WO2023017602A1 - プロトン伝導体及びその製造方法 - Google Patents

プロトン伝導体及びその製造方法 Download PDF

Info

Publication number
WO2023017602A1
WO2023017602A1 PCT/JP2021/029746 JP2021029746W WO2023017602A1 WO 2023017602 A1 WO2023017602 A1 WO 2023017602A1 JP 2021029746 W JP2021029746 W JP 2021029746W WO 2023017602 A1 WO2023017602 A1 WO 2023017602A1
Authority
WO
WIPO (PCT)
Prior art keywords
geo
proton conductor
lithium ions
protons
hydrogen
Prior art date
Application number
PCT/JP2021/029746
Other languages
English (en)
French (fr)
Inventor
佳巳 岡田
卓生 安西
健一 今川
浩一 江口
敏明 松井
広樹 室山
貴 小関
Original Assignee
千代田化工建設株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社, 国立大学法人京都大学 filed Critical 千代田化工建設株式会社
Priority to KR1020237020756A priority Critical patent/KR20230110567A/ko
Priority to US18/260,842 priority patent/US20240055641A1/en
Priority to PCT/JP2021/029746 priority patent/WO2023017602A1/ja
Priority to JP2023541186A priority patent/JPWO2023017602A1/ja
Priority to CN202180089839.5A priority patent/CN116711118A/zh
Priority to AU2021459856A priority patent/AU2021459856A1/en
Priority to CA3204729A priority patent/CA3204729A1/en
Priority to TW111110319A priority patent/TWI814287B/zh
Publication of WO2023017602A1 publication Critical patent/WO2023017602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a proton conductor, and more preferably to a proton conductor having sufficient proton conductivity in a medium temperature range of 200°C or higher, more preferably 300 to 600°C.
  • PEFC Polymer electrolyte fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuels Batteries
  • the operating temperature is room temperature to 100°C for polymer electrolyte fuel cells, 180 to 200°C for phosphoric acid fuel cells, 600 to 700°C for molten carbonate fuel cells, and 600 to 900°C for solid oxide fuel cells. is. However, there is no fuel cell that operates in the medium temperature range of 200-600°C.
  • Fuel cells that operate in the medium temperature range of 200 to 600°C are not only hydrogen-oxygen fuel cells, but also generate hydrogen from various fuels in the fuel electrode chamber of the fuel cell, and use the generated hydrogen by the fuel cell reaction. Suitable for direct fuel cells that generate electricity.
  • a fuel cell that operates in a medium temperature range of 200 to 600° C. can promote the fuel cell reaction compared to a fuel cell that operates in a low temperature range of 200° C. or less, so efficiency can be improved.
  • Patent Document 1 discloses a direct fuel cell.
  • organic hydrides such as methylcyclohexane and decalin are supplied as fuels to the fuel cells, and brought into contact with a noble metal catalyst fixed to the electrode of the fuel electrode for dehydrogenation.
  • Hydrogen generated at the fuel electrode transfers electrons to the fuel electrode and becomes protons.
  • Protons move in the electrolyte membrane and receive electrons from the electrode together with oxygen atoms activated at the air electrode of the counter electrode to advance the fuel cell reaction.
  • the electrolyte membrane is a membrane made of a mixture of microcrystals of cesium dihydrogen phosphate (CsH 2 PO 4 ) and polytetrafluoroethylene.
  • the direct fuel cell of Patent Document 1 has an output of 40 mW/cm 2 at an operating temperature of 170-220°C.
  • the operating temperature is generally 100°C or less, and the heat resistance of the organic film is not sufficient at 200°C or more.
  • Cesium dihydrogen phosphate is known as a solid electrolyte that can be used at 200° C. or higher.
  • the use limit temperature of cesium dihydrogen phosphate is 270° C., there is a demand for a novel proton conductor that can be used at even higher temperatures.
  • Non-Patent Document 1 discloses Li 13.9 Sr 0.1 Zn ( Li 13.9 Sr 0.1 Zn ( GeO 4 ) 4 are disclosed. Li 13.9 Sr 0.1 Zn(GeO 4 ) 4 exhibits a conductivity of 0.039 S/cm at 600° C., which is higher than that of conventional zirconia-based or ceria-based solid electrolytes. A fuel cell using Li13.9Sr0.1Zn ( GeO4 ) 4 has an output of about 0.4 W/ cm2 at an operating temperature of 600C.
  • Li 13.9 Sr 0.1 Zn(GeO 4 ) 4 improves the conductivity to 0.048 S/cm at an operating temperature of 600°C.
  • Lithium ions and protons are exchanged in water or dilute acetic acid.
  • ion exchange has been performed by stirring Li 13.9 Sr 0.1 Zn(GeO 4 ) 4 in 5 mM aqueous acetic acid for 24 hours.
  • Non-Patent Document 2 discloses a proton conductor in which Li 14-2x Zn 1+x (GeO 4 ) 4 is ion-exchanged in a 5 mM acetic acid aqueous solution to exchange lithium ions for protons.
  • ion exchange is performed on Li 14 Zn(GeO 4 ) 4 , Li 12 Zn 2 (GeO 4 ) 4 and Li 10 Zn 3 (GeO 4 ) 4 with varying Li + /Zn 2+ ratios.
  • identifying each sample and measuring the weight change during heating it was confirmed that the amount of ion-exchanged to protons is greater in samples with a higher lithium content.
  • Non-Patent Document 2 finds the possibility of obtaining the same conductivity as the proton conductor disclosed in Non-Patent Document 1 from the results of electromotive force measurement of a hydrogen concentration cell using a proton conductor. .
  • an object of the present invention is to provide a proton conductor suitable for use in the temperature range of 200-600°C.
  • Another object of the present invention is to provide a method for producing a proton conductor suitable for use in a temperature range of 200 to 600.degree.
  • one aspect of the present invention provides Li 14-2x Zn 1+x (GeO 4 ) 4 in which some of the lithium ions are replaced with protons, and has a conductivity of 0.01 S/cm or more at 300 ° C.
  • x is a number of 0 or more. x may contain decimals.
  • the structure in which some of the lithium ions of Li 14-2x Zn 1+x (GeO 4 ) 4 are substituted with protons is (Li, H) 14-2x Zn 1+x (GeO 4 ) 4 or (Li, H) 2+2y It can be written as Zn 1-y GeO 4 .
  • the x may be 0.
  • Mobile lithium ions refer to lithium ions that can move in Li 14-2x Zn 1+x (GeO 4 ) 4 among all lithium ions contained in Li 14-2x Zn 1+x (GeO 4 ) 4 .
  • the ratio of mobile lithium ions to all lithium ions in Li 14-2x Zn 1+x (GeO 4 ) 4 is (3 ⁇ x)/(14 ⁇ 2x).
  • Another aspect of the present invention is a method for producing a proton conductor, in which Li 14-2x Zn 1+x (GeO 4 ) 4 is immersed in a non-aqueous organic solution containing an acid to convert some of the lithium ions to A step of substituting protons is included.
  • x is a number of 0 or more.
  • x may contain decimals. In this aspect, the x may be 0.
  • a proton conductor that can be used in the temperature range of 200 to 600° C.
  • the ion exchange rate of mobile lithium ions contained in Li 14-2x Zn 1+x (GeO 4 ) 4 to protons can be 40% or more and 70% or less.
  • the proton conductor has improved structural stability and relatively high electrical conductivity.
  • the acid may contain at least one selected from the group including benzoic acid, m-nitrophenol, acetic acid, p-toluenesulfonic acid, oxalic acid, and methanesulfonic acid.
  • the non-aqueous solvent may contain at least one selected from the group including toluene, dimethylsulfoxide, tetrahydrofuran, and N,N-dimethylformamide.
  • the proton conductor has a structure in which part of Li in Li 14-2x Zn 1+x (GeO 4 ) 4 is replaced with protons.
  • x is a number greater than or equal to 0 and may include decimals.
  • Li 14-2x Zn 1+x (GeO 4 ) 4 is (Li, H) 14-2x Zn 1+x (GeO 4 ) 4 or (Li, H) 2+2y It can be written as Zn 1-y GeO 4 .
  • Li 14-2x Zn 1+x (GeO 4 ) 4 is a kind of LISICON (lithium superion conductor) which is a solid electrolyte. x may be 0, 1, 2, for example.
  • LISICON Lithium super ionic conductor
  • Li 14 Zn(GeO 4 ) 4 is a solid solution of Zn in the matrix structure of Li 4 GeO 4 and has high conductivity.
  • a proton conductor has a conductivity of 0.01 S/cm or more at 300°C.
  • 40% or more and 70% or less of mobile lithium ions contained in Li 14-2x Zn 1+x (GeO 4 ) 4 are replaced with protons.
  • 50% or more and 60% or less of the movable lithium ions contained in Li 14-2x Zn 1+x (GeO 4 ) 4 are preferably replaced with protons.
  • Li 14-2x Zn 1+x (GeO 4 ) 4 before ion exchange is described.
  • a method for preparing Li 14-2x Zn 1+x (GeO 4 ) 4 is also disclosed in Non-Patent Document 2 above.
  • Li 14-2x Zn 1+x (GeO 4 ) 4 can be prepared by solid phase methods. Li source, Zn source, and Ge source reagent powders are mixed overnight in an organic solvent, and after pulverization, the organic solvent is evaporated to obtain a mixture.
  • the Li source may include at least one selected from the group including LiOH, Li2O , and LiNO3 .
  • the Zn source may include at least one selected from the group including Zn(OH) 2 , ZnCO 3 and Zn(NO 3 ) 2 .
  • the Ge source may comprise at least one selected from the group comprising GeO and GeCl2 .
  • a combination of Li source, Zn source, and Ge source may be, for example, Li 2 CO 3 , ZnO, GeO 2 .
  • the organic solvent may be at least one selected from the group including ethanol, methanol, 1-propanol, 2-propanol, and 1-butanol. Thereafter, the mixture is molded into pellets using a molding machine, the molded product is sintered in air, and then pulverized into powder to obtain Li 14-2x Zn 1+x (GeO 4 ) 4 .
  • the air firing temperature of the molding is preferably 1000 to 1200°C, more preferably 1100 to 1150°C. If the firing temperature is lower than 1000°C, the solid phase reaction does not progress, and if the firing temperature is higher than 1200°C, the molding melts.
  • the firing time of the molding is preferably 3 to 7 hours, more preferably 4 to 6 hours.
  • the molding may be sintered, for example, at 1150° C. in air for 5 hours.
  • Li 14-2x Zn 1+x (GeO 4 ) 4 may be, for example, Li 14 Zn(GeO 4 ) 4 , Li 12 Zn 2 (GeO 4 ) 4 , Li 10 Zn 3 (GeO 4 ) 4 .
  • the ratio of Li to Zn in Li 14-2x Zn 1+x (GeO 4 ) 4 can be changed by changing the ratio of Li source, Zn source and Ge source to be mixed.
  • Non-aqueous solvents are preferably aprotic solvents.
  • the non-aqueous solvent may include one selected from the group including toluene, dimethylsulfoxide, tetrahydrofuran, N,N-dimethylformamide.
  • the acid preferably contains at least one selected from the group including benzoic acid, m-nitrophenol, acetic acid, p-toluenesulfonic acid, oxalic acid, and methanesulfonic acid.
  • benzoic acid Li 14-2x Zn 1+x (GeO 4 ) in 100 mL of a non-aqueous organic solution in which toluene from which water has been removed with a dehydrating agent is used as a non-aqueous solvent, and benzoic acid is dissolved to a concentration of 5 mM as a proton source. 4 is preferably stirred for 24 hours for ion exchange.
  • the ion exchange rate of mobile lithium ions contained in Li 14-2x Zn 1+x (GeO 4 ) 4 to protons was adjusted by changing the concentration of Li 14-2x Zn 1+x (GeO 4 ) 4 with respect to the solvent and the acid species. can do. It has been confirmed that when the solvent is aqueous and the acid species is acetic acid, the ion exchange rate of mobile lithium ions contained in Li 14-2x Zn 1+x (GeO 4 ) 4 to protons is 100%.
  • the proton conductor powder after ion exchange is obtained by removing the solvent.
  • the drying temperature at this time is preferably at least the boiling point of the solvent used and at most 300°C. If the temperature is lower than the boiling point, the problem of residual solvent occurs, and if the temperature is higher than 300° C., the problem of desorption of protons in the sample occurs. A powdery proton conductor is thus obtained.
  • the powdered proton conductor prepared as described above can be formed into a thin film, and can be used as an electrolyte membrane for fuel cells, electrolytic cells, solid batteries, and the like.
  • a direct fuel cell which is a type of fuel cell, supplies a substance different from hydrogen as a fuel to the fuel electrode of the fuel cell. Activate the oxygen fuel cell.
  • the chemical energy of the generated hydrogen gas is higher than that of the fuel used, so the hydrogen generation reaction from the fuel is an endothermic reaction.
  • the combustion reaction of hydrogen progresses and is converted into electrical energy and thermal energy.
  • a fuel cell using hydrogen, methylcyclohexane, ammonia, methanol, dimethyl ether, formic acid, etc. as fuel which can operate in a temperature range of 200 ° C. or higher.
  • the reaction temperature for generating hydrogen from these fuels is in the temperature range of 300 to 500° C., and a hydrogen generating catalyst suitable for each fuel should be used.
  • the hydrogen generation catalyst may be a known catalyst, an ammonia decomposition catalyst, a reforming catalyst such as methanol, dimethyl ether, or formic acid.
  • Cyclohexane which is used as a fuel in direct fuel cells, is one of the organic chemical hydride compounds expected as a hydrogen energy carrier.
  • the organic chemical hydride method is a method of "storing" and “carrying” hydrogen as an organic chemical hydride compound (hydrogenated organic compound) in which hydrogen is incorporated into the molecular structure of a chemical product through a chemical reaction.
  • hydrogen gas is reacted with toluene in a hydrogenation reactor to produce methylcyclohexane (MCH).
  • MCH methylcyclohexane
  • Toluene is a chemical that is liquid at normal temperature and normal pressure, and is a general-purpose chemical that is widely used in large quantities as a general-purpose solvent with low toxicity for paints and the like.
  • MCH is in a liquid state under normal temperature and pressure.
  • Existing chemical tankers are used for large-scale transportation of chemical products like toluene, and MCH is also used at home as a solvent for correction ink. It is an industrial agent that is used as office supplies and is a general-purpose chemical with low toxicity.
  • This MCH can be transported by sea on a large scale using large vessels such as chemical tankers.
  • Marine-transported MCH is used for power generation and chemical raw materials after being unloaded into large tanks in coastal areas. It can be transported to bases and remote islands in the same way as existing kerosene and gasoline.
  • the MCH transported to the place where hydrogen is used generates hydrogen in the dehydrogenator, and the generated hydrogen is supplied as power generation and chemical raw materials. Since the MCH after generating hydrogen in this dehydrogenation reaction returns to toluene, the toluene is transported again to the hydrogen production site and reused again as a raw material for the hydrogenation reaction.
  • the characteristics of the organic chemical hydride method and the process of completing the international hydrogen supply chain demonstration between Southeast Asia and Japan completed in 2020 and moving to the commercialization stage are described in the literature (Journal of the Gas Turbine Society, Vol.49, No. 2, p.1-6 (2021)).
  • the organic chemical hydride method has been proposed since the 1980s, but the dehydrogenation catalyst that generates hydrogen from MCH that has taken in hydrogen has an extremely short life, making it difficult to implement industrially.
  • the key to technological development was the development of a new dehydrogenation catalyst with sufficient performance such as catalyst life for industrial use.
  • development of a platinum-supported alumina catalyst with high performance has been completed, and technical improvements that contribute to cost reductions in each process of the above scheme are being implemented.
  • a hydrogen energy carrier system based on the organic chemical hydride method. is the only system whose technology has been established after all processes have been verified, and which can be put into practical use at an early stage.
  • Japan has included a policy to promote the practical application and spread of hydrogen energy as a national policy in the 4th Strategic Energy Plan after the Great East Japan Earthquake. has been decided by the Cabinet.
  • the organic chemical hydride method mentioned above is a hydrogen energy carrier that “stores” and “transports” hydrogen energy on a large scale, and its practical application is included in the basic hydrogen strategy. 30/Nm 3 , and ⁇ 20/Nm 3 for 2050. For this reason, there is a demand for cost reduction through continuous improvement technology development.
  • the 2030 target of ⁇ 30/ Nm3 is planned to be achieved through technological improvements and the diversion of existing facilities, but the 2050 target of ⁇ 20/ Nm3 is unlikely to be achieved.
  • the MCH manufacturing side is at the stage of planning various improvements and developments, such as increasing the size of tankers and using MCH after transportation. Since it can be used for fuel cells, we recognize that it is a technology that can be expected to have an extremely high cost reduction effect when used for power generation.
  • the dehydrogenation reaction of MCH is an endothermic reaction as in the case of other hydrogen generating raw materials described above, and the dehydrogenation reaction requires heat corresponding to 30% of the energy possessed by the hydrogen transported as MCH. For this reason, when hydrogen is generated by the current dehydrogenation equipment and used as power generation fuel for turbines, SOFCs, etc., the heat generated by these high-temperature power generation equipment must be used for the dehydrogenation reaction, which poses the problem of reduced power generation efficiency. In addition, since CO 2 is generated when fossil fuel is used as a heat source, there is also a problem that LCA CO 2 increases when hydrogen is used.
  • the heat generated at the counter electrode of the fuel electrode can be used for the dehydrogenation reaction of the fuel electrode .
  • the problem to be solved is also solved.
  • the hydrogen supply cost is ⁇ 30/ Nm3 in 2030
  • the purchase cost of natural gas necessary for the dehydrogenation heat source will be ⁇ 5/Nm3 or more .
  • the MCH direct fuel cell does not require a heat source, there is a cost reduction effect of ⁇ 5/Nm3 or more.
  • This catalyst is a platinum-supported alumina catalyst in which fine particles of platinum, which is an active metal, are supported on a ⁇ -alumina carrier. Compared to conventional platinum-alumina catalysts, platinum particles that are extremely small in size are supported. .
  • the proton conductor according to this embodiment can be used as a proton exchange membrane for electrolytic cells.
  • This makes it possible to provide an electrolytic cell that operates in a medium temperature range of 200 to 600°C.
  • a chloralkali electrolytic cell that operates at about 90° C. and a PEM electrolytic cell in which both electrodes are provided on both sides of a polymer electrolyte membrane for water electrolysis have been put to practical use.
  • a solid electrolyte electrolyzer (SOEC) that utilizes SOFC fuel cell cells for high-temperature electrolysis is being researched and developed.
  • SOEC solid electrolyte electrolyzer
  • the proton conductor according to the present embodiment has a high electrical conductivity at 200 to 600° C.
  • various electrolytic cells that operate in a temperature range of 200° C. or higher can be constructed by using the proton conductor as an ion exchange membrane. can do.
  • BACKGROUND ART In recent years, technological development for manufacturing various substances by an electrolysis reaction has been actively carried out.
  • the proton conductor according to this embodiment can increase the temperature of these electrolytic cells and improve efficiency.
  • the proton conductor according to this embodiment has a wide range of applications and a very large ripple effect.
  • FIG. 1 is a graph showing the conductivity of various solid electrolytes.
  • the conductivity plotted with circles indicates the conductivity of the proton conductor ((Li, H) 14 Zn(GeO 4 ) 4 ) according to this embodiment.
  • the electrical conductivity of the proton conductor according to this embodiment at 300°C is higher than that of cesium dihydrogen phosphate (CsH 2 PO 4 ) at 250°C.
  • the electrical conductivity of the proton conductor according to the present embodiment at 600° C. is higher than that of various solid electrolytes used in SOFCs.
  • Nafion ion-exchange membrane which is a type of organic polymer ion-exchange membrane used in automotive fuel cells
  • the conductivity of the proton conductor according to this embodiment at 500 to 600°C is equivalent to the conductivity of the Nafion membrane at an operating temperature of about 90°C.
  • a PEFC using a Nafion ion exchange membrane is a 100 kW class fuel cell and is small in size. SOFCs are much larger in size than PEFCs. When the proton conductor according to this embodiment is used as a solid electrolyte, the operating temperature of the current SOFC can be lowered and the size can be reduced.
  • the proton conductor according to this embodiment has a higher electrical conductivity than that of cesium dihydrogen phosphate as a solid electrolyte that operates in the temperature range of 200°C to 250°C.
  • the proton conductor according to this embodiment has high electrical conductivity even in the temperature range of 300 to 600.degree.
  • the proton conductor according to this embodiment has a conductivity equivalent to that of Nafion ion exchange membranes used in fuel cells for automobiles in a temperature range of 500° C. or higher.
  • the proton conductor according to the present embodiment can be used at a high temperature of 600° C. or higher, and the electrical conductivity at 600° C. is equivalent to that of the solid electrolytes used in existing SOFCs.
  • the proton conductor according to this embodiment moves protons instead of oxide ions, its operating temperature can be lowered to about 600.degree. As a result, the proton conductor according to this embodiment can provide a fuel cell that is more efficient and easier to handle than existing SOFCs.
  • Li 14-2x Zn 1+x (GeO 4 ) 4 is immersed in a non-aqueous organic solution containing acid and stirred to form Li 14-2x Zn 1+x (
  • the ion exchange rate of mobile lithium ions contained in GeO 4 ) 4 to protons can be 40% or more and 70% or less.
  • the proton conductor has improved structural stability and relatively high electrical conductivity.
  • Lithium carbonate was used as the Li source, zinc oxide as the Zn source, and germanium oxide as the Ge source. Lithium carbonate, zinc oxide, and germanium oxide were added in a weight ratio of 25:4:21, and the slurry was finely mixed with ethanol and zirconia balls for 24 hours in a closed vessel. , and molded into pellets in a press. The pellets were calcined in air at 1150° C. for 5 hours in an alumina crucible, pulverized in a magnetic mortar for 2 hours, molded into pellets again, and calcined in air at 1150° C. for 5 hours in an alumina crucible. The fired pellets were again pulverized in a magnet mortar for 2 hours to obtain Li 14 Zn(GeO 4 ) 4 powder before ion exchange.
  • Example 1 A 2.5 g sample of Li 14 Zn(GeO 4 ) 4 powder before ion exchange was mixed with toluene from which water was removed with a dehydrating agent as a non-aqueous solvent, and benzoic acid was added as a proton source to a concentration of 5 mM. Ion exchange was carried out in 100 ml of dissolved non-aqueous organic solution with stirring for 24 hours. After the ion exchange, the powder was collected by filtration, washed with toluene, and vacuum-dried at 130° C. overnight to obtain the ion-exchanged powder of Example 1. The ion exchange rate of mobile lithium ions to protons in the proton conductor of Example 1 was 52%.
  • Example 1 Comparison between Example 1 and Comparative Example 1
  • the conductivity of the ion exchangers of Example 1 and Comparative Example 1 was measured.
  • the measurement was performed using an electrochemical evaluation device (ModuLab, manufactured by Solartron Analytical) in a 10% humidified nitrogen atmosphere by a direct current four-terminal method and an alternating current two-terminal method.
  • the measurement results are shown in Table 1 below.
  • Example 1 had a higher electrical conductivity than Comparative Example 1.
  • Example 2 Using dimethyl sulfoxide as a non-aqueous solvent and using m-nitrophenol, acetic acid, benzoic acid, p-toluenesulfonic acid, oxalic acid, and methanesulfonic acid as proton sources, and varying the concentration in the range of 5 to 100 mM, An ion exchange operation was performed in the same manner as in 1. After that, the amount of ion exchange was confirmed by thermogravimetric analysis of the Li 14 Zn(GeO 4 ) 4 powder subjected to the ion exchange operation. As a result, the ion exchange rate was 45-65% for each proton source.
  • the proton conductive material of the present invention can be suitably used as ion-exchange membranes for various fuel cells and various electrolytic cells that operate in a medium temperature range of 200 to 600°C, which has not existed before.
  • various fuels that can generate hydrogen in the medium temperature range are directly supplied to the fuel cell as fuel for the fuel cell, and hydrogen is generated by the catalytic reaction in the cell to generate power from the fuel cell.
  • the reaction heat required for the reaction to generate hydrogen from the fuel cell can be covered by the fuel cell reaction.
  • it is possible to provide fuel cells with higher efficiency that can operate in the medium temperature range compared to low temperature types. can be realized.
  • it can be applied to medium-temperature electrolysis tanks.
  • the present invention is a basic technology relating to proton conductors used in cells such as fuel cells and electrolysis, and thus has extremely high industrial applicability.

Landscapes

  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】 200~600℃の温度域での使用に適したプロトン伝導体及びその製造方法を提供する。 【解決手段】 プロトン伝導体は、Li14-2xZn1+x(GeOのリチウムイオンの一部がプロトンに置換され、300℃において0.01S/cm以上の導電率を有する。ここでxは、0以上の数である。Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの40%以上70%以下がプロトンに置換されても良い。Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの50%以上60%以下がプロトンに置換されても良い。プロトン伝導体の製造方法は、Li14-2xZn1+x(GeOを、酸を含む非水系有機溶液に浸漬させることによって、リチウムイオンの一部をプロトンに置換させる工程を含む。

Description

プロトン伝導体及びその製造方法
 本発明は、プロトン伝導体に関し、200℃以上、より好ましく300~600℃の中温域で十分なプロトン導電率を有するプロトン伝導体に関する。
 自動車に利用されている固体高分子形燃料電池(PEFC)、定置型燃料電池として利用されているリン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC)、及び固体酸化物形燃料電池(SOFC)が実用化されている。作動温度は、固体高分子形燃料電池が常温~100℃、リン酸形燃料電池が180~200℃、溶融炭酸塩形燃料電池が600~700℃、固体酸化物形燃料電池が600~900℃である。しかし、200~600℃の中温域で作動する燃料電池は存在していない。
 200~600℃の中温域で作動する燃料電池は、水素-酸素燃料電池だけではなく、燃料電池の燃料極室内で各種の燃料から水素を発生させ、発生させた水素を使用した燃料電池反応によって発電する直接型燃料電池に適している。また、200~600℃の中温域で作動する燃料電池は、200℃以下の低温域で作動する燃料電池に比べて燃料電池反応を促進することができるため、効率を向上させることができる。
 200~600℃の中温域で作動する燃料電池が存在しない理由は、この温度域で十分なイオン導電率を有するイオン伝導体が存在しないためである。これまで、1997年に見出されたリン酸二水素セシウム(CsHPO)が最も高いプロトン伝導体として注目されている。しかし、リン酸二水素セシウムは、270℃以上では相転移が起こることから使用限界温度が270℃とされている。リン酸二水素セシウムは、通常は250℃を作動温度としており、このときの導電率σ(S/cm)は0.008程度である。そのため、中温域で作動する燃料電池の実現は、1990年代から重要な研究課題となっている。
 特許文献1は、直接型燃料電池を開示している。直接型燃料電池では、メチルシクロヘキサン及びデカリン等の有機ハイドライドを燃料として燃料電池セルに供給し、燃料極の電極に固定された貴金属触媒に接触させて脱水素反応を行う。燃料極において発生した水素は、燃料極に電子を渡してプロトンになる。プロトンは、電解質膜中を移動し、対極の空気極で活性化された酸素原子と共に電極から電子を受け取って燃料電池反応を進行させる。電解質膜は、リン酸二水素セシウム(CsHPO)の微結晶とポリテトラフルオロエチレンの混合物からなる膜である。特許文献1の直接型燃料電池は、170~220℃の作動温度で、出力が40mW/cmになる。
 しかし、有機膜である固体電解質を利用した場合の作動温度は100℃以下が一般的であり、200℃以上では有機膜の耐熱性が十分でない。リン酸二水素セシウムは、200℃以上で利用できる固体電解質として知られている。しかし、リン酸二水素セシウムの使用限界温度は270℃であるため、更に高い温度で使用できる新規なプロトン伝導体が要望されている。
 以上の要望に対して、非特許文献1は、固体電解質であるLISICONの一種であるLi14Zn(GeOのLiの一部をSrで置換したLi13.9Sr0.1Zn(GeOを開示している。Li13.9Sr0.1Zn(GeOは、600℃で0.039S/cmの導電率を示し、従来のジルコニア系材料又はセリア系材料の固体電解質よりも高い導電率を有する。また、Li13.9Sr0.1Zn(GeOを適用した燃料電池は、600℃の作動温度において、約0.4W/cmの出力を有する。また、Li13.9Sr0.1Zn(GeOにおいて移動可能なリチウムイオンをプロトンに完全に置換すると、600℃の作動温度において導電率は0.048S/cmに向上する。リチウムイオンとプロトンとの交換は、水や希薄な酢酸中で行う。例として、Li13.9Sr0.1Zn(GeOを5mMの酢酸水溶液中で24時間攪拌することによってイオン交換が行われている。
 非特許文献2は、Li14-2xZn1+x(GeOを5mM酢酸水溶液中でイオン交換処理し、リチウムイオンとプロトンとを交換したプロトン伝導体について開示している。非特許文献2では、Li/Zn2+比を変化させたLi14Zn(GeO、Li12Zn(GeO、Li10Zn(GeOに対してイオン交換を行い、各試料の同定と昇温時の重量変化測定を行うことによって、リチウム量が多い試料ほどプロトンへのイオン交換量が多いことを確認している。また、非特許文献2は、プロトン伝導体を使用した水素濃淡電池の起電力測定の結果から、非特許文献1に開示されたプロトン伝導体と同様の導電率が得られる可能性を見出している。
特開2005-166486号公報 Chem.Mater.,2017,29,1490-1495 公益社団法人電気化学会、2018年秋季大会予稿集,1B02
 しかし、200~600℃の温度域において、より高い導電率を有する新規なプロトン伝導体が望まれている。
 以上の背景に鑑み、本発明は、200~600℃の温度域での使用に適したプロトン伝導体を提供することを課題とする。また、本発明は、200~600℃の温度域での使用に適したプロトン伝導体の製造方法を提供することを課題とする。
 上記課題を解決するために本発明のある態様は、Li14-2xZn1+x(GeOのリチウムイオンの一部がプロトンに置換され、300℃において0.01S/cm以上の導電率を有するプロトン伝導体を提供する。ここでxは、0以上の数である。xは小数を含んでもよい。また、Li14-2xZn1+x(GeOは、Li2+2yZn1-yGeOと表記することができる。ここで、x=3-4yである。また、Li14-2xZn1+x(GeOのリチウムイオンの一部がプロトンに置換された構造は、(Li,H)14-2xZn1+x(GeO又は(Li,H)2+2yZn1-yGeOと表記することができる。この態様において、前記xは、0であってもよい。
 この態様によれば、200~600℃の温度域において使用することができるプロトン伝導体を提供することができる。
 上記の態様において、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの40%以上70%以下がプロトンに置換されても良い。また、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの50%以上60%以下のLiがプロトンに置換されても良い。可動リチウムイオンは、Li14-2xZn1+x(GeOに含まれる全リチウムイオンの内で、Li14-2xZn1+x(GeO内を移動することができるリチウムイオンをいう。Li14-2xZn1+x(GeOの全てのリチウムイオンに対する可動リチウムイオンの割合は(3-x)/(14-2x)である。
 本発明の他の態様は、プロトン伝導体の製造方法であって、Li14-2xZn1+x(GeOを、酸を含む非水系有機溶液に浸漬させることによって、リチウムイオンの一部をプロトンに置換させる工程を含む。ここでxは、0以上の数である。xは小数を含んでもよい。この態様において、前記xは、0であってもよい。
 この態様によれば、200~600℃の温度域において使用することができるプロトン伝導体を製造することができる。Li14-2xZn1+x(GeOを、酸を含む非水系有機溶液に浸漬させることによって、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンのプロトンへのイオン交換率を40%以上70%以下にすることができる。可動リチウムイオンのプロトンへのイオン交換率が40%以上70%以下である場合、プロトン伝導体の構造安定性が向上し、導電率が比較的高くなる。
 上記の態様において、前記酸は、安息香酸、m-ニトロフェノール、酢酸、p-トルエンスルホン酸、シュウ酸、及びメタンスルホン酸を含む群から選択される少なくとも1つを含むとよい。また、前記非水系溶媒は、トルエン、ジメチルスルホキシド、テトラヒドロフラン、N,N-ジメチルホルムアミドを含む群から選択される少なくとも1つを含むとよい。
 以上の構成によれば、200~600℃の温度域での使用に適したプロトン伝導体を提供することができる。また、200~600℃の温度域での使用に適したプロトン伝導体の製造方法を提供することができる。
固体電解質の導電率を示すグラフ
 以下に、本発明のプロトン伝導体の実施形態について説明する。プロトン伝導体は、Li14-2xZn1+x(GeOのLiの一部がプロトンに置換された構造を有する。ここで、xは0以上の数であり、小数を含んでもよい。Li14-2xZn1+x(GeOは、Li2+2yZn1-yGeOと表記することができる。ここで、x=3-4yである。また、Li14-2xZn1+x(GeOのリチウムイオンの一部がプロトンに置換された構造は、(Li,H)14-2xZn1+x(GeO又は(Li,H)2+2yZn1-yGeOと表記することができる。Li14-2xZn1+x(GeOは固体電解質であるLISICON(リチウムスーパーイオン伝導体)の一種である。xは、例えば0、1、2であるとよい。
 LISICON(Lithium super ionic conductor)は、γ-LiPO型のLiO、GeO、SiO、PO、ZnO、VOの四面体とLiOの八面体により形成される骨格構造を有する。Li14Zn(GeOは、LiGeOを母構造にZnが固溶したものであり、高い伝導性を有する。
 プロトン伝導体は、300℃において0.01S/cm以上の導電率を有する。プロトン伝導体は、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの40%以上70%以下がプロトンに置換されている。また、プロトン伝導体は、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの50%以上60%以下のLiがプロトンに置換されていることが好ましい。
 以下に、プロトン伝導体の製造方法について説明する。最初に、イオン交換前のLi14-2xZn1+x(GeOの調製方法について説明する。Li14-2xZn1+x(GeOの調製方法は、上記の非特許文献2にも開示されている。Li14-2xZn1+x(GeOは、固相法によって調製することができる。Li源、Zn源、及びGe源の試薬の粉末を有機溶媒中で一晩混合し、かつ粉砕した後に有機溶媒を蒸発させ、混合物を得る。Li源は、LiOH、LiO、及びLiNOを含む群から選択される少なくとも1つを含むと良い。Zn源は、Zn(OH)、ZnCO、及びZn(NOを含む群から選択される少なくとも1つを含むと良い。Ge源は、GeO及びGeClを含む群から選択される少なくとも1つを含むと良い。Li源、Zn源、及びGe源の組み合わせは、例えば、LiCO、ZnO、GeOであるとよい。有機溶媒は、エタノール、メタノール、1-プロパノール、2-プロパノール、及び1-ブタノールを含む群から選択される少なくとも1つであるとよい。この後、混合物を、成型機を用いてペレット状に成形し、成形物を空気中で焼成し、その後に粉砕して粉末化してLi14-2xZn1+x(GeOを得る。
 成形物の空気焼成温度は、1000~1200℃であることが好ましく、1100~1150℃であることがより好ましい。焼成温度が1000℃より低い場合には固相反応が進行しない問題が生じ、焼成温度が1200℃より高い場合には成形物が融解する問題が生じる。成形物の焼成時間は、3~7時間であることが好ましく、4~6時間であることがより好ましい。成形物は、例えば空気中1150℃で5時間焼成されるとよい。
 Li14-2xZn1+x(GeOは、例えばLi14Zn(GeO、Li12Zn(GeO、Li10Zn(GeOであるとよい。Li14-2xZn1+x(GeOにおけるLiとZnの比は、混合するLi源、Zn源、及びGe源の比によって変化させることができる。
 次に、Li14-2xZn1+x(GeOのリチウムの一部をプロトンに交換する方法について説明する。Li14-2xZn1+x(GeOの粉末試料を、酸を含む非水系溶媒中で攪拌することによって、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの一部をプロトンに置換する。非水系溶媒は、非プロトン性溶媒が好ましい。非水系溶媒は、トルエン、ジメチルスルホキシド、テトラヒドロフラン、N、N-ジメチルホルムアミドを含む群から選択される1つを含むと良い。酸は、安息香酸、m-ニトロフェノール、酢酸、p-トルエンスルホン酸、シュウ酸、及びメタンスルホン酸を含む群から選択される少なくとも1つを含むと良い。例えば、非水系溶媒として脱水剤で水分を除去したトルエンを用い、プロトン源として安息香酸を5mMの濃度となるように溶解させた非水系有機溶液100mL中でLi14-2xZn1+x(GeOを24時間攪拌してイオン交換を行うとよい。
 Li14-2xZn1+x(GeOに含まれる可動リチウムイオンのプロトンへのイオン交換率は、溶媒に対するLi14-2xZn1+x(GeOの濃度及び酸種を変更することによって調節することができる。溶媒が水系であり、酸種が酢酸である場合、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンのプロトンへのイオン交換率が100%になることが確認されている。
 イオン交換後のプロトン伝導体の粉末は、溶媒を除去することによって得られる。この際の乾燥温度は用いた溶媒の沸点以上、かつ300℃以下が好ましい。沸点より温度が低いと溶媒が残留する問題が生じ、300℃より高温だと試料中のプロトンが脱離する問題が生じる。これにより、粉末状のプロトン伝導体が得られる。
 上記のように調製した粉末状のプロトン伝導体は、薄膜状に成形することができ、燃料電池、電解槽、固体電池などの電解質膜として利用することが可能である。燃料電池の一種である直接燃料電池は、水素と異なる物質が燃料として燃料電池の燃料極に供給され、燃料極において水素発生反応により燃料から水素が生成され、発生した水素を使用して水素-酸素燃料電池を作動させる。ここで、利用する燃料に比べて発生させる水素ガスの化学エネルギーが高いことがほとんどのため、燃料からの水素発生反応は吸熱反応となる。一方、対極の水が生成する極側では水素の燃焼反応が進行して、電気エネルギーと熱エネルギーに変換される。この熱エネルギーを直接燃料電池では燃料極の吸熱反応に利用できるため、水素発生に必要なエネルギーを効率的にセル内で供給することが可能であり、水素製造工程を含めた発電までのエネルギー効率を大幅に向上できる利点がある。
 上記より、本実施形態に係るプロトン伝導体をイオン交換膜として利用することによって、200℃以上の温度域で作動する、水素、メチルシクロヘキサン、アンモニア、メタノール、ジメチルエーテル、ギ酸等を燃料とした燃料電池を構成することができる。これらの燃料から水素発生させる際の反応温度は、300~500℃の温度域であり、各燃料に応じた水素発生触媒を用いるとよい。水素発生触媒は、公知の触媒であってよく、アンモニア分解触媒、メタノール、ジメチルエーテル、又はギ酸等の改質触媒であってよい。
 直接燃料電池において、燃料として使用されるシクロヘキサンは、水素エネルギーキャリアとして期待されている有機ケミカルハイドライド化合物の1つである。有機ケミカルハイドライド法は、化学反応によって、水素を化学品の分子構造の中に取り込んだ有機ケミカルハイドライド化合物(水素化有機化合物)として「貯める」「運ぶ」を行う方法である。この方法は、水素の貯蔵工程として水素ガスを水素化反応装置でトルエンと反応させてメチルシクロヘキサン(MCH)を製造する。トルエンは常温・常圧下で液体の化学品であり、毒性が低い汎用の溶剤としてペンキ等の溶剤として大量に広く利用されている汎用化学品である。この水素化工程で水素原子はMCHの分子中に取り込まれる。MCHはトルエンと同様に常温・常圧下で液体状態であり、既存のケミカルタンカーでトルエンと同様に大規模輸送が化学品輸送として実用化されているほか、MCHは修正インクの溶剤として家庭でも使用される事務用品として利用されている工業用剤であり毒性が低い汎用化学品である。このMCHをケミカルタンカーなどの大型船舶で大規模に海上輸送することができる。
 海上輸送したMCHは発電向けや化学原料向けの場合、臨海部の大型タンクに荷揚げされて利用されるが、ケミカルローリーや鉄道貨物による陸上輸送も実用化されていることから、水素ステーションや地方の拠点、及び離島などに既存の灯油やガソリンと同様に輸送することが可能である。
 こうして、水素の利用場所に輸送されたMCHは脱水素装置で水素発生を行い、発生した水素は発電や化学原料として供給される。この脱水素反応で水素を発生させた後のMCHはトルエンに戻るので、トルエンは再び水素製造場所に輸送されて、再度、水素化反応の原料として再利用されて繰り返し利用される。有機ケミカルハイドライド法の特徴と、2020年に完了した東南アジアと日本間の国際間水素サプライチェーン実証を完了して、商業化段階に移行した経緯とが文献(ガスタービン学会誌、Vol.49、No.2、p.1-6(2021)参照)に紹介されている。
 有機ケミカルハイドライド法は、1980年代から提唱されていた方法であるが、水素を取り込んだMCHから水素を発生させる脱水素触媒の寿命が極めて短く、工業的な実施が困難であったために実用化されていない方法であり、技術開発の鍵は工業的に利用できる触媒寿命などの十分な性能を有する新規な脱水素触媒の開発であった。現在では高い性能を有する白金担持アルミナ触媒の開発が完了しているほか、上記のスキームの各工程のコストダウンに資する技術改良を実施している状況であり、有機ケミカルハイドライド法による水素エネルギーキャリアシステムは、唯一、全工程の実証が完了して技術確立されており、早期の実用化が可能なシステムである。
 一方、我が国は水素エネルギーの実用化と普及を国策として進める方針を震災後の第4次エネルギー基本計画から盛り込んでおり、水素・燃料電池技術ロードマップの策定に続いて2017年に水素基本戦略を閣議決定している。上記の有機ケミカルハイドライド法は水素エネルギーを大規模に「貯める」、「運ぶ」を行う水素エネルギーキャリアとして、水素基本戦略にその実用化が盛り込まれており、2030年までに水素供給価格目標として¥30/Nm、2050年を目標としては¥20/Nmが掲げられている。これより、継続的な改良技術開発によるコストダウンが求められている。
 これに対して、2030年の¥30/Nmの目標に対しては、技術改良や既存設備の転用などの工夫で達成する計画であるが、2050年目標の¥20/Nmの達成は更なる技術イノベーションが必要と認識しており、MCH製造側、タンカーの大型化、MCH輸送後の利用法など様々な改良開発を計画している段階であり、本発明のプロトン伝導体はMCH直接燃料電池に利用可能なことから、発電用途の際に極めて高いコストダウン効果が期待できる技術と認識している。
 MCHの脱水素反応は前述の他の水素発生原料の場合と同様に吸熱反応であり、MCHとして輸送した水素が有するエネルギーの30%に相当する熱が脱水素反応に必要である。このため、現状の脱水素装置で水素を発生させてタービンやSOFCなどの発電燃料に供する場合、これらの高温発電設備で発生する熱を脱水素反応に供する必要があり発電効率が低下する課題があると共に、熱源に化石燃料を利用する場合はCOが発生することから、水素を利用する際のLCA COが増大する課題も生じる。
 前述のように、直接燃料電池にMCHを燃料利用できると燃料極の対極で発熱した熱を燃料極の脱水素反応に利用できることから、熱源のコスト分が削減されるほか、LCA COが増大する課題も解決される。熱源に天然ガスを購入して利用した場合、水素供給コストを2030年の¥30/Nmとした場合、脱水素熱源に必要な天然ガスの購入コストは¥5/Nm以上となる。これより、MCH直接燃料電池で熱源を不要とした場合、¥5/Nm以上のコスト削減効果がある。
 MCH直接燃料電池では、燃料極の近傍で脱水素反応を行い水素発生させる必要がある。このとき、脱水素触媒が必要となるが前述の現状の技術で利用する脱水素触媒を用いることができる。この触媒は活性金属の白金を微粒子としてγーアルミナ担体に担持した白金担持アルミナ触媒であり、従来の白金アルミナ触媒に比べて白金粒子のサイズが極めて小さい白金粒子が担持されていることが特長である。
 また、本実施形態に係るプロトン伝導体は、電解槽のプロトン交換膜として利用することができる。これにより、200~600℃の中温域で作動する電解槽を提供することができる。現状では90℃程度で作動するクロルアルカリ型電解槽や、水の電気分解のための高分子電解質膜の両側に両電極を設けたPEM型電解槽が実用化されている。また、SOFC燃料電池のセルを高温電気分解に利用する固体電解質電解槽(SOEC)が研究開発されている。しかし、200~600℃の中温域で作動する電解槽は、この温度域で十分な導電率を有する導電材料がないため開発の目途が立っていない状況である。本実施形態に係るプロトン伝導体は、200~600℃において高い導電率を有するため、プロトン伝導体をイオン交換膜として利用することによって、200℃以上の温度域で作動する各種の電解槽を構成することができる。近年、様々な物質の製造を電気分解反応で行う技術開発が盛んになっている。本実施形態に係るプロトン伝導体は、これらの電解槽を高温化することができ、効率を向上させることができる。本実施形態に係るプロトン伝導体は、応用範囲が広く、波及効果が非常に大きい。
 以下に本実施形態に係るプロトン伝導体の効果について説明する。図1は、各種の固体電解質の導電率を示すグラフである。図中の星印は、リン酸二水素セシウム(CsHPO)の250℃における導電率σ(0.008S/cm)(logσ=-2.1)を示している。丸印でプロットした導電率は本実施形態に係るプロトン伝導体((Li,H)14Zn(GeO)の導電率を示している。本実施形態に係るプロトン伝導体の300℃における導電率は、250℃におけるリン酸二水素セシウム(CsHPO)の導電率より高い。また、本実施形態に係るプロトン伝導体の600℃における導電率は、SOFCで利用されている各種の固体電解質より高い。
 また、図中の右上には、自動車用燃料電池に利用されている有機ポリマーのイオン交換膜の一種であるナフィオンイオン交換膜(Nafion117)の導電率が示されている。本実施形態に係るプロトン伝導体の500~600℃における導電率は、ナフィオン膜の作動温度90℃程度における導電率と同等である。ナフィオンイオン交換膜が利用されているPEFCは100kW級の燃料電池であり、サイズが小さい。SOFCは、PEFCに比べてサイズが格段に大きい。本実施形態に係るプロトン伝導体を固体電解質として利用した場合、現在のSOFCの作動温度を低温化できると共に、サイズを小さくすることができる。
 本実施形態に係るプロトン伝導体は、200℃~250℃の温度域で作動する固体電解質として、リン酸二水素セシウムの導電率より高い導電率を有している。また、本実施形態に係るプロトン伝導体は、300~600℃の温度域においても高い導電率を有している。本実施形態に係るプロトン伝導体は、500℃以上の温度域において、自動車用燃料電池に使用されているナフィオンイオン交換膜と同等の導電率を有している。また、本実施形態に係るプロトン伝導体は600℃以上の高温でも使用することができ、600℃における導電率は既存のSOFCに使用されている固体電解質と同等である。本実施形態に係るプロトン伝導体は、酸化物イオンではなくプロトンを移動させるため、その作動温度を600℃程度に低温化できる。その結果、本実施形態に係るプロトン伝導体は、既存のSOFCよりも高効率で扱いやすい燃料電池を提供することができる。
 本実施形態に係るプロトン伝導体の製造方法では、Li14-2xZn1+x(GeOを、酸を含む非水系有機溶液に浸漬し、かつ攪拌することによって、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンのプロトンへのイオン交換率を40%以上70%以下にすることができる。可動リチウムイオンのプロトンへのイオン交換率が40%以上70%以下である場合、プロトン伝導体の構造安定性が向上し、導電率が比較的高くなる。これに対して、Li14-2xZn1+x(GeOを酢酸水溶液に溶解させた場合、Li14-2xZn1+x(GeOに含まれる可動リチウムイオンのプロトンへのイオン交換率が100%になることが確認されている。しかし、この場合のプロトン伝導体は構造安定性が低く、粉末を成型する際に副生相が生成し、それにより導電率が低くなることが確認されている。プロトン伝導体の製造時に非水系溶媒を使用した場合、水系溶媒を使用した場合に比べてイオン交換率が低下するが、構造安定性が向上するために導電率が高くなる。
 (Li14Zn(GeOの調製方法)
 Li源として炭酸リチウム、Zn源として酸化亜鉛、Ge源として酸化ゲルマニウムを用いた。炭酸リチウム、酸化亜鉛、酸化ゲルマニウムを重量比で25:4:21の比率で加え、密閉容器内でエタノールとジルコニアボールと共に24時間微細化混合したスラリーを130℃で乾燥させて得られた粉末を、プレス機でペレットに成型した。このペレットをアルミナるつぼ内で空気中1150℃、5時間焼成した後に、マグネット乳鉢で2時間粉砕し、ふたたびペレットに成型してアルミナるつぼ内で空気中1150℃、5時間焼成した。焼成後のペレットを再びマグネット乳鉢で2時間粉砕してイオン交換前のLi14Zn(GeO粉末を得た。
 (実施例1)
 イオン交換前のLi14Zn(GeO粉末の試料2.5gを、非水系溶媒として脱水剤で水分を除去したトルエンを用い、ここにプロトン源として安息香酸を5mMの濃度となるように溶解させた非水系有機溶液100ml中で、24時間攪拌してイオン交換を実施した。イオン交換後にろ過して粉末を回収して、トルエンで洗浄後に、130℃で一晩真空乾燥することによって、実施例1のイオン交換粉末を得た。実施例1のプロトン伝導体の可動リチウムイオンのプロトンへのイオン交換率は52%であった。
 (比較例1)
 イオン交換前のLi14Zn(GeO粉末を重量の40倍の5mM酢酸水溶液中、室温下で24時間攪拌してイオン交換を行い、ろ過洗浄後に130℃の真空乾燥機で乾燥を行って比較例1のイオン交換体を得た。比較例1のプロトン伝導体の可動リチウムイオンのプロトンへのイオン交換率は100%であった。
 (実施例1と比較例1との比較)
 実施例1及び比較例1のイオン交換体の導電率を測定した。測定は、電気化学評価装置(Solartron analytical社製、ModuLab)を使用して、10%加湿窒素雰囲気下で、直流四端子法及び交流二端子法で行った。測定結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1は、比較例1に比べて高い導電率を有することが確認された。
 (実施例2)
 非水系溶媒としてジメチルスルホキシドを用いプロトン源としてm-ニトロフェノール、酢酸、安息香酸、p-トルエンスルホン酸、シュウ酸,メタンスルホン酸を用いて、5~100mMの範囲で濃度を変えて、実施例1と同様の方法でイオン交換操作を行った。その後、イオン交換操作を行ったLi14Zn(GeO粉末の熱重量分析によって、イオン交換量を確認した。結果、各プロトン源に対して、イオン交換率は45~65%であった。
 (比較例2)
 非水溶媒のみで、イオン交換前のLi14Zn(GeO粉末をイオン交換した際の効果を確認した。非水溶媒としてトルエン、テトラヒドロフラン、エタノール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、炭酸プロピレンを脱水剤で処理して用い、プロトン源を用いずに比較例1と同様の方法でイオン交換操作を行った。その後、イオン交換操作を行ったLi14Zn(GeO粉末の熱重量分析によって、イオン交換量を確認した。結果、イオン交換はほとんど進まないことが確認された。
 本発明のプロトン導電材料は、これまで存在していなかった200~600℃の中温域で作動する各種の燃料電池、及び各種の電解槽のイオン交換膜として好適に利用することができる。具体的には、中温域で水素を発生できる各種燃料を燃料電池の燃料として直接に燃料電池に供給して、セル内での触媒反応によって水素を発生して燃料電池発電を行うと同時に、燃料から水素を発生させる反応に必要な反応熱を燃料電池反応で賄うことができ、熱源が不要となり燃料電池発電のコストダウンに資することができる。また、既存の水素燃料を供給する燃料電池においては、低温型に比べて中温域で作動できる効率の高い燃料電池を提供できるほか、高温型のSOFCの燃料電池が目指している中温域への低温化を実現できる。さらに中温型の電気分解槽への適用が可能である。このように本発明は燃料電池、及び電気分解などのセルに利用するプロトン伝導体に関する基本技術であるため、産業上の利用可能性は極めて高い発明である。
 以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。

Claims (9)

  1.  Li14-2xZn1+x(GeOのリチウムイオンの一部がプロトンに置換され、300℃において0.01S/cm以上の導電率を有するプロトン伝導体。
     ここでxは、0以上の数である。
  2.  前記xは、0である請求項1に記載のプロトン伝導体。
  3.  Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの40%以上70%以下がプロトンに置換されている請求項1又は2に記載のプロトン伝導体。
  4.  Li14-2xZn1+x(GeOに含まれる可動リチウムイオンの50%以上60%以下がプロトンに置換されている請求項1又は2に記載のプロトン伝導体。
  5.  Li14-2xZn1+x(GeOの全てのリチウムイオンに対する可動リチウムイオンの割合が(3-x)/(14-2x)である請求項3又は4に記載のプロトン伝導体。
  6.  プロトン伝導体の製造方法であって、
     Li14-2xZn1+x(GeOを、酸を含む非水系溶媒に浸漬させることによって、リチウムイオンの一部をプロトンに置換する工程を含むプロトン伝導体の製造方法。
     ここでxは、0以上の整数である。
  7.  前記xは、0である請求項6に記載のプロトン伝導体の製造方法。
  8.  前記酸は、安息香酸、m-ニトロフェノール、酢酸、p-トルエンスルホン酸、シュウ酸、及びメタンスルホン酸を含む群から選択される少なくとも1つを含む請求項6又は7に記載のプロトン伝導体の製造方法。
  9.  前記非水系溶媒は、トルエン、ジメチルスルホキシド、テトラヒドロフラン、N,N-ジメチルホルムアミドを含む群から選択される少なくとも1つを含む請求項6~8のいずれか1つの項に記載のプロトン伝導体の製造方法。
PCT/JP2021/029746 2021-08-12 2021-08-12 プロトン伝導体及びその製造方法 WO2023017602A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020237020756A KR20230110567A (ko) 2021-08-12 2021-08-12 양성자 전도체 및 그 제조 방법
US18/260,842 US20240055641A1 (en) 2021-08-12 2021-08-12 Proton conductor and manufacturing method thereof
PCT/JP2021/029746 WO2023017602A1 (ja) 2021-08-12 2021-08-12 プロトン伝導体及びその製造方法
JP2023541186A JPWO2023017602A1 (ja) 2021-08-12 2021-08-12
CN202180089839.5A CN116711118A (zh) 2021-08-12 2021-08-12 质子导体及其制造方法
AU2021459856A AU2021459856A1 (en) 2021-08-12 2021-08-12 Proton conductor and manufacturing method thereof
CA3204729A CA3204729A1 (en) 2021-08-12 2021-08-12 Particles object freezing device
TW111110319A TWI814287B (zh) 2021-08-12 2022-03-21 質子導體及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029746 WO2023017602A1 (ja) 2021-08-12 2021-08-12 プロトン伝導体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023017602A1 true WO2023017602A1 (ja) 2023-02-16

Family

ID=85199696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029746 WO2023017602A1 (ja) 2021-08-12 2021-08-12 プロトン伝導体及びその製造方法

Country Status (8)

Country Link
US (1) US20240055641A1 (ja)
JP (1) JPWO2023017602A1 (ja)
KR (1) KR20230110567A (ja)
CN (1) CN116711118A (ja)
AU (1) AU2021459856A1 (ja)
CA (1) CA3204729A1 (ja)
TW (1) TWI814287B (ja)
WO (1) WO2023017602A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166486A (ja) 2003-12-03 2005-06-23 Kri Inc 直接型燃料電池システム
JP2008060043A (ja) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp 導電性組成物
US20130026409A1 (en) * 2011-04-08 2013-01-31 Recapping, Inc. Composite ionic conducting electrolytes
CN109761598A (zh) * 2019-01-12 2019-05-17 杨忠华 一种陶瓷电解质的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166486A (ja) 2003-12-03 2005-06-23 Kri Inc 直接型燃料電池システム
JP2008060043A (ja) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp 導電性組成物
US20130026409A1 (en) * 2011-04-08 2013-01-31 Recapping, Inc. Composite ionic conducting electrolytes
CN109761598A (zh) * 2019-01-12 2019-05-17 杨忠华 一种陶瓷电解质的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AUTUMN MEETING PROCEEDINGS, 2018
CHEM. MATER., vol. 29, 2017, pages 1490 - 1495
JOURNAL OF THE GAS TURBINE SOCIETY, vol. 49, no. 2, 2021, pages 1 - 6

Also Published As

Publication number Publication date
TW202306902A (zh) 2023-02-16
TWI814287B (zh) 2023-09-01
CA3204729A1 (en) 2022-02-16
JPWO2023017602A1 (ja) 2023-02-16
AU2021459856A1 (en) 2023-08-17
CN116711118A (zh) 2023-09-05
KR20230110567A (ko) 2023-07-24
US20240055641A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
Lee et al. Intermediate temperature fuel cells via an ion-pair coordinated polymer electrolyte
Bae et al. Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells
AU2003247424A1 (en) Proton conductive carbon material
Bauer et al. Comparison between nafion® and a nafion® zirconium phosphate nano‐composite in fuel cell applications
JP2005294245A (ja) プロトン伝導体および燃料電池
EP2637243B1 (en) Inorganic ion conductor, method of forming the same, and fuel cell including the inorganic ion conductor
CN113372395A (zh) 主族-稀土异金属簇嵌入的锑钨酸化合物及其制备方法
CN107591539A (zh) 非水性燃料电池催化剂及其制造方法
WO2023017602A1 (ja) プロトン伝導体及びその製造方法
Matsui et al. Development of novel proton conductors consisting of solid acid/pyrophosphate composite for intermediate-temperature fuel cells
KR100524819B1 (ko) 고온용 양성자 전도성 고분자막과 이의 제조방법 및 이를이용한 막-전극 어셈블리와 이를 포함하는 연료전지
KR20140120170A (ko) 고체산화물 연료전지 금속분리판 보호막용 세라믹 분말의 제조방법 및 그 보호막
AU2021460215B9 (en) Electrochemical cell, power generation method using electrochemical cell, and method for producing hydrogen gas using electrochemical cell
Ansari et al. Silica and Sulfonated Silica Functionalized Nexar Nanocomposite Membranes for Application in Proton Exchange Membrane Fuel Cell
CN109818022B (zh) 一种电解质材料的制备方法
Grigoriev et al. A comparative evaluation of palladium and platinum nanoparticles as catalysts in proton exchange membrane electrochemical cells
CN100433413C (zh) 弱碱性聚合物膜直接醇类燃料电池
Nguyen Optimization and characterization of proton-exchange membrane fuel cells based on novel hydrocarbon ionomers
KR20230013958A (ko) 고분자 전해질막 수전해조의 촉매 제조 방법 및 고분자 전해질막 수전해조
Mohammed Zirconium Phosphate/Ionic Liquid Proton Conductors for High Temperature Fuel Cell Applications
CN112250116A (zh) 固体氧化物燃料电池阳极材料的制备方法
CN115093559A (zh) 一种自聚微孔离聚物及其制备方法和应用
Mitsushima et al. Proton conduction of RTMS-acid system
Cassir et al. Fuel Cells: A General Overview, Applications and Future Trends
Pilatowsky et al. Selected Fuel Cells for Cogeneration CHP Processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023541186

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237020756

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180089839.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18260842

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3204729

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021459856

Country of ref document: AU

Date of ref document: 20210812

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953497

Country of ref document: EP

Effective date: 20240312