WO2023018036A1 - 선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치 - Google Patents

선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치 Download PDF

Info

Publication number
WO2023018036A1
WO2023018036A1 PCT/KR2022/010332 KR2022010332W WO2023018036A1 WO 2023018036 A1 WO2023018036 A1 WO 2023018036A1 KR 2022010332 W KR2022010332 W KR 2022010332W WO 2023018036 A1 WO2023018036 A1 WO 2023018036A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat exchange
reducing agent
process gas
exchange layer
Prior art date
Application number
PCT/KR2022/010332
Other languages
English (en)
French (fr)
Inventor
이현재
이상기
박민수
하솔리나임
이승길
Original Assignee
주식회사 엔바이온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210104852A external-priority patent/KR102594138B1/ko
Priority claimed from KR1020210189660A external-priority patent/KR20230100081A/ko
Application filed by 주식회사 엔바이온 filed Critical 주식회사 엔바이온
Priority to CN202280055717.9A priority Critical patent/CN117813466A/zh
Publication of WO2023018036A1 publication Critical patent/WO2023018036A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • the present invention relates to a regenerative oxidation device, and more particularly, to a regenerative oxidation device that uses both selective catalytic reduction and selective non-catalytic reduction functions to treat nitrogen oxides.
  • nitrogen oxides which are representative pollutants among pollutants generated from fuel combustion facilities such as furnaces, power plants, boilers, and incinerators, are subject to removal because they cannot be directly emitted into the atmosphere from the viewpoint of pollution prevention.
  • the nitrogen oxide since it has harmfulness to the human body such as respiratory tract disorder and photochemical smog, it causes serious environmental pollution problems.
  • fuel combustion facilities utilize alternative fuels (e.g., waste such as waste vinyl) and fossil fuels.
  • Alternative fuels can replace existing fossil fuels, but are generally classified as specific waste and subject to landfill/incineration in special facilities.
  • a kiln in a cement plant has ideal conditions for complete treatment of harmful substances, such as a high temperature of 1,100 to 2,500 °C, a residence time of 4 seconds or more (recent models are 3 to 5 seconds), and well-mixed oxidation conditions.
  • inorganic mineral residues eg, heavy metals, etc.
  • generated during combustion are suitable for use as alternative fuels in that they can be recovered as clinker.
  • the present invention provides a regenerative oxidation device capable of removing high-concentration nitrogen compounds contained in exhaust gas through selective catalytic reduction and non-catalytic reduction and at the same time removing VOCs or odorous components, and an operating method thereof. is intended to provide
  • Another object of the present invention is to provide a thermal storage type oxidation device capable of appropriately responding to changes in the concentration of nitrogen compounds contained in exhaust gas to remove nitrogen compounds and at the same time removing VOCs or odorous components, and an operating method thereof.
  • the present invention is a regenerative combustion facility having a combustion chamber for oxidizing process gas and a heat exchange layer that is in contact with the combustion chamber and consists of a plurality of sectors to exchange heat with the process gas,
  • the process gas flows through an inlet heat exchange layer, a combustion chamber, and an outlet heat exchange layer, and the heat exchange layer includes a heat storage layer having a multi-layer structure, the heat exchange layer is disposed between the heat storage layers and removes nitrogen compounds.
  • a first reducing agent supply unit for supplying a reducing agent at the front end of the SCR layer on the flow path of the process gas to selectively catalytically reduce nitrogen compounds in the process gas, and the combustion chamber is configured to remove nitrogen compounds. It provides a regenerative combustion facility characterized in that it performs selective non-catalytic reduction by further including a second reducing agent supply unit.
  • the reaction temperature of SCR is in the range of 200 to 600 degrees
  • the reaction temperature of SNCR that is, the reaction temperature of the combustion chamber is in the range of 700 to 1100 degrees.
  • the reaction temperature of SNCR is preferably adjusted to a temperature capable of oxidizing components such as odor components and organic compounds that are introduced at the same time.
  • the first reducing agent supply unit may be provided at the upper and lower ends of the SCR layer, respectively.
  • the present invention may further include a reducing agent mixing mechanism for mixing the reducing agent between the SCR layer and the first reducing agent supply unit on the flow path of the process gas.
  • the reducing agent mixing mechanism may be a heat storage layer.
  • the heat exchange layer may further include an oxidation catalyst layer.
  • the oxidation catalyst layer may be provided on at least one of the inlet heat exchange layer and the outlet heat exchange layer. may be located at the rear end of the SCR layer.
  • the present invention is a regenerative combustion facility having a combustion chamber for oxidizing process gas and a heat exchange layer that is in contact with the combustion chamber and is composed of a plurality of sectors to exchange heat with the process gas, wherein the process gas exchanges heat at the inlet.
  • the combustion chamber provides a thermal regenerative combustion facility characterized in that it performs selective non-catalytic reduction by further including a second reducing agent supply unit for removing nitrogen compounds.
  • the first reducing agent supply unit may be provided at the top and bottom of the SCR layer, respectively.
  • a reducing agent mixing mechanism for mixing the reducing agent between the SCR layer and the first reducing agent supply unit on the flow path of the process gas may be further included.
  • the reducing agent mixing mechanism may be a heat storage layer.
  • the heat exchange layer may be purged with external air or purified process gas.
  • the present invention may include a purge gas conduit connected to the inlet conduit, purge the heat exchange layer with the high-temperature gas of the combustion chamber, heat-exchange, and then join the gas flow of the inlet conduit.
  • the heat exchange layer may further include an oxidation catalyst layer.
  • the oxidation catalyst layer is provided in the heat exchange layer, and may be located at the front end of the SCR layer in the flow path of process gas in the inlet heat exchange layer, and may be located at the rear end of the SCR layer in the outlet heat exchange layer.
  • the temperature of the combustion chamber is preferably maintained at 200 to 1100 degrees.
  • thermo oxidation device capable of removing high-concentration nitrogen compounds contained in exhaust gas through selective catalytic reduction and non-catalytic reduction and at the same time removing VOCs or odorous components.
  • the present invention can provide a thermal storage type oxidation device capable of properly responding to changes in the concentration of nitrogen compounds contained in exhaust gas to remove nitrogen compounds and at the same time to remove VOCs or odorous components.
  • the apparatus of the present invention provides an advantage of being able to easily cope with changes in the inflowing NOx concentration by using SCR and SNCR simultaneously.
  • the apparatus of the present invention can simultaneously perform an action of oxidizing odors or harmful substances in addition to an action of reducing NOx.
  • the device of the present invention can increase the mixing degree of the reducing agent using a heat storage material to achieve high efficiency.
  • the device of the present invention provides an advantage of minimizing the amount of energy used by using a heat storage system.
  • the device of the present invention provides the advantage of being able to finally treat unburned odors and harmful substances by stacking with an oxidation catalyst.
  • FIG. 1 is a diagram schematically showing a thermal regenerative oxidation device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a thermal regenerative oxidation device according to a second embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a thermal regenerative oxidation device according to a third embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a thermal regenerative oxidation device according to a fourth embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a thermal regenerative oxidation device according to a fifth embodiment of the present invention.
  • the regenerative oxidation device may be a regenerative thermal oxidation method or a regenerative catalytic oxidation method.
  • the thermal storage type oxidation device may be applied regardless of a rotor type or a bed type.
  • FIG. 1 is a diagram schematically showing a thermal storage type oxidation device having SCR and SNCR functions according to a first embodiment of the present invention.
  • the thermal storage type oxidation device 100 includes a heat exchange layer 130 divided into a plurality of square or fan-shaped sectors.
  • the plurality of sectors may be properly divided into a process gas inlet and a process gas outlet, and additionally, some of the sectors may be divided into a purge part.
  • the number of sectors constituting the heat exchange layer can be appropriately selected.
  • Each sector of the heat exchange layer may be separated by partition walls.
  • the shape of the heat exchange layer 130 and each sector constituting the heat exchange layer 130 is not an essential part of the present invention, and may be designed in an arbitrary shape according to circumstances.
  • Each sector of the heat exchange layer 130 is made of a suitable material in which fine channels, that is, open pores, are formed so that process gas can pass through and heat exchange with the process gas; It can be made of heat storage material. Also, as shown, in the present invention, the heat exchange layer 130 may include multi-layered heat storage layers 130A, 130B, and 130C.
  • the oxidation device 100 has a combustion chamber 140 equipped with a combustion device (not shown) such as a burner for burning process gas on the heat exchange layer 130, and the heat exchange layer At the bottom of the 130, an inlet/outlet chamber 120 for inflow and outflow of process gas is provided.
  • a combustion device not shown
  • a burner for burning process gas on the heat exchange layer 130
  • the heat exchange layer At the bottom of the 130, an inlet/outlet chamber 120 for inflow and outflow of process gas is provided.
  • the process gas introduced into the inlet/outlet chamber 120 of the oxidation device 100 passes through a rotor or a distribution mechanism (not shown) to the inlet heat exchange layer 130 and the combustion chamber 140. It is introduced in the order of combustion, and may be discharged to the outside again through the outlet heat exchange layer 130, the inlet/outlet chamber 120, and a rotor or distribution mechanism (not shown). Piping for inflow and outflow of process gas may be properly designed, and the above description is only an example.
  • the heat exchange layer 130 may include an SCR layer 132 inside, above or below the heat exchange layer. It is preferable that the SCR layer 132 has the same cell size as the heat storage material of the heat exchange layer. However, if the inlet of the cell is not blocked during stacking, there is no problem even if the cell size of the heat storage material and the catalyst are different, so it is not limited thereto.
  • SCR catalyst a metal oxide-based catalyst, a zeolite-based catalyst, an alkaline earth metal-based catalyst, or a rare earth-based catalyst may be used. For example, TiO2, WO3, V2O5, MoO3 metal oxide catalysts or Cu-supported zeolite catalysts can be used.
  • the catalyst layer may be an extruded honeycomb type in which metal oxides are extruded and molded in a honeycomb shape, a catalyst in which catalyst components are supported on a honeycomb support, or a bent type in which catalyst components are coated on a bent metal or inorganic support.
  • the present invention is not limited to the aforementioned SCR catalyst.
  • a first reducing agent supply unit 134 may be provided inside the heat exchange layer 130 .
  • the first reducing agent supply unit 134 may include a reducing agent supply conduit and a nozzle.
  • the first reducing agent supply unit 134 may supply the reducing agent to the process gas flowing into the SCR layer 132 by spraying or the like.
  • the first reducing agent supply unit 134 may be disposed in each sector of the heat exchange layer and intermittently operated (On/Off). That is, the first reducing agent supply unit 134 may operate in such a manner as to supply the reducing agent when the corresponding sector operates to the process gas inflow side and to stop supplying the reducing agent when the corresponding sector operates to the process gas outlet side.
  • the reducing agent ammonia, aqueous ammonia, aqueous urea solution, or a combination thereof may be used. Additionally, the reducing agent may further include an ammonium compound such as ammonium formate, ammonium carbonate, ammonium oxalate, or ammonium bicarbonate.
  • an ammonium compound such as ammonium formate, ammonium carbonate, ammonium oxalate, or ammonium bicarbonate.
  • the reducing agent may be provided as an aqueous solution.
  • the concentration of the reducing agent aqueous solution is preferably 5 to 70%, preferably 30 to 50%.
  • Urea-SCR is widely used because the solvent used is safe and it can be a very efficient process when a certain concentration of NO is injected.
  • urea decomposes from 159 degrees and there is no decomposition device that converts urea into NH3 or an excessive amount is input, a problem of unreacted NH3 slip may occur.
  • water is first evaporated from the droplets and secondarily decomposed into HNCO and then decomposed into NH3.
  • the distribution of NH3 due to the injection may become non-uniform, and the efficiency may be lowered due to the short residence time and low reaction temperature, and the problem of unreacted NH3 slip may be caused by the large amount of injected urea.
  • the normal NOx SCR reaction is a reaction accompanied by exotherm, and the temperature rises toward the rear end of the reaction, which is advantageous for decomposition of urea, but as the temperature rises, the surface of NH3 Coverage is reduced.
  • a mixed source of ammonia and an aqueous urea solution may be used as the reducing agent.
  • the source of the ammonia may be ammonia gas or ammonia water.
  • Urea dissolved in water does not act as a reactive NH3 species until the water surrounding the urea particles has completely evaporated and undergoes thermal dissociation (HNCO+NH3). Therefore, it requires relatively high energy to react and can act as a reactive species after penetrating quite deeply from the surface. In addition, since it is highly corrosive, it is desirable to avoid a phenomenon in which droplets collide directly. In contrast, ammonia can be activated immediately after being injected through the nozzle.
  • the present invention injects a small amount of gas-phase NH3 in parallel even under the condition that there is no separate urea-to-NH3 facility, thereby reducing the non-uniformity of NH3 according to the injection of urea droplets that occurs when only urea is injected.
  • the weight ratio of ammonia to urea in the reducing agent is preferably 0.1 to 10, 0.2 to 5, or 0.3 to 4.
  • the input ratio of the supplied reducing agent is NSR (Normalized Stoichiometric Ratio, NH3/NOx), which is generally 0.3 to 3.0, but is 0.8 to 0.8 to maximize the NOx reduction rate and prevent ammonia from being discharged to the outside due to excessive input of the reducing agent.
  • NSR Normalized Stoichiometric Ratio, NH3/NOx
  • a range of 1.2 is preferred.
  • the combustion chamber 140 can be used at 700 to 1100 degrees, but can be adjusted according to the degree of reduction of NOx and the degree of odor or oxidation of organic materials. However, it may be preferably operated at a temperature of 750 to 1000 degrees.
  • a burner (not shown) may be provided in the combustion chamber 140 .
  • a second reducing agent supply unit 144 may be provided in the combustion chamber 140 .
  • the second reducing agent supply unit 144 may include a reducing agent supply conduit and a nozzle. The second reducing agent supply unit 144 may supply the reducing agent into the combustion chamber 140 by spraying or the like.
  • a reducing agent mixing mechanism may be further provided between the first reducing agent supply unit 134 and the SCR layer 132 .
  • the reducing agent mixing mechanism may be the heat storage material layer 130B.
  • the reducing agent is evenly distributed in each sector of the heat storage material layer at the front end of the SCR layer 132 on the process gas flow path to increase the mixing degree, thereby inducing an even SCR reaction in the SCR layer. .
  • the first reducing agent supply unit 134 provided in the heat exchange layer may be supplied to the heat storage material sector (process gas inlet sector) of the heat exchange layer on the path flowing into the combustion chamber, the SCR layer ( 132) because supplying the reducing agent at the front end can improve efficiency.
  • the second reducing agent supply unit 134 in the combustion chamber removes NOx by spraying the reducing agent into the combustion chamber.
  • the second reducing agent supply unit 134 can be selectively driven according to the NOx concentration at the outlet of the oxidizer. This is a very advantageous method in the case of high NOx fluctuations in the process gas.
  • the oxidation device 100 of the present invention can recover heat from the combustion chamber by the heat exchange layer, minimize energy, and simultaneously remove NOx, VOCs, and odorous components.
  • FIG. 2 is a diagram schematically showing a regenerative oxidation device 100 having SCR and SNCR functions according to a second embodiment of the present invention.
  • the oxidation device 100 of FIG. 2 is different from the device of the first embodiment in that the first reducing agent supply units 134A and 134B are provided above and below the SCR layer 132 in the heat exchange layer 130, respectively.
  • This configuration can improve NOx removal efficiency by supplying a reducing agent at the front end of the SCR layer 132 with respect to the process gas burned through the combustion chamber.
  • FIG. 3 is a diagram schematically showing a regenerative oxidation device having SCR and SNCR functions according to a third embodiment of the present invention.
  • a third reducing agent supply 134C is provided in the process gas inlet conduit 122 to the inlet/outlet chamber.
  • the reducing agent injected from the third reducing agent supply unit 134C passes through the opened valve 122A of the first valves 122A and 122B along the process gas in the inlet conduit 122 to the heat storage layer 130A and the SCR layer 132 ) and the heat storage layer 130C, it is introduced into the combustion chamber 140, NOx is reduced and oxidized in the combustion chamber, and then passes through the heat storage layer 130C, the SCR layer 132, and the heat storage layer 130A. It is discharged to the outside through the open valve 124A of the second valves 124A and 124B and the outlet conduit 124.
  • the reducing agent is injected from the process gas inlet side of the heat exchange layer, it is possible to continuously inject the reducing agent, and when it is injected from the inlet of the process gas inlet side, the reducing agent is well mixed and rises to react with the SCR catalyst.
  • the operating temperature of the SCR layer is in the range of 200 to 600 degrees, preferably 250 to 500 degrees. If the temperature is high, the catalyst may be inactivated by sintering and volatilization, and the catalyst activity may decrease.
  • the combustion chamber temperature at which the SNCR reaction occurs is operated in the range of 700 to 1100 degrees, but is preferably operated in the range of 750 to 1000 degrees.
  • FIG. 4 is a diagram schematically showing a regenerative oxidation device having SCR and SNCR functions according to a fourth embodiment of the present invention.
  • the heat exchange layer 130 includes an oxidation catalyst layer 136 .
  • the oxidation catalyst layer 136 may be composed of a honeycomb catalyst such as a heat storage material and coated with a catalyst that oxidizes and removes VOCs and odor components.
  • the oxidation catalyst at least one selected from the group consisting of noble metal oxidation catalysts supported with Pt, Pd, etc., transition metal oxidation catalysts such as Co, Cu, Mn, Mo, and perovskite type catalysts can be used.
  • the operating temperature of the device 100 may be 200 to 1100 degrees. Since the oxidation catalyst layer 136 oxidizes VOC and the like at a low temperature, the temperature of the combustion chamber can be maintained at a low temperature of 250 to 450 degrees. In this embodiment, the oxidation catalyst layer 136 is located below the SCR layer 132, and the reducing agent supply unit 134A is located therebetween. In this case, it is preferable that the reducing agent is injected from the rear end of the oxidation catalyst on the process gas flow path. This is because the reducing agent can be oxidized immediately when injected in front of the oxidation catalyst. At this time, the temperature of the SCR layer 132 may be maintained at, for example, 450 degrees, and the temperature of the oxidation catalyst layer 132 may be maintained at a lower temperature, for example, at about 200 to 450 degrees.
  • the second reducing agent supply unit 144 is illustrated as being provided in the combustion chamber in FIG. 4 , it is also possible to implement without the second reducing agent supply unit 144 .
  • FIG. 5 is a diagram schematically showing a regenerative oxidation device having SCR and SNCR functions according to a fifth embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing the structure of a thermal storage type oxidation device 100 in which a purge line is additionally configured.
  • an external clean gas or a gas purified by an oxidizer and discharged to a discharge conduit may be used as purge air.
  • a purge gas conduit 126 is provided to introduce the purge gas, and each valve 122A, 122B, and 122C controls gas flow in the inlet conduit 122, the outlet conduit 124, and the purge gas conduit 126. , 124A, 124B, 124C, 126A, 126B, 126C) are provided.
  • the purge line can increase the purge function when the temperature is high, and when the reducing agent is introduced using the third reducing agent supply unit 134C, it is preferable to maintain the temperature as high as possible so that the ammonia purging is good.
  • a temperature at which ammonia can be adsorbed and desorbed from the heat storage material is maintained to minimize energy loss.
  • the temperature of the heat storage layer to be purged is preferably between 50 and 200 degrees.
  • FIG. 5 shows a method in which the purge gas is purged in a downward flow so that the purge gas temperature is increased to a high temperature by the high-temperature gas flowing into the purge region from the combustion chamber and then reintroduced into the process gas inlet conduit 122.
  • the purge gas may be purged in an upward flow toward the heat exchange layer using external air or purified process gas.
  • the present invention is applicable to regenerative oxidation devices.

Abstract

배출 가스에 함유된 고농도의 질소 화합물을 선택적 촉매 환원 및 무촉매 환원으로 제거하는 동시에 VOCs 또는 악취성분을 제거할 수 있는 축열식 산화 장치가 개시된다. 본 발명은 공정 가스를 산화하기 위한 연소 챔버와 상기 상기 연소 챔버와 접하며 복수의 섹터로 구성되어 상기 공정 가스와 열교환하는 열교환층을 구비하는 축열식 연소설비에 있어서, 상기 공정 가스는 유입부 열교환층, 연소 챔버 및 유출부 열교환층을 거쳐 유동하며, 상기 열교환층은 다층 구조의 축열층을 구비하되, 상기 열교환층은 상기 축열층들 사이에 배치되며 질소화합물을 제거하기 위한 SCR층과 상기 공정 가스의 유동 경로 상의 상기 SCR층 전단에서 환원제를 공급하는 제1 환원제 공급부를 포함하여 공정 가스 중의 질소 화합물을 선택적으로 촉매 환원하고, 상기 연소 챔버는 질소화합물의 제거를 위한 제2 환원제 공급부를 더 포함하여 선택적 무촉매 환원을 수행하는 것을 특징으로 하는 축열식 연소 설비를 제공한다.

Description

선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치
본 발명은 축열식 산화 장치에 관한 것으로 보다 상세하게는 질소산화물을 처리하기 위하여 선택적 촉매 환원(selective catalytic reduction) 및 무촉매 환원(selective non-catalytic reduction) 기능을 병용하는 축열식 산화 장치에 관한 것이다.
일반적으로 소성로, 발전소, 보일러, 소각로 등과 같은 연료의 연소설비로부터 발생하는 오염물질 중 대표적인 오염물질인 질소산화물은 공해방지의 관점에서 직접 대기중으로 방출할 수 없기 때문에 제거의 대상이 되고 있다. 특히, 상기 질소산화물의 경우 호흡기관장애, 광화학스모그 발생 등 인체에 대한 유해성을 지니고 있으므로 심각한 환경오염문제를 일으키고 있다.
현재까지 상기 질소산화물을 처리하기 위하여 비과잉 공기를 이용한 연소 및 연소온도 조절 등과 같은 연소방법을 개선시키거나 세정기술, 선택적 촉매 환원기술, 선택적 무촉매 환원기술 등을 이용하여 질소산화물을 처리하고 있다.
한편, 연료 연소 설비에서는 대체 연료(예, 폐비닐 등 폐기물)와 화석 연료를 활용하는데, 대체 연료는 기존 화석 연료를 대체 가능하나, 일반적으로는 특정 폐기물로 분류되어 특수 시설에서 매립/소각 대상이다. 예컨대, 시멘트 공장의 킬른은 1,100~2,500℃의 고온이고, 체류 시간 4초 이상(최근 모델은 3~5초), 잘 혼합된 산화조건 등 유해 성분 완전 처리를 위한 이상적인 조건이다. 또한, 연소시 발생하는 무기 광물 잔류물(예, 중금속 등)은 클링커로 회수할 수 있다는 점에서 대체 연료 사용에 적합하다.
반면, 이와 같은 연소 설비는 대량의 배출 유량이 발생하는데, 여기에는 NOx, CO, VOCs, NH3 및 SO2 등 규제 대상 성분을 포함하며, 최근 미세먼지(광화학 스모그)에 대한 규제가 강화되면서, 특히 NOx, VOCs 및 악취 저감 요구가 대두되고 있어, 이를 개선하기 위한 새로운 기술이 필요한 실정이다.
최근 SCR 방식을 이용하여 질소 화합물을 제거하는 축열식 산화 장치가 개발되고 있으나, 고농도의 질소 화합물의 처리에 이용하기는 곤란한 실정이다.
상기 종래 기술의 문제점을 해결하기 위하여 본 발명은, 배출 가스에 함유된 고농도의 질소 화합물을 선택적 촉매 환원 및 무촉매 환원으로 제거하는 동시에 VOCs 또는 악취성분을 제거할 수 있는 축열식 산화 장치 및 그 운전 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 배출 가스에 포함된 질소 화합물의 농도 변화에 적절하게 대응하여 질소 화합물을 제거하는 동시에 VOCs 또는 악취성분을 제거할 수 있는 축열식 산화 장치 및 그 운전 방법을 제공하는 것을 목적으로 한다.
상기 기술적 과제를 달성하기 위하여 본 발명은, 공정 가스를 산화하기 위한 연소 챔버와 상기 상기 연소 챔버와 접하며 복수의 섹터로 구성되어 상기 공정 가스와 열교환하는 열교환층을 구비하는 축열식 연소설비에 있어서, 상기 공정 가스는 유입부 열교환층, 연소 챔버 및 유출부 열교환층을 거쳐 유동하며, 상기 열교환층은 다층 구조의 축열층을 구비하되, 상기 열교환층은, 상기 축열층들 사이에 배치되며 질소화합물을 제거하기 위한 SCR층과 상기 공정 가스의 유동 경로 상의 상기 SCR층 전단에서 환원제를 공급하는 제1 환원제 공급부를 포함하여 공정 가스 중의 질소 화합물을 선택적으로 촉매 환원하고, 상기 연소 챔버는 질소화합물의 제거를 위한 제2 환원제 공급부를 더 포함하여 선택적 무촉매 환원을 수행하는 것을 특징으로 하는 축열식 연소 설비를 제공한다.
이때, SCR의 반응온도는 200~600도의 범위이며, SNCR의 반응온도, 즉 연소실의 반응온도는 700~1100도의 범위가 된다. SNCR의 반응온도는 동시에 유입되는 악취성분과 유기화합물 등의 성분을 산화시킬 수 있는 온도로 조절되는 것이 바람직하다.
본 발명에서 상기 제1 환원제 공급부는 상기 SCR층의 상단 및 하단에 각각 구비되는 것일 수 있다.
또한, 본 발명은 상기 공정 가스의 유동 경로 상에서 상기 SCR층과 상기 제1 환원제 공급부 사이에 환원제의 혼합을 위한 환원제 혼합 기구를 더 포함할 수 있다. 이 때, 상기 환원제 혼합 기구는 축열층일 수 있다.
본 발명에서 상기 열교환층은 산화촉매층을 더 포함할 수 있다.
또한 본 발명에서 상기 산화촉매층은 상기 유입부 열교환층 또는 상기 유출부 열교환층 중 적어도 어느 한 쪽에 구비될 수 있는데, 유입부 열교환층에서는 공정 가스의 유동 경로 중 SCR층 전단에 위치하고, 유출부 열교환층에서는 SCR층 후단에 위치할 수 있다.
또한 본 발명은, 공정 가스를 산화하기 위한 연소 챔버와 상기 상기 연소 챔버와 접하며 복수의 섹터로 구성되어 상기 공정 가스와 열교환하는 열교환층을 구비하는 축열식 연소설비에 있어서, 상기 공정 가스는 유입부 열교환층, 연소 챔버 및 유출부 열교환층을 거쳐 유동하며, 상기 열교환층은 다층 구조의 축열층을 구비하고, 공정 가스를 상기 축열식 연소 설비의 열교환층으로 유입하기 위한 유입 도관에 설치되는 제3 환원제 공급부를 더 포함하되, 상기 열교환층은 상기 축열층들 사이에 배치되며 질소화합물을 제거하기 위한 SCR층을 포함하여, 상기 SCR층은 상기 제3 환원제 공급부로부터 공급된 환원제로 질소 화합물을 선택적 촉매 환원하고, 상기 연소 챔버는 질소화합물의 제거를 위한 제2 환원제 공급부를 더 포함하여 선택적 무촉매 환원을 수행하는 것을 특징으로 하는 축열식 연소 설비를 제공한다.
본 발명에서 상기 제1 환원제 공급부는 상기 SCR층의 상단 및 하단에 각각 구비될 수 있다.
또한, 상기 공정 가스의 유동 경로 상에서 상기 SCR층과 상기 제1 환원제 공급부 사이에 환원제의 혼합을 위한 환원제 혼합 기구를 더 포함할 수 있다. 이 때, 상기 환원제 혼합 기구는 축열층일 수 있다.
본 발명에서 외부 공기나 정화된 공정가스에 의해 상기 열교환층을 퍼지할 수 있다.
이와 달리, 본 발명은 상기 유입 도관으로 연결되는 퍼지 가스 도관을 포함하고, 상기 연소 챔버의 고온 가스로 상기 열교환층을 퍼지하고 열교환 된 후 상기 유입 도관의 가스 흐름에 합류시킬 수 있다.
본 발명에서 상기 열교환층은 산화촉매층을 더 포함할 수 있다. 이 때, 상기 산화촉매층은 상기 열교환층에 구비되며, 유입부 열교환층에서는 공정 가스의 유동 경로 중 SCR층 전단에 위치하고, 유출부 열교환층에서는 SCR층 후단에 위치하는 것일 수 있다.
본 발명에서 연소챔버의 온도는 200~1100도로 유지되는 것이 바람직하다.
본 발명에 따르면, 배출 가스에 함유된 고농도의 질소 화합물을 선택적 촉매 환원 및 무촉매 환원으로 제거하는 동시에 VOCs 또는 악취성분을 제거할 수 있는 축열식 산화 장치를 제공할 수 있게 된다.
또한 본 발명은 배출 가스에 포함된 질소 화합물의 농도 변화에 적절하게 대응하여 질소 화합물을 제거하는 동시에 VOCs 또는 악취성분을 제거할 수 있는 축열식 산화 장치를 제공할 수 있게 된다.
본 발명의 장치는 SCR과 SNCR을 동시에 사용함으로써 유입되는 NOx농도의 변화에도 용이하게 대처 가능하다는 장점을 제공한다.
또한 본 발명의 장치는 NOx의 환원시키는 작용 이외에 악취나 유해물질을 산화시키는 작용을 동시에 수행 가능하다.
또한, 본 발명의 장치는 SCR 촉매 전단에 환원제를 분사하는 경우 축열재를 이용하여 환원제의 혼합도를 높혀 높은 효율을 낼 수 있게 한다.
또한, 본 발명의 장치는 축열시스템을 이용하여 에너지의 사용량을 최소화하는 장점을 제공한다.
또한, 본 발명의 장치는 산화촉매와 함께 적층하여 미연의 악취와 유해물질을 최종적으로 처리가능하다는 장점을 제공한다.
도 1은 본 발명의 제1 실시예에 따른 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 2는 본 발명의 제2 실시예에 따른 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 3은 본 발명의 제3 실시예에 따른 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 4는 본 발명의 제4 실시예에 따른 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 5는 본 발명의 제5 실시예에 따른 축열식 산화 장치를 모식적으로 도시한 도면이다.
이하 도면을 참조하여 본 발명의 바람직한 실시예을 설명한다.
본 발명의 명세서에서 축열식 산화 장치는 축열 연소 방식(Regenerative Thermal oxidation)이나 축열 촉매 연소 방식(Regenerative catalytic oxidation)을 불문한다. 또한, 본 발명에서 상기 축열식 산화 장치는 로터 타입이나 베드 타입을 불문하고 적용될 수 있다.
도 1은 본 발명의 제1 실시예에 따른 SCR 및 SNCR 기능을 구비한 축열식 산화 장치를 모식적으로 도시한 도면이다.
축열식 산화 장치(100)는 사각 또는 부채꼴 형상의 복수의 섹터로 구분된 열교환층(130)을 구비하고 있다. 상기 복수의 섹터는 공정가스 유입부 및 공정 가스 유출부로 적절히 구분될 수 있고, 추가적으로 상기 일부 섹터는 퍼지부로 구분될 수도 있다. 열교환층을 이루는 섹터의 수는 적절히 선택될 수 있다. 상기 열교환층의 각 섹터들은 격벽에 의해 분리될 수 있다. 그러나, 상기 열교환층(130) 및 열교환층(130)을 이루는 각 섹터의 형상은 본 발명의 본질적인 부분이 아니며, 경우에 따라 임의의 형상으로 설계될 수 있다. 상기 열교환층(130)의 각 섹터는 내부에 공정 가스를 투과하여 상기 공정 가스와 열교환할 수 있도록 미세한 채널, 즉 개기공(open pore)들이 형성된 적당한 재질의; 축열재로 구성될 수 있다. 또한, 도시된 바와 같이, 본 발명에서 상기 열교환층(130)은 다층 구조의 축열층(130A, 130B, 130C)을 구비할 수 있다.
본 발명에서 상기 산화 장치(100)는 상기 열교환층(130)의 상부에 공정 가스를 연소하기 위한 버너와 같은 연소 장치(도시하지 않음)가 장착된 연소 챔버(140)를 구비하고 있으며, 열교환층(130) 하단에는 공정가스의 유입 및 유출을 위한 유입/유출 챔버(120)가 구비되어 있다.
화살표로 도시된 바와 같이, 산화 장치(100)의 유입/유출 챔버(120)로 유입된 공정 가스는 로터 또는 분배 기구(도시하지 않음)를 거쳐 유입부 열교환층(130), 연소 챔버(140)의 순으로 유입되어 연소되며, 다시 유출부 열교환층(130), 유입/유출 챔버(120) 및 로터 또는 분배기구(도시하지 않음)를 거쳐 외부로 배출될 수 있다. 공정 가스의 유입 및 유출을 위한 배관은 적절히 설계될 수 있으며 이상의 설명은 예시에 불과하다.
본 발명에서 상기 열교환층(130)은 열교환층 내부, 상부 또는 하부에 SCR층(132)을 구비할 수 있다. 상기 SCR층(132)은 열교환층의 축열재와 같은 셀의 크기를 구성하는 것이 좋으나 적층 시 셀의 입구를 막지 않는 경우 축열재와 촉매의 셀크기가 달라도 크게 문제가 없으므로 이에 한정되지 않는다. SCR촉매는 금속산화물계, 제올라이트계, 알칼리토금속계, 희토류계 등을 사용할 수 있다. 예컨대, TiO2, WO3, V2O5, MoO3의 금속산화물계나 Cu를 담지한 제올라이트계 촉매를 사용할 수 있다. 본 발명에서 촉매층은 하니컴 형태로 금속 산화물 등을 압출하여 성형한 압출 하니컴형, 하니컴형 지지체에 촉매 성분을 담지한 촉매, 또는 절곡한 금속이나 무기지지체에 촉매성분을 코팅한 절곡형이 사용될 수 있다. 그러나, 본 발명은 전술한 SCR촉매에 한정되지 않음은 물론이다.
또한, 도시된 바와 같이, 상기 열교환층(130) 내부에는 제1 환원제 공급부(134)가 구비될 수 있다. 상기 제1 환원제 공급부(134)는 환원제 공급 도관 및 노즐을 포함할 수 있다. 상기 제1 환원제 공급부(134)는 SCR층(132)으로 유입되는 공정 가스에 분사 등의 방식으로 환원제를 공급할 수 있다. 본 발명에서 상기 제1 환원제 공급부(134)는 상기 열교환층의 각 섹터에 배치되어 단속적으로 동작(On/Off)할 수 있다. 즉 상기 제1 환원제 공급부(134)는 해당 섹터가 공정 가스 유입측으로 동작할 때 환원제를 공급하고 공정 가스 유출측으로 동작할 때 환원제의 공급을 중단하는 방식으로 동작할 수 있다.
본 발명에서 상기 환원제로는 암모니아, 암모니아수, 우레아수용액 또는 이들의 조합이 사용될 수 있다. 또한, 부가적으로 상기 환원제는 포름산 암모늄, 탄산암모늄, 옥살산암모늄, 중탄산암모늄 등의 암모늄화합물을 더 포함할 수 있다.
본 발명에서 상기 환원제는 수용액으로 제공될 수 있다. 이 때, 상기 환원제 수용액의 농도는 5~70%, 바람직하게는 30~50%인 것이 좋다.
Urea-SCR은 사용 용제가 안전하며 일정한 농도의 NO가 주입될 때 매우 효율적인 공정이 될 수 있으므로 많이 사용되고 있다. 그러나, Urea가 159도부터 분해하며, 별도의 Urea를 NH3로 전환하는 분해장치가 없거나 과량이 투입되었다고 할 때 미반응 NH3 slip의 문제가 발생할 수 있다. 또한 별도의 Urea to NH3 분해설비가 없이 액적으로 Urea가 SCR 촉매층에 분사된다고 할 때, 액적에서 1차적으로 물이 증발되고 2차적으로 HNCO로 분해된 뒤 NH3로 분해되는 과정을 거침으로써 Urea의 불균일 분사로 인한 NH3의 분포가 불균일해 질 수 있으며, 짧은 체류시간과 낮은 반응온도로 인해 효율이 저하되고 다량 분사된 Urea로 인해 미반응 NH3 slip의 문제가 유발될 수 있다.
특히 축열층 또는 촉매층을 사용하여 SCR 또는 SNCR 반응을 유도하는 경우 통상의 NOx SCR 반응은 발열을 동반한 반응으로 반응 후단으로 갈수록 온도가 상승하여 Urea의 분해에는 유리하나 온도가 상승함에 따라 NH3의 표면 Coverage는 줄어든다.
이러한 이유로, 본 발명에서는 상기 환원제로 암모니아와 우레아 수용액의 혼합 소스를 사용할 수 있다. 이 때, 상기 암모니아의 소스는 암모니아 가스 또는 암모니아수일 수 있다.
물에 용해된 우레아는 우레아 입자를 둘러싸는 물이 완전히 증발되고 열 해리(HNCO+NH3)를 거쳐야 비로소 반응성 NH3종으로 작용한다. 따라서, 반응을 하는 데에는 상대적으로 높은 에너지가 요구되며, 표면으로부터 상당히 깊이 침투한 이후에 반응성 종으로 작용할 수 있다. 또한, 매우 부식성이 높으므로 액적이 직접 충돌하는 현상을 피하는 것이 바람직하다. 이와 달리, 암모니아는 노즐로 분사된 직후 바로 활성이 가능하다.
그러므로, 본 발명과 같이 우레아+NH3 동시 주입을 통해 SCR층의 촉매 전 구간(두께)에 걸쳐 비교적 균일한 NH3/NOx 비율을 유지할 수 있게 된다.
이러한 구성을 통해 본 발명은 별도의 Urea-to-NH3의 설비가 없는 조건하에서도 소량의 Gas상의 NH3를 병행 주입함으로써, Urea 단독만을 투입할 때 발생하는 Urea 액적의 분사에 따른 NH3의 불균일도를 해소하고, SCR 촉매층 초입부분에 NH3의 분율을 높여주어 Urea의 분해지연에 따른 NH3의 결핍을 방지하여 촉매반응 전구간에서 NSR이 1.0에 가깝도록 운전되게 함으로써 높은 NOx 저감 효율을 확보할 수 있게 된다. 본 발명에서 동시 주입의 경우 환원제 중 우레아에 대한 암모니아의 중량비는 0.1~10, 0.2 내지 5, 또는 0.3 내지 4인 것이 바람직하다.
본 발명에서, 공급되는 환원제의 투입비는 NSR(Normalized Stoichiometric Ratio, NH3/NOx)로 0.3 ~ 3.0 정도로 일반적으로 사용하나 NOx 환원율을 극대화하고 환원제의 과다투입으로 암모니아가 외부로 배출되는 것을 막기위해 0.8~1.2 범위가 바람직하다.
본 실시예에서 상기 연소 챔버(140)는 700~1100도에서 사용 가능하나, NOx의 환원정도와 악취나 유기물질의 산화정도에 따라 조절될 수 있다. 하지만 바람직하게는 750~1000도의 온도에서 운전될 수 있다. 이를 위하여 상기 연소 챔버(140)에는 버너(도시하지 않음)가 구비될 수 있다. 또한 도시된 바와 같이, 상기 연소 챔버(140)에는 제2 환원제 공급부(144)가 구비될 수 있다. 상기 제2 환원제 공급부(144)는 환원제 공급 도관 및 노즐을 포함할 수 있다. 상기 제2 환원제 공급부(144)는 연소 챔버(140) 내부에 분사 등의 방식으로 환원제를 공급할 수 있다.
한편, 제1 환원제 공급부(134)와 상기 SCR층(132) 사이에 환원제 혼합 기구가 더 구비될 수 있다. 예컨대, 상기 환원제 혼합 기구는 축열재층(130B)일 수 있다. 이 구조에서 축열재층(130B)은 공정 가스 유동 경로 상 SCR층(132) 전단에서 환원제가 축열재층의 각 섹터에 골고루 분산하여 혼합도를 높임으로써, SCR층에서의 고른 SCR 반응을 유도할 수 있다.
도시된 바와 같이, 본 실시예에서 열교환층에 구비된 제1 환원제 공급부(134)는 연소 챔버 내로 유입되는 경로 상의 열교환층의 축열재 섹터(공정 가스 유입 섹터)에 공급될 수 있는데, SCR층(132) 전단에서 환원제를 공급하는 것이 효율을 향상시킬 수 있기 때문이다.
한편, 연소 챔버 내의 제2 환원제 공급부(134)는 연소 챔버 내에 환원제를 분무하여 NOx를 제거한다. 이와 같이 연소 챔버 내에 SNCR 장치를 구비함으로써 산화 장치 출구의 NOx농도에 따라 제2 환원제 공급부(134)를 선택적으로 구동할 수 있다. 이것은 공정 가스 내에 NOx변동이 심한 경우에 매우 유리한 방식이다.
이상과 같은 구조를 통해 본 발명의 산화 장치(100)는 열교환층에 의해 연소 챔버의 열을 회수하면서 에너지를 최소화하고, NOx, VOCs, 악취 성분을 동시에 제거할 수 있게 된다.
도 2는 본 발명의 제2 실시예에 따른 SCR 및 SNCR 기능을 구비한 축열식 산화 장치(100)를 모식적으로 도시한 도면이다.
도 2의 산화 장치(100)는 열교환층(130) 내의 SCR층(132)의 상하에 각각 제1 환원제 공급부(134A, 134B)를 구비하고 있다는 점에서 제1 실시예의 장치와 상이하다. 이 구성은 연소 챔버를 통과하여 연소된 공정 가스에 대하여 SCR층(132) 전단에서 환원제를 공급하여 NOx 제거 효율을 향상시킬 수 있다.
도 3은 본 발명의 제3 실시예에 따른 SCR 및 SNCR 기능을 구비한 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 3에 도시된 바와 같이, 유입/유출 챔버로의 공정 가스 유입 도관(122)에 제3 환원제 공급부(134C)가 구비되어 있다.
상기 제3 환원제 공급부(134C)로부터 분사된 환원제는 유입 도관(122) 내의 공정 가스를 따라 제1 밸브(122A, 122B) 중 개방된 밸브(122A)를 통해 축열층(130A), SCR층(132) 및 축열층(130C)를 통과하여 연소 챔버(140)로 유입되어 NOx의 환원과 연소실 내에서 산화과정을 거쳐 다시 축열층(130C), SCR층(132), 축열층(130A)를 통과하여 제2 밸브(124A, 124B)중 열려있는 밸브(124A)와 유출 도관(124)를 통과하여 외부로 배출된다.
이 구조에서는 열교환층의 공정가스 유입구측에서 환원제를 분사하므로, 연속적으로 환원제 분사가 가능하고 공정 가스 유입측의 입구에서 분사하면 환원제가 잘 혼합되어 상승하면서 SCR 촉매와 반응하게 된다.
연소 챔버에서는 SNCR 반응에 의해 NOx가 제거되며, 남아 있는 환원제는 하강하면서 SCR 촉매와 다시 반응해서 NOx가 제거되므로, 슬립(slip)되는 암모니아 없이 처리가 가능하게 된다. 본 발명에서 SCR층의 동작 온도는 200~600도 범위, 바람직하게는 250~500도인 것이 좋다. 온도가 높으면 촉매가 소결 및 휘발 되어 비활성화 되어 촉매 활성이 저하될 수 있다.
여기서 SNCR반응이 일어나는 연소챔버온도는 700~1100도 범위에서 운전되나 바람직하게는 750~1000도에서 운전되는 것이 좋다.
도 4는 본 발명의 제4 실시예에 따른 SCR 및 SNCR 기능을 구비한 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 4를 참조하면, 본 실시예의 장치(100)는 열교환층(130)이 산화촉매층(136)을 포함한다. 산화촉매층(136)은 열교환층과 마찬가지로 축열재와 같은 하니컴 형태의 촉매로 구성되고, VOC 및 악취 성분을 산화하여 제거하는 촉매가 코팅된 것일 수 있다. 본 발명에서 산화촉매로는 Pt, Pd 등이 담지된 귀금속 산화촉매와, Co, Cu, Mn, Mo 등 전이금속 산화촉매 및 페로브스카이트형 촉매등으로 이루어진 그룹 중에서 선택된 최소한 1종이 사용될 수 있다.
본 실시예에서 상기 장치(100)의 운전 온도는 200~1100도일 수 있다. 산화촉매층(136)은 낮은 온도에서 VOC 등을 산화시키므로 연소실 온도를 250~450도의 낮은 온도로 유지할 수 있다. 본 실시예에서 산화촉매층(136)은 SCR층(132) 하단에 위치하고 있으며, 환원제 공급부(134A)가 그 사이에 위치하고 있다. 이 경우 환원제의 분사는 공정 가스 흐름 경로 상에서 산화촉매의 후단에서 분사되는 것이 바람직하다. 왜냐하면, 산화촉매 전단에서 분사되는 경우 환원제가 곧바로 산화될 수 있기 때문이다. 이 때, SCR층(132)의 온도는 예컨대 450도, 산화촉매층(132)의 온도는 이보다 낮은 온도 예컨대 200~450도 정도로 유지될 수 있다.
한편, 도 4에서 연소 챔버에 제2 환원제 공급부(144)가 구비된 것으로 도시되어 있으나, 상기 제2 환원제 공급부(144) 없이 구현하는 것도 가능하다.
도 5는 본 발명의 제5 실시예에 따른 SCR 및 SNCR 기능을 구비한 축열식 산화 장치를 모식적으로 도시한 도면이다.
도 5는 퍼지 라인을 추가 구성한 축열식 산화 장치(100)의 구조를 모식적으로 도시한 도면이다.
도시된 바와 같이, 외부의 깨끗한 가스나 산화장치로 정화되어 배출도관으로 배출되는 가스를 퍼지공기로 사용할 수 있다. 퍼지가스를 유입하기 위해 퍼지 가스 도관(126)이 구비되어 있으며, 유입 도관(122), 유출 도관(124) 및 퍼지가스 도관(126)의 가스 흐름을 제어하는 각 밸브들(122A, 122B, 122C, 124A, 124B, 124C, 126A, 126B, 126C)이 구비되어 있다.
본 실시예에서 퍼지 라인은 온도가 높으면 퍼지 기능을 높일 수 있으며, 제3 환원제 공급부(134C)를 이용하여 환원제를 투입하는 경우, 가능한 높은 온도를 유지하여 암모니아 퍼징이 잘 되게 하는 것이 바람직하다. 본 실시예에서는 에너지 손실 최소화 할 수 있도록 축열재에 암모니아가 흡착되어 탈착될 수 있는 온도를 유지한다. 예시적으로, 퍼징되는 축열층의 온도는 50~200도 사이인 것이 바람직하다.
도시된 바와 같이, 도 5는 하향 흐름으로 퍼지하여 연소실에서 퍼지 영역으로 유입되는 고온 가스에 의해 퍼지 가스 온도를 높은 온도가 되도록 한 뒤 공정 가스 유입 도관(122)로 재투입하는 방식을 도시하고 있다. 그러나, 퍼지 가스는 외부의 공기나 정화된 공정가스를 이용하여 열교환층을 향하는 상향 흐름으로 퍼지할 수도 있음은 물론이다.
이상, 여러 실시예를 통해 열교환층을 구성하는 축열층, 촉매산화층, SCR층의 배치, 환원제 공급부의 배치를 설명하였지만, 각 실시예들에서 설명된 구조는 서로 조합될 수 있음은 물론이고, 각 실시예에서 일부 구성을 삭제한 형태로 실시할 수 있다는 것은 본 발명의 기술적 사상을 접한 통상의 기술자라면 잘 알 수 있을 것이다.
본 발명은 축열식 산화 장치에 적용 가능하다.

Claims (18)

  1. 공정 가스를 산화하기 위한 연소 챔버와 상기 상기 연소 챔버와 접하며 복수의 섹터로 구성되어 상기 공정 가스와 열교환하는 열교환층을 구비하는 축열식 연소설비에 있어서,
    상기 공정 가스는 유입부 열교환층, 연소 챔버 및 유출부 열교환층을 거쳐 유동하며,
    상기 열교환층은 다층 구조의 축열층을 구비하되,
    상기 열교환층은,
    상기 축열층들 사이에 배치되며 질소화합물을 제거하기 위한 SCR층과 상기 공정 가스의 유동 경로 상의 상기 SCR층 전단에서 환원제를 공급하는 제1 환원제 공급부를 포함하여 공정 가스 중의 질소 화합물을 선택적으로 촉매 환원하고,
    상기 연소 챔버는 질소화합물의 제거를 위한 제2 환원제 공급부를 더 포함하여 선택적 무촉매 환원을 수행하는 것을 특징으로 하는 축열식 연소 설비.
  2. 제1항에 있어서,
    상기 제1 환원제 공급부는 상기 SCR층의 상단 및 하단에 각각 구비되는 것을 특징으로 하는 축열식 연소 설비.
  3. 제1항에 있어서,
    상기 공정 가스의 유동 경로 상에서 상기 SCR층과 상기 제1 환원제 공급부 사이에 환원제의 혼합을 위한 환원제 혼합 기구를 더 포함하는 것을 특징으로 하는 축열식 연소 설비.
  4. 제3항에 있어서,
    상기 환원제 혼합 기구는 축열층인 것을 특징으로 하는 축열식 연소 설비.
  5. 제1항에 있어서,
    외부 공기나 정화된 공정가스에 의해 상기 열교환층을 퍼지하는 것을 특징으로 하는 축열식 연소 설비.
  6. 제1항에 있어서,
    상기 유입 도관으로 연결되는 퍼지 가스 도관을 포함하고,
    상기 연소 챔버의 고온 가스로 상기 열교환층을 퍼지하고 열교환 된 후 상기 유입 도관의 가스 흐름에 합류시키는 것을 특징으로 하는 축열식 연소 설비.
  7. 제1항에 있어서,
    상기 열교환층은 산화촉매층을 더 포함하는 것을 특징으로 하는 축열식 연소 설비.
  8. 제7항에 있어서,
    상기 산화촉매층은 상기 열교환층에 구비되며,
    유입부 열교환층에서는 공정 가스의 유동 경로 중 SCR층 전단에 위치하고,
    유출부 열교환층에서는 SCR층 후단에 위치하는 것을 특징으로 하는 축열식 연소 설비.
  9. 제7항에 있어서 산화촉매층이 더 포함되는 경우 연소챔버의 온도를 200~1100도로 유지하는 것을 특징으로 하는 축열식 연소 설비.
  10. 공정 가스를 산화하기 위한 연소 챔버와 상기 상기 연소 챔버와 접하며 복수의 섹터로 구성되어 상기 공정 가스와 열교환하는 열교환층을 구비하는 축열식 연소설비에 있어서,
    상기 공정 가스는 유입부 열교환층, 연소 챔버 및 유출부 열교환층을 거쳐 유동하며,
    상기 열교환층은 다층 구조의 축열층을 구비하고,
    공정 가스를 상기 축열식 연소 설비의 열교환층으로 유입하기 위한 유입 도관에 설치되는 제3 환원제 공급부를 더 포함하되,
    상기 열교환층은 상기 축열층들 사이에 배치되며 질소화합물을 제거하기 위한 SCR층을 포함하여, 상기 SCR층은 상기 제3 환원제 공급부로부터 공급된 환원제로 질소 화합물을 선택적 촉매 환원하고,
    상기 연소 챔버는 질소화합물의 제거를 위한 제2 환원제 공급부를 더 포함하여 선택적 무촉매 환원을 수행하는 것을 특징으로 하는 축열식 연소 설비.
  11. 제10항에 있어서,
    상기 제1 환원제 공급부는 상기 SCR층의 상단 및 하단에 각각 구비되는 것을 특징으로 하는 축열식 연소 설비.
  12. 제10항에 있어서,
    상기 공정 가스의 유동 경로 상에서 상기 SCR층과 상기 제1 환원제 공급부 사이에 환원제의 혼합을 위한 환원제 혼합 기구를 더 포함하는 것을 특징으로 하는 축열식 연소 설비.
  13. 제12항에 있어서,
    상기 환원제 혼합 기구는 축열층인 것을 특징으로 하는 축열식 연소 설비.
  14. 제10항에 있어서,
    외부 공기나 정화된 공정가스에 의해 상기 열교환층을 퍼지하는 것을 특징으로 하는 축열식 연소 설비.
  15. 제10항에 있어서,
    상기 유입 도관으로 연결되는 퍼지 가스 도관을 포함하고,
    상기 연소 챔버의 고온 가스로 상기 열교환층을 퍼지하고 열교환 된 후 상기 유입 도관의 가스 흐름에 합류시키는 것을 특징으로 하는 축열식 연소 설비.
  16. 제10항에 있어서,
    상기 열교환층은 산화촉매층을 더 포함하는 것을 특징으로 하는 축열식 연소 설비.
  17. 제16항에 있어서,
    상기 산화촉매층은 상기 열교환층에 구비되며,
    유입부 열교환층에서는 공정 가스의 유동 경로 중 SCR층 전단에 위치하고,
    유출부 열교환층에서는 SCR층 후단에 위치하는 것을 특징으로 하는 축열식 연소 설비.
  18. 제16항에 있어서,
    연소챔버의 온도는 200~1100도로 유지하는 것을 특징으로 하는 축열식 연소 설비.
PCT/KR2022/010332 2021-08-09 2022-07-15 선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치 WO2023018036A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280055717.9A CN117813466A (zh) 2021-08-09 2022-07-15 具有选择性催化还原和非催化还原功能的蓄热式氧化装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0104852 2021-08-09
KR1020210104852A KR102594138B1 (ko) 2021-08-09 2021-08-09 선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치
KR10-2021-0189660 2021-12-28
KR1020210189660A KR20230100081A (ko) 2021-12-28 2021-12-28 Nh3 혼합 소스를 환원제로 사용한 선택적 촉매 환원 또는/및 무촉매 환원 기능을 갖는 축열식 탈질 연소 설비

Publications (1)

Publication Number Publication Date
WO2023018036A1 true WO2023018036A1 (ko) 2023-02-16

Family

ID=85200265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010332 WO2023018036A1 (ko) 2021-08-09 2022-07-15 선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치

Country Status (1)

Country Link
WO (1) WO2023018036A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021731A (ko) * 2001-09-07 2003-03-15 주식회사 코캣 회전형 로터에 의해 풍향을 분배하는 NOx 저감 설비
US20090130011A1 (en) * 2004-09-30 2009-05-21 Babcock Power Environmental Inc. Systems and Methods for Removing Materials From Flue Gas Via Regenerative Selective Catalytic Reduction
KR20170002870A (ko) * 2015-06-30 2017-01-09 (주)기련이엔씨 축열식 선택적 촉매환원장치
KR20200145131A (ko) * 2019-06-20 2020-12-30 환경에너지솔루션 주식회사 다목적 축열 연소장치
CN112370962A (zh) * 2020-10-16 2021-02-19 山东德曦环境科技有限公司 一种SNCR或SCR脱硝与VOCs协同热解处理装置及工艺
KR102238253B1 (ko) * 2021-02-04 2021-04-09 케이씨코트렐 주식회사 고효율 에너지 절감형 NOx 및 VOC 제거설비

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021731A (ko) * 2001-09-07 2003-03-15 주식회사 코캣 회전형 로터에 의해 풍향을 분배하는 NOx 저감 설비
US20090130011A1 (en) * 2004-09-30 2009-05-21 Babcock Power Environmental Inc. Systems and Methods for Removing Materials From Flue Gas Via Regenerative Selective Catalytic Reduction
KR20170002870A (ko) * 2015-06-30 2017-01-09 (주)기련이엔씨 축열식 선택적 촉매환원장치
KR20200145131A (ko) * 2019-06-20 2020-12-30 환경에너지솔루션 주식회사 다목적 축열 연소장치
CN112370962A (zh) * 2020-10-16 2021-02-19 山东德曦环境科技有限公司 一种SNCR或SCR脱硝与VOCs协同热解处理装置及工艺
KR102238253B1 (ko) * 2021-02-04 2021-04-09 케이씨코트렐 주식회사 고효율 에너지 절감형 NOx 및 VOC 제거설비

Similar Documents

Publication Publication Date Title
KR100947067B1 (ko) 소각 및 연소로의 배기가스 복합 건식 집진 반응기
US10099174B2 (en) Process and system for the purification of waste gases charged with nitrogen oxides
KR100769667B1 (ko) 소각 및 연소로의 배기가스 일괄 처리시스템
WO2011053013A2 (ko) 환원제혼합 및 소음감쇄 구조를 갖는 배기가스 탈질시스템
JP4023906B2 (ja) 窒素酸化物を含むガスの浄化装置
KR20150145717A (ko) 배출 가스 처리 장치
WO2020091392A1 (ko) 금속 필터를 이용한 일체형 배가스 처리 장치
JP5121637B2 (ja) 脱硝触媒の再生方法、脱硝触媒の再生装置およびこれを用いた排ガス処理装置
KR100914476B1 (ko) 공해 방지형 화장로
KR100597695B1 (ko) 축열식 열회수 방식을 이용한 선택적 촉매 및 무촉매환원장치
KR200423884Y1 (ko) 소각 및 연소로의 배기가스 일괄 처리시스템
CN108452663A (zh) 固废物焚烧烟气净化处理方法
CN109316952B (zh) 一种非电领域的烟气超低排放设备及工艺
CN215388629U (zh) 用于垃圾焚烧烟气的污染物协同净化系统
WO2023018036A1 (ko) 선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치
CN108458351A (zh) 固废物焚烧烟气净化处理方法及其系统
CN109054906B (zh) 一种生物质气化燃烧及脱硝一体化系统及工艺
CN104492258B (zh) 一种二级scr催化氧化装置
WO2020141642A1 (ko) 플라즈마 및 유전가열 촉매 기반의 유해가스 처리 시스템
JP2003010641A (ja) コークス炉ガス処理における廃ガス浄化方法及び装置
KR100551881B1 (ko) 질소산화물의 선택적비촉매환원반응에 이용되는 첨가제,이를 이용한 덕트내 분사형 선택적비촉매환원 공정 및 그시스템
KR102594138B1 (ko) 선택적 촉매 환원 및 무촉매 환원 기능을 갖는 축열식 산화 장치
KR100921977B1 (ko) 화장로 연소 가스 정화장치
CN209865775U (zh) 一种活性炭固定床脱硝装置
CN210601689U (zh) 基于选择性催化脱硝催化燃烧一体化的垃圾焚烧系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE