는 단계를 포함할 수 있다.
일 실시예에 따라, 배터리 데이터 관리 시스템의 동작 방법은 상기 단말이 상기 공개 키를 이용하여 상기 암호화된 제2 키를 복호화 하여 상기 제2 키를 획득하는 단계를 더 포함할 수 있다.
일 실시예에 따라, 배터리 데이터 관리 시스템의 동작 방법은 상기 배터리 인증 모듈이 상기 제2 키로 상기 배터리 데이터를 암호화 하고, 상기 암호화된 배터리 데이터를 상기 단말에 전송하는 단계를 더 포함할 수 있다.
일 실시예에 따라, 상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계는 상기 제1 메시지에 대응되는 메시지를 생성하고, 상기 제1 메시지와 상기 제1 메시지에 대응되는 메시지의 동일 여부를 판단하여 상기 단말의 안정성을 검증할 수 있다.
일 실시예에 따라, 상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계는 OTP 정보를 이용하여 상기 제2 메시지를 생성할 수 있다.
일 실시예에 따라, 상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계는 상기 제1 메시지에 기초하여 상기 배터리의 연번 정보를 유추하고, 상기 유추된 배터리 연번 정보가 적합한지 판단할 수 있다.
일 실시예에 따라, 상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계는 상기 유추된 배터리 연번 정보가 적합한 경우 상기 난수 정보에 기초하는 상기 제2 메시지에 대응되는 메시지를 생성하고, 상기 제2 메시지와 상기 제2 메시지에 대응되는 메시지의 동일 여부를 판단하여 상기 배터리 인증 모듈의 안정성을 검증할 수 있다.
일 실시예에 따라, 상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계는 OTP 정보를 이용하여 상기 제3 메시지를 생성할 수 있다.
일 실시예에 따라, 상기 배터리 인증 모듈이 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송하는 단계는 상기 난수 정보에 기초하는 상기 제3 메시지에 대응되는 메시지를 생성하고, 상기 제3 메시지와 상기 제3 메시지에 대응되는 메시지의 동일 여부를 판단하여 상기 제3 메시지를 검증할 수 있다.
일 실시예에 따라, 상기 단말이 배터리 연관 정보를 인증 서버에 전송하여 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하고, 상기 암호화된 제1 메시지를 배터리 인증 모듈에 전송하는 단계는 상기 단말이 상기 배터리를 스캔하여 상기 배터리 연관 정보를 획득할 수 있다.
일 실시예에 따라, 상기 배터리 연관 정보는 상기 배터리가 탑재된 차량의 정보 또는 상기 차량의 차대 번호를 포함할 수 있다.
본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템은 배터리 연관 정보를 기초로 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하여 상기 암호화된 제1 메시지 기초로 배터리 데이터의 전송을 요청하는 단말, 상기 암호화된 제1 메시지를 기 저장된 제1 키로 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하여 상기 단말의 안정성을 검증하는 배터리 인증 모듈 및 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하여 상기 배터리 인증 모듈의 안정성을 검증하는 인증 서버를 포함할 수 있다.
일 실시예에 따라, 상기 단말은 상기 배터리 인증 모듈로부터 상기 암호화된 제2 메시지를 수신하고, 상기 공개 키로 상기 제2 메시지를 복호화하여 상기 제2 메시지를 획득하고, 상기 제1 메시지 및 제2 메시지를 상기 인증 서버에 전송할 수 있다.
일 실시예에 따라, 상기 단말은 상기 인증 서버로부터 상기 제3 메시지를 수신하고, 상기 공개 키로 상기 제3 메시지를 암호화하고, 상기 암호화된 제3 메시지를 상기 배터리 인증 모듈에 전송할 수 있다.
일 실시예에 따라, 상기 배터리 인증 모듈은 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송할 수 있다.
일 실시예에 따라, 상기 단말은 상기 공개 키를 이용하여 상기 암호화된 제2 키를 복호화 하여 상기 제2 키를 획득하고, 상기 단말 및 상기 배터리 인증 모듈은 상기 제2 키로 상기 배터리 데이터를 암호화 및 복호화하여 데이터 통신을 수행할 수 있다.
본 문서에 개시되는 일 실시예에 따른 배터리 데이터 관리 시스템 및 그것의 동작 방법에 따르면 배터리의 데이터를 유무선 네트워크를 통해 직접 획득할 수 있고, 보안이 강화된 배터리 데이터 통신 환경을 생성할 수 있다.
도 1은 본 문서에 개시된 일 실시예에 따른 배터리 팩의 구성을 보여주는 도면이다.
도 2는 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 구성을 보여주는 블록도이다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 인증 모듈의 구성을 보여주는 블록도이다.
도 4는 본 문서에 개시된 일 실시예에 따른 단말의 구성을 보여주는 블록도이다.
도 5는 본 문서에 개시된 일 실시예에 따른 인증 서버의 구성을 보여주는 블록도이다.
도 6은 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 동작 방법을 보여주는 흐름도이다.
도 7a 및 도 7b는 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템에 대해 전반적으로 설명하기 위한 도면이다.
이하, 본 문서에 개시된 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 문서에 개시된 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 문서에 개시된 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 문서에 개시된 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 문서에 개시된 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 문서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 문서에 개시된 일 실시예에 따른 배터리 팩을 보여주는 도면이다.
도 1을 참조하면, 본 문서에 개시된 일 실시예에 따른 배터리 팩(100)은 배터리 모듈(110) 배터리 관리 장치(120), 배터리 인증 모듈(130) 및 릴레이(140)를 포함할 수 있다.
배터리 모듈(110)은 제1 배터리 셀(111), 제2 배터리 셀(112), 제3 배터리 셀(113) 및 제4 배터리 셀(114)을 포함할 수 있다. 도 1에서는 복수의 배터리 셀들이 4개인 것으로 도시되었지만, 이에 한정되는 것은 아니며, 배터리 모듈(110)은 n(n은 2이상의 자연수)개의 배터리 셀들을 포함하여 구성될 수 있다.
배터리 모듈(110)은 대상 장치(미도시)에 전원을 공급할 수 있다. 이를 위해, 배터리 모듈(110)은 대상 장치와 전기적으로 연결될 수 있다. 여기서, 대상 장치는 복수의 배터리 셀들(111, 112, 113, 114)을 포함하는 배터리 팩(100)으로부터 전원을 공급받아 동작하는 전기적, 전자적, 또는 기계적인 장치를 포함할 수 있으며, 예를 들어, 대상 장치는 전기 자동차(EV)일 수 있으나 이에 한정되는 것은 아니다.
복수의 배터리 셀들(111, 112, 113, 114)은 리튬이온(Li-iOn) 전지, 리튬이온 폴리머(Li-iOn polymer) 전지, 니켈 카드뮴(Ni-Cd) 전지, 니켈 수소(Ni-MH) 전지 등일 수 있으며, 이에 한정되지 않는다. 한편, 도 1에서는 배터리 모듈(110)이 한 개인 경우로 도시되나, 실시예에 따라 배터리 모듈(110)은 복수개로 구성될 수도 있다.
배터리 관리 장치 (BMS, Battery Management System)(120)는 배터리 모듈(110)의 상태 및/또는 동작을 관리 및/또는 제어할 수 있다. 예를 들어, 배터리 관리 장치(120)는 배터리 모듈(110)에 포함된 복수의 배터리 셀들(111, 112, 113, 114)의 상태 및/또는 동작을 관리 및/또는 제어할 수 있다. 배터리 관리 장치(120)는 배터리 모듈(110)의 충전 및/또는 방전을 관리할 수 있다.
또한, 배터리 관리 장치(120)는 배터리 모듈(110) 및/또는 배터리 모듈(110)에 포함된 복수의 배터리 셀들(111, 112, 113, 114) 각각의 전압, 전류, 온도 등을 모니터링 할 수 있다. 그리고 배터리 관리 장치(120)에 의한 모니터링을 위해 도시하지 않은 센서나 각종 측정 모듈이 배터리 모듈(110)이나 충방전 경로, 또는 배터리 모듈(110) 등의 임의의 위치에 추가로 설치될 수 있다. 배터리 관리 장치(120)는 모니터링 한 전압, 전류, 온도 등의 측정값에 기초하여 배터리 모듈(110)의 상태를 나타내는 파라미터, 예를 들어 SOC(State of Charge)나 SOH(State of Health) 등을 산출할 수 있다.
배터리 관리 장치(120)는 릴레이(140)의 동작을 제어할 수 있다. 예를 들어, 배터리 관리 장치(120)는 대상 장치에 전원을 공급하기 위해 릴레이(140)를 단락시킬 수 있다. 또한, 배터리 관리 장치(120)는 배터리 팩(100)에 충전 장치가 연결되는 경우 릴레이(140)를 단락시킬 수 있다.
배터리 관리 장치(120)는 복수의 배터리 셀들(111, 112, 113, 114) 각각의 셀 밸런싱 타임을 산출할 수 있다. 여기서, 셀 밸런싱 타임은 배터리 셀의 밸런싱에 소요되는 시간으로 정의될 수 있다. 예를 들어, 배터리 관리 장치(120)는 복수의 배터리 셀들(111, 112, 113, 114) 각각의 SOC(State of Charge), 배터리 용량 및 밸런싱 효율에 기초하여 셀 밸런싱 타임을 산출할 수 있다.
배터리 인증 모듈(130)은 배터리 데이터를 요청하는 외부 장치의 안정성을 검증하여 외부 장치에 배터리 데이터를 전송할 수 있다. 실시예에 따라, 배터리 인증 모듈(130)은 배터리 관리 장치(120)와 전기적으로 연결되거나 배터리 관리 장치(120) 내부에 탑재되어 배터리 관리 장치(120)로부터 배터리 데이터를 획득할 수 있다.
이하에서는 도 2를 참조하여 상술한 배터리 인증 모듈(130)을 포함하는 배터리 데이터 관리 시스템(1000)의 구성에 대해 구체적으로 설명한다. 또한, 이하에서 배터리 모듈(110)은 복수의 배터리 셀들(111, 112, 113, 114)을 포함할 수 있으나 제1 배터리 셀(111)을 예로 들어 설명한다.
도 2는 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 구성을 보여주는 블록도이다. 도 2를 참조하면, 배터리 데이터 관리 시스템(1000)은 배터리 인증 모듈(130), 단말(200) 및 인증 서버(300)를 포함할 수 있다.
배터리 인증 모듈(130)은 단말(200)과 암호화된 메시지를 수신 및 송신하여 단말(200)의 안정성을 검증할 수 있다. 통상적인 데이터 통신은 중요 메시지에 대해 기밀성을 보장하기 위해 암호화를 적용하고 있다. 데이터 통신 과정에서 수신되는 메시지를 별도의 암복호화 과정 없이 검증하지 않는 경우, 네트워크 상에서 조작된 외부 침입 메시지를 허용하여 사용자에게 치명적인 위협을 줄 수 있기 때문이다.
단말(200)은 배터리 인증 모듈(130)과 통신을 수행하여 제1 배터리 셀(111)의 배터리 데이터를 획득할 수 있다. 예를 들어, 단말(200)은 배터리 인증 모듈(130)에 제1 배터리 셀(111)의 배터리 데이터를 요청하고, 배터리 인증 모듈(130)과 상호 안정성 검증 과정을 수행하여 제1 배터리 셀(111)의 암호화된 배터리 데이터를 획득할 수 있다. 일 실시예에 따라, 단말(200)은 휴대 단말기 또는 거치형 단말기의 형태로 구현될 수 있다.
인증 서버(300)는 단말(200) 및 배터리 인증 모듈(130)의 상호 안정성 검증 과정을 지원할 수 있다. 인증 서버(300)는 단말(200)이 배터리 인증 모듈(130)로부터 수신한 메시지를 검증하여 배터리 인증 모듈(130)의 안정성을 검증할 수 있다. 또한, 인증 서버(300)는 단말(200)이 배터리 인증 모듈(130)로부터 안정성을 증명 받기 위해 필요한 메시지를 생성하여 단말(200)로 전송할 수 있다.
이하에서는 도 3 내지 도 5를 참조하여 배터리 인증 모듈(130), 단말(200) 및 인증 서버(300)의 각각의 구성에 대해 설명한다.
도 3은 본 문서에 개시된 일 실시예에 따른 배터리 인증 모듈(130)의 구성을 보여주는 블록도이다. 도 3을 참조하면, 배터리 인증 모듈(130)은 제1 정보 저장부(131), 제1 통신부(132) 및 제1 처리부(133)를 포함할 수 있다.
제1 정보 저장부(131)는 제1 배터리 셀의 배터리 연관 정보를 저장할 수 있다. 또한 제1 정보 저장부(131)는 단말(200)로부터 수신한 메시지에 대응되는 메시지를 생성하기 위해 필요한 인증 정보를 저장할 수 있다. 예를 들어, 인증 정보는 제1 배터리 셀의(111) 시리얼 정보, 배터리 모듈(110)의 시리얼 정보, 인증 서버(300)의 주소 또는 난수 생성 알고리즘 중 적어도 어느 하나를 포함할 수 있다.
제1 통신부(132)는 암호화된 메시지를 단말(200)로부터 수신할 수 있고, 암호화된 메시지를 단말(200)에 송신할 수 있다. 구체적으로 제1 통신부(132)는 암호화된 제2 메시지 또는 암호화된 제2 키를 단말(200)에 전송할 수 있다.
제1 통신부(132)는 암호화된 배터리 데이터를 유무선 네트워크를 통해 단말(200)로 전송할 수 있다. 예를 들어, 제1 통신부(132)는 암호화된 배터리 데이터를 BlueTooth, Wi-Fi 또는 ZigBee 를 통해 단말(200)로 전송할 수 있다.
제1 처리부(133)는 단말(200)로부터 수신한 메시지에 대응되는 메시지를 생성하여 단말(200)의 안정성을 검증할 수 있다. 구체적으로 제1 처리부(133)는 기 저장된 제1 키를 이용하여 암호화된 제1 메시지를 복호화하여 제1 메시지를 획득할 수 있다. 제1 처리부(133)는 제1 메시지에 대응되는 메시지를 생성하고, 제1 메시지와 제1 메시지에 대응되는 메시지의 동일 여부를 판단하여 단말(200)의 안정성을 검증할 수 있다. 제1 처리부(133)는 제1 메시지와 제1 메시지에 대응되는 메시지가 동일한 경우 제2 메시지를 생성할 수 있다. 제1 처리부(133)는 제1 키로 제2 메시지를 암호화하여 암호화된 제2 메시지를 생성할 수 있다.
또한, 제1 처리부(133)는 제1 키를 이용하여 암호화된 제3 메시지를 복호화하여 제3 메시지를 획득할 수 있다. 제1 처리부(133)는 제3 메시지에 대응되는 메시지를 생성하고, 제3 메시지와 제3 메시지에 대응되는 메시지의 동일 여부를 판단하여 제3 메시지를 검증할 수 있다.
제1 처리부(133)는 배터리 관리 장치(120)로부터 획득한 배터리 데이터를 여 암호화하여 암호화된 배터리 데이터를 단말(200)로 전송할 수 있다. 여기서 배터리 데이터는 예를 들어 제1 배터리 셀(111)의 전압, 전류, 온도 및 배터리 잔량(SOC) 등을 포함할 수 있다. 예를 들어, 제1 처리부(133)는 공유 세션 키인 제2 키를 생성하여 제2 키로 배터리 데이터를 암호화할 수 있다.
도 4는 본 문서에 개시된 일 실시예에 따른 단말(200)의 구성을 보여주는 블록도이다. 도 4를 참조하면, 단말(200)은 배터리 스캔부(210), 제2 통신부(220)및 제2 처리부(230)를 포함할 수 있다.
배터리 스캔부(210)는 제1 배터리 셀(111)을 스캔하여 제1 배터리 셀(111)의 배터리 연관 정보를 획득할 수 있다. 또한 배터리 스캔부(210)는 제1 배터리 셀(111)의 배터리 연관 정보를 사용자로부터 직접 입력 받아 정보를 저장할 수 있다.
여기서 배터리 연관 정보는 배터리와 연관된 데이터를 포함하는 정보로서 외부에 공개되어 단말(200)이 별도의 검증 과정 없이 획득할 수 있는 정보이다. 예를 들어, 배터리 연관 정보는 배터리가 탑재된 차량의 정보 또는 차량의 차대 번호를 포함할 수 있다.
제2 통신부(220)는 암호화된 제1 메시지를 배터리 인증 모듈(130)에 전송할 수 있다. 또한, 제2 통신부(220)는 제1 메시지 및 제2 메시지를 인증 서버(300)에 전송할 수 있다. 제2 통신부(220)는 암호화된 제3 메시지를 배터리 인증 모듈(130)에 전송할 수 있다.
제2 처리부(230)는 암호화된 메시지를 생성하거나 암호화된 메시지를 복호화할 수 있다. 구체적으로 제2 처리부(230)는 공개 키를 이용하여 제1 메시지 또는 제3 메시지를 암호화할 수 있다. 또한, 제2 처리부(230)는 공개 키를 이용하여 제2 메시지를 복호화하여 제2 메시지를 획득할 수 있다.
도 5는 본 문서에 개시된 일 실시예에 따른 인증 서버의 구성을 보여주는 블록도이다. 도 5를 참조하면, 인증 서버(300)는 제3 정보 저장부(310), 제3 통신부(320) 및 제3 처리부(330)를 포함할 수 있다.
제3 정보 저장부(310)는 제1 배터리 셀의 배터리 연관 정보를 저장할 수 있다. 또한 제3 정보 저장부(310)는 단말(200)로부터 수신한 메시지에 대응되는 메시지를 생성하기 위해 필요한 인증 정보를 저장할 수 있다. 예를 들어, 인증 정보는 제1 배터리 셀의(111) 시리얼 정보, 배터리 모듈(110)의 시리얼 정보, 인증 서버(300)의 주소 또는 난수 생성 알고리즘 중 적어도 어느 하나를 포함할 수 있다.
제3 통신부(320)는 공개 키 및 제1 메시지를 단말(200)에 전송할 수 있다.또한, 제3 통신부(320)는 제2 메시지에 대응되는 메시지를 단말(200)에 전송할 수 있다.
제3 처리부(330)는 배터리 인증 모듈(130)이 생성한 메시지에 대응되는 메시지를 생성하여 배터리 인증 모듈(130)의 안정성을 검증할 수 있다. 예를 들어, 제3 처리부(330)는 제2 메시지에 대응되는 메시지를 생성할 수 있다. 제3 처리부(330)는 제2 메시지와 제2 메시지에 대응되는 메시지의 동일 여부를 판단하여 배터리 인증 모듈(130)의 안정성을 검증할 수 있다. 제3 처리부(330)는 2 메시지와 제2 메시지에 대응되는 메시지가 동일한 경우 제3 메시지를 생성할 수 있다.
상술한 바와 같이, 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리시스템(1000)에 따르면 배터리의 데이터를 유무선 네트워크를 통해 직접 획득할 수 있고, 보안이 강화된 배터리 데이터 통신 환경을 생성할 수 있다.
본 문서에 개시되는 실시예들의 일 목적은 배터리의 데이터를 유무선 네트워크를 통해 직접 획득하고, 배터리 데이터 관리 시스템 및 그것의 동작 방법을 제공하는 데 있다.
또한, 배터리 데이터 관리 시스템(1000)은 암호화된 메시지를 복호화하는 통신을 수행하여 조작된 메시지를 이용하여 침투하려는 외부 침임자를 검출할 수 있다.
또한, 배터리 데이터 관리 시스템(1000)은 배터리 데이터 관리자 또는 배터리 생산자가 배터리 셀의 불량 여부를 즉각적으로 판단할 수 있도록 배터리 셀의 데이터를 실시간으로 외부로 전송할 수 있다.
그리고 배터리 데이터 관리 시스템(1000)은 배터리 팩(100) 제작 후 별도의 장비로 배터리 팩(100)을 운반하거나 차량에서 배터리 팩(100)을 탈/부착하지 않고 배터리 데이터를 획득 및 전송하여 배터리 데이터의 관리의 효율을 높일 수 있다.
도 6은 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 동작 방법을 보여주는 흐름도이다.
이하에서는 도 6을 참조하여, 배터리 데이터 관리 시스템의 동작 방법에 대해 구체적으로 설명한다.
도 6을 참조하면, 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템의 동작 방법은 단말(200)이 배터리 연관 정보를 인증 서버(300)에 전송하여 공개 키 및 제1 메시지를 획득하고, 공개 키로 제1 메시지를 암호화하고, 암호화된 제1 메시지를 배터리 인증 모듈(130)에 전송하는 단계(S101), 배터리 인증 모듈(130)이 기 저장된 제1 키를 이용하여 암호화된 제1 메시지를 복호화하여 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 제1 키로 제2 메시지를 암호화하여 암호화된 제2 메시지를 단말(200)로 전송하는 단계(S102), 단말(200)이 공개 키로 제2 메시지를 복호화하여 제2 메시지를 획득하고, 제1 메시지 및 제2 메시지를 인증 서버(300)에 전송하는 단계(S103), 인증 서버(300)가 난수 정보에 기초하는 제3 메시지를 생성하여 단말(200)로 전송하는 단계(S104), 단말(200)이 공개 키로 제3 메시지를 암호화하고, 암호화된 제3 메시지를 배터리 인증 모듈(130)에 전송하는 단계(S105) 및 배터리 인증 모듈(130)이 제1 키를 이용하여 암호화된 제3 메시지를 복호화하여 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 제2 키를 제1 키로 암호화하여 암호화된 제2 키를 단말(200)에 전송하는 단계를 포함할 수 있다.
도 6을 참조하면, S101 단계에서, 단말(200)은 배터리를 스캔하여 배터리 연관 정보를 획득할 수 있다. 또한, 예를 들어 단말(200)은 사용자로부터 배터리 연관 정보를 직접 입력 받아 배터리 연관 정보를 저장할 수 있다.
S101 단계에서, 단말(200)은 획득한 배터리 연관 정보를 인증 서버(300)에 전송할 수 있다. S101 단계에서 인증 서버(300)는 공개 키 및 제1 메시지를 단말(200)에 전송할 수 있다.
S101 단계에서, 단말(200)은 공개 키로 제1 메시지를 암호화하고, 암호화된 제1 메시지를 배터리 인증 모듈(130)에 전송할 수 있다.
S102 단계에서, 배터리 인증 모듈(130)은 기 저장된 제1 키를 이용하여 암호화된 제1 메시지를 복호화하여 제1 메시지를 획득할 수 있다.
S102 단계에서, 배터리 인증 모듈(130)은 제2 메시지를 생성할 수 있다.
S102 단계에서, 배터리 인증 모듈(130)은 제1 키로 제2 메시지를 암호화하여 암호화된 제2 메시지를 단말(200)로 전송할 수 있다.
S103 단계에서, 단말(200)은 공개 키로 제2 메시지를 복호화하여 제2 메시지를 획득할 수 있다. S103 단계에서, 단말(200)은 제1 메시지 및 제2 메시지를 인증 서버(300)에 전송할 수 있다.
S104 단계에서, 인증 서버(300)는 제3 메시지를 생성하여 단말(200)로 전송할 수 있다.
S105 단계에서, 단말(200)은 인증 서버(300)로부터 수신한 공개 키로 제3 메시지를 암호화하고, 암호화된 제3 메시지를 배터리 인증 모듈(130)에 전송할 수 있다.
S106 단계에서, 배터리 인증 모듈(130)은 제1 키를 이용하여 암호화된 제3 메시지를 복호화하여 제3 메시지를 획득할 수 있다.
S106 단계에서, 배터리 인증 모듈(130)은 공유 세션 키인 제2 키를 생성할 수 있다. 여기서 제2 키는 단말(200) 및 배터리 인증 모듈(130)이 배터리 데이터 또는 메시지를 암호화 및 복호화하여 데이터 통신에 사용할 수 있는 공유 키이다.
S106 단계에서, 배터리 인증 모듈(130)은 제2 키를 제1 키로 암호화하여 암호화된 제2 키를 단말(200)에 전송할 수 있다.
도 7a 및 도 7b는 본 문서에 개시된 일 실시예에 따른 배터리 데이터 관리 시스템에 대해 전반적으로 설명하기 위한 도면이다.
이하에서는 도 7a 및 도 7b를 참조하여 배터리 데이터 관리 시스템(1000)의 배터리 모듈(130), 단말(200) 및 인증 서버(300)의 상호 안정성 검증 과정을 구체적으로 설명한다. 도 7b는 도 7a에 도시된 배터리 데이터 관리 시스템(1000)의 일련의 동작(S201~S214)에 이어지는 동작을 도시한것으로 볼 수 있다.
도 7a를 참조하면, S201 단계에서, 단말(200)은 배터리를 스캔하여 배터리 연관 정보를 획득할 수 있다.
S202 단계에서, 단말(200)은 획득한 배터리 연관 정보를 인증 서버(300)에 전송할 수 있다.
S203 단계에서, 인증 서버(300)는 단말(200)로부터 수신한 배터리 연관 정보를 확인하여, 배터리 연관 정보의 적합성을 판단할 수 있다.
S204 단계에서, 인증 서버(300)는 공개 키 및 제1 메시지를 단말(200)에 전송할 수 있다.
S205 단계에서, 단말(200)은 공개 키로 제1 메시지를 암호화할 수 있다.
S206 단계에서, 단말(200)은 암호화된 제1 메시지를 배터리 인증 모듈(130)에 전송할 수 있다.
S207 단계에서, 배터리 인증 모듈(130)은 기 저장된 제1 키를 이용하여 암호화된 제1 메시지를 복호화하여 제1 메시지를 획득할 수 있다.
S208 단계에서, 배터리 인증 모듈(130)은 제1 메시지에 대응되는 메시지를 생성할 수 있다. 예를 들어, S208 단계에서, 배터리 인증 모듈(130)은 기 저장된 제1 배터리 셀의(111) 시리얼 정보, 배터리 모듈(110)의 시리얼 정보, 인증 서버(300)의 주소 또는 난수 생성 알고리즘 중 적어도 어느 하나를 이용하여 제1 메시지에 대응되는 메시지를 생성할 수 있다.
S209 단계에서, 배터리 인증 모듈(130)은 제1 메시지와 제1 메시지에 대응되는 메시지의 동일 여부를 판단하여 단말(200)의 안정성을 검증할 수 있다.
S210 단계에서, 배터리 인증 모듈(130)은 제1 메시지와 제1 메시지에 대응되는 메시지의 동일한 경우 난수 정보에 기초하는 제2 메시지를 생성할 수 있다. 예를 들어, S210 단계에서, 배터리 인증 모듈(130)은 OTP 정보를 이용하여 제2 메시지를 생성할 수 있다.
S211 단계에서, 배터리 인증 모듈(130)은 제1 키로 제2 메시지를 암호화하여 암호화된 제2 메시지를 생성할 수 있다.
S212 단계에서, 배터리 인증 모듈(130)은 암호화된 제2 메시지를 단말(200)로 전송할 수 있다.
S213 단계에서, 단말(200)은 공개 키로 제2 메시지를 복호화하여 제2 메시지를 획득할 수 있다. 예를 들어, S213 단계에서, 단말(200)은 제2 메시지의 자리 수 또는 데이터 길이와 같은 제2 메시지의 기초 정보를 확인하여 제2 메시지의 적합성을 판단할 수 있다.
S214 단계에서, 단말(200)은 제2 메시지가 적합한 경우, 제1 메시지 및 제2 메시지를 인증 서버(300)에 전송할 수 있다.
도 7b를 참조하면, S215 단계에서, 인증 서버(300)는 수신한 제1 메시지에 기초하여 배터리의 연번 정보를 유추하고, 유추된 배터리 연번 정보가 적합한지 판단할 수 있다.
S216 단계에서, 인증 서버(300)는 유추된 배터리 연번 정보가 적합한 경우 난수 정보에 기초하는 제2 메시지에 대응되는 메시지를 생성할 수 있다. 예를 들어, S216 단계에서, 인증 서버(300)는 기 저장된 제1 배터리 셀의(111) 시리얼 정보, 배터리 모듈(110)의 시리얼 정보, 인증 서버(300)의 주소 또는 난수 생성 알고리즘 중 적어도 어느 하나를 이용하여 제2 메시지에 대응되는 메시지를 생성할 수 있다.
S217 단계에서, 인증 서버(300)는 제2 메시지와 제2 메시지에 대응되는 메시지의 동일 여부를 판단하여 배터리 인증 모듈(130)의 안정성을 검증할 수 있다.
S218 단계에서, 인증 서버(300)는 2 메시지와 제2 메시지에 대응되는 메시지가 동일한 경우 난수 정보에 기초하는 제3 메시지를 생성할 수 있다. 예를 들어, S218 단계에서, 인증 서버(300)는 OTP 정보를 이용하여 제3 메시지를 생성할 수 있다.
S219 단계에서, 인증 서버(300)는 제2 메시지에 대응되는 메시지를 단말(200)로 전송할 수 있다.
S220 단계에서, 단말(200)은 인증 서버(300)로부터 수신한 공개 키로 제3 메시지를 암호화할 수 있다.
S221 단계에서, 단말(200)은 암호화된 제3 메시지를 배터리 인증 모듈(130)에 전송할 수 있다.
S222 단계에서, 배터리 인증 모듈(130)은 제1 키를 이용하여 암호화된 제3 메시지를 복호화하여 제3 메시지를 획득할 수 있다.
S223 단계에서, 배터리 인증 모듈(130)은 난수 정보에 기초하는 제3 메시지에 대응되는 메시지를 생성할 수 있다.
S224 단계에서, 배터리 인증 모듈(130)은 제3 메시지와 제3 메시지에 대응되는 메시지의 동일 여부를 판단하여 제3 메시지를 검증할 수 있다.
S225 단계에서, 배터리 인증 모듈(130)은 제3 메시지와 제3 메시지에 대응되는 메시지가 동일한 경우 공유 세션 키인 제2 키를 생성할 수 있다.
S226 단계에서, 배터리 인증 모듈(130)은 제2 키를 제1 키로 암호화하여 암호화된 제2 키를 생성할 수 있다.
S227 단계에서, 배터리 인증 모듈(130)은 암호화된 제2 키를 단말(200)에 전송할 수 있다.
S228 단계에서, 단말(200)은 공개 키를 이용하여 암호화된 제2 키를 복호화 하여 제2 키를 획득할 수 있다.
S229 단계에서, 배터리 인증 모듈(130)은 제2 키로 배터리 데이터를 암호화할 수 있다.
S230 단계에서, 배터리 인증 모듈(130)은 암호화된 배터리 데이터를 단말(200)에 전송할 수 있다.
이상의 설명은 본 개시의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 개시에 개시된 실시예들은 본 개시의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 개시의 기술 사상의 범위가 한정되는 것은 아니다. 본 개시의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 개시의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 단말이 배터리 연관 정보를 인증 서버에 전송하여 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하고, 상기 암호화된 제1 메시지를 배터리 인증 모듈에 전송하는 단계;
    상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계;
    상기 단말이 상기 공개 키로 상기 제2 메시지를 복호화하여 상기 제2 메시지를 획득하고, 상기 제1 메시지 및 제2 메시지를 상기 인증 서버에 전송하는 단계;
    상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계;
    상기 단말이 상기 공개 키로 상기 제3 메시지를 암호화하고, 상기 암호화된 제3 메시지를 상기 배터리 인증 모듈에 전송하는 단계; 및
    상기 배터리 인증 모듈이 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송하는 단계를 포함하는 배터리 데이터 관리 시스템의 동작 방법.
  2. 제1 항에 있어서,
    상기 단말이 상기 공개 키를 이용하여 상기 암호화된 제2 키를 복호화 하여 상기 제2 키를 획득하는 단계를 더 포함하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  3. 제2 항에 있어서,
    상기 배터리 인증 모듈이 상기 제2 키로 상기 배터리 데이터를 암호화 하고, 상기 암호화된 배터리 데이터를 상기 단말에 전송하는 단계를 더 포함하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  4. 제1 항에 있어서,
    상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계는 상기 제1 메시지에 대응되는 메시지를 생성하고, 상기 제1 메시지와 상기 제1 메시지에 대응되는 메시지의 동일 여부를 판단하여 상기 단말의 안정성을 검증하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  5. 제1 항에 있어서,
    상기 배터리 인증 모듈이 기 저장된 제1 키를 이용하여 상기 암호화된 제1 메시지를 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하는 단계는 OTP 정보를 이용하여 상기 제2 메시지를 생성하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법
  6. 제1 항에 있어서,
    상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계는 상기 제1 메시지에 기초하여 상기 배터리의 연번 정보를 유추하고, 상기 유추된 배터리 연번 정보가 적합한지 판단하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  7. 제5 항에 있어서,
    상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계는 상기 유추된 배터리 연번 정보가 적합한 경우 상기 난수 정보에 기초하는 상기 제2 메시지에 대응되는 메시지를 생성하고, 상기 제2 메시지와 상기 제2 메시지에 대응되는 메시지의 동일 여부를 판단하여 상기 배터리 인증 모듈의 안정성을 검증하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  8. 제1 항에 있어서,
    상기 인증 서버가 상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하는 단계는 OTP 정보를 이용하여 상기 제3 메시지를 생성하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법
  9. 제1 항에 있어서,
    상기 배터리 인증 모듈이 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송하는 단계는 상기 난수 정보에 기초하는 상기 제3 메시지에 대응되는 메시지를 생성하고, 상기 제3 메시지와 상기 제3 메시지에 대응되는 메시지의 동일 여부를 판단하여 상기 제3 메시지를 검증하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  10. 제1 항에 있어서,
    상기 단말이 배터리 연관 정보를 인증 서버에 전송하여 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하고, 상기 암호화된 제1 메시지를 배터리 인증 모듈에 전송하는 단계는 상기 단말이 상기 배터리를 스캔하여 상기 배터리 연관 정보를 획득하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  11. 제1 항에 있어서,
    상기 배터리 연관 정보는 상기 배터리가 탑재된 차량의 정보 또는 상기 차량의 차대 번호를 포함하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
  12. 배터리 연관 정보를 기초로 공개 키 및 제1 메시지를 획득하고, 상기 공개 키로 상기 제1 메시지를 암호화하여 상기 암호화된 제1 메시지 기초로 배터리 데이터의 전송을 요청하는 단말;
    상기 암호화된 제1 메시지를 기 저장된 제1 키로 복호화하여 상기 제1 메시지를 획득하고, 난수 정보에 기초하는 제2 메시지를 생성하고, 상기 제1 키로 상기 제2 메시지를 암호화하여 상기 암호화된 제2 메시지를 상기 단말로 전송하여 상기 단말의 안정성을 검증하는 배터리 인증 모듈; 및
    상기 난수 정보에 기초하는 제3 메시지를 생성하여 상기 단말로 전송하여 상기 배터리 인증 모듈의 안정성을 검증하는 인증 서버를 포함하는 배터리 데이터 관리 시스템.
  13. 제12 항에 있어서,
    상기 단말은 상기 배터리 인증 모듈로부터 상기 암호화된 제2 메시지를 수신하고, 상기 공개 키로 상기 제2 메시지를 복호화하여 상기 제2 메시지를 획득하고, 상기 제1 메시지 및 제2 메시지를 상기 인증 서버에 전송하는 것을 특징으로 하는 배터리 데이터 관리 시스템.
  14. 제13 항에 있어서,
    상기 단말은 상기 인증 서버로부터 상기 제3 메시지를 수신하고, 상기 공개 키로 상기 제3 메시지를 암호화하고, 상기 암호화된 제3 메시지를 상기 배터리 인증 모듈에 전송하는 것을 특징으로 하는 배터리 데이터 관리 시스템.
  15. 제14 항에 있어서,
    상기 배터리 인증 모듈은 상기 제1 키를 이용하여 상기 암호화된 제3 메시지를 복호화하여 상기 제3 메시지를 획득하고, 공유 세션 키인 제2 키를 생성하고, 상기 제2 키를 상기 제1 키로 암호화하여 상기 암호화된 제2 키를 상기 단말에 전송하는 것을 특징으로 하는 배터리 데이터 관리 시스템.
  16. 제15 항에 있어서,
    상기 단말은 상기 공개 키를 이용하여 상기 암호화된 제2 키를 복호화 하여 상기 제2 키를 획득하고, 상기 단말 및 상기 배터리 인증 모듈은 상기 제2 키로 상기 배터리 데이터를 암호화 및 복호화하여 데이터 통신을 수행하는 것을 특징으로 하는 배터리 데이터 관리 시스템의 동작 방법.
PCT/KR2022/011064 2021-08-13 2022-07-27 배터리 데이터 관리 시스템 및 그것의 동작 방법 WO2023018071A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/254,561 US20240012914A1 (en) 2021-08-13 2022-07-27 Battery Data Management System and Operating Method Thereof
EP22856070.2A EP4228201A4 (en) 2021-08-13 2022-07-27 BATTERY DATA MANAGEMENT SYSTEM AND OPERATING METHODS THEREFOR
JP2023519981A JP7586401B2 (ja) 2021-08-13 2022-07-27 電池データ管理システムおよびその動作方法
CN202280007658.8A CN116491099A (zh) 2021-08-13 2022-07-27 电池数据管理系统及其操作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0107251 2021-08-13
KR1020210107251A KR20230025131A (ko) 2021-08-13 2021-08-13 배터리 데이터 관리 시스템 및 그것의 동작 방법

Publications (1)

Publication Number Publication Date
WO2023018071A1 true WO2023018071A1 (ko) 2023-02-16

Family

ID=85200247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011064 WO2023018071A1 (ko) 2021-08-13 2022-07-27 배터리 데이터 관리 시스템 및 그것의 동작 방법

Country Status (5)

Country Link
US (1) US20240012914A1 (ko)
EP (1) EP4228201A4 (ko)
KR (1) KR20230025131A (ko)
CN (1) CN116491099A (ko)
WO (1) WO2023018071A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110099144A1 (en) * 2009-10-24 2011-04-28 Levy Paul S Method and process of administrating recharging of electric vehicles using low cost charge stations
US20110270480A1 (en) * 2010-04-30 2011-11-03 Sony Corporation Battery module, electric vehicle, authentication apparatus, and discharging control method for battery module
US20150123619A1 (en) * 2013-11-02 2015-05-07 AT&T Intellectual I, L.P. Methods, Systems, and Products for Charging Batteries
KR20160073087A (ko) * 2014-12-16 2016-06-24 중소기업은행 배터리 관리시스템(bms) 및 인증 서버에서 배터리 인증을 위한 방법 및 장치
WO2021035298A1 (en) * 2019-08-27 2021-03-04 Janus Electric Pty Ltd Electric vehicle battery network management system, method and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064003B2 (ja) * 2005-12-20 2012-10-31 パナソニック株式会社 認証システム、及び認証装置
JP5490473B2 (ja) * 2009-09-15 2014-05-14 ルネサスエレクトロニクス株式会社 データ処理システム、電気自動車及びメンテナンスサービスシステム
WO2016075865A1 (ja) * 2014-11-12 2016-05-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 更新管理方法、更新管理装置及び制御プログラム
CN114946101A (zh) * 2020-01-17 2022-08-26 松下电器(美国)知识产权公司 电池数据管理方法、电池数据管理系统及程序

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110099144A1 (en) * 2009-10-24 2011-04-28 Levy Paul S Method and process of administrating recharging of electric vehicles using low cost charge stations
US20110270480A1 (en) * 2010-04-30 2011-11-03 Sony Corporation Battery module, electric vehicle, authentication apparatus, and discharging control method for battery module
US20150123619A1 (en) * 2013-11-02 2015-05-07 AT&T Intellectual I, L.P. Methods, Systems, and Products for Charging Batteries
KR20160073087A (ko) * 2014-12-16 2016-06-24 중소기업은행 배터리 관리시스템(bms) 및 인증 서버에서 배터리 인증을 위한 방법 및 장치
WO2021035298A1 (en) * 2019-08-27 2021-03-04 Janus Electric Pty Ltd Electric vehicle battery network management system, method and vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228201A4 *

Also Published As

Publication number Publication date
US20240012914A1 (en) 2024-01-11
CN116491099A (zh) 2023-07-25
JP2023543885A (ja) 2023-10-18
KR20230025131A (ko) 2023-02-21
EP4228201A4 (en) 2024-05-29
EP4228201A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2015126035A1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
WO2015012460A1 (ko) 배터리 스웰링 감지 장치 및 방법
WO2018225921A1 (ko) 배터리 팩 및 배터리 팩의 제어 방법
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2020166827A1 (ko) 슬레이브 bms 점검 시스템 및 방법
WO2017094983A1 (ko) 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020159300A1 (ko) 배터리 시스템 및 슬레이브 배터리 관리 시스템
WO2020022844A1 (ko) 배터리 모듈 및 이러한 배터리 모듈을 포함하는 배터리 팩
WO2022015025A1 (ko) 배터리 밸브 및 이를 포함하는 배터리
WO2022019481A1 (ko) 통신 오류의 원인을 진단하기 위한 슬레이브 bms, 마스터 bms 및 배터리 팩
WO2020085722A1 (ko) 중대형 셀 모듈의 폭발 압력 예측 시스템 및 이를 이용한 중대형 셀 모듈의 폭발 압력 예측 방법
WO2016064171A1 (ko) 배터리의 soc 보정 시스템 및 방법
WO2018186529A1 (ko) 지상변압기를 이용한 전기차 충전 장치 및 전기차 충전 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2015002379A1 (ko) 배터리 팩 보호 장치 및 방법
WO2023018071A1 (ko) 배터리 데이터 관리 시스템 및 그것의 동작 방법
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2019172655A1 (ko) 배터리 팩의 균열을 진단하기 위한 장치와, 그것을 포함하는 배터리 팩 및 자동차
KR20210051462A (ko) 배터리 관리 시스템 및 그 통신 방법
WO2018105884A1 (en) Control unit for a battery system
WO2015111987A1 (ko) 통신 에러로부터 잘못된 제어 알고리즘의 수행을 방지하는 배터리 관리 장치
WO2022059906A1 (ko) 상호 인증 방법 및 그 방법을 제공하는 인증장치
WO2021049760A1 (ko) 통신 장치, 통신 방법 및 전기 차량
JP7586401B2 (ja) 電池データ管理システムおよびその動作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519981

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022856070

Country of ref document: EP

Effective date: 20230509

WWE Wipo information: entry into national phase

Ref document number: 202317034966

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280007658.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18254561

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE