WO2023015972A1 - 一种在板光互连装置及通信设备 - Google Patents

一种在板光互连装置及通信设备 Download PDF

Info

Publication number
WO2023015972A1
WO2023015972A1 PCT/CN2022/090963 CN2022090963W WO2023015972A1 WO 2023015972 A1 WO2023015972 A1 WO 2023015972A1 CN 2022090963 W CN2022090963 W CN 2022090963W WO 2023015972 A1 WO2023015972 A1 WO 2023015972A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
rigid
optical
wiring
board optical
Prior art date
Application number
PCT/CN2022/090963
Other languages
English (en)
French (fr)
Inventor
李心白
陈俊龙
朱文学
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023015972A1 publication Critical patent/WO2023015972A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the embodiments of the present application relate to the technical field of optical communication, and in particular, to an on-board optical interconnection device and communication equipment.
  • the system-side equipment includes a carrier board 110 and a chip package assembly 120 disposed on the carrier board 110.
  • the chip package assembly 120 includes a packaging substrate (not shown) and a service chip 121 provided on the packaging substrate.
  • the packaging substrate has The packaging substrate wiring (not shown) for connecting the service chip 121 and the carrier board 110 .
  • the Serializer/Deserializer is the input and output serial interface of the service chip.
  • the Optical Internetworking Forum (OIF) defines a variety of SerDes standards in terms of driving capabilities: Long range (LR), Very short range (VSR), Extreme short range (XSR) )etc.
  • the driving capabilities of LR, VSR, and XSR are from large to small, and the corresponding high-speed link power consumption is from large to small.
  • the pluggable optical module 131 and the electrical interface 132 are respectively arranged at both ends of the photonic card 130, and the photonic card 130 has a function for connecting the pluggable optical module 131 and The photonic card wiring of the electrical interface 132 (not shown in the figure), and the pluggable optical module 131 is used for coupling with the optical fiber 140 .
  • the carrier board 110 has an electrical connector 111 and a carrier board wiring (not shown in the figure), and two ends of the carrier board wiring are connected to the chip package assembly 120 and the electrical connector 111 .
  • an on-board optical module solution as shown in Figure 2 has appeared in the industry.
  • the optical module 134 is arranged on the carrier 110 and located around the chip package assembly 120.
  • This kind of optical module 134 is called an on-board optical module.
  • Modules (On-board optics, OBO) or on-board optical modules realize high-speed signal interconnection between the service chip 121 and the OBO 134 through packaging substrate wiring (not shown) and carrier board wiring (not shown).
  • the carrier board in the on-board optical module solution uses short-distance high-speed wiring to realize high-speed signal interconnection, reducing SerDes driving capability and power consumption.
  • conventional pluggable optical modules use bidirectional VSR SerDes
  • conventional OBOs can use bidirectional XSR SerDes to reduce power consumption.
  • the embodiment of the present application provides an on-board optical interconnection device and communication equipment, which solves the problem of high power consumption of high-speed links when the size of the package substrate of the existing service chip is large and the single-channel rate is high.
  • an on-board optical interconnection device including: a carrier board, a chip package assembly, and a first on-board optical module.
  • the chip package assembly includes a service chip and a package substrate, the service chip is mounted on and electrically connected to the package substrate, and the package substrate is mounted on and electrically connected to the carrier board.
  • the packaging substrate has a first wiring electrically connected to the service chip.
  • the first on-board optical module includes a rigid-flex board and a first optical device for coupling with an optical fiber.
  • the rigid-flex board includes a connected first rigid part and a first flexible part.
  • the rigid-flex board has a first rigid part and a first flexible part.
  • the second wiring extending on the flexible part, the first optical device is mounted on the first rigid part and electrically connected to the second wiring, the first flexible part is connected to the packaging substrate and the second wiring is electrically connected to the first wiring, the first rigid part Electrically connected to the carrier board.
  • the first wiring and the second wiring are connected to form a first link between the service chip and the first optical device.
  • the packaging substrate has a third wiring electrically connected to the service chip, the carrier board has a fourth wiring, and the first rigid part has a fifth wiring electrically connected to the first optical device.
  • the third wiring, the fourth wiring and the fifth wiring are sequentially connected to form a second link between the service chip and the first optical device.
  • the first link can be used to transmit high-speed signals.
  • the second link can be used for power supply and transmission of low-speed signals.
  • the chip package assembly and the first on-board optical module are arranged on the carrier board.
  • the first on-board optical module adopts a rigid-flex board and a first optical device.
  • the first The optical device is arranged on the first rigid part of the rigid-flex board, the first flexible part is connected between the packaging substrate and the first rigid part, and the first wiring of the packaging substrate and the second wiring of the rigid-flex board are connected to form a first link to realize high-speed signal transmission between the service chip and the first optical device.
  • the third wiring of the packaging substrate, the fourth wiring of the carrier board, and the fifth wiring of the rigid-flex board are connected to form a second link to realize low-speed signal transmission and power supply between the service chip and the first optical device.
  • the on-board optical interconnection device of this application uses the first wiring of the packaging substrate and the second wiring of the rigid-flex board to realize high-speed signal interconnection between the service chip and the first on-board optical module , reduce the number of fan-out signals from the package substrate to the carrier board to reduce the number of connection terminals on the package substrate, thereby reducing the area of the package substrate, shortening the wiring length of the package substrate, reducing the power consumption of high-speed links, and allowing the use of low-power XSR SerDes enable high-speed signal interconnection.
  • first on-board optical modules there are multiple first on-board optical modules, and the multiple first on-board optical modules are arranged side by side on at least one side of the packaging substrate.
  • the first link corresponding to an optical device is electrically connected to the second link.
  • a plurality of first on-board optical modules are arranged around the package substrate, so that the service chip and more first on-board optical modules can establish low-power high-speed signal interconnection to meet the large-capacity demand of the communication system.
  • multiple first on-board optical modules are arranged around the package substrate, and the multiple first on-board optical modules It is arranged adjacent to the edge of the packaging substrate, so that the same packaging substrate is connected to more first on-board optical modules, and more low-power first links are established between the service chip and the first optical device.
  • the first on-board optical module is arranged close to the packaging substrate, which can shorten the length of the second wiring on the rigid-flex board and effectively reduce the power consumption of the high-speed link.
  • the multiple first on-board optical modules arranged on one side of the packaging substrate are divided into inner on-board optical
  • the module and the outer ring are on the board optical module, and the multiple inner rings are arranged on the inner ring centered on the service chip on the first rigid part of the board optical module, and the multiple outer rings are arranged on the first rigid part of the board optical module.
  • the business chip is centered on the outer circle.
  • the multi-layer arrangement of the first on-board optical module is realized, and the size constraint of the first on-board optical module is relaxed, so that the first on-board optical module with a larger width can also be more arranged at the edge of the packaging substrate.
  • the optical modules of the inner ring and the optical modules of the outer ring are arranged alternately in sequence, and at least one of the outer rings
  • the first flexible part of the board optical module is located between the first rigid parts of two adjacent inner rings of the board optical module. Distributing the inner ring on-board optical module and the outer ring on-board optical module roughly on the same plane is convenient for arranging heat sinks for heat-generating devices such as optical devices on the on-board optical module to achieve heat dissipation.
  • the first flexible part of the optical module of at least one outer ring on the board straddles one of the inner rings on the board above the optical module.
  • a multi-layer on-board optical module is arranged on each side of the packaging substrate.
  • the on-board optical interconnection device further includes a second on-board optical module disposed adjacent to the edge of the packaging substrate, and the second on-board optical module is installed And electrically connected to the carrier board, wherein at least one second on-board optical module is located between two adjacent first on-board optical modules.
  • the second on-board optical module is a conventional on-board optical module.
  • the distance between the first flexible parts of two adjacent first on-board optical modules can be increased to facilitate the connection between the first flexible part and the packaging substrate, and realize high-speed connection between the service chip and the first on-board optical module through the first link.
  • the number of the first on-board optical module and the number of the second on-board optical module are multiple, and the multiple first
  • the second on-board optical module is arranged on the inner ring centered on the service chip, and the first rigid parts of the first on-board optical modules are arranged on the outer ring centered on the service chip.
  • the first rigid part of the first on-board optical module is arranged on the outer ring, and the second on-board optical module is arranged on the inner ring to realize high-speed signal transmission with low power consumption between the service chip and the two on-board optical modules.
  • the first on-board optical modules and the second on-board optical modules are arranged alternately in sequence, and at least one of the first The first flexible part of the on-board optical module is located between two adjacent second on-board optical modules.
  • the connection density between the first flexible part and the package substrate in the first on-board optical module is low, which facilitates the connection and assembly of the first flexible part and the package substrate, and improves engineering feasibility.
  • the board optical interconnection device further includes one or more rigid transfer boards, the rigid transfer board has a plurality of transfer wiring, and the transfer wiring The two ends of are the first connection point and the second connection point, the first connection point is located at the first end of the rigid adapter plate, and the second connection point is located at the second end of the rigid adapter plate.
  • the first wiring of the packaging substrate and the second wiring of the rigid-flex board are arranged correspondingly to the transfer wiring of the rigid interposer board.
  • the first end of the rigid transfer board is mounted on the packaging substrate, and the first connection point of the transfer wiring is electrically connected to the first wiring corresponding to the transfer wiring.
  • the first flexible part is mounted on the second end of the rigid transfer board, and the second connection point of the transfer wiring is electrically connected to the second wiring corresponding to the transfer wiring.
  • the rigid adapter board solution can be configured with more first on-board optical modules, so that the service chip can establish low-power high-speed signal interconnection with more first on-board optical modules.
  • the distance between two adjacent first connection points is smaller than that between two adjacent first connection points.
  • the spacing of the second connection point The transfer wiring of the rigid interposer board will gradually fan out the first wiring with high density and high power consumption on the packaging substrate to the second wiring with low density and low power consumption, so as to realize the establishment of business chips and more first-in-board optical modules High-speed signal interconnect.
  • the second end of the rigid adapter plate is arc-shaped or circular, and the plurality of first on-board light
  • the modules are arranged in the circumferential direction, and the first flexible parts of the plurality of first on-board optical modules extend radially around the service chip.
  • the first flexible part can be connected to the arc-shaped or circular second end of the rigid interposer board, so that the plurality of first flexible parts can be converted into a circumferential arrangement, so as to adapt to the layout of the first on-board optical module surrounding the service chip.
  • the second connection points are distributed on the same side of the rigid adapter plate , each of the first on-board optical modules has a first flexible portion, and the first flexible portions are connected to the second connection points in one-to-one correspondence.
  • each first on-board optical module has a pair of first flexible parts, and the pair of first flexible parts is connected to the pair of second connection points in a one-to-one correspondence.
  • more first flexible parts by configuring more first flexible parts, more high-speed links are established between the service chip and the same first on-board optical module.
  • the side of the first rigid part facing the carrier board and the carrier board connected by low-speed connectors.
  • the rigid-flex board and the carrier board are connected through a low-speed connector to realize the power supply and low-speed signal transmission of the first on-board optical module, and the structure is simple and the assembly is convenient.
  • the low-speed connector supports the first rigid part at a certain height from the carrier board.
  • the low-speed connector has a small docking area, and more circuit components can be placed on the lower surface of the first rigid part, making full use of the first rigid part. area.
  • the rigid-flex board further includes a The second flexible part is connected to the carrier board through a low-speed connector.
  • the electrical connection between the first rigid part and the carrier board is realized through the second flexible part and the low-speed connector.
  • the first flexible part is welded to the packaging substrate to realize the packaging substrate
  • the assembly density is higher when soldering is used.
  • the first flexible part and the packaging substrate are connected through a flexible board connector connect.
  • the flexible board connector includes a plug and a socket that can be plugged into each other. By inserting the plug into the socket, the mechanical connection between the package substrate and the first flexible part, and the electrical connection between the first wiring and the second wiring are realized.
  • the flexible board connection The device is pluggable, easy to assemble and maintain, and has good flexibility.
  • the first flexible part and the rigid adapter plate Welding between them; or, connecting the first flexible part and the rigid adapter board through a flexible board connector.
  • the electrical connection between the first wiring of the first flexible part and the transition wiring of the rigid transition board is realized.
  • the first on-board optical module further includes The relay chip is electrically connected, the relay chip is mounted on an end of the first rigid part close to the first flexible part, and the first optical device is mounted on an end of the first rigid part away from the first flexible part.
  • the relay chip is used to restore the signal received by the first optical device or the signal to be transmitted.
  • the relay chip and the first optical device are arranged close to the two ends of the first rigid part, which can reduce the area size of the first rigid part and facilitate the arrangement of more first on-board optical modules side by side in the same space.
  • the side of the first optical device facing away from the first flexible part has a first light Interface
  • the first optical interface is used for coupling with the optical fiber.
  • the optical fiber can extend away from the packaging substrate.
  • the rigid-flex board is a combination of the first rigid part and the first The flexible part is mixed and pressed.
  • the rigid-flex board is formed by connecting the first flexible part to the first rigid part. Both methods can produce a rigid-flex board with a second wiring extending on the first flexible part and the first rigid part as a part of the high-speed link between the service chip and the first optical device.
  • the packaging substrate and the carrier are connected by solder balls .
  • the packaging substrate and the carrier board are connected through a low-speed connector, which is sufficient for power supply and transmission of low-speed signals, and the use of connectors is beneficial to improve assembly reliability.
  • a second aspect provides communication equipment, including the on-board optical interconnection device as described in the first aspect to the twenty-second possible implementation manner of the first aspect.
  • the communication equipment provided by the embodiments of the present application also has all the beneficial effects brought by the technical solutions of the above embodiments because the above-mentioned board optical interconnection device is used.
  • Figure 1 is a schematic structural diagram of a conventional pluggable optical module solution
  • Figure 2 is a schematic structural diagram of a conventional on-board optical module solution
  • FIG. 3 is a schematic structural diagram of the first on-board optical interconnection device provided by the embodiment of the present application.
  • Fig. 4 is a partial side view of the on-board optical interconnection device of Fig. 3;
  • Fig. 5 is a comparison diagram of the bottom surface of the packaging substrate of the on-board optical interconnection device provided by the embodiment of the present application and the conventional on-board optical module solution;
  • FIG. 6 is a schematic structural diagram of another scheme for interconnecting chip packaging components and optical modules
  • FIG. 7 is a schematic structural diagram of a second on-board optical interconnection device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a third on-board optical interconnection device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a fourth on-board optical interconnection device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a fifth on-board optical interconnection device provided by the embodiment of the present application.
  • FIG. 11 are partial side views of FIG. 9 when different numbers of first flexible parts are provided in the board optical interconnection device.
  • the on-board optical interconnection devices provided in the following embodiments of the present application can be applied to high-speed communication systems and equipment with optical interfaces, and can be network products, such as routers, switches, transport network equipment, and optical line terminals in access networks (Optical Line Terminal, OLT), can also be wireless backhaul equipment, such as baseband processing unit (Building Base band Unit, BBU), and so on.
  • network products such as routers, switches, transport network equipment, and optical line terminals in access networks (Optical Line Terminal, OLT)
  • OLT optical Line Terminal
  • OLT optical Line Terminal
  • BBU Building Base band Unit
  • FIG. 3 is a schematic structural diagram of an on-board optical interconnection device provided by an embodiment of the present application
  • FIG. 4 is a partial side view of the on-board optical interconnection device in FIG. 3
  • the on-board optical interconnection device includes a carrier 10 and a chip package assembly 20 disposed on the carrier 10 .
  • the chip packaging assembly 20 includes a service chip 21 (Payload Integrated Circuit, Payload IC) and a packaging substrate 22.
  • the service chip 21 functions as a router, a switch and a multi-core processor.
  • the business chip 21 is placed on the package substrate 22, the bottom of the package substrate 22 has a plurality of connection terminals (I/O terminals) 23, the multiple terminals 211 of the service chip 21 and the multiple connection terminals 23 of the package substrate 22
  • the connections are realized through different wirings (not shown) of the packaging substrate 22 , and the wirings of the packaging substrate 22 may extend on the surface or inside of the packaging substrate 22 , and may also pass through the packaging substrate 22 .
  • the chip package assembly 20 with wiring of different package substrates is installed on the carrier board 10 , and the connection end 23 of the package substrate 22 is in contact with the connection point of the carrier board 10 to realize the electrical connection between the service chip 21 and the carrier board 10 .
  • a ball grid array (Ball Grid Array, BGA) package may be used between the chip package component 20 and the carrier 10, which is a form of high-density chip package.
  • a high-speed connector can be used between the chip package assembly 20 and the carrier board 10.
  • the high-speed connector includes a plug and a socket that can be inserted into each other. (receptacle connector) or high-speed pinch board connector.
  • the use of BGA packaging and high-speed connectors is beneficial to the protection and convenient use of the service chip 21 . Under the same volume, both methods can provide a large number of connection terminals 23 to realize high-speed signal transmission.
  • the on-board optical interconnection device also includes an optical module, which is used to connect the chip package assembly and the optical fiber.
  • the optical module includes an optical device for coupling with an optical fiber.
  • the optical device may include two parts, an optical transmitter and an optical receiver, which are respectively used to realize the transmission of optical signals and the reception of optical signals.
  • the process of receiving signals by the service chip is: the optical signal sent by the external device is transmitted on the optical fiber. After the optical signal enters the optical receiver, the optical receiver converts the optical signal into an electrical signal, and the optical module transmits the electrical signal to the service chip for further processing. deal with.
  • the process of sending signals from the service chip is: the service chip transmits the electrical signal to the optical module, converts the electrical signal into an optical signal through the optical transmitter, and sends the optical signal to the external device through the optical fiber.
  • an optical device may only include an optical transmitter or an optical receiver.
  • the high-speed link between the service chip 121 and the conventional OBO 134 includes packaging substrate wiring, connection terminals of the packaging substrate, carrier wiring, and connection terminals of the on-board optical module. There must be a certain distance between the adjacent wiring of the package substrate, and there must be a certain distance between the adjacent connection ends of the package substrate. Within a certain space, the number of wiring and connection terminals on the package substrate is limited.
  • the service chip In order to meet the large-capacity requirements of the communication system, the service chip will be equipped with a large number of terminals, and the fan-out signal of the service chip will increase.
  • the package substrate must be provided with more long wiring and connection terminals, and the package substrate must be made into a large size.
  • the size of the packaging substrate of the existing service chip is large and the single-channel rate is high, it will bring greater power consumption of the high-speed link, which exceeds the low-power driving capability of the XSR.
  • the size of the packaging substrate increases from about 65x65mm 2 to about 85x85mm 2 , and then to 100x100mm 2 , the area of the business chip only accounts for about half of the packaging substrate area, and the wiring power consumption of the packaging substrate (double-sided dB number) more than tripled.
  • an embodiment of the present application provides an on-board optical interconnection device , including: a carrier board 10 , a chip package assembly 20 and a first on-board optical module 30 .
  • the chip package assembly 20 includes a service chip 21 and a package substrate 22 , the service chip 21 is installed and electrically connected to the package substrate 22 , and the package substrate 22 is installed and electrically connected to the carrier board 10 .
  • the packaging substrate 22 has a first wiring (not shown) electrically connected to the service chip 21 .
  • the first on-board optical module 30 includes a rigid-flex board 31 and a first optical device 32 for coupling with an optical fiber 60.
  • the rigid-flex board 31 includes a connected first rigid part 311 and a first flexible part 312.
  • the rigid-flex board 31 has The second wiring (not shown) extending on the first rigid part 311 and the first flexible part 312, the first optical device 32 is mounted on the first rigid part 311 and electrically connected with the second wiring, and the first flexible part 312 is connected
  • the second wiring is electrically connected to the first wiring on the packaging substrate 22
  • the first rigid part 311 is electrically connected to the carrier board 10 .
  • the first wiring and the second wiring are connected to form a first link between the service chip 21 and the first optical device 32 .
  • the packaging substrate 22 has a third wiring (not shown) electrically connected to the service chip 21, the carrier board 10 has a fourth wiring (not shown), and the first rigid part 311 has a fifth wiring electrically connected to the first optical device 32. wiring (not shown).
  • the third wiring, the fourth wiring and the fifth wiring are connected in sequence to form a second link between the service chip 21 and the first optical device 32 .
  • rigid-flex board is a printed circuit board (Printed Circuit Board, PCB) and a flexible circuit board (Flexible Printed Circuit, FPC) combined circuit board.
  • the printed circuit board has a certain rigidity, which is convenient for installing some components, and the printed circuit board can be wired to connect the components to realize the circuit function.
  • the flexible circuit board can be twisted, bent and routed, and can form a three-dimensional circuit to extend to a predetermined position.
  • the carrier board 10 and the first rigid part 311 may be a printed circuit board, and the first flexible part 312 is a flexible circuit board.
  • the wiring of the same length is set on the printed circuit board and the flexible circuit board, and the high-speed power consumption generated by the flexible circuit board wiring is smaller than that generated by the printed circuit board wiring.
  • the first link can be used to transmit high-speed signals.
  • the second link can be used for power supply and transmission of low-speed signals.
  • the high-speed signal and the low-speed signal are relative concepts, and the corresponding transmission rate has no absolute limit.
  • the transmission rate of 1Gbps is taken as the limit
  • the signal with a transmission rate of less than 1Gbps is regarded as a low-speed signal
  • the signal with a transmission rate greater than or equal to 1Gbps is regarded as a high-speed signal.
  • the transmission rate of the low-speed signal may be 5 Mbps, 10 Mbps, and so on.
  • the transmission rate of the high-speed signal can be 25Gbps, 56Gbps, 112Gbps, 224Gbps, etc.
  • the on-board optical interconnection device provided in the embodiment of the present application arranges the chip package assembly 20 and the first on-board optical module 30 on the carrier 10, and the first on-board optical module 30 adopts a rigid-flex board 31 and a first optical device 32, the first optical device 32 is arranged on the first rigid part 311 of the rigid-flex board 31, the first flexible part 312 is connected between the packaging substrate 22 and the first rigid part 311, the first wiring of the packaging substrate 22, The second wiring connection of the rigid-flex board 31 forms a first link to realize high-speed signal transmission between the service chip 21 and the first optical device 32 .
  • the third wiring of the packaging substrate 22, the fourth wiring of the carrier board 10, and the fifth wiring of the rigid-flex board 31 are connected to form a second link to realize low-speed signal transmission and power supply between the service chip 21 and the first optical device 32 .
  • the on-board optical interconnection device of this application uses the first wiring of the packaging substrate 22 and the second wiring of the rigid-flex board 31 to realize the connection between the service chip 21 and the first on-board optical module 30 High-speed signal interconnection, reducing the number of fan-out signals from the packaging substrate 22 to the carrier board 10 to reduce the number of connection terminals 23 of the packaging substrate 22, thereby reducing the area of the packaging substrate 22, shortening the wiring length of the packaging substrate 22, and reducing the high-speed chain. way power consumption, allowing the use of low-power XSR SerDes for high-speed signal interconnection.
  • the packaging substrates of the conventional OBO solution and the solution of this application are both packaged in BGA.
  • the high-speed link between the service chip and the on-board optical module includes the packaging substrate wiring, the connection end of the packaging substrate, the carrier board wiring, and the connection end of the on-board optical module.
  • a plurality of first on-board optical modules 30 are arranged around the chip package assembly 20 to realize high-speed signal interconnection through respective first links.
  • FIG. 5 is a comparison diagram of the bottom surface of the packaging substrate of the on-board optical interconnection device provided in the embodiment of the present application and the conventional on-board optical module solution.
  • the outer circle is the size of the package substrate 22 ′ of the conventional OBO solution
  • the inner circle is the size of the package substrate 22 of the solution of the present application.
  • the connection terminal 23 ′ between the outer ring and the inner ring includes high-speed signal and ground (Ground) pins
  • the connection terminal 23 in the inner ring includes power signal, ground and other pins.
  • this application scheme omits the BGA solder balls corresponding to 512 high-speed signals (the connection end 23' between the outer ring and the inner ring), and the package substrate
  • the size of the outer ring can be reduced from 100*100mm 2 to 80*80mm 2 in the inner ring, and the area is reduced by 36%.
  • the total high-speed power consumption of the conventional OBO solution is about 24dB.
  • the total power consumption of the package substrate wiring and the carrier board wiring is about 17dB
  • the total power consumption of the package substrate connection terminal and the OBO connection terminal is 7dB.
  • the total high-speed power consumption of this application scheme is about 12-15dB.
  • the package substrate size can be reduced so that the package substrate wiring can be shortened.
  • the package substrate wiring power consumption of this application solution is about 30% lower than that of the conventional OBO solution.
  • One; the high-speed connection terminal on the package substrate and the OBO side is omitted, which significantly saves about 6dB of high-speed power consumption.
  • the solution of this application achieves smaller high-speed power consumption, allowing the use of low-power XSR SerDes to realize high-speed signal interconnection.
  • high-speed connectors are used between the packaging substrate and the carrier board of the conventional OBO solution.
  • the packaging substrate and the carrier board of the application scheme are connected by low-speed connectors, and high-speed signal interconnection is realized through the first link, which can also reduce the area size of the packaging substrate, shorten the wiring length of the packaging substrate, and save the packaging substrate and
  • the high-speed connection terminals on the OBO side can save high-speed power consumption and allow the use of low-power XSR SerDes to realize high-speed signal interconnection.
  • the low-speed connector includes a plug and a socket that can be plugged into each other. After the plug and the socket are connected, the electrical connection between the two is realized.
  • the low-speed connector only needs to meet the power supply and transmit low-speed signals.
  • FIG. 6 is a schematic structural diagram of another interconnection scheme between a chip package component and an optical module. Taking the chip package assembly and optical module interconnection scheme shown in Figure 6 as a comparative example, comparing the comparative example with the on-board optical interconnection device of the embodiment of the present application, it can be seen that the high-speed power consumption of the present application scheme is smaller , demonstrating the superiority of the scheme of this application.
  • the chip package assembly 120 includes a service chip 121 and a package substrate 122 , the service chip 121 is mounted on the package substrate 122 , and a ball grid array package is used between the package substrate 122 and the carrier 110 .
  • the optical module 134 includes a first substrate 1341 and an optical device (not shown) disposed on the first substrate 1341 , and a ball grid array package is used between the first substrate 1341 and the carrier 110 .
  • a flexible cable 150 is arranged between the packaging substrate 122 and the first substrate 1341, and the two ends 151 of the flexible cable 150 can be connected to the corresponding substrates by means of connectors or welding, so that the packaging substrate 122, the flexible cable 150 and the second A substrate 1341 is electrically connected to realize high-speed signal transmission between the service chip 121 on the packaging substrate 122 and the optical module 134 .
  • the end 151 of the flexible cable 150 is connected to the first substrate 1341 by means of connectors or soldering, the assembly process is time-consuming and troublesome, and a certain amount of high-speed link power consumption will be generated when transmitting high-speed signals through connectors or soldering points .
  • the rigid-flex board 31 provided with the first optical device 32 is prefabricated, and the rigid-flex board 31 has a second rigid part 311 and a first flexible part 312 extending on it. Wiring, when connecting the chip package assembly 20 and the first on-board optical module 30, one end 312a of the first flexible part 312 is connected to the packaging substrate 22, and the first wiring of the packaging substrate 22 and the second wiring of the rigid-flex board 31 are electrically connected. The connection forms a first link, which can realize high-speed signal transmission between the service chip 21 and the first optical device 32 .
  • connection steps of the first rigid part 311 and the first flexible part 312 are reduced in the scheme of this application, the assembly process is more convenient and faster, and the influence of connectors or soldering points on the power consumption of high-speed signal transmission is reduced.
  • the high-speed link power consumption generated when transmitting high-speed signals is smaller, which is conducive to the use of low-power XSR SerDes to realize high-speed signal interconnection.
  • the service chip 21 needs to fan out more signals, and the area of the package substrate 22 should be made larger than the area of the service chip 21, so as to facilitate the packaging on the package substrate.
  • Wiring and connection terminals are provided on 22 .
  • the service chip 21 can be arranged in the middle of the upper surface of the packaging substrate 22 , so as to facilitate uniform arrangement of wiring and connection terminals on the packaging substrate 22 .
  • a ring frame 24 can be set on the packaging substrate 22, and the ring frame 24 is arranged around the service chip 21.
  • a radiator (not shown) for dissipating heat from the service chip 21 is installed on the ring frame 24, such as a heat conducting plate, a heat sink, etc. chip or thermoelectric cooling device.
  • the first implementation of the rigid-flex board is: the rigid-flex board 31 is formed by mixing the first rigid part 311 and the first flexible part 312 .
  • the second implementation of the rigid-flex board is: the rigid-flex board 31 is formed by first forming the first rigid part 311 , and then connecting the first flexible part 312 to the first rigid part 311 . Both methods can produce the rigid-flex board 31 with the second wiring, and the second wiring extends on the first flexible part 312 and the first rigid part 311, as a high-speed link between the service chip 21 and the first optical device 32. part.
  • the first rigid part 311 is used for installing optical devices and other components, and may be arranged in a rectangular or other shape.
  • the first flexible part 312 is used to connect the first rigid part 311 and the packaging substrate 22 , and can be arranged in a strip shape or a strip shape or other shapes. The smaller the width dimension of the first flexible part 312 and the first rigid part 311 is, the more favorable it is to arrange more first on-board optical modules 30 side by side on the package substrate 22 .
  • the first rigid portion 311 of the first on-board optical module 30 is arranged close to the packaging substrate 22 to shorten the length of the second wiring.
  • the first implementation is BGA packaging: referring to FIG. 4 , the packaging substrate 22 and the carrier 10 are connected by solder balls.
  • the second implementation method is the connector: the package substrate and the carrier board are connected through a low-speed connector (not shown in the figure).
  • the low-speed connector is enough to meet the power supply and transmit low-speed signals.
  • the use of connectors is beneficial to improve the reliability of assembly.
  • the low-speed connector may be a low-speed socket connector or other types of low-speed connectors.
  • the first way to realize the connection between the first flexible part and the package substrate is: referring to Fig. 3 and Fig. 4, welding between the first flexible part 312 and the package substrate 22 can be performed by thermocompression welding, laser welding and other welding methods.
  • the first flexible part 312 extends in a strip shape, and the end 312a of the first flexible part 312 away from the first rigid part 311 is welded to the upper surface of the package substrate 22 to realize the mechanical connection between the package substrate 22 and the first flexible part 312 , and the electrical connection between the first wiring and the second wiring, the assembly density is higher when soldering is used for connection.
  • the second implementation manner of connecting the first flexible part to the package substrate is: connecting the first flexible part to the package substrate through a flexible board connector (not shown in the figure).
  • the flexible board connector includes a plug and a socket that can be plugged into each other.
  • One of the components of the plug and the socket is set on the first flexible part, and the other component is set on the packaging substrate.
  • the packaging is realized.
  • the mechanical connection between the substrate and the first flexible part, and the electrical connection between the first wiring and the second wiring, the flexible board connector is pluggable, convenient for assembly and maintenance, and has good flexibility.
  • the first way to realize the electrical connection between the rigid-flex board and the carrier board is: referring to FIG. 4 , the side of the first rigid part 311 facing the carrier board 10 is connected to the carrier board 10 through a low-speed connector 33 .
  • the rigid-flex board 31 and the carrier board 10 are connected through the low-speed connector 33 to realize power supply and low-speed signal transmission for the first on-board optical module 30 , with a simple structure and convenient assembly.
  • the mating area of the high-speed connector will be larger than that of the low-speed connector due to the larger pin pitch of the high-speed connector and the fact that the high-speed connector contains more parts.
  • a high-speed connector is used to connect the conventional OBO and the carrier board 10 .
  • the high-speed connector has a larger docking area, and the bottom area of the conventional OBO is also relatively large.
  • the high-speed connector basically occupies the bottom area of the conventional OBO.
  • the first on-board optical module 30 of the embodiment of the present application uses a low-speed connector 33 to connect to the carrier board 10, which is enough to meet low-speed signal transmission and power supply.
  • the docking area of the low-speed connector 33 is small, and the area of the first rigid part 311 Can be made smaller.
  • the area of the first rigid part 311 of the first on-board optical module 30 of the present application can be reduced by about 50%.
  • the low-speed connector 33 supports the first rigid part 311 at a certain height from the carrier board 10, and the low-speed connector 33 has a small docking area, and more circuit components can be placed on the lower surface of the first rigid part 311. The area of the first rigid portion 311 is fully utilized.
  • the rigid-flex board also includes a second flexible part (not shown) electrically connected to the first rigid board, and the second flexible part and the carrier board are connected by a low-speed connector connection.
  • the electrical connection between the first rigid part and the carrier board is realized through the second flexible part and the low-speed connector.
  • the second flexible part is a flexible circuit board.
  • the first flexible part and the second flexible part are respectively provided at two ends of the first rigid part, and the end of the second flexible part away from the first rigid part is connected to the carrier board through a low-speed connector.
  • the first flexible part and the second flexible part can also be arranged on the first rigid part in other ways.
  • the first on-board optical module 30 further includes a relay chip 34 electrically connected to the first optical device 32 , and the relay chip 34 is mounted on the first rigid part 311 close to the first flexible part 312
  • the first optical device 32 is mounted on the end of the first rigid part 311 away from the first flexible part 312 .
  • the relay chip 34 is used to recover the signal received by the first optical device 32 or the signal to be transmitted.
  • a clock data recovery (Clock and Data Recovery, CDR) chip or an optical digital signal processing (Optical Digital Signal Processing, ODSP) chip can be selected. )chip.
  • the relay chip 34 and the first optical device 32 are arranged close to both ends of the first rigid part 311 respectively, which can reduce the area size of the first rigid part 311 and facilitate the arrangement of more first on-board optical modules 30 side by side in the same space.
  • the first optical device 32 is disposed at a position where the first rigid part 311 is away from the first flexible part 312 , which facilitates the arrangement and connection of the optical fiber 60 and the first optical device 32 .
  • the first on-board optical module 30 further includes an amplifier chip (not shown) electrically connected to the first optical device 32 , and the amplifier chip is disposed on the first rigid part 311 .
  • the amplifying circuit chip is used to amplify the signal passing through the relay chip 34, and specifically, an amplifier (Driver) and a transimpedance amplifier (Trans-impedance Amplifier, TIA) can be selected.
  • FIG. 321 in order to facilitate the arrangement of different first optical devices 32 and optical fibers 60, referring to FIG. 321 is used for coupling with the optical fiber 60 .
  • the first optical interface 321 is located at a position where the first optical device 32 faces away from the first flexible board.
  • the optical fiber 60 can extend away from the packaging substrate 22 .
  • FIG. 3 when multiple first on-board optical modules 30 are arranged around the package substrate 22, multiple optical fibers 60 in different orientations are connected to the first optical interfaces 321 of the corresponding first on-board optical modules 30 to realize different first on-board optical modules 30.
  • An arrangement of on-board optical modules 30 and optical fibers 60 are examples of on-board optical modules 30 and optical fibers 60 .
  • the first on-board optical module 30 further includes a housing (not shown in the figure), and the housing covers the first optical device on the first rigid part 311 32.
  • the casing can be made of heat-conducting metal materials.
  • FIG. at least one side.
  • a plurality of first on-board optical modules 30 are arranged around the packaging substrate 22, so that the service chip 21 and more first on-board optical modules 30 can establish low-power high-speed signal interconnection to meet the large-capacity demand of the communication system.
  • the packaging substrate 22 is generally rectangular, and a plurality of first on-board optical modules 30 can be arranged along one or more sides of the packaging substrate 22, so that more first on-board optical modules 30 can be arranged in the same plane.
  • the carrier board 10 is a router cluster network board, and a plurality of chip package assemblies 20 are arranged on the carrier board 10, and on one side of each chip package assembly 20
  • Multiple first on-board optical modules 30 are arranged to realize high-speed signal interconnection between each service chip 21 and corresponding first on-board optical modules 30 .
  • a high-speed link is also provided between the chip package assembly 20 and the backplane connector (not shown in the figure) to realize high-speed signal interconnection.
  • three chip package assemblies 20 are arranged on the carrier board 10
  • eight first on-board optical modules 30 are arranged on one side of each package substrate 22 .
  • the number of first on-board optical modules 30 arranged on one side of the packaging substrate 22 may be four or other.
  • first on-board optical modules 30 When arranging multiple first on-board optical modules 30, referring to FIG. connection, establish more first links with low power consumption between the service chip 21 and the first optical device 32, and realize more high-speed signal interconnections.
  • a plurality of first on-board optical modules 30 are arranged adjacent to the edge of the packaging substrate 22, that is, the first on-board optical modules 30 are arranged close to the packaging substrate 22, which can shorten the length of the second wiring on the rigid-flex board 31 and effectively reduce the high-speed Link power consumption.
  • the carrier board 10 is a single board of a switch, and a chip package assembly 20 is arranged on the carrier board 10 .
  • a first on-board optical module 30, the first flexible part 312 of each first on-board optical module 30 is connected to the edge of the packaging substrate 22, realizing high-speed signal interconnection between the service chip 21 and the first on-board optical module 30 .
  • eight first on-board optical modules 30 are arranged on each side of the packaging substrate 22 , and the number can be set as required.
  • a first on-board optical module 30 in order to arrange a first on-board optical module 30 with a larger width on one side of the packaging substrate 22, a plurality of first on-board optical modules 30 arranged on one side of the packaging substrate 22 Divided into the inner ring on-board optical module 30a and the outer ring on-board optical module 30b, the first rigid part 311 of multiple inner rings on-board optical module 30a is arranged on the inner ring centered on the service chip 21, and the multiple outer rings The first rigid part 311 of the on-board optical module 30b is arranged on the outer circle centered on the service chip 21 .
  • the inner and outer rings here can be rectangular or circular.
  • the first rigid part 311b of the board optical module 30a is distributed at different distances from the edge of the package substrate 22, and the flexibility and flexibility of the first flexible part are used to realize the connection between different first flexible parts 312a, 312b and the package substrate 22, realizing
  • the multi-layer arrangement of the first on-board optical module 30 relaxes the size constraint of the first on-board optical module 30, so that the first on-board optical module 30 with a larger width can also be more arranged at the edge of the packaging substrate 22 , the service chip 21 also meets the low-power XSR SerDes drive capability.
  • the first realization of the multi-layer arrangement of the first on-board optical modules 30 is as follows: Referring to FIG. The first flexible portion 312b of the optical module 30b is located between the first rigid portions 311a of the two adjacent inner rings of the optical module 30a. This solution can roughly distribute the inner ring on-board optical module 30a and the outer ring on-board optical module 30b on the same plane, which is convenient for arranging heat sinks for heat-generating devices such as optical devices on the on-board optical module to achieve heat dissipation.
  • first on-board optical modules 30 are disposed on each side of the packaging substrate 22, and the outer on-board optical modules 30b pass through the first flexible portion 312b.
  • Eight first on-board optical modules 30 are arranged on the same side of the packaging substrate 22 through the gap between the first rigid parts 311a of the adjacent inner rings of the on-board optical modules 30a.
  • the number of first on-board optical modules 30 disposed on the same side of the packaging substrate 22 is set as required.
  • the second realization of the multi-layer arrangement of the first on-board optical module is: at least one outer ring of the first flexible part of the on-board optical module straddles one of the inner rings above the on-board optical module.
  • This solution can arrange multi-layer on-board optical modules on each side of the packaging substrate.
  • the first flexible part of the outer ring on-board optical module is made longer, so that the outer ring on-board optical module can cross the heat sink on the inner ring on the on-board optical module to realize the heat dissipation of the first on-board optical module.
  • eight inner ring on-board optical modules and eight outer ring on-board optical modules are arranged on the same side of the package substrate, and the eight outer ring on-board optical modules span the first flexible part one by one.
  • Sixteen on-board optical modules are arranged in the inner ring above the on-board optical module, that is, on the same side of the packaging substrate. The number of on-board optical modules configured on the same side of the packaging substrate can be set as required.
  • more than three first on-board optical modules 30 may be arranged around the package substrate 22 to realize high-speed signal interconnection between more first on-board optical modules 30 and service chips 21 .
  • the on-board optical The interconnection device in order to reduce the connection density between the first flexible part 312 and the packaging substrate 22 in the first on-board optical module 30 so as to facilitate the connection between the first flexible part 312 and the packaging substrate 22 , the on-board optical The interconnection device also includes a second on-board optical module 40 disposed adjacent to the edge of the packaging substrate 22, the second on-board optical module 40 is installed and electrically connected to the carrier board 10, wherein at least one second on-board optical module 40 is located Between two adjacent first board optical modules 30 .
  • the second on-board optical module 40 is a conventional on-board optical module, which includes a printed circuit board (not shown) and a second optical device (not shown) disposed on the printed circuit board. Compared with the first rigid part 311 of the first on-board optical module 30 , the printed circuit board of the conventional on-board optical module has more wiring and connection terminals, so the area of the conventional on-board optical module is larger.
  • the third link includes package substrate wiring, carrier board wiring and printed circuit board wiring of the second on-board optical module 40, and the third link can be used for high-speed signal and low-speed signal transmission between the service chip 21 and the second optical device.
  • the second on-board optical module 40 is disposed close to the edge of the package substrate 22 , which can shorten the wiring length of the carrier 10 to reduce the power consumption of signal transmission.
  • the second on-board optical module 40 is arranged between two adjacent first on-board optical modules 30, and the area of the printed circuit board of the second on-board optical module 40 is smaller than that of the first rigid part 311 of the first on-board optical module 30.
  • the area is larger, so that the distance between the first flexible parts 312 of two adjacent first on-board optical modules 30 can be enlarged, which facilitates the connection between the first flexible part 312 and the packaging substrate 22, and realizes the service chip 21 through the first link.
  • the second on-board optical module 40 and the carrier board 10 can be connected through a BGA package or a high-speed connector, and the package substrate 22 and the carrier board 10 can be connected through a BGA package or a high-speed connector. device connection.
  • a high-speed socket connector socketet connector
  • the side of the second optical device facing away from the packaging substrate 22 has a second optical interface 41 coupled with the optical fiber 60, so that the optical fibers 60 corresponding to different second on-board optical modules 40 are arranged around the packaging substrate 22 from different directions.
  • first on-board optical modules 30 and second on-board optical modules 40 when there are multiple first on-board optical modules 30 and second on-board optical modules 40, multiple second on-board optical modules 40 are arranged on the inner circle centered on the service chip 21 , the first rigid parts 311 of the plurality of first on-board optical modules 30 are arranged on the outer circle centered on the service chip 21 .
  • the service chip 21 is electrically connected to each second on-board optical module 40 through a third link corresponding to the second on-board optical module 40 .
  • the inner and outer rings here can be rectangular or circular.
  • the high-speed link between the service chip 21 and the first on-board optical module 30 consumes less power.
  • the first flexible part 312 of the first on-board optical module 30 is set in a strip shape, and the The first rigid part 311 is arranged on the outer ring, and the second on-board optical module 40 is arranged on the inner ring to realize high-speed signal transmission with low power consumption between the service chip 21 and the two on-board optical modules.
  • the first on-board optical module 30 and the second on-board optical module When arranging the first on-board optical module and the second on-board optical module, referring to FIG. 9, the first on-board optical module 30 and the second on-board optical module The first flexible part 312 of the module 30 is located between two adjacent second on-board optical modules 40 .
  • the connection density between the first flexible portion 312 in the first on-board optical module 30 and the packaging substrate 22 is relatively high.
  • the first on-board optical module 30 and the second on-board optical module 40 are alternately arranged around the packaging substrate 22 shown in FIG. It is relatively low, which facilitates the connection and assembly of the first flexible part 312 and the package substrate 22 , and improves engineering feasibility.
  • This solution can roughly distribute the first on-board optical module 30 and the second on-board optical module 40 on the same plane, which is convenient for arranging heat sinks for heat-generating devices such as optical devices on the on-board optical module to achieve heat dissipation.
  • first on-board optical modules 30 and four second on-board optical modules 40 are arranged on each side of the packaging substrate 22, and the four second on-board optical modules 40 are close to the side of the packaging substrate 22.
  • the edges are arranged at intervals, and the first flexible part 312 of the first on-board optical module 30 passes through the gap between the adjacent second on-board optical modules 40 .
  • One first on-board optical module 30 is respectively arranged at four corners of the packaging substrate 22 and the first flexible portion 312 is connected to the corners of the packaging substrate 22 .
  • the number of the first on-board optical modules 30 and the second on-board optical modules 40 arranged on the same side of the packaging substrate 22 is set as required.
  • the on-board optical interconnection device in order to enable the service chip 21 and more first on-board optical modules 30 to establish high-speed signal interconnection, also includes one or more A rigid transfer board 50, the rigid transfer board 50 is a printed circuit board, the rigid transfer board 50 has a plurality of transfer wiring (not shown), the two ends of the transfer wiring are the first connection point 51 and the second The connection points 52 , the first connection point 51 is located at the first end 50 a of the rigid adapter plate 50 , and the second connection point 52 is located at the second end 50 b of the rigid adapter plate 50 .
  • the first wiring of the packaging substrate 22 and the second wiring of the rigid-flex board 312 are arranged correspondingly to the transition wiring of the rigid interposer 50 .
  • the first end 50a of the rigid interposer 50 is installed on the packaging substrate 22, and the first connection point 51 of the interposer wiring is electrically connected to the first wiring corresponding to the interposer wiring.
  • the first flexible part 312 is mounted on the second end 50b of the rigid transfer board 50, and the second connection point 52 of the transfer wiring is electrically connected to the second wiring corresponding to the transfer wiring.
  • a rigid adapter board 50 is arranged around the packaging substrate 22, and the first flexible parts 312 of different first on-board optical modules 30 are connected to the packaging substrate 22 through the rigid adapter board 50, so as to realize the first wiring of the packaging substrate 22,
  • the transfer wiring of the rigid interposer 50 and the second wiring of the rigid-flex board 31 are sequentially connected to form a first link for high-speed signal interconnection between the service chip 21 and the first optical device 32 .
  • the packaging substrate 22 and the first flexible part 312 are directly connected, the perimeter of the packaging substrate 22 is limited, and it is difficult to arrange more first on-board optical modules 30 around the packaging substrate 22 .
  • a rigid interposer 50 is provided between the packaging substrate 22 and the first on-board optical module 30 as shown in FIG.
  • the solution of the rigid interposer 50 can be configured with more first on-board optical modules 30, so that the service chip 21 can establish low-power high-speed signal interconnection with more first on-board optical modules 30.
  • first connection points 51 When setting the first connection points 51 of the rigid adapter plate 50 , a plurality of first connection points 51 are arranged at intervals on the first end 50 a of the rigid adapter plate 50 .
  • the first connection points 51 may be arranged in an array, so as to facilitate connection with solder points arranged in an array on the packaging substrate 22 .
  • the rigid interposer 50 is soldered to the upper surface of the package substrate 22 to electrically connect the first connection points 51 of different interposer lines and the first lines corresponding to the interposer lines.
  • the inner circle of the rigid joint plate is used as the first end 50a and the outer circle is used as the second end 50b, the inner circle of the rigid joint plate is round or square, and the outer circle is round or square .
  • the inner ring area of the rigid interposer 50 is connected to the packaging substrate 22, and the first flexible parts 312 of the first on-board optical modules 30 are circumferentially arranged on the outer area of the rigid interposer 50 .
  • each rigid adapter plate 50 extends in an arc shape, and the first end 50a of the rigid adapter plate 50 is connected to the packaging substrate 22, and the plurality of rigid adapter plates 50 extend along the circumferential direction Arranged so as to flexibly cover the packaging substrate 22 and reduce the tolerance requirements of the rigid interposer 50 and the packaging substrate 22 .
  • four rigid interposers 50 are arranged on the package substrate 22, and eight first first flexible portion 312 .
  • the number of rigid adapter plates 50 and the number of first flexible parts 312 on each rigid adapter plate 50 are set as required.
  • the distance between two adjacent first connection points 51 is smaller than the distance between two adjacent second connection points.
  • Point 52 spacing The density of the first connection point 51 between the rigid interposer 50 and the packaging substrate 22 is relatively high, and the density of the second connection point 52 between the first flexible part 312 and the rigid interposer 50 is relatively low.
  • the transfer wiring gradually fans out the first wiring with high density and high power consumption on the packaging substrate 22 to the second wiring with low density and low power consumption, so as to realize the establishment of high-speed signals between the service chip 21 and more first on-board optical modules 30 interconnection.
  • a plurality of second connection points 52 may be arranged on the upper surface or the lower surface of the rigid adapter plate 50 .
  • the second end 50b of the rigid adapter plate 50 is arc-shaped or circular, and a plurality of first on-board optical modules 30 are arranged along the circumferential direction.
  • the first flexible portion 312 of the first on-board optical module 30 extends radially around the service chip 21 .
  • a rectangular arrangement is adopted for arranging more first on-board optical modules 30 .
  • the first flexible portion 312 can be connected to the arc-shaped or circular second end 50b of the rigid adapter plate 50, so that a plurality of first flexible portions 312 are converted into a circumferential row so as to adapt to the layout of the first on-board optical module 30 surrounding the service chip 21.
  • the first way to realize the assembly of the first flexible part and the rigid adapter plate is: referring to (a) in FIG.
  • the module 30 has a first flexible portion 312 , and the first flexible portion 312 is connected to the second connection points 52 in a one-to-one correspondence.
  • This solution facilitates the assembly between the first flexible part 312 and the rigid adapter plate 50 , and realizes the electrical connection between different adapter wirings and the corresponding second wirings.
  • the second way to realize the assembly of the first flexible part and the rigid adapter plate is: referring to (b) in FIG.
  • the first on-board optical module 30 has first flexible parts 312 arranged in pairs, and the first flexible parts 312 arranged in pairs are connected to the second connection points 52 arranged in pairs one by one. In the same space, by configuring more first flexible parts 312 , more high-speed links can be established between the service chip 21 and the same first on-board optical module 30 .
  • the flexible board connector includes a plug and a socket that can be inserted into each other.
  • One of the components of the plug and the socket is set on the first flexible part 312, and the other component is set on the rigid adapter plate 50.
  • An embodiment of the present application provides a communication device, including the above-mentioned on-board optical interconnection device.
  • the communication equipment provided by the embodiments of the present application also has all the beneficial effects brought by the technical solutions of the above embodiments because the above-mentioned board optical interconnection device is used.
  • Communication equipment can be network products, such as routers, switches, transport network equipment, optical line terminals in access networks, or wireless backhaul equipment, such as baseband processing units, and so on.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供了一种在板光互连装置及通信设备,将芯片封装组件(20)和第一在板光模块(30)布置在载板(10)上,第一在板光模块(30)采用刚柔板(31)和第一光器件(32)的方式,第一光器件(32)设于刚柔板(31)的第一刚性部(311)上,第一柔性部(312)连接在封装基板(22)和第一刚性部(311)之间,封装基板(22)的第一布线、刚柔板(31)的第二布线连接形成第一链路,实现业务芯片(21)和第一光器件(32)之间的高速信号传输。本申请的在板光互连装置采用封装基板(22)的第一布线和刚柔板(31)的第二布线实现业务芯片(21)和第一在板光模块(30)之间高速信号互连,减少封装基板(22)向载板(10)扇出信号的数量以减少封装基板(22)的连接端(23)数量,可缩小封装基板(22)的面积,可缩短封装基板(22)的布线长度,降低高速链路功耗,允许采用低功耗的串并转换器实现高速信号互连。

Description

一种在板光互连装置及通信设备
本申请要求于2021年8月13日提交国家知识产权局、申请号为202110935458.6、申请名称为“一种在板光互连装置及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信技术领域,尤其涉及一种在板光互连装置及通信设备。
背景技术
在光通信技术领域中,光模块用于连接系统侧设备(如交换机、路由器)和光纤,实现光信号和电信号的相互转换。如图1所示,系统侧设备包括载板110和设于载板110的芯片封装组件120,芯片封装组件120包括封装基板(图未示)和设于封装基板的业务芯片121,封装基板具有用于连接业务芯片121和载板110的封装基板布线(图未示)。
串并转换器(Serializer/Deserializer,SerDes)是业务芯片的输入输出串行接口,SerDes驱动能力越强,电路和算法越复杂,相应高速链路的功耗会越高。光互联网论坛(Optical Internetworking Forum,OIF)以驱动能力大小定义了多种SerDes标准:长距(Long range,LR)、超短距(Very short range,VSR)、极短距(Extreme short range,XSR)等等。LR、VSR、XSR三者驱动能力由大到小,对应高速链路功耗由大到小。
如图1所示,在常规可插拔光模块方案中,可插拔光模块131和电接口132分别设于光子卡130的两端,光子卡130具有用于连接可插拔光模块131和电接口132的光子卡布线(图未示),可插拔光模块131用于与光纤140耦合。载板110具有电连接器111和载板布线(图未示),载板布线的两端连接芯片封装组件120和电连接器111。将光子卡130的电接口132和载板110的电连接器111连接,依次连接的封装基板布线、载板布线和光子卡布线形成高速链路,通过高速链路实现业务芯片121和可插拔光模块131之间的高速信号互连。随着通信系统容量的提升,业务芯片和光模块之间的高速链路功耗会增加。现有SerDes驱动能力难以匹配高速链路功耗的增加,要增加中继芯片133以补偿高速链路功耗,造成功耗增加。
为了解决功耗问题,业界出现了如图2所示的在板光模块方案,将光模块134布置在载板110上并位于芯片封装组件120的周围,这种光模块134称为在板光模块(On-board optics,OBO)或板载光模块,通过封装基板布线(图未示)和载板布线(图未示)实现业务芯片121和OBO134之间的高速信号互连。相比于常规可插拔光模块方案,在板光模块方案中的载板采用较短距离的高速布线实现高速信号互连,降低SerDes驱动能力从而降低功耗。比如,常规可插拔光模块采用双向VSR SerDes,常规OBO可采用双向XSR SerDes,降低功耗。
然而,在业务芯片的封装基板尺寸较大和单通道速率较高时,即使采用常规OBO方案,业务芯片封装基板大尺寸导致高速链路功耗大,超出了XSR SerDes低功耗驱动能力,而要采用VSR SerDes或LR SerDes高功耗驱动能力。
发明内容
本申请实施例提供一种在板光互连装置及通信设备,解决了在现有业务芯片的封装基板尺寸较大和单通道速率较高时会产生高速链路功耗大的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种在板光互连装置,包括:载板、芯片封装组件和第一在板光模块。芯片封装组件包括业务芯片和封装基板,业务芯片安装并电连接于封装基板,封装基板安装并电连接于载板。封装基板具有与业务芯片电连接的第一布线。第一在板光模块包括刚柔板和用于与光纤耦合的第一光器件,刚柔板包括连接的第一刚性部和第一柔性部,刚柔板具有在第一刚性部和第一柔性部上延伸的第二布线,第一光器件安装于第一刚性部并与第二布线电连接,第一柔性部连接于封装基板且第二布线和第一布线电连接,第一刚性部与载板电连接。第一布线和第二布线相连接并构成业务芯片和第一光器件之间的第一链路。封装基板具有与业务芯片电连接的第三布线,载板具有第四布线,第一刚性部具有与第一光器件电连接的第五布线。第三布线、第四布线和第五布线依次连接并构成业务芯片和第一光器件之间的第二链路。
其中,第一链路可用于传输高速信号。第二链路可用于电源供电和传输低速信号。
本申请实施例提供的在板光互连装置,将芯片封装组件和第一在板光模块布置在载板上,第一在板光模块采用刚柔板和第一光器件的方式,第一光器件设于刚柔板的第一刚性部上,第一柔性部连接在封装基板和第一刚性部之间,封装基板的第一布线、刚柔板的第二布线连接形成第一链路,实现业务芯片和第一光器件之间的高速信号传输。封装基板的第三布线、载板的第四布线和刚柔板的第五布线连接形成第二链路,实现业务芯片和第一光器件之间的低速信号传输和电源供电。相比于常规在板光模块方案,本申请的在板光互连装置采用封装基板的第一布线和刚柔板的第二布线实现业务芯片和第一在板光模块之间高速信号互连,减少封装基板向载板扇出信号的数量以减少封装基板的连接端数量,从而可缩小封装基板的面积,可缩短封装基板的布线长度,降低高速链路功耗,允许采用低功耗的XSR SerDes实现高速信号互连。
结合第一方面,在第一方面的第一种可能的实现方式中,第一在板光模块的数量为多个,多个第一在板光模块并排布置在封装基板的至少一边。业务芯片和每个第一在板光模块的第一光器件之间具有与第一光器件对应的第一链路和第二链路;业务芯片和每个第一光器件之间通过与第一光器件对应的第一链路和第二链路电连接。在封装基板的周边配置多个第一在板光模块,使业务芯片和更多的第一在板光模块建立低功耗的高速信号互连,满足通信系统大容量的需求。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,多个第一在板光模块环绕在封装基板布置,多个第一在板光模块相邻于封装基板的边缘设置,使同一个封装基板和更多的第一在板光模块连接,在业务芯片和第一光器件之间建立更多低功耗的第一链路。第一在板光模块相对封装基板就近布置,可缩短刚柔板上第二布线的长度,有效降低高速链路功耗。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,布置在封装基板的其中一边的多个第一在板光模块分为内圈在板光模块和外圈在板光模块,多个内圈在板光模块的第一刚性部布置在以业务芯片为中心的内圈上,多个外 圈在板光模块的第一刚性部布置在以业务芯片为中心的外圈上。实现第一在板光模块的多层排布,放宽第一在板光模块的尺寸约束,使得较大宽度的第一在板光模块也能更多地布置在封装基板的边缘处。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,内圈在板光模块和外圈在板光模块依次交错排布,其中至少一个外圈在板光模块的第一柔性部位于相邻两个内圈在板光模块的第一刚性部之间。将内圈在板光模块和外圈在板光模块大致分布在同一平面上,便于给在板光模块上的光器件等发热器件布置散热器以实现散热。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,其中至少一个外圈在板光模块的第一柔性部跨设于其中一个内圈在板光模块的上方。在封装基板的每一边布置多层在板光模块。
结合第一方面,在第一方面的第六种可能的实现方式中,在板光互连装置还包括相邻于封装基板的边缘设置的第二在板光模块,第二在板光模块安装并电连接于载板,其中至少一个第二在板光模块位于相邻两个第一在板光模块之间。业务芯片和每个第二在板光模块之间具有与第二在板光模块对应的第三链路,第三链路依次经过封装基板和载板,业务芯片和每个第二在板光模块之间通过与第二在板光模块对应的第三链路电连接。第二在板光模块就是常规在板光模块。相邻两个第一在板光模块的第一柔性部的间距可拉大,便于第一柔性部和封装基板的连接,通过第一链路实现业务芯片和第一在板光模块之间高速信号互连,通过第三链路实现业务芯片和第二在板光模块之间高速信号互连。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,第一在板光模块和第二在板光模块的数量均为多个,多个第二在板光模块布置在以业务芯片为中心的内圈上,多个第一在板光模块的第一刚性部布置在以业务芯片为中心的外圈上。第一在板光模块的第一刚性部布置在外圈,第二在板光模块布置在内圈,实现在业务芯片分别和两种在板光模块之间低功耗的高速信号传输。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,第一在板光模块和第二在板光模块依次交错排布,其中至少一个第一在板光模块的第一柔性部位于相邻两个第二在板光模块之间。第一在板光模块中的第一柔性部和封装基板的连接密度较低,便于第一柔性部和封装基板的连接装配,改善了工程可实现性。
结合第一方面,在第一方面的第九种可能的实现方式中,在板光互连装置还包括一个或多个刚性转接板,刚性转接板具有多个转接布线,转接布线的两端为第一连接点和第二连接点,第一连接点位于刚性转接板的第一端,第二连接点位于刚性转接板的第二端。封装基板的第一布线、刚柔板的第二布线分别和刚性转接板的转接布线对应设置。刚性转接板的第一端安装于封装基板,转接布线的第一连接点和对应于转接布线的第一布线电连接。第一柔性部安装于刚性转接板的第二端,转接布线的第二连接点和对应于转接布线的第二布线电连接。该刚性转接板方案可配置更多的第一在板光模块,使得业务芯片可以跟更多第一在板光模块建立低功耗的高速信号互连。
结合第一方面的第九种可能的实现方式,在第一方面的第十种可能的实现方式中,在刚性转接板的表面上,相邻两个第一连接点的间距小于相邻两个第二连接点的间距。 刚性转接板的转接布线将封装基板上高密度、大功耗的第一布线逐渐扇出为低密度、低功耗的第二布线,实现业务芯片和更多第一在板光模块建立高速信号互连。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,刚性转接板的第二端呈弧形或圆形,多个第一在板光模块沿周向排布,多个第一在板光模块的第一柔性部以业务芯片为中心沿径向延伸。第一柔性部可连接至刚性转接板呈弧形或圆形的第二端,使得多个第一柔性部转换为圆周排布,以适应第一在板光模块环绕业务芯片的布局。
结合第一方面的第十种可能的实现方式或第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,第二连接点分布在刚性转接板的同一侧,每个第一在板光模块具有一个第一柔性部,第一柔性部一一对应地连接于第二连接点。该方案便于第一柔性部和刚性转接板之间的装配,实现不同转接布线和对应第二布线的电连接。
结合第一方面的第十种可能的实现方式或第十一种可能的实现方式,在第一方面的第十三种可能的实现方式中,成对布置的第二连接点分别设于刚性转接板的相对两侧,每个第一在板光模块具有成对布置的第一柔性部,成对布置的第一柔性部一一对应地连接于成对布置的第二连接点。在同样空间内,通过配置更多的第一柔性部,在业务芯片和同一个第一在板光模块之间建立更多的高速链路。
结合第一方面至第一方面的第十三种可能的实现方式中任一项,在第一方面的第十四种可能的实现方式中,第一刚性部面向载板的一侧和载板之间通过低速连接器连接。通过低速连接器来连接刚柔板和载板,实现对第一在板光模块的电源供电和传输低速信号,结构简单,装配方便。低速连接器将第一刚性部支撑在距离载板一定高度的位置,低速连接器的对接面积较小,在第一刚性部的下表面可放置更多的电路元件,充分利用第一刚性部的面积。
结合第一方面至第一方面的第十三种可能的实现方式中任一项,在第一方面的第十五种可能的实现方式中,刚柔板还包括与第一刚性板电连接的第二柔性部,第二柔性部和载板之间通过低速连接器连接。第一刚性部和载板之间通过第二柔性部和低速连接器实现电连接。
结合第一方面至第一方面的第八种可能的实现方式中任一项,在第一方面的第十六种可能的实现方式中,第一柔性部和封装基板之间焊接,实现封装基板和第一柔性部的机械连接,以及第一布线和第二布线的电连接,采用焊接连接时装配密度较高。
结合第一方面至第一方面的第八种可能的实现方式中任一项,在第一方面的第十七种可能的实现方式中,第一柔性部和封装基板之间通过柔板连接器连接。柔板连接器包括能相互插接的插头和插座,通过将插头插设在插座上,实现封装基板和第一柔性部的机械连接,以及第一布线和第二布线的电连接,柔板连接器可插拔,便于装配维护,灵活性好。
结合第一方面的第九种可能的实现方式至第十三种可能的实现方式中任一项,在第一方面的第十八种可能的实现方式中,第一柔性部和刚性转接板之间焊接;或,第一柔性部和刚性转接板之间通过柔板连接器连接。实现第一柔性部的第一布线和刚性转接板的转接布线之间电连接。
结合第一方面至第一方面的第十八种可能的实现方式中任一项,在第一方面的第 十九种可能的实现方式中,第一在板光模块还包括与第一光器件电连接的中继芯片,中继芯片安装于第一刚性部靠近第一柔性部的一端,第一光器件安装于第一刚性部远离第一柔性部的一端。中继芯片用于对第一光器件接收的信号或需要发射的信号进行恢复。中继芯片和第一光器件分别靠近第一刚性部的两端设置,可缩减第一刚性部的面积尺寸,便于在同样空间内并排布置更多第一在板光模块。
结合第一方面的第十九种可能的实现方式中任一项,在第一方面的第二十种可能的实现方式中,第一光器件背对第一柔性部的一侧具有第一光接口,第一光接口用于与光纤耦合。光纤安装在第一光接口时,光纤可在远离封装基板的方向延伸。
结合第一方面至第一方面的第二十种可能的实现方式中任一项,在第一方面的第二十一种可能的实现方式中,刚柔板为将第一刚性部和第一柔性部混压而成。或者,刚柔板为将第一柔性部连接于第一刚性部上而成。两种方式均能制作具有第二布线的刚柔板,第二布线在第一柔性部和第一刚性部上延伸,作为业务芯片和第一光器件之间高速链路的一部分。
结合第一方面至第一方面的第二十一种可能的实现方式中任一项,在第一方面的第二十二种可能的实现方式中,封装基板和载板之间通过焊球连接。或者,封装基板和载板之间通过低速连接器连接,低速连接器满足电源供电和传输低速信号即可,采用连接器时利于提升装联可靠性。
第二方面,提供一种通信设备,包括如第一方面至第一方面的第二十二种可能的实现方式中所描述的在板光互连装置。本申请实施例提供的通信设备,由于采用上述板光互连装置,因此同样具有上述实施例的技术方案所带来的所有有益效果。
附图说明
图1为常规可插拔光模块方案的结构示意图;
图2为常规在板光模块方案的结构示意图;
图3为本申请实施例提供的第一种在板光互连装置的结构示意图;
图4为图3的在板光互连装置的局部侧视图;
图5为本申请实施例提供的在板光互连装置和常规在板光模块方案的封装基板底面的对比图;
图6为另一种芯片封装组件和光模块互连方案的结构示意图;
图7为本申请实施例提供的第二种在板光互连装置的结构示意图;
图8为本申请实施例提供的第三种在板光互连装置的结构示意图;
图9为本申请实施例提供的第四种在板光互连装置的结构示意图;
图10为本申请实施例提供的第五种在板光互连装置的结构示意图;
图11中的(a)和(b)分别为图9的在板光互连装置在第一柔性部设置不同数量时的局部侧视图。
具体实施方式
本申请以下各个实施例提供的在板光互连装置,可应用于具有光接口的高速通信系统和设备,可以是网络产品,比如路由器、交换机、传送网设备、接入网中的光线路终端(Optical Line Terminal,OLT),还可以是无线回传设备,比如基带处理单元(Building Base band Unit,BBU),等等。
图3为本申请实施例提供的在板光互连装置的结构示意图,图4为图3的在板光互连装置的局部侧视图。参阅图3,在板光互连装置包括载板10和设于载板10的芯片封装组件20。芯片封装组件20包括业务芯片21(Payload Integrated Circuit,Payload IC)和封装基板22。业务芯片21起到路由器、交换机和多核处理器的作用。结合图4,业务芯片21放在封装基板22上,封装基板22的底部具有多个连接端(I/O端)23,业务芯片21的多个端子211和封装基板22的多个连接端23之间通过封装基板22的不同布线(图未示)实现连接,封装基板布线可以在封装基板22的表面或内部延伸,还可以穿设于封装基板22。具有不同封装基板布线的芯片封装组件20安装于载板10,封装基板22的连接端23和载板10的连接点接触,实现业务芯片21和载板10之间的电连接。
比如,芯片封装组件20和载板10之间可采用球栅阵列(Ball Grid Array,BGA)封装,这是高密芯片封装的一种形式。又比如,芯片封装组件20和载板10之间可采用高速连接器,高速连接器包括能相互插接的插头和插座,插头和插座连接后实现两者电连接,具体可选用高速socket连接器(插座连接器)或高速扣板连接器。采用BGA封装和高速连接器,都有利于对业务芯片21的保护和方便使用。在同样体积下,这两种方式都能提供大量的连接端23,实现高速信号传输。
在板光互连装置还包括光模块,用于连接芯片封装组件和光纤。光模块包括用于与光纤耦合的光器件。光器件可以包括光发射器和光接收器两部分,分别用于实现光信号的发射和光信号的接收。业务芯片接收信号的过程是:由外部设备发出的光信号在光纤上传输,光信号进入光接收器后,光接收器将光信号转换为电信号,光模块再将电信号传输至业务芯片进行处理。业务芯片外发信号的过程是:业务芯片将电信号传输至光模块,通过光发射器将电信号转换为光信号,并通过光纤将光信号向外部设备发送。可以理解的,光器件可以只包括光发射器或光接收器。
在如图2所示的常规在板光模块方案中,业务芯片121和常规OBO134之间的高速链路包括封装基板布线、封装基板的连接端、载板布线、在板光模块的连接端。封装基板的相邻布线要有一定间距,封装基板的相邻连接端要有一定间距。在一定空间内,封装基板布线和连接端的数量是有限的。
为了满足通信系统大容量的需求,业务芯片会配置大量端子,业务芯片的扇出信号增多,封装基板就要设置更多的长布线和连接端,封装基板就要制作为大尺寸。在现有业务芯片的封装基板尺寸较大和单通道速率较高时,会带来更大的高速链路功耗,超出了XSR低功耗驱动能力。示例性的,封装基板的尺寸由约65x65mm 2增大到约85x85mm 2,再到100x100mm 2,业务芯片的面积仅占封装基板面积的一半左右,在相应速率下封装基板的布线功耗(双侧dB数)增长三倍以上。
为了解决在现有业务芯片的封装基板尺寸较大和单通道速率较高时会产生高速链路功耗大的问题,参阅图3和图4,本申请实施例提供一种在板光互连装置,包括:载板10、芯片封装组件20和第一在板光模块30。芯片封装组件20包括业务芯片21和封装基板22,业务芯片21安装并电连接于封装基板22,封装基板22安装并电连接于载板10。封装基板22具有与业务芯片21电连接的第一布线(图未示)。第一在板光模块30包括刚柔板31和用于与光纤60耦合的第一光器件32,刚柔板31包括连接 的第一刚性部311和第一柔性部312,刚柔板31具有在第一刚性部311和第一柔性部312上延伸的第二布线(图未示),第一光器件32安装于第一刚性部311并与第二布线电连接,第一柔性部312连接于封装基板22且第二布线和第一布线电连接,第一刚性部311与载板10电连接。第一布线和第二布线相连接并构成业务芯片21和第一光器件32之间的第一链路。封装基板22具有与业务芯片21电连接的第三布线(图未示),载板10具有第四布线(图未示),第一刚性部311具有与第一光器件32电连接的第五布线(图未示)。第三布线、第四布线和第五布线依次连接并构成业务芯片21和第一光器件32之间的第二链路。
其中,刚柔板(Rigid-flex)是印制电路板(Printed Circuit Board,PCB)和柔性电路板(Flexible Printed Circuit,FPC)结合的电路板。印制电路板具有一定刚性,便于安装一些元器件,印制电路板可布线以连接元器件实现电路功能。柔性电路板可扭曲、弯折和布线,可形成立体线路以延伸至预定位置。载板10和第一刚性部311可以是印制电路板,第一柔性部312是柔性电路板。在印制电路板和柔性电路板设置相等长度的布线,柔性电路板布线产生的高速功耗比印制电路板布线产生的高速功耗更小。
其中,第一链路可用于传输高速信号。第二链路可用于电源供电和传输低速信号。其中,高速信号和低速信号作为相对概念,相应的传输速率没有绝对的界限。这里以1Gbps传输速率为界限,传输速率小于1Gbps的信号作为低速信号,传输速率大于或等于1Gbps的信号作为高速信号。示例性的,低速信号的传输速率可以是5Mbps、10Mbps等。高速信号的传输速率可以是25Gbps、56Gbps、112Gbps、224Gbps等。
本申请实施例提供的在板光互连装置,将芯片封装组件20和第一在板光模块30布置在载板10上,第一在板光模块30采用刚柔板31和第一光器件32的方式,第一光器件32设于刚柔板31的第一刚性部311上,第一柔性部312连接在封装基板22和第一刚性部311之间,封装基板22的第一布线、刚柔板31的第二布线连接形成第一链路,实现业务芯片21和第一光器件32之间的高速信号传输。封装基板22的第三布线、载板10的第四布线和刚柔板31的第五布线连接形成第二链路,实现业务芯片21和第一光器件32之间的低速信号传输和电源供电。相比于常规在板光模块方案,本申请的在板光互连装置采用封装基板22的第一布线和刚柔板31的第二布线实现业务芯片21和第一在板光模块30之间高速信号互连,减少封装基板22向载板10扇出信号的数量以减少封装基板22的连接端23数量,从而可缩小封装基板22的面积,可缩短封装基板22的布线长度,降低高速链路功耗,允许采用低功耗的XSR SerDes实现高速信号互连。
下面是常规在板光模块方案(简称为常规OBO方案)和本申请实施例的在板光互连装置(简称为本申请方案)的定量对比分析,可以清楚看出本申请方案的高速功耗更小,从而允许采用低功耗的XSR SerDes实现高速信号互连,展示出本申请方案的优越性。
常规OBO方案和本申请方案的封装基板均采用BGA封装。在常规OBO方案中,业务芯片和在板光模块之间的高速链路包括封装基板布线、封装基板的连接端、载板布线、在板光模块的连接端。在本申请方案中,在芯片封装组件20周围配置多个第一在板光模块30,通过各自第一链路实现高速信号互连。
图5为本申请实施例提供的在板光互连装置和常规在板光模块方案的封装基板底面的对比图。图5中画有两个圈,外圈是常规OBO方案的封装基板22’尺寸,内圈是本申请方案的封装基板22尺寸。在外圈和内圈之间的连接端23’包括高速信号和地(Ground)的管脚,在内圈中的连接端23包括电源信号、地和其它管脚。相比于常规OBO方案,本申请方案省去了与512路高速信号对应的BGA焊球(在外圈和内圈之间的连接端23’),在业务芯片尺寸不变的情况下,封装基板的尺寸可由外圈的100*100mm 2降低至内圈的80*80mm 2,面积减小36%。
对于56GHz频点的高速信号传输,常规OBO方案总计约24dB高速功耗,其中,封装基板布线的功耗和载板布线的功耗总计约17dB,封装基板连接端和OBO连接端的功耗共计7dB。本申请方案总计约12~15dB高速功耗,其中,封装基板尺寸可减小使得封装基板布线可变短,本申请方案封装基板布线功耗相比常规OBO方案封装基板布线功耗减少约三分之一;省去了封装基板和OBO侧的高速连接端,显著节省约6dB高速功耗。本申请方案实现了更小的高速功耗,允许采用低功耗的XSR SerDes实现高速信号互连。
此外,常规OBO方案的封装基板和载板之间采用高速连接器连接。本申请方案的封装基板和载板之间采用低速连接器连接,通过第一链路实现高速信号互连,同样可缩小封装基板的面积尺寸,以缩短封装基板布线长度,省去了封装基板和OBO侧的高速连接端,这些均可节省高速功耗,允许采用低功耗的XSR SerDes实现高速信号互连。其中,低速连接器包括能相互插接的插头和插座,插头和插座连接后实现两者电连接,低速连接器满足电源供电和传输低速信号即可。
图6为另一种芯片封装组件和光模块互连方案的结构示意图。以如图6所示的芯片封装组件和光模块互连方案作为对比例,将对比例和本申请实施例的在板光互连装置进行对比分析,可以看出本申请方案的高速功耗更小,展示出本申请方案的优越性。
在对比例中,芯片封装组件120包括业务芯片121和封装基板122,业务芯片121安装在封装基板122上,封装基板122和载板110之间采用球栅阵列封装。光模块134包括第一基板1341和设于第一基板1341的光器件(图未示),第一基板1341和载板110之间采用球栅阵列封装。在封装基板122和第一基板1341之间设置柔性电缆150,柔性电缆150的两个端部151可通过连接器或焊接的方式连接至相应的基板上,实现封装基板122、柔性电缆150和第一基板1341的电连接,进而实现封装基板122上的业务芯片121和光模块134之间的高速信号传输。在柔性电缆150的端部151采用连接器或焊接的方式去连接第一基板1341时,组装过程耗时麻烦,而且通过连接器或焊接点去传输高速信号时会产生一定的高速链路功耗。
在本申请方案中,参阅图4,设有第一光器件32的刚柔板31是预先制作好的,刚柔板31具有在第一刚性部311和第一柔性部312上延伸的第二布线,在连接芯片封装组件20和第一在板光模块30时,将第一柔性部312的一端312a连接于封装基板22且封装基板22的第一布线和刚柔板31的第二布线电连接形成第一链路,即可实现业务芯片21和第一光器件32之间的高速信号传输。相比于对比例,在本申请方案减少了第一刚性部311和第一柔性部312的连接步骤,组装过程更方便、快捷,降低了连接器或焊接点对高速信号传输功耗的影响,在传输高速信号时产生的高速链路功耗 更小,有利于采用低功耗的XSR SerDes实现高速信号互连。
在设置本申请芯片封装组件20时,参阅图3、图4,业务芯片21需要扇出的信号较多,封装基板22的面积要做得比业务芯片21的面积更大,以便于在封装基板22上设置布线和连接端。业务芯片21可设置封装基板22上表面的中部,便于在封装基板22均匀设置布线和连接端。此外,封装基板22上可设置环状架24,环状架24围绕业务芯片21设置,环状架24上安装用于对业务芯片21散热的散热器(图未示),比如导热板、散热片或热电制冷装置。
在制作刚柔板时有不同的实现方式。第一种刚柔板的实现方式是:刚柔板31为将第一刚性部311和第一柔性部312混压而成。第二种刚柔板的实现方式是:刚柔板31为先成型出第一刚性部311,再将第一柔性部312连接于第一刚性部311上而成。两种方式均能制作具有第二布线的刚柔板31,第二布线在第一柔性部312和第一刚性部311上延伸,作为业务芯片21和第一光器件32之间高速链路的一部分。
在设置第一在板光模块30的刚柔板31时,第一刚性部311用于安装光器件和其它元器件,可设置为矩形或其它形状。第一柔性部312用于连接第一刚性部311和封装基板22,可设置为条形或带状或其它形状。第一柔性部312和第一刚性部311的宽度尺寸越小,更有利于在封装基板22上并排布置更多的第一在板光模块30。第一柔性部312和第一刚性部311的长度尺寸越小,第一柔性部312和第一刚性部311上的第二布线的长度就越短,利于降低高速链路功耗,因此,可将第一在板光模块30的第一刚性部311靠近封装基板22设置,以缩短第二布线长度。
在封装基板22和载板10装配时有不同的实现方式。第一种实现方式是BGA封装:参阅图4,封装基板22和载板10之间通过焊球连接。第二种实现方式是连接器:封装基板和载板之间通过低速连接器(图未示)连接,低速连接器满足电源供电和传输低速信号即可,采用连接器时利于提升装联可靠性。示例性的,低速连接器可选用低速socket连接器或其它类型低速连接器。
在第一柔性部直接安装于封装基板时有多种实现方式。第一种第一柔性部和封装基板连接的实现方式是:参阅图3、图4,第一柔性部312和封装基板22之间焊接,可选用热压焊、激光焊等焊接方式。示例性的,第一柔性部312呈条形延伸,第一柔性部312远离第一刚性部311的一端312a和封装基板22的上表面焊接,实现封装基板22和第一柔性部312的机械连接,以及第一布线和第二布线的电连接,采用焊接连接时装配密度较高。
第二种第一柔性部和封装基板连接的实现方式是:第一柔性部和封装基板之间通过柔板连接器(图未示)连接。其中,柔板连接器包括能相互插接的插头和插座,插头和插座中的其中一个元件设于第一柔性部,另外一个元件设于封装基板,通过将插头插设在插座上,实现封装基板和第一柔性部的机械连接,以及第一布线和第二布线的电连接,柔板连接器可插拔,便于装配维护,灵活性好。
在实现刚柔板的第一刚性部和载板电连接时有不同的实现方式。第一种刚柔板和载板电连接的实现方式是:参阅图4,第一刚性部311面向载板10的一侧和载板10之间通过低速连接器33连接。通过低速连接器33来连接刚柔板31和载板10,实现对第一在板光模块30的电源供电和传输低速信号,结构简单,装配方便。需要说明的 是,高速连接器的对接面积会比低速连接器的对接面积更大,原因是高速连接器的针脚间距较大,以及高速连接器包含更多零件。常规OBO和载板10之间采用高速连接器连接,高速连接器的对接面积较大,常规OBO的底部面积也较大,高速连接器基本占用了常规OBO的底部面积。本申请实施例的第一在板光模块30采用低速连接器33和载板10连接,满足低速信号传输和电源供电即可,低速连接器33的对接面积较小,第一刚性部311的面积可制作得较小。相比于常规OBO,本申请的第一在板光模块30的第一刚性部311面积可缩减约50%。并且,低速连接器33将第一刚性部311支撑在距离载板10一定高度的位置,低速连接器33的对接面积较小,在第一刚性部311的下表面可放置更多的电路元件,充分利用第一刚性部311的面积。
第二种刚柔板和载板电连接的实现方式是:刚柔板还包括与第一刚性板电连接的第二柔性部(图未示),第二柔性部和载板之间通过低速连接器连接。第一刚性部和载板之间通过第二柔性部和低速连接器实现电连接。其中,第二柔性部是柔性电路板。示例性的,第一柔性部和第二柔性部分别设于第一刚性部的两端,第二柔性部远离第一刚性部的一端和载板之间通过低速连接器连接。第一柔性部和第二柔性部还可以以其它方式设置在第一刚性部上。
在一些实施例中,参阅图4,第一在板光模块30还包括与第一光器件32电连接的中继芯片34,中继芯片34安装于第一刚性部311靠近第一柔性部312的一端,第一光器件32安装于第一刚性部311远离第一柔性部312的一端。中继芯片34用于对第一光器件32接收的信号或需要发射的信号进行恢复,具体可选用时钟数据恢复(Clock and Data Recovery,CDR)芯片或光学数字信号处理(Optical Digital Signal Processing,ODSP)芯片。中继芯片34和第一光器件32分别靠近第一刚性部311的两端设置,可缩减第一刚性部311的面积尺寸,便于在同样空间内并排布置更多第一在板光模块30。在第一刚性部311远离第一柔性部312的位置设置第一光器件32,这样便于光纤60和第一光器件32的布置和连接。
在一些实施例中,第一在板光模块30还包括与第一光器件32电连接的放大电芯片(图未示),放大电芯片设于第一刚性部311上。放大电芯片用于对经过中继芯片34的信号进行放大,具体可选用放大器(Driver)、跨阻放大器(Trans-impedance Amplifier,TIA)。
在一些实施例中,为了便于不同第一光器件32和光纤60的布置,参阅图4,第一光器件32背对第一柔性部312的一侧具有第一光接口321,第一光接口321用于与光纤60耦合。第一光接口321设在第一光器件32背对第一柔性板的位置,光纤60安装在第一光接口321时,光纤60可在远离封装基板22的方向延伸。结合图3,在封装基板22的周边布置多个第一在板光模块30时,在不同方位的多个光纤60连接至相应第一在板光模块30的第一光接口321,实现不同第一在板光模块30和光纤60的布置。
在一些实施例中,为了对第一刚性部311上的器件保护和散热,第一在板光模块30还包括外壳(图未示),外壳包覆第一刚性部311上的第一光器件32、中继芯片34等器件,外壳可采用导热金属材料制作。
在一些实施例中,为了更多地降低高速链路功耗,参阅图3,第一在板光模块30 的数量为多个,多个第一在板光模块30并排布置在封装基板22的至少一边。业务芯片21和每个第一在板光模块30的第一光器件32之间具有与第一光器件32对应的第一链路和第二链路;业务芯片21和每个第一光器件32之间通过与第一光器件32对应的第一链路和第二链路电连接。在封装基板22的周边配置多个第一在板光模块30,使业务芯片21和更多的第一在板光模块30建立低功耗的高速信号互连,满足通信系统大容量的需求。封装基板22通常呈矩形,多个第一在板光模块30可沿封装基板22的一个或多个侧边排列设置,这样可在同一平面内布置更多的第一在板光模块30。
示例性的,参阅图7,在板光互连装置应用在路由器,载板10为路由器集群网板,载板10上布置有多个芯片封装组件20,在每个芯片封装组件20的一侧布置多个第一在板光模块30,实现各个业务芯片21和对应的第一在板光模块30之间的高速信号互连。此外,在芯片封装组件20和背板连接器(图未示)之间也设置有高速链路实现高速信号互连。在图7所示的实施例中,载板10上布置有三个芯片封装组件20,每个封装基板22的一条边上布置有八个第一在板光模块30。在其它实施例中,封装基板22的一条边上布置第一在板光模块30的数量可以是四个或其它。
在布置多个第一在板光模块30时,参阅图3,多个第一在板光模块30环绕在封装基板22布置,使同一个封装基板22和更多的第一在板光模块30连接,在业务芯片21和第一光器件32之间建立更多低功耗的第一链路,实现更多的高速信号互连。多个第一在板光模块30相邻于封装基板22的边缘设置,即第一在板光模块30相对封装基板22就近布置,可缩短刚柔板31上第二布线的长度,有效降低高速链路功耗。
示例性的,参阅图3,在板光互连装置应用在交换机,载板10为交换机单板,载板10上布置有一个芯片封装组件20,芯片封装组件20的四个周边分别布置有多个第一在板光模块30,各个第一在板光模块30的第一柔性部312和封装基板22的边缘连接,实现业务芯片21和第一在板光模块30之间的高速信号互连。在图3所示的实施例中,封装基板22的每条边上均布置有八个第一在板光模块30,具有数量按需设置。
在一些实施例中,参阅图8,为了在封装基板22的一边上布置具有较大宽度的第一在板光模块30,布置在封装基板22的其中一边的多个第一在板光模块30分为内圈在板光模块30a和外圈在板光模块30b,多个内圈在板光模块30a的第一刚性部311布置在以业务芯片21为中心的内圈上,多个外圈在板光模块30b的第一刚性部311布置在以业务芯片21为中心的外圈上。这里的内圈和外圈可以是矩形或圆形。将外圈在板光模块30b的第一柔性部312b制作得比内圈在板光模块30a的第一柔性部312a更长,将外圈在板光模块30b的第一刚性部311a和内圈在板光模块30a的第一刚性部311b分布在跟封装基板22边缘不同距离的位置上,利用第一柔性部的柔性和灵活性实现不同第一柔性部312a、312b和封装基板22的连接,实现第一在板光模块30的多层排布,放宽第一在板光模块30的尺寸约束,使得较大宽度的第一在板光模块30也能更多地布置在封装基板22的边缘处,业务芯片21同样满足低功耗XSR SerDes驱动能力。
在第一在板光模块多层排布时有不同的实现方式。第一种第一在板光模块30多层排布的实现方式是:参阅图8,内圈在板光模块30a和外圈在板光模块30b依次交错排布,其中至少一个外圈在板光模块30b的第一柔性部312b位于相邻两个内圈在板光 模块30a的第一刚性部311a之间。该方案可将内圈在板光模块30a和外圈在板光模块30b大致分布在同一平面上,便于给在板光模块上的光器件等发热器件布置散热器以实现散热。
示例性的,参阅图8,在封装基板22的每一边配置四个内圈在板光模块30a和四个外圈在板光模块30b,外圈在板光模块30b的第一柔性部312b穿过相邻内圈在板光模块30a的第一刚性部311a之间的缝隙,即封装基板22的同一边配置八个第一在板光模块30。在封装基板22的同一边配置第一在板光模块30的数量按需设置。
第二种第一在板光模块多层排布的实现方式是:其中至少一个外圈在板光模块的第一柔性部跨设于其中一个内圈在板光模块的上方。该方案可在封装基板的每一边布置多层在板光模块。将外圈在板光模块的第一柔性部制作得长一些,便于外圈在板光模块跨过内圈在板光模块上的散热器,实现第一在板光模块的散热。
示例性的,在封装基板的同一边配置八个内圈在板光模块和八个外圈在板光模块,八个外圈在板光模块的第一柔性部一一对应地跨设于八个内圈在板光模块的上方,即封装基板的同一边配置十六个在板光模块。在封装基板的同一边配置在板光模块的数量按需设置。
在其它实施例中,封装基板22的周围还可以排布三圈以上的第一在板光模块30,实现更多第一在板光模块30和业务芯片21的高速信号互连。
在一些实施例中,参阅图9,为了降低第一在板光模块30中的第一柔性部312和封装基板22的连接密度以便于第一柔性部312和封装基板22的连接,在板光互连装置还包括相邻于封装基板22的边缘设置的第二在板光模块40,第二在板光模块40安装并电连接于载板10,其中至少一个第二在板光模块40位于相邻两个第一在板光模块30之间。业务芯片21和每个第二在板光模块40之间具有与第二在板光模块40对应的第三链路(图未示),第三链路依次经过封装基板22和载板10,业务芯片21和每个第二在板光模块40之间通过与第二在板光模块40对应的第三链路电连接。第二在板光模块40就是常规在板光模块,其包括印制电路板(图未示)和设于印制电路板的第二光器件(图未示)。相比于第一在板光模块30的第一刚性部311,常规在板光模块的印制电路板有较多的布线和连接端,所以常规在板光模块的面积更大。第三链路包括封装基板布线、载板布线和第二在板光模块40的印制电路板布线,第三链路可用于业务芯片21和第二光器件之间高速信号和低速信号传输。第二在板光模块40靠近封装基板22的边缘设置,可缩短载板10的布线长度,以降低信号传输功耗。在相邻两个第一在板光模块30之间布置第二在板光模块40,第二在板光模块40的印制电路板面积比第一在板光模块30的第一刚性部311面积更大,这样相邻两个第一在板光模块30的第一柔性部312的间距可拉大,便于第一柔性部312和封装基板22的连接,通过第一链路实现业务芯片21和第一在板光模块30之间高速信号互连,通过第三链路实现业务芯片21和第二在板光模块40之间高速信号互连。
在配置第二在板光模块40时,第二在板光模块40和载板10之间可通过BGA封装或高速连接器连接,封装基板22和载板10之间可通过BGA封装或高速连接器连接。在设置高速连接器时,可选用高速socket连接器(插座连接器)或其它高速连接器。第二光器件背对封装基板22的一侧具有与光纤60耦合的第二光接口41,便于不同第 二在板光模块40对应的光纤60从不同方向布置在封装基板22的周围。
在一些实施例中,第一在板光模块30和第二在板光模块40的数量均为多个时,多个第二在板光模块40布置在以业务芯片21为中心的内圈上,多个第一在板光模块30的第一刚性部311布置在以业务芯片21为中心的外圈上。业务芯片21和每个第一在板光模块30的第一光器件32之间具有与第一光器件32对应的第一链路和第二链路;业务芯片21和每个第一光器件32之间通过与第一光器件32对应的第一链路和第二链路电连接。业务芯片21和每个第二在板光模块40之间通过与第二在板光模块40对应的第三链路电连接。这里的内圈和外圈可以是矩形或圆形。在业务芯片21和第一在板光模块30之间的高速链路功耗较小,将第一在板光模块30的第一柔性部312设置为条形,第一在板光模块30的第一刚性部311布置在外圈,将第二在板光模块40布置在内圈,实现在业务芯片21分别和两种在板光模块之间低功耗的高速信号传输。
在排布第一在板光模块和第二在板光模块时,参阅图9,第一在板光模块30和第二在板光模块40依次交错排布,其中至少一个第一在板光模块30的第一柔性部312位于相邻两个第二在板光模块40之间。在图3所示的封装基板22周围只设置多个第一在板光模块30时,第一在板光模块30中的第一柔性部312和封装基板22的连接密度较高。在图9所示的封装基板22周围交错设置第一在板光模块30和第二在板光模块40时,第一在板光模块30中的第一柔性部312和封装基板22的连接密度较低,便于第一柔性部312和封装基板22的连接装配,改善了工程可实现性。该方案可将第一在板光模块30和第二在板光模块40大致分布在同一平面上,便于给在板光模块上的光器件等发热器件布置散热器以实现散热。
示例性的,参阅图9,在封装基板22的每一边配置三个第一在板光模块30和四个第二在板光模块40,四个第二在板光模块40靠近封装基板22的边缘间隔设置,第一在板光模块30的第一柔性部312穿过相邻第二在板光模块40之间的缝隙。在封装基板22的四个角分别布置一个第一在板光模块30并使第一柔性部312连接至封装基板22的角部。在封装基板22同一边配置第一在板光模块30和第二在板光模块40的数量按需设置。
在一些实施例中,参阅图10、图11中的(a),为了使业务芯片21和更多第一在板光模块30建立高速信号互连,在板光互连装置还包括一个或多个刚性转接板50,刚性转接板50是印制电路板,刚性转接板50具有多个转接布线(图未示),转接布线的两端为第一连接点51和第二连接点52,第一连接点51位于刚性转接板50的第一端50a,第二连接点52位于刚性转接板50的第二端50b。封装基板22的第一布线、刚柔板312的第二布线分别和刚性转接板50的转接布线对应设置。刚性转接板50的第一端50a安装于封装基板22,转接布线的第一连接点51和对应于转接布线的第一布线电连接。第一柔性部312安装于刚性转接板50的第二端50b,转接布线的第二连接点52和对应于转接布线的第二布线电连接。在封装基板22的周围设置刚性转接板50,将不同第一在板光模块30的第一柔性部312通过刚性转接板50连接到封装基板22上,实现封装基板22的第一布线、刚性转接板50的转接布线和刚柔板31的第二布线依次连接,形成在业务芯片21和第一光器件32之间用于高速信号互连的第一链路。在封装基板22和第一柔性部312直接连接时,封装基板22的周长有限,难以在 封装基板22的周围布置更多第一在板光模块30。相比于如3所示的封装基板22和第一柔性部312直接连接的方式,如图10所示在封装基板22和第一在板光模块30之间设置刚性转接板50实现高速互连,该刚性转接板50方案可配置更多的第一在板光模块30,使得业务芯片21可以跟更多第一在板光模块30建立低功耗的高速信号互连。
在设置刚性转接板50的第一连接点51时,多个第一连接点51间隔排布在刚性转接板50的第一端50a。示例性的,第一连接点51可呈阵列布置,便于和封装基板22上阵列布置的焊点连接。刚性转接板50焊接至封装基板22的上表面,以使不同转接布线的第一连接点51和对应于转接布线的第一布线之间电连接。
在设置一个刚性状接板时,刚性状接板的内圈作为第一端50a而外圈作为第二端50b,刚性状接板的内圈呈圆形或方形,外圈呈圆形或方形。在装配时,将刚性转接板50的内圈区域连接至封装基板22上,多个第一在板光模块30的第一柔性部312沿周向布置在刚性转接板50的外圈区域。
在设置多个刚性转接板50时,每个刚性转接板50呈弧形延伸,刚性转接板50的第一端50a连接至封装基板22上,多个刚性转接板50沿周向布置,以便灵活覆盖封装基板22,并减小刚性转接板50和封装基板22的公差要求。示例性的,在图10所示的实施例中,封装基板22上布置有为四个刚性转接板50,每个刚性转接板50的第二端50b沿周向布置有八个第一柔性部312。刚性转接板50的数量和每个刚性转接板50上的第一柔性部312的数量按需设置。
在一些实施例中,在布置第一连接点51和第二连接点52时,在刚性转接板50的表面上,相邻两个第一连接点51的间距小于相邻两个第二连接点52的间距。刚性转接板50和封装基板22之间的第一连接点51密度较高,第一柔性部312和刚性转接板50之间的第二连接点52密度较低,刚性转接板50的转接布线将封装基板22上高密度、大功耗的第一布线逐渐扇出为低密度、低功耗的第二布线,实现业务芯片21和更多第一在板光模块30建立高速信号互连。结合图11中的(a),多个第二连接点52可布置在刚性转接板50的上表面或下表面。
在设置刚性转接板50和第一在板光模块30时,刚性转接板50的第二端50b呈弧形或圆形,多个第一在板光模块30沿周向排布,多个第一在板光模块30的第一柔性部312以业务芯片21为中心沿径向延伸。参阅图3,在没设置刚性转接板时,为了布置更多第一在板光模块30会采用矩形布置。参阅图10,在设置刚性转接板50后,第一柔性部312可连接至刚性转接板50呈弧形或圆形的第二端50b,使得多个第一柔性部312转换为圆周排布,以适应第一在板光模块30环绕业务芯片21的布局。
在装配第一柔性部和刚性转接板时有多种实现方式。第一种装配第一柔性部和刚性转接板的实现方式是:参阅图11中的(a),第二连接点52分布在刚性转接板50的同一侧,每个第一在板光模块30具有一个第一柔性部312,第一柔性部312一一对应地连接于第二连接点52。该方案便于第一柔性部312和刚性转接板50之间的装配,实现不同转接布线和对应第二布线的电连接。
第二种装配第一柔性部和刚性转接板的实现方式是:参阅图11中的(b),成对布置的第二连接点52分别设于刚性转接板50的相对两侧,每个第一在板光模块30具有成对布置的第一柔性部312,成对布置的第一柔性部312一一对应地连接于成对 布置的第二连接点52。在同样空间内,通过配置更多的第一柔性部312,在业务芯片21和同一个第一在板光模块30之间建立更多的高速链路。
在连接第一柔性部和刚性转接板时多种实现方式:第一柔性部312和刚性转接板50之间焊接;或,第一柔性部和刚性转接板之间通过柔板连接器(图未示)连接。柔板连接器包括能相互插接的插头和插座,插头和插座中的其中一个元件设于第一柔性部312,另外一个元件设于刚性转接板50,通过将插头插设在插座上,实现第一柔性部312的第一布线和刚性转接板50的转接布线之间电连接。
本申请实施例提供一种通信设备,包括上述的在板光互连装置。本申请实施例提供的通信设备,由于采用上述板光互连装置,因此同样具有上述实施例的技术方案所带来的所有有益效果。通信设备可以是网络产品,如路由器、交换机、传送网设备、接入网中的光线路终端,还可以是无线回传设备,如基带处理单元,等等。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种在板光互连装置,其特征在于,包括:载板、芯片封装组件和第一在板光模块;
    所述芯片封装组件包括业务芯片和封装基板,所述业务芯片安装并电连接于所述封装基板,所述封装基板安装并电连接于所述载板;所述封装基板具有与所述业务芯片电连接的第一布线;
    所述第一在板光模块包括刚柔板和用于与光纤耦合的第一光器件,所述刚柔板包括连接的第一刚性部和第一柔性部,所述刚柔板具有在所述第一刚性部和所述第一柔性部上延伸的第二布线,所述第一光器件安装于所述第一刚性部并与所述第二布线电连接,所述第一柔性部连接于所述封装基板且所述第二布线和所述第一布线电连接,所述第一刚性部与所述载板电连接;
    所述第一布线和所述第二布线相连接并构成所述业务芯片和所述第一光器件之间的第一链路;
    所述封装基板具有与所述业务芯片电连接的第三布线,所述载板具有第四布线,所述第一刚性部具有与所述第一光器件电连接的第五布线;所述第三布线、所述第四布线和所述第五布线依次连接并构成所述业务芯片和所述第一光器件之间的第二链路。
  2. 根据权利要求1所述的在板光互连装置,其特征在于,所述第一在板光模块的数量为多个,多个所述第一在板光模块并排布置在所述封装基板的至少一边;
    所述业务芯片和每个所述第一在板光模块的所述第一光器件之间具有与所述第一光器件对应的所述第一链路和所述第二链路;所述业务芯片和每个所述第一光器件之间通过与所述第一光器件对应的所述第一链路和所述第二链路电连接。
  3. 根据权利要求2所述的在板光互连装置,其特征在于,多个所述第一在板光模块环绕所述封装基板布置,多个所述第一在板光模块相邻于所述封装基板的边缘设置。
  4. 根据权利要求2所述的在板光互连装置,其特征在于,布置在所述封装基板的其中一边的多个所述第一在板光模块分为内圈在板光模块和外圈在板光模块,多个所述内圈在板光模块的所述第一刚性部布置在以所述业务芯片为中心的内圈上,多个所述外圈在板光模块的所述第一刚性部布置在以所述业务芯片为中心的外圈上。
  5. 根据权利要求4所述的在板光互连装置,其特征在于,所述内圈在板光模块和所述外圈在板光模块依次交错排布,其中至少一个所述外圈在板光模块的所述第一柔性部位于相邻两个所述内圈在板光模块的所述第一刚性部之间;
    或,其中至少一个所述外圈在板光模块的所述第一柔性部跨设于其中一个所述内圈在板光模块的上方。
  6. 根据权利要求1所述的在板光互连装置,其特征在于,还包括:相邻于所述封装基板的边缘设置的第二在板光模块,所述第二在板光模块安装并电连接于所述载板,其中至少一个所述第二在板光模块位于相邻两个所述第一在板光模块之间;
    所述业务芯片和每个所述第二在板光模块之间具有与所述第二在板光模块对应的第三链路,所述第三链路依次经过所述封装基板和所述载板,所述业务芯片和每个所述第二在板光模块之间通过与所述第二在板光模块对应的所述第三链路电连接。
  7. 根据权利要求6所述的在板光互连装置,其特征在于,所述第一在板光模块和所述第二在板光模块的数量均为多个,多个所述第二在板光模块布置在以所述业务芯片为中心的内圈上,多个所述第一在板光模块的所述第一刚性部布置在以所述业务芯片为中心的外圈上。
  8. 根据权利要求7所述的在板光互连装置,其特征在于,所述第一在板光模块和所述第二在板光模块依次交错排布,其中至少一个所述第一在板光模块的所述第一柔性部位于相邻两个所述第二在板光模块之间。
  9. 根据权利要求1所述的在板光互连装置,其特征在于,还包括一个或多个刚性转接板,所述刚性转接板具有多个转接布线,所述转接布线的两端为第一连接点和第二连接点,所述第一连接点位于所述刚性转接板的第一端,所述第二连接点位于所述刚性转接板的第二端;所述第一布线、所述第二布线分别和所述转接布线对应设置;
    所述刚性转接板的第一端安装于所述封装基板,所述转接布线的第一连接点和对应于所述转接布线的所述第一布线电连接;
    所述第一柔性部安装于所述刚性转接板的第二端,所述转接布线的第二连接点和对应于所述转接布线的所述第二布线电连接。
  10. 根据权利要求9所述的在板光互连装置,其特征在于,在所述刚性转接板的表面上,相邻两个所述第一连接点的间距小于相邻两个所述第二连接点的间距。
  11. 根据权利要求10所述的在板光互连装置,其特征在于,所述刚性转接板的第二端呈弧形或圆形,多个所述第一在板光模块沿周向排布,多个所述第一在板光模块的所述第一柔性部以所述业务芯片为中心沿径向延伸。
  12. 根据权利要求10或11所述的在板光互连装置,其特征在于,所述第二连接点分布在所述刚性转接板的同一侧,每个所述第一在板光模块具有一个所述第一柔性部,所述第一柔性部一一对应地连接于所述第二连接点;
    或,成对布置的所述第二连接点分别设于所述刚性转接板的相对两侧,每个所述第一在板光模块具有成对布置的所述第一柔性部,成对布置的所述第一柔性部一一对应地连接于成对布置的所述第二连接点。
  13. 根据权利要求1至12任一项所述的在板光互连装置,其特征在于,所述第一刚性部面向所述载板的一侧和所述载板之间通过低速连接器连接;
    或,所述刚柔板还包括与所述第一刚性板电连接的第二柔性部,所述第二柔性部和所述载板之间通过低速连接器连接。
  14. 根据权利要求1至13任一项所述的在板光互连装置,其特征在于,当所述第一柔性部直接安装于所述封装基板时,所述第一柔性部和所述封装基板之间焊接;或,所述第一柔性部和所述封装基板之间通过柔板连接器连接;
    当所述第一柔性部通过刚性转接板安装于所述封装基板时,所述第一柔性部和所述刚性转接板之间焊接;或,所述第一柔性部和所述刚性转接板之间通过柔板连接器连接。
  15. 根据权利要求1至14任一项所述的在板光互连装置,其特征在于,所述第一在板光模块还包括与所述第一光器件电连接的中继芯片,所述中继芯片安装于所述第一刚性部靠近所述第一柔性部的一端,所述第一光器件安装于所述第一刚性部远离所 述第一柔性部的一端。
  16. 根据权利要求15所述的在板光互连装置,其特征在于,所述第一光器件背对所述第一柔性部的一侧具有第一光接口,所述第一光接口用于与所述光纤耦合。
  17. 根据权利要求1至16任一项所述的在板光互连装置,其特征在于,所述刚柔板由所述第一刚性部和所述第一柔性部混压而成;
    或,所述刚柔板为将所述第一柔性部连接于所述第一刚性部上而成。
  18. 根据权利要求1至17任一项所述的在板光互连装置,其特征在于,所述封装基板和所述载板之间通过焊球连接;
    或,所述封装基板和所述载板之间通过低速连接器连接。
  19. 一种通信设备,其特征在于,包括如权利要求1至18任一项所述的在板光互连装置。
PCT/CN2022/090963 2021-08-13 2022-05-05 一种在板光互连装置及通信设备 WO2023015972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110935458.6A CN115706104A (zh) 2021-08-13 2021-08-13 一种在板光互连装置及通信设备
CN202110935458.6 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023015972A1 true WO2023015972A1 (zh) 2023-02-16

Family

ID=85180298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090963 WO2023015972A1 (zh) 2021-08-13 2022-05-05 一种在板光互连装置及通信设备

Country Status (2)

Country Link
CN (1) CN115706104A (zh)
WO (1) WO2023015972A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242331A (ja) * 2000-03-01 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US20090180733A1 (en) * 2008-01-14 2009-07-16 Korea Photonics Technology Institute System package using flexible optical and electrical wiring and signal processing method thereof
CN106646777A (zh) * 2016-12-14 2017-05-10 青岛海信宽带多媒体技术有限公司 一种光模块及其设计方法
CN209879081U (zh) * 2019-07-05 2019-12-31 上海先方半导体有限公司 一种光互连模块以及包含光互连模块的系统
CN111095682A (zh) * 2017-12-14 2020-05-01 山一电机株式会社 高速信号用连接器及具备其的插座组件、收发器模块组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242331A (ja) * 2000-03-01 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
US20090180733A1 (en) * 2008-01-14 2009-07-16 Korea Photonics Technology Institute System package using flexible optical and electrical wiring and signal processing method thereof
CN106646777A (zh) * 2016-12-14 2017-05-10 青岛海信宽带多媒体技术有限公司 一种光模块及其设计方法
CN111095682A (zh) * 2017-12-14 2020-05-01 山一电机株式会社 高速信号用连接器及具备其的插座组件、收发器模块组件
CN209879081U (zh) * 2019-07-05 2019-12-31 上海先方半导体有限公司 一种光互连模块以及包含光互连模块的系统

Also Published As

Publication number Publication date
CN115706104A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US8238359B2 (en) Communication module and communication apparatus
JP6294838B2 (ja) 高密度に実装された光インターコネクトを有するチップアセンブリ構成
US7137744B2 (en) Fiber optic transceiver module with rigid and flexible circuit boards
TWI771723B (zh) 具有光子和垂直功率傳遞的asic封裝
WO2021227643A1 (zh) 一种光模块
WO2020019990A1 (zh) 电路板组合以及电子设备
CN114035287A (zh) 一种光模块
CN211603626U (zh) 一种光模块
CN114035288A (zh) 一种光模块
CN114035286A (zh) 一种光模块
CN114879321A (zh) 一种光模块
CN114488438A (zh) 一种光模块
CN218125029U (zh) 一种电路板与光模块
CN218125028U (zh) 一种电路板与光模块
US7128472B2 (en) Method and apparatus for providing optoelectronic communication with an electronic device
WO2023015972A1 (zh) 一种在板光互连装置及通信设备
CN114637079A (zh) 一种光模块
JP2004235636A (ja) 可撓性を有する電気的接続を用いたasicモジュール上の集積化vcsel
CN216248443U (zh) 一种光模块
CN113037387A (zh) 一种光通信装置
CN216248442U (zh) 一种光模块
CN216310330U (zh) 一种光模块
WO2022105413A1 (zh) 一种光模块
WO2021212868A1 (zh) 一种光模块
CN114371535B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22854969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE