WO2021212868A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2021212868A1
WO2021212868A1 PCT/CN2020/135331 CN2020135331W WO2021212868A1 WO 2021212868 A1 WO2021212868 A1 WO 2021212868A1 CN 2020135331 W CN2020135331 W CN 2020135331W WO 2021212868 A1 WO2021212868 A1 WO 2021212868A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
speed signal
optical module
pads
group
Prior art date
Application number
PCT/CN2020/135331
Other languages
English (en)
French (fr)
Inventor
张加傲
王欣南
胥嫏
郭蓉
熊轶
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010322966.2A external-priority patent/CN111555811B/zh
Priority claimed from CN202020885226.5U external-priority patent/CN212086203U/zh
Priority claimed from CN202021096787.3U external-priority patent/CN212486512U/zh
Priority claimed from CN202011096302.5A external-priority patent/CN114371535B/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2021212868A1 publication Critical patent/WO2021212868A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to an optical module.
  • optical modules The speed of optical modules is getting higher and higher, but the requirements for the volume of the optical modules are getting smaller and smaller, which brings about problems such as heat dissipation and miniaturization to the design of optical modules.
  • Optical components and taking into account the heat dissipation problem have become a great challenge in the industry. .
  • the embodiments of the present disclosure provide an optical module, which mainly includes: a circuit board with a circuit for providing electrical connection; an optical transceiver sub-module, connected with the circuit of the circuit board, for transmitting data optical signals and receiving data optical signals;
  • the optical transceiver module includes: a round tube body with a first tube opening and a third tube opening on the surface, which are used to carry the adjustment connecting part and the optical receiver; the optical receiver extends into the third tube opening and is used to receive data light Signal; adjusting the connecting part, one end extends into the first nozzle, one end of the first nozzle is provided with an isolator, the other end is placed on the outside of the circular square tube, and one end placed on the outside of the circular square tube is provided with Optical transmitter; optical transmitter, used to emit the outgoing light with the polarization direction, the outgoing light passes through the isolator; among them, adjusting the rotation of the connecting part can drive the isolator to rotate with it, so as to change the polarization direction
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal
  • Figure 2 is a schematic diagram of the optical network terminal structure
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the disclosure.
  • Fig. 5 is a structural diagram of a circuit board in an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of an exploded structure of a circuit board in an embodiment of the disclosure.
  • FIG. 7 is a structural diagram of a light emitting component in an embodiment of the disclosure.
  • FIG. 8 is a structural diagram of a light receiving component in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of an exploded structure of a light receiving component in an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of a partial structure of a light receiving component in an embodiment of the disclosure.
  • FIG. 11 is a partial cross-sectional view of a light receiving component in an embodiment of the disclosure.
  • Fig. 12 is a partial enlarged schematic diagram of B in Fig. 11;
  • FIG. 13 is a partial assembly cross-sectional schematic diagram of a light receiving assembly and a lower housing provided by an embodiment of the disclosure
  • FIG. 14 is a schematic diagram of a partial assembly and exploded structure of a light receiving assembly and a lower housing provided by an embodiment of the disclosure
  • 15 is a partial assembly cross-sectional schematic diagram of another light receiving assembly and a lower housing provided by an embodiment of the present disclosure
  • 16 is a partial assembly cross-sectional schematic diagram of another light receiving component and a lower housing provided by an embodiment of the present disclosure at another angle;
  • Fig. 17 is an enlarged schematic diagram of A in Fig. 16;
  • FIG. 18 is a schematic diagram of assembling a light receiving sub-module, a second flexible board, and a circuit board in an optical module provided by an embodiment of the disclosure;
  • 19 is a schematic diagram of assembly from another angle of the light receiving sub-module, the second flexible board, and the circuit board in an optical module provided by an embodiment of the disclosure;
  • FIG. 20 is a schematic diagram of another angle assembly of the light receiving sub-module, the second flexible board, and the circuit board in an optical module provided by an embodiment of the disclosure;
  • FIG. 21 is an exploded schematic diagram of assembly of a light receiving submodule and a second flexible board in an optical module provided by an embodiment of the disclosure.
  • FIG. 22 is a schematic diagram of assembling a second flexible board and a circuit board in an optical module provided by an embodiment of the disclosure
  • FIG. 23 is a schematic structural diagram of another circuit board in an optical module provided by an embodiment of the disclosure.
  • 24 is a schematic structural diagram of a second flexible board in an optical module provided by an embodiment of the disclosure.
  • 25 is a schematic diagram of a partial structure of a second flexible board in an optical module provided by an embodiment of the disclosure.
  • FIG. 26 is a schematic diagram of a partial structure from another angle of a second flexible board in an optical module provided by an embodiment of the disclosure.
  • FIG. 27 is a schematic diagram of the signal line connection between the light receiving sub-module and the second flexible board in an optical module provided by an embodiment of the disclosure.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to be transmitted in optical fibers/optical waveguides and other information transmission equipment.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can achieve low-cost and low-loss information transmission; and computers and other information processing equipment Electrical signals are used.
  • information transmission equipment such as optical fibers/optical waveguides and information processing equipment such as computers, it is necessary to realize mutual conversion between electrical signals and optical signals.
  • the optical module realizes the above-mentioned mutual conversion function of optical and electrical signals in the field of optical fiber communication technology, and the mutual conversion of optical signals and electrical signals is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden finger on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data information and grounding, etc.; the electrical connection method realized by the golden finger has become the optical module.
  • the mainstream connection method of the industry based on this, the definition of the pins on the golden finger has formed a variety of industry protocols/standards.
  • Figure 1 is a schematic diagram of the connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101 and the network cable 103.
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing equipment.
  • the connection between the local information processing equipment and the remote server is completed by the connection of the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is The optical network terminal 100 with the optical module 200 is completed.
  • the optical port of the optical module 200 is externally connected to the optical fiber 101 to establish a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port of the optical module 200 is externally connected to the optical network terminal 100 to establish a bidirectional electrical signal connection with the optical network terminal 100;
  • the optical module realizes the mutual conversion between the optical signal and the electrical signal, so as to realize the establishment of an information connection between the optical fiber and the optical network terminal. Specifically, the optical signal from the optical fiber is converted into an electrical signal by the optical module and then input into the optical network terminal 100, and the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber.
  • the optical network terminal has an optical module interface 102, which is used to connect to the optical module 200 and establish a two-way electrical signal connection with the optical module 200; the optical network terminal has a network cable interface 104, which is used to connect to the network cable 103 and establish a two-way electrical connection with the network cable 103 Signal connection; a connection is established between the optical module 200 and the network cable 103 through the optical network terminal 100.
  • the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal acts as the upper computer of the optical module to monitor the operation of the optical module.
  • the remote server establishes a two-way signal transmission channel with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables.
  • Common information processing equipment includes routers, switches, electronic computers, etc.; the optical network terminal is the upper computer of the optical module, which provides data signals to the optical module and receives data signals from the optical module.
  • the common optical module upper computer also has optical lines Terminal and so on.
  • FIG 2 is a schematic diagram of the optical network terminal structure.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for accessing optical module electrical ports such as golden fingers; A heat sink 107 is provided on the cage 106, and the heat sink 107 has protrusions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal 100. Specifically, the electrical port of the optical module is inserted into the electrical connector inside the cage 106, and the optical port of the optical module is connected to the optical fiber 101.
  • the cage 106 is located on the circuit board and wraps the electrical connector on the circuit board in the cage, so that the electrical connector is arranged inside the cage; the optical module is inserted into the cage, and the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage 106, and then spread through the radiator 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an exploded structure of an optical module provided by an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper housing 201, a lower housing 202, an unlocking component 203, a circuit board 300, and an optical transceiver assembly 400.
  • the upper shell 201 is covered on the lower shell 202 to form a wrapping cavity with two openings; the outer contour of the wrapping cavity generally presents a square shape.
  • the lower housing 202 includes a main board and two side plates located on both sides of the main board and perpendicular to the main board;
  • the upper housing includes a cover plate, which covers the two side plates of the upper housing to form a package Cavity;
  • the upper shell may also include two side walls located on both sides of the cover plate and perpendicular to the cover plate. The two side walls and the two side plates are combined to realize the upper housing 201 covering the lower housing 202 superior.
  • the two openings can be two openings (204, 205) in the same direction, or two openings in different directions; one of the openings is the electrical port 204, and the gold finger of the circuit board protrudes from the electrical port 204 , Inserted into an upper computer such as an optical network terminal; the other opening is an optical port 205, which is used for external optical fiber access to connect the optical transceiver assembly 400 inside the optical module; the circuit board 300, optical transceiver assembly 400 and other optoelectronic devices are located in the package cavity middle.
  • the assembly method of the upper shell and the lower shell is used to facilitate the installation of the circuit board 300, the optical transceiver assembly 400 and other components into the shell.
  • the upper shell and the lower shell form the outermost package protection shell of the module;
  • the upper shell and the lower shell are generally made of metal materials to achieve electromagnetic shielding and heat dissipation.
  • the shell of the optical module is not made into an integrated part, so that when assembling circuit boards and other devices, positioning parts, heat dissipation and electromagnetic shielding parts Unable to install, it is not conducive to production automation.
  • the unlocking component 203 is located on the outer wall of the wrapping cavity/lower casing 202, and is used to realize a fixed connection between the optical module and the upper computer, or to release the fixed connection between the optical module and the upper computer.
  • the unlocking component 203 has an engaging component that matches the cage of the host computer; pulling the end of the unlocking component can make the unlocking component move relatively on the surface of the outer wall; the optical module is inserted into the cage of the host computer, and the optical module is held by the engaging component of the unlocking component Fixed in the cage of the host computer; by pulling the unlocking part, the locking part of the unlocking part moves accordingly, and then the connection relationship between the locking part and the host computer is changed, so as to release the optical module and the host computer. The optical module is withdrawn from the cage of the host computer.
  • the circuit board 300 is provided with circuit wiring, electronic components (such as capacitors, resistors, transistors, MOS tubes) and chips (such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP) and so on.
  • electronic components such as capacitors, resistors, transistors, MOS tubes
  • chips such as MCUs, laser drive chips, limiting amplification chips, clock data recovery CDR, power management chips, and data processing chips) DSP
  • the circuit board 300 connects the electrical components in the optical module according to the circuit design through circuit wiring to achieve electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver component is on the circuit board, the rigid circuit board can also provide Stable loading; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage, specifically, metal pins/gold fingers are formed on the end surface of one side of the rigid circuit board for connection with the electrical connector; these are all Flexible circuit boards are not easy to implement.
  • Some optical modules also use flexible circuit boards as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards, for example, flexible circuit boards can be used to connect between rigid circuit boards and optical transceiver components.
  • the optical transceiver component includes two parts, an optical transmitter component and an optical receiver component, which are used to implement the transmission of optical signals and the reception of optical signals, respectively.
  • FIG. 5 is a schematic structural diagram of a circuit board 300 according to an embodiment of the disclosure
  • FIG. 6 is an exploded structural schematic diagram of a circuit board 300 according to an embodiment of the disclosure.
  • the optical module 200 includes at least two light emitting components and a light receiving component 402.
  • the at least two light emitting components are electrically connected to the circuit board 300 through the first flexible board, and the light receiving component 402 passes through the
  • the two flexible boards 500 are electrically connected to the circuit board 300, and the light emitting component and the light receiving component 402 are stacked and arranged, instead of arranging the light emitting component and the light receiving component on the surface of the circuit board 300, this will not increase the space requirement of the circuit board 300 , Thereby reducing the volume and size of the optical module, and realizing the miniaturization and packaging of the optical module.
  • At least two light emitting components may include a first light emitting component 401 and a second light emitting component 403.
  • the first light emitting component 401 is electrically connected to the circuit board 300 through the first flexible board 600
  • the second light emitting component 403 is electrically connected to the circuit board 300 through the third flexible board 700 to realize the layout of multiple light emitting chips.
  • the light emitting assembly generally includes a housing, a light emitter, and a lens assembly.
  • the light emitter is fixed inside the housing for emitting light beams;
  • the lens assembly is located on the light emitting path of the light emitter and is fixed inside the housing for Change the transmission direction of the beam so that the laser beam enters the external optical fiber. That is, the light emitted by the light emitter enters the optical fiber after being reflected by the lens assembly.
  • FIG. 7 is a schematic structural diagram of a light emitting component provided by an embodiment of the disclosure.
  • the first light emitting assembly 401 includes a first housing and a light emitting device encapsulated in the first housing.
  • the light emitting device includes a light transmitter, a transmitting end optical element and a transmitting end optical fiber connector.
  • the transmitting device may include multiple optical transmitters to realize the transmission of multiple optical signals and increase the transmission speed of the optical module.
  • the first light emitting component 401 may include 4 lasers to realize the transmission of 4 optical signals.
  • the second light emitting component 403 includes a third housing and a light emitting device encapsulated in the third housing.
  • the light emitting device includes a light transmitter, a transmitting end optical element, and a transmitting end optical fiber connector.
  • the light emitting device can be It includes multiple optical transmitters to realize the transmission of multiple optical signals and improve the transmission speed of the optical module.
  • the second light emitting component 403 may include 4 lasers to realize the transmission of 4 optical signals.
  • the optical module provided by the embodiment of the present disclosure can realize the transmission of 8 optical signals through two light emitting components. It may also include a third light emitting component, a fourth light emitting component, etc., to realize the multi-path optical signal transmission of the optical module and provide the transmission speed of the optical module, which all fall within the protection scope of the embodiments of the present disclosure.
  • the first flexible board 600 When the first flexible board 600 is connected to the first light emitting assembly 401 and the circuit board 300, one end of the first flexible board 600 is inserted into the first housing of the first light emitting assembly 401 and is electrically connected to the light emitting device, and the other end is connected To the upper surface of the circuit board 300, it is convenient to install and disassemble the first light emitting component 401.
  • the light emitting devices in the first light emitting assembly 401 can be dissipated through the first housing, without the need for heat dissipation through the circuit board 300, which improves the heat dissipation efficiency of the first light emitting assembly 401.
  • the third flexible board 700 when the third flexible board 700 is connected to the second light emitting assembly 403 and the circuit board 300, one end of the third flexible board 700 is inserted into the third housing of the second light emitting assembly 403 and is electrically connected to the light emitting device. The other end is connected to the upper surface of the circuit board 300 to facilitate the installation and removal of the second light emitting component 403.
  • the light emitting devices in the second light emitting component 403 can be dissipated through the third housing, without the need for heat dissipation through the circuit board 300, which improves the heat dissipation efficiency of the second light emitting component 403.
  • first flexible board 600 and the second flexible board 700 can be connected to the upper surface of the circuit board 300 side by side, that is, the first light emitting component 401 and the second light emitting component 403 are arranged side by side, which facilitates the connection between the light emitting component and the optical fiber. Connection and layout.
  • the second flexible board 500 is fixed to the lower surface of the circuit board 300, and the other end extends into the housing of the light receiving assembly 402, that is, the light receiving assembly 402 and the circuit board 300 are connected through the second flexible board 500, so there is no need to connect the light receiving assembly 402 to the circuit board 300.
  • the light receiving component 402 is integrated on the circuit board 300 to prevent the light emitting component 401 and the light receiving component 402 from being integrated on the circuit board 300. That is, the second flexible board 500 is a carrier for installing components such as the light receiving assembly 402, and is usually made of flexible materials.
  • FIG. 8 is a schematic structural diagram of a light receiving assembly 402 according to an embodiment of the disclosure
  • FIG. 9 is an exploded structural schematic diagram of a light receiving assembly 402 according to an embodiment of the disclosure.
  • the light receiving component 402 includes a second housing, a photodetector, a lens component (not shown in the figure), an arrayed waveguide grating 4022 and a transimpedance amplifier 501, and an arrayed waveguide grating 4022 (which can be used
  • the optical fiber array is fixed inside the second housing for receiving the optical signal of the external optical fiber; the lens assembly is arranged between the arrayed waveguide grating 4022 and the external optical fiber 101, and is used to reflect the light from the external optical fiber 101 through the lens assembly Then enter the arrayed waveguide grating 4022; one end of the second flexible board 500 is inserted into the second housing, and the transimpedance amplifier 501 is arranged on the surface of the second flexible board 500 inserted into the second housing, and is connected
  • the second flexible board 500 is made of a flexible material and has strong flexibility
  • a substrate 600A is arranged in the second housing, and the substrate 600A is located at the second housing inserted into the second housing. Between the two flexible boards 500 and the bottom plate of the second housing, the second flexible board 500 is supported.
  • the arrayed waveguide grating 4022 is often a PIN photodiode and an avalanche photodiode APD, which uses the photoelectric effect to convert the optical signal in the external optical fiber 101 into an electrical signal.
  • the external flexible board separates the light emitting component 401 and the light receiving component 402 spatially, avoiding the short wiring distance between the light emitting channel and the light receiving channel.
  • the second flexible board 500, the first flexible board 600, and the third flexible board 700 can be installed on different sides of the circuit board 300, namely, the light emitting component and the light receiving device.
  • the components are respectively located on different sides of the circuit board 300, saving the space of the optical module.
  • the second flexible board 500, the first flexible board 600, and the third flexible board 700 can also be mounted on the same side of the circuit board 300, that is, the light emitting component and the light receiving component are located on the same side of the circuit board 300.
  • the second housing includes an encapsulation shell 4024 and a cover plate 4023 pressed on the encapsulation shell 4024.
  • the encapsulation shell 4024 and the cover plate 4023 form a receiving cavity.
  • the light receiving component 402 is placed in the receiving cavity and the transimpedance amplifier 501 is integrated.
  • the second flexible board 500 is inserted into the receiving cavity, so as to realize the micro-optical COB packaging of the light receiving assembly 402.
  • FIG. 10 is a schematic diagram of a partial structure of a light receiving component 402 according to an embodiment of the disclosure.
  • the package shell 4024 is composed of a bottom plate and four side plates adjacent to the bottom plate.
  • One of the side plates is provided with a first slot 4028, and the first slot 4028 corresponds to the second flexible board 500. , That is, the second flexible board 500 is inserted into the packaging shell 4024 through the first slot 4028.
  • a mounting groove 4025 is provided on the bottom plate of the package housing 4024.
  • the mounting groove 4025 corresponds to the first slot 4028, that is, the bottom surface of the mounting groove 4025 is The bottom surface of the slot 4028 is parallel.
  • the bottom surface of the groove 4028 contacts; then the second flexible board 500 is pushed so that the bottom surface of the second flexible board 500 moves on the bottom surface of the mounting groove 4025 until the end surface of the second flexible board 500 abuts against the side wall of the mounting groove 4025.
  • the size of the mounting groove 4025 on the bottom of the package 4024 in the mounting direction of the second flexible board 500 can be determined according to the position of the arrayed waveguide grating 4022 in the package 4024 and the size of the package 4024, so that the second flexible board 500 passes through the first After the slot 4028 extends into the package shell 4024 and is fixed in the mounting slot 4025, it is convenient to realize the connection between the arrayed waveguide grating 4022 and the transimpedance amplifier 501 on the second flexible board 500.
  • the substrate 600A When inserting the second flexible board 500 into the package housing 4024 through the first slot 4028, the substrate 600A can be pasted on the bottom surface of the mounting groove of the package housing 4024, and then the second flexible board 500 can be pasted on the substrate 600A to attach the second flexible board 500 to the substrate 600A.
  • the flexible board 500 is fixed in the packaging shell 4024.
  • a second slot 4026 is provided on the other side plate of the package housing 4024 opposite to the side plate where the first slot 4028 is located.
  • the second slot 4026 corresponds to the arrayed waveguide grating 4022, that is, the arrayed waveguide grating 4022 passes through the second opening.
  • the slot 4026 is inserted into the package shell 4024.
  • the arrayed waveguide grating 4022 After inserting the arrayed waveguide grating 4022 into the package case 4024 through the second slot 4026, push the arrayed waveguide grating 4022 until the end surface of the arrayed waveguide grating 4022 is close to the side wall of the mounting groove 4025, and then the arrayed waveguide grating 4022 can be pasted on the package case 4024 , To fix the arrayed waveguide grating 4022 in the package 4024.
  • the installation process of the light receiving component 402 is: first insert the arrayed waveguide grating 4022 into the package case 4024 through the second slot 4026 until the end surface of the arrayed waveguide grating 4022 is close to the side wall of the installation groove 4025, and then fix the arrayed waveguide grating 4022 on On the bottom plate of the package housing 4024; then fix the transimpedance amplifier 501 on the surface of the second flexible board 500; then insert the second flexible board 500 integrated with the transimpedance amplifier 501 into the package housing 4024 through the first slot 4028, Until the end surface of the second flexible board 500 abuts against the side wall of the mounting groove 4025; after the second flexible board 500 and the arrayed waveguide grating 4022 are fixed, the cover 4023 is pressed on the opening of the package shell 4024, and the transimpedance amplifier 501 and the arrayed waveguide grating 4022 are packaged in a second housing.
  • a transimpedance amplifier 501 can be provided on the surface of the second flexible board 500 inserted into the second housing. That is, the optical module has a set of light receiving components 402 and a set of light emitting components 401, which are similar to the side plate where the first slot 4028 is located. A second slot 4026 is provided on the opposite side plate, and the light receiving component is electrically connected to the circuit board 300 through an external flexible board.
  • a plurality of transimpedance amplifiers 501 can also be provided on the surface of the second flexible board 500 inserted into the second housing. That is, the optical module has multiple groups of light receiving components 402 and multiple groups of light emitting components, and the multiple groups of light receiving components 402 are packaged in the same Inside the receiving cavity, multiple groups of light emitting components are packaged separately.
  • a plurality of transimpedance amplifiers 501 are provided on the surface of the second flexible board 500 inserted into the second housing, a plurality of second slots (4026 , 4027), multiple groups of arrayed waveguide gratings 4022 are inserted into the second housing through multiple second slots (4026, 4027) to adapt to high-speed optical modules.
  • the transimpedance amplifier 501 When placing the transimpedance amplifier 501 on the second flexible board 500, the transimpedance amplifier 501 can be directly pasted on the surface of the second flexible board 500 inserted into the second housing, or a hole can be dug on the second flexible board 500 , The transimpedance amplifier 501 is embedded in the hole, and the transimpedance amplifier is installed on the surface of the substrate 600A through the hole.
  • FIG. 11 is a schematic cross-sectional view of a light receiving assembly 402 provided by an embodiment of the disclosure
  • FIG. 12 is an enlarged schematic view of B in FIG. 11.
  • the second flexible board 500 is made of a soft material, the second flexible board 500 is easily deformed. Therefore, the second flexible board 500 and the mounting groove 4025 on the bottom plate of the package housing 4024 are easily deformed.
  • a substrate 600A is provided, and the substrate 600A can prevent the second flexible board 500 from being deformed and support the second flexible board 500.
  • the substrate 600A is located below the second flexible board 500, and can be inserted into the mounting slot 4025 through the first slot 4028 to support one end of the second flexible board 500 integrated with the transimpedance amplifier 501, and the substrate 600A The end surface abuts against the side wall of the installation groove 4025.
  • the substrate 600A can be pasted on the bottom surface of the second flexible board 500 opposite to the transimpedance amplifier 501, and then the second flexible board 500 and the substrate 600A can be inserted into the mounting groove 4025 through the first slot 4028 until the second flexibility The end surface of the board 500 and the end surface of the substrate 600A abut the side wall of the mounting groove 4025.
  • a mounting hole (not shown in the figure) can be provided on the second flexible board 500 inserted into the second housing, and the transimpedance amplifier 501 is mounted on the surface of the substrate 600A through the mounting hole, and is mounted on the substrate 600A.
  • the transimpedance amplifier 501 is electrically connected to the arrayed waveguide grating 4022, and is electrically connected to the circuit board 300 through the second flexible board 500, for transmitting the amplified electrical signal to the circuit board 300.
  • transimpedance amplifiers 501 are integrated on the second flexible board 500.
  • the second flexible board 500 inserted into the second housing A plurality of mounting holes (not shown in the figure) are provided, and a plurality of transimpedance amplifiers 501 are mounted on the surface of the substrate 600A through the plurality of mounting holes.
  • the optical module has two sets of light receiving components 402, so the second slot 4026 and the fourth slot 4027 are provided on the other side plate of the package housing 4024 opposite to the side plate where the first slot 4028 is located.
  • the two slots 4026 and the fourth slot 4027 are arranged side by side, and the second slot 4026 and the fourth slot 4027 respectively correspond to two arrayed waveguide gratings 4022, that is, one arrayed waveguide grating 4022 is inserted into the package through the second slot 4026 In the shell 4024, another arrayed waveguide grating 4022 is inserted into the package shell 4024 through the fourth slot 4027.
  • the two sets of optical receiving components 402 include two sets of optical detectors, and each set of optical detectors includes 4 detectors to realize the reception of 8 optical signals.
  • the two arrayed waveguide gratings 4022 After inserting the two arrayed waveguide gratings 4022 into the package shell 4024 through the second slot 4026 and the fourth slot 4027 respectively, push the two arrayed waveguide gratings 4022 until the end faces of the two arrayed waveguide gratings 4022 are close to the side wall of the mounting slot 4025 Then, the two arrayed waveguide gratings 4022 can be respectively pasted on the bottom plate of the package housing 4024 to fix the two arrayed waveguide gratings 4022 in the package housing 4024.
  • the installation process of the two light-receiving components 402 is as follows: first insert the two arrayed waveguide gratings 4022 into the package 4024 through the second slot 4026 and the fourth slot 4027 respectively, until the end faces of the two arrayed waveguide gratings 4022 are close to the installation slot Then fix the two arrayed waveguide gratings 4022 on the bottom plate of the package housing 4024; then install the two transimpedance amplifiers 501 side by side on the substrate 600A through the mounting holes on the second flexible board 500; The second flexible board 500 with two transimpedance amplifiers 501 and the substrate 600A are inserted into the package housing 4024 through the first slot 4028 until the end surface of the second flexible board 500 and the substrate 600A abut the side wall of the mounting groove 4025; After the second flexible board 500 and the arrayed waveguide grating 4022 are fixed, the cover plate 4023 is pressed to cover the opening of the packaging shell 4024, and the two transimpedance amplifiers 501 and the two arraye
  • the number of transimpedance amplifiers 501 integrated on the second flexible board 500 is not limited to one or two of the above-mentioned embodiments. It can integrate multiple transimpedance amplifiers according to actual needs, so that the optical module has multiple receiving channels. Disclosure of the scope of protection of the embodiments.
  • the flexible board integrated electrical chip will be used in the form of coaxial packaging, the purpose is only a passive choice when the wiring space is insufficient, and Only one receiving chip can be integrated on the flexible board, and the present disclosure actively adopts an external flexible board based on the COB solution to integrate the receiving electrical chip on the flexible board, avoiding the integration of the receiving electrical chip on the circuit board, and the present disclosure can integrate two
  • the transimpedance amplifier is integrated on the flexible board to solve the problem of integrating the receiving chip on the circuit board, thereby saving a lot of space for the circuit board, and realizing the layout of more optical components in a smaller optical module housing.
  • the optical module provided by the embodiments of the present disclosure has 8 channels for transmitting and receiving.
  • the external flexible board is used to realize the electrical connection between the light emitting component and the circuit board, and the light receiving component and the circuit board. Transmitting and receiving electrical chips are integrated on the board, which saves a lot of space for the circuit board and realizes the layout of more optical components in a smaller optical module housing; and the light transmitting component and the light receiving component are respectively packaged in SFP, and the package housing For heat dissipation, there is no need to dissipate heat through the circuit board, which improves the heat dissipation capacity of the optical module.
  • FIG. 13 is a schematic sectional view of a partial assembly of a light receiving assembly and a lower housing provided by an embodiment of the present disclosure
  • FIG. 14 is a schematic view of an exploded structure of a partial assembly of a light receiving assembly and the lower housing provided by an embodiment of the present disclosure.
  • the light receiving component 402 includes a base plate 702, a lens component (not shown in the figure) and a light receiving device.
  • the light receiving device includes a photodetector, a transimpedance amplifier and an arrayed waveguide grating 4022.
  • the amplifier and other devices are arranged on the second flexible board 500, the photodetector may be arranged on the second flexible board 500 or not, and the arrayed waveguide grating 4022 is arranged on the bottom board 702 for receiving external
  • the optical signal of the optical fiber that is, the output end of the arrayed waveguide grating 4022 is connected to the photodetector, and the optical signal transmitted in the external optical fiber is converted into an electrical signal through the arrayed waveguide grating 4022, the photodetector.
  • the lens assembly is arranged between the light receiving device and the external optical fiber, and is used to reflect the light from the external optical fiber into the light receiving device after being reflected by the lens assembly to convert the optical signal into an electrical signal; the other end of the second flexible board 500 is connected to The lower surface of the circuit board 300 transmits the converted electrical signals to the circuit board 300, and the circuit board 300 performs subsequent processing on the electrical signals.
  • the lower surface of one end of the second flexible board 500 is connected to the upper surface of the bottom plate 702, and the photodetector and transimpedance amplifier are arranged on the matching part of the second flexible board 500 and the bottom plate 702, so the photodetector and the transimpedance amplifier
  • the heat generated by other components can be directly conducted through the second flexible board 500, the bottom plate 702, and the lower housing 202, which improves the heat conduction efficiency.
  • the light receiving component 402 also includes a cover 701 covering the bottom plate 702.
  • the cover 701 is combined with the bottom plate 702 to form a dust-proof housing.
  • the photodetector, transimpedance amplifier, and arrayed waveguide grating 4022 are all provided. Inside the dust-proof housing to protect the light receiving assembly 402.
  • the second flexible board 500 is made of flexible material and has strong flexibility, in order to connect the second flexible board 500 to the bottom plate 702, a substrate 600A is provided on the bottom plate 702, and the substrate 600A is located between the second flexible board 500 and the bottom plate 702 , Used to support the second flexible board 500 and reinforce the strength of the second flexible board 500.
  • the coverage area of the substrate 600A is the installation area of the photodetector and the transimpedance amplifier on the second flexible board 500, that is, the substrate 600A is fixed below the area where the photodetector and the transimpedance amplifier are arranged on the second flexible board 500.
  • the substrate 600A supports the second flexible board 500 provided with devices such as photodetectors and transimpedance amplifiers, so as to prevent the second flexible board 500 from being deformed and unable to support the receiving electrical devices.
  • the base plate 702 is provided with grooves, and the grooves are provided with protrusions.
  • the base plate 600A is provided with mounting grooves corresponding to the protrusions.
  • the protrusions can be embedded in the mounting grooves to realize the base plate 600A and the base plate 702. Card installed.
  • the upper surface of the substrate 600A is mounted on the lower surface of the second flexible board 500.
  • the second flexible board 500 is connected to the bottom plate 702
  • the mounting grooves on the substrate 600A are aligned with the protrusions on the bottom plate 702
  • the second flexible board 500 integrated with the transimpedance amplifier and the photodetector When installing the light receiving component, insert the second flexible board 500 integrated with the transimpedance amplifier and the photodetector into the dust-proof housing, that is, connect the second flexible board 500 to the bottom plate 702, and realize the second flexible board 500 and the bottom plate 702 through the substrate 600A.
  • the bottom plate 702 is fixed and connected to the arrayed waveguide grating 4022 fixed on the bottom plate 702, and then the second flexible board 500 is fixedly mounted on the lower surface of the circuit board 300, thus connecting the circuit board 300 and the light receiving component through an external flexible board 402.
  • the heat-generating chip of the transimpedance amplifier can be directly dissipated through the metal shell.
  • the cover 701 may be composed of a top plate and four side plates, and the four side plates are respectively connected to the bottom plate 702 of the dust-proof housing.
  • a first slot can be provided on one side plate of the cover body 701, and the second flexible board 500 and the substrate 600A can be inserted into the dust-proof housing through the first slot.
  • a second slot can be provided on the side plate corresponding to the side plate where the first slot is located.
  • the arrayed waveguide grating 4022 After inserting the arrayed waveguide grating 4022 into the dust-proof housing through the second slot, push the arrayed waveguide grating 4022 to the end face of the arrayed waveguide grating 4022 Close to the photodetector on the second flexible board 500, the arrayed waveguide grating 4022 can then be pasted on the bottom plate 702 of the dust-proof housing to fix the arrayed waveguide grating 4022 in the dust-proof housing.
  • the installation process of the light receiving component 402 is as follows: first insert the arrayed waveguide grating 4022 into the dust-proof housing through the second slot, and then fix the arrayed waveguide grating 4022 on the bottom plate 702 of the dust-proof housing; then connect the transimpedance amplifier, Light receiving devices such as photodetectors are fixed on the surface of the second flexible board 500; then the second flexible board 500 integrated with transimpedance amplifiers, photodetectors and other devices is inserted into the dust-proof housing through the first slot until The photodetector abuts the arrayed waveguide grating 4022, so that the transimpedance amplifier, the photodetector, and the arrayed waveguide grating 4022 are packaged in a dust-proof casing.
  • a photodetector, a transimpedance amplifier, and an arrayed waveguide grating 4022 can form a set of light receiving devices, and the light receiving assembly 402 can include multiple sets of light receiving devices to complete the reception of multiple optical paths. That is, a plurality of transimpedance amplifiers and photodetectors are arranged on the surface of the second flexible board 500 inserted into the dust-proof casing.
  • the optical module has multiple sets of light receiving devices and multiple sets of light emitting components, and the multiple sets of light receiving devices are packaged in the same protective device. Inside the dust casing, and multiple groups of light emitting components are packaged separately.
  • the side plate opposite to the side plate where the first slot is located can be provided with multiple second slots side by side, and multiple groups of arrayed waveguide gratings 4022 pass through the multiple second slots. Insert into the dust-proof housing to adapt to high-speed optical modules.
  • the transimpedance amplifier and photodetector can be directly pasted on the surface of the second flexible board 500, or they can be dug on the second flexible board 500.
  • the transimpedance amplifier is embedded in the hole, and the transimpedance amplifier is installed on the upper surface of the bottom plate 702 through the hole.
  • FIG. 15 is a partial assembly cross-sectional schematic diagram of another light receiving assembly and the lower housing provided by an embodiment of the disclosure
  • FIG. 16 is another angle of another light receiving assembly and the lower housing provided by an embodiment of the disclosure Schematic diagram of partial assembly section.
  • a substrate 600A is provided between the second flexible board 500 and the bottom plate 702. The substrate 600A It can prevent the second flexible board 500 from being deformed and supporting the second flexible board 500.
  • a groove may be provided on the bottom plate 702, and the side wall of the groove may correspond to the front end surface of the transimpedance amplifier.
  • a mounting hole 501A may be provided on the second flexible board 500, and the transimpedance amplifier 501 is mounted on the surface of the substrate 600A through the mounting hole 501A.
  • Fig. 17 is an enlarged schematic view of A in Fig. 16.
  • a mounting hole 501A can also be provided on the second flexible board 500, and the transimpedance amplifier 501 is mounted on the surface of the base plate 702 through the mounting hole 501A.
  • the transimpedance amplifier 501 of the bottom plate 702 is electrically connected to the photodetector and the arrayed waveguide grating 4022, and is electrically connected to the circuit board 300 through the second flexible board 500, for transmitting the amplified electrical signal to the circuit board 300.
  • the heat generated by the transimpedance amplifier 501 is discharged and dissipated through the substrate, the bottom plate 702, and the lower housing 202, and the transimpedance amplifier 501 is installed on the bottom plate through the mounting hole 501A.
  • the transimpedance amplifier 501 is in direct contact with the dust-proof housing, and the dust-proof housing is directly installed on the upper surface of the lower housing 202, so that the heat generated by the transimpedance amplifier 501 can pass through the bottom plate 702 and the lower housing 202 directly.
  • the heat dissipation is exported, and the heat dissipation efficiency is higher.
  • the coverage area of the base plate 600A is less than or equal to the area between the front end surface of the mounting hole 501A on the second flexible board 500 and the front end surface of the base plate 702, that is, A groove is provided on the bottom plate 702, and the size of the groove is the distance from the front end surface of the bottom plate 702 to the front end surface of the mounting hole 501A on the second flexible board 500.
  • the substrate 600A is embedded in the groove to support the second The flexible board 500.
  • transimpedance amplifiers 501 are integrated on the second flexible board 500.
  • the second flexible board 500 can be inserted into the dust-proof housing.
  • a plurality of mounting holes 501A are provided, and a plurality of transimpedance amplifiers 501 are mounted on the surface of the base plate 702 through the plurality of mounting holes 501A.
  • the number of transimpedance amplifiers 501 integrated on the second flexible board 500 is not limited to one or two of the above embodiments. It can integrate multiple transimpedance amplifiers according to actual needs, so that the optical module has multiple receiving channels. Disclosure of the scope of protection of the embodiments.
  • the flexible board integrated electrical chip will be used in the form of coaxial packaging, the purpose is only a passive choice when the wiring space is insufficient, and Only one receiving chip can be integrated on the flexible board, and the present disclosure actively adopts an external flexible board based on the COB solution to integrate the receiving electrical chip on the flexible board, avoiding the integration of the receiving electrical chip on the circuit board, and the present disclosure can integrate two
  • the transimpedance amplifier is integrated on the flexible board to solve the problem of integrating the receiving chip on the circuit board, thereby saving a lot of space for the circuit board, and realizing the layout of more optical components in a smaller optical module housing.
  • the optical module provided by the embodiments of the present disclosure has 8 channels, especially for high-speed 200G optical module transceiving, that is, the optical receiving component includes two sets of receiving end fiber connectors, arrayed waveguide grating, photodetector and transimpedance amplifier, Each group of photodetectors includes 4 detectors, and external flexible boards are used to realize the electrical connection between the light emitting component and the circuit board, and the light receiving component and the circuit board, avoiding the integration of transmitting and receiving electrical chips on the circuit board, which saves the circuit board.
  • a large amount of space allows more optical components to be arranged in a smaller optical module housing; and the light emitting component and the light receiving component are respectively packaged in SFP, and the flexible board is mounted on the bottom plate of the dust-proof housing, and so placed on the flexible board
  • the heat generated by the transimpedance amplifier, photodetector, etc. can be directly discharged through the dust-proof casing for heat dissipation, without the need for heat dissipation through the circuit board, which improves the heat dissipation capacity of the optical module.
  • FIG. 18 is a schematic diagram of assembling the light receiving sub-module, the second flexible board, and the circuit board in an optical module provided by an embodiment of the present disclosure. Another perspective assembly diagram of the second flexible board and the circuit board.
  • FIG. 20 is another perspective assembly diagram of the light receiving sub-module, the second flexible board and the circuit board in an optical module provided by an embodiment of the disclosure.
  • the light receiving sub-module 402 includes a non-airtight housing and a light receiving device arranged in the non-airtight housing.
  • One end of the second flexible board 500 is inserted into the light receiving sub-module 402 Inside the non-airtight housing, it is connected to the light receiving device; the other end of the second flexible board 500 is provided with a plurality of signal pads 601, and the second flexible board 500 is connected to the circuit board 300 through the signal pads 601, thus realizing light receiving
  • the multiple types of signals of the device are interconnected between the second flexible board 500 and the circuit board 300.
  • FIG. 21 is an exploded schematic diagram of assembly of a light receiving sub-module and a second flexible board in an optical module provided by an embodiment of the disclosure.
  • the light receiving device of the light receiving sub-module 402 includes a photodetector 502 and a transimpedance amplifier 501.
  • the flexible board 500 is connected; one end of the second flexible board 500 inserted into the non-airtight shell is provided with a groove, the transimpedance amplifier 501 can be embedded in the groove, and one end of the transimpedance amplifier 501 is connected to the photodetector 502, The other end can be connected to the second flexible board 500 by wire bonding.
  • the photodetector 502 the transimpedance amplifier 501 and the second flexible board 500 are connected.
  • the photodetector 502 is used to convert the optical signal transmitted by the external optical fiber into an electrical signal, and then the electrical signal is transmitted to the transimpedance amplifier 501, and the electrical signal is amplified by the transimpedance amplifier 501, and the amplified electrical signal can pass through the second flexible board 500 is transmitted to the circuit board 300.
  • the COB signal received by the optical device in the light receiving sub-module 402 includes high-speed signals, low-speed signals, and power signals.
  • the signal pads on the second flexible board 500 are used to realize the COB signal between the second flexible board 500 and the circuit board 300. For interconnection, if the signal pads on the second flexible board 500 adopt a single-row pad design, in order to meet the transmission integrity of high-speed signals, low-speed signals, and power signals, the spacing between the signal pads needs to be ensured.
  • the second flexible board 500 in the present disclosure adopts a double-row pad design, that is, the pads that transmit high-speed signals, low-speed signals, and power signals are divided into left and right rows. This saves the structural space of the second flexible board 500, which is beneficial to The development of miniaturization of optical modules.
  • FIG. 22 is a schematic diagram of assembling a second flexible board and a circuit board in an optical module provided by an embodiment of the disclosure. As shown in FIG. 22, one end of the circuit board 300 is provided with an FPC pad and the other end is provided with a gold finger.
  • the signal pad 601 on the second flexible board 500 adopts a double-row pad design, including the first row of signal pads and The second row of signal pads, the first row of signal pads and the second row of signal pads are arranged in sequence along the length of the second flexible board 500, and the second row of signal pads are arranged along the width edge of the second flexible board 500,
  • the signal pads of the first row are arranged away from the gold fingers; that is, the signal pads of the first row and the signal pads of the second row are arranged left and right along the length of the second flexible board 500, and the signal pads of the first row are away from the gold fingers on the circuit board 300. Fingers, the second row of signal pads are close to the golden fingers on the circuit board 300.
  • FIG. 23 is a schematic structural diagram of another circuit board in an optical module provided by an embodiment of the disclosure.
  • the FPC pads 301 provided on the circuit board 300 also adopt a double-row pad design, and the first row of signal pads and the second row of signal pads are respectively arranged in a one-to-one correspondence with the double rows of FPC pads 301.
  • the second flexible board 500 is connected to the circuit board 300, the first row of signal pads and the second row of signal pads are respectively connected to the FPC pads in a one-to-one correspondence, so that the multiple types of signals received from the optical device pass through the first row of signal pads
  • the second row of signal pads and FPC pads are interconnected between the second flexible board 500 and the circuit board 300.
  • FIG. 24 is a schematic structural diagram of a second flexible board in an optical module provided by an embodiment of the disclosure
  • FIG. 25 is a partial structural schematic diagram of a second flexible board in an optical module provided by an embodiment of the disclosure.
  • the first row of signal pads includes a power pad and a first low-speed signal pad group, and there is no high-speed signal pad; wherein, the power pad includes a first power signal pad 6011, a second The power signal pad 6012 and the third power signal pad 6013, the second power signal pad 6012 is arranged between the first power signal pad 6011 and the third power signal pad 6013, the first power signal pad 6011 and the second power signal pad 6011
  • the three power signal pads 6013 are respectively disposed on two opposite sides of the second flexible board 500, and the first power signal pad 6011 and the third power signal pad 6013 are combined to transmit a power signal.
  • the first power signal pad 6011, the second power signal pad 6012, and the third power signal pad 6013 on the second flexible board 500 correspond to those on the circuit board 300, respectively.
  • the FPC pads 301 are connected in one-to-one correspondence to realize the electrical connection between the second flexible board 500 and the circuit board 300.
  • the circuit board 300 can pass through the first power signal pad 6011, the second power signal pad 6012, and the third power signal pad 6012.
  • the power signal pad 6013 provides an electrical signal to the optical receiving device of the optical receiving sub-module 402 for the optical receiving device to work normally.
  • the first power signal pad 6011 and the third power signal pad 6013 on the opposite sides of the second flexible board 500 are both arc-shaped pads, and the circuit board 300 is connected to the first power signal pad.
  • the FPC pads corresponding to the pad 6011 and the third power signal pad 6013 are also arc-shaped FPC pads.
  • the arc-shaped pads on the second flexible board 500 and the arc-shaped FPC pads on the circuit board 300 can be A circular pad is formed, thereby realizing the positioning connection between the second flexible board 500 and the circuit board 300.
  • the arc-shaped pad may be a semicircular pad or a semi-elliptical pad.
  • the first power signal pad 6011 and the third power signal pad 6013 are provided with arc-shaped through holes
  • the arc-shaped FPC pads on the circuit board 300 are provided with arc-shaped through holes
  • the second flexible board 500 is connected to the circuit
  • the arc-shaped through holes on the first power signal pad 6011 and the third power signal pad 6013 are respectively aligned with the arc-shaped via holes on the arc-shaped FPC pad, so that the first power source
  • the arc-shaped through holes on the signal pad 6011 are spliced with the corresponding arc-shaped through holes on the circuit board 300 to form a circular hole
  • the arc-shaped through holes on the third power signal pad 6013 are the same as those on the circuit board 300.
  • the arc-shaped via holes are spliced to form a circular hole to position the second flexible board 500.
  • the arc-shaped through holes on the first power signal pad 6011 and the corresponding arc-shaped via holes on the circuit board 300 are welded together, and the circle on the third power signal pad 6013
  • the arc-shaped through holes are welded to the corresponding arc-shaped through holes on the circuit board 300 to realize the connection between the second flexible board 500 and the circuit board 300.
  • the second power signal pad 6012 includes a circular pad and a strip-shaped pad.
  • the circular pad is provided with a circular through hole
  • the circuit board 300 is provided with a corresponding circular FPC pad.
  • the circular FPC pad A circular via is provided on the board; when the second flexible board 500 is connected to the circuit board 300, the circular via on the second power signal pad 6012 is aligned and soldered with the circular via on the circular FPC pad, The positioning and connection of the second flexible board 500 and the circuit board 300 can be achieved through circular pads.
  • the circuit board 300 is provided with corresponding strip-shaped pads.
  • the strip-shaped pads of the second power signal pad 6012 and the strip-shaped pads of the FPC pad Connected to transmit another power signal to provide an electrical signal for the optical receiving device of the optical receiving sub-module 402.
  • the first low-speed signal pad group of the first row of signal pads includes a first group of low-speed signal pads 6014 and a second group of low-speed signal pads 6015.
  • the first group of low-speed signal pads 6014 are located between the first power signal pads 6011 and 6011.
  • the second group of low-speed signal pads 6015 are located between the second power signal pads 6012 and the third power signal pads 6013.
  • FIG. 26 is a schematic diagram of a partial structure from another angle of the second flexible board in an optical module provided by an embodiment of the disclosure.
  • the first group of low-speed signal pads 6014 and the second group of low-speed signal pads 6015 are both through-hole pads, and corresponding via FPC pads are provided on the circuit board 300;
  • the circuit board 300 is far away from the second One end of the flexible board 500 is provided with a gold finger, and the via FPC pad on the circuit board 300 is connected to the gold finger through a wire arranged inside the circuit board 300, that is, the FPC pad on the circuit board 300 connected to the low-speed signal pad
  • the vias are connected to the internal wiring of the circuit board 300, and the low-speed signal transmission is realized through the internal wiring of the circuit board 300.
  • the light receiving sub-module 402 has more low-speed signals from the optical receiving device, so a second low-speed signal pad group is also provided on the second row of signal pads, and the second low-speed signal pad group includes The third group of low-speed signal pads 6016 and the fourth group of low-speed signal pads 6017, the third group of low-speed signal pads 6016 are arranged at one end of the width edge of the second flexible board 500, and the fourth group of low-speed signal pads 6017 are arranged on the third group. Between the group low-speed signal pad 6016 and the other end of the width edge of the second flexible board 500.
  • the first group of low-speed signal pads 6014, the second group of low-speed signal pads 6015, the third group of low-speed signal pads 6016, and the fourth group of low-speed signal pads on the second flexible board 500 are connected to the circuit board 300.
  • the signal pads 6017 are respectively connected to the corresponding FPC pads on the circuit board 300 in a one-to-one correspondence to realize the low-speed signal connection between the second flexible board 500 and the circuit board 300, so that the light receiving sub-module 402 receives the low-speed signal of the optical device It can be transmitted to the circuit board 300 through the first group of low-speed signal pads 6014, the second group of low-speed signal pads 6015, the third group of low-speed signal pads 6016, and the fourth group of low-speed signal pads 6017 to realize the light receiving sub-module. Low-speed signal interconnection between 402 and circuit board 300.
  • the second row of signal pads also includes multiple groups of high-speed signal pad groups.
  • the high-speed signal pad group includes a first group of high-speed signal pads 6018 and a second group of high-speed signal pads 6019.
  • the first group of high-speed signal pads 6018 is arranged at Between the third group of low-speed signal pads 6016 and the fourth group of low-speed signal pads 6017, the second group of high-speed signal pads 6019 is disposed on an end of the second flexible board 500 away from the third group of low-speed signal pads 6016.
  • the distribution order of the pads on the second row of signal pads is the third group of low-speed signal pads 6016, the first group of high-speed signal pads 6018, the fourth group of low-speed signal pads 6017, and the second group of high-speed signal pads 6019.
  • the fourth group of low-speed signal pads 6017 isolates the first group of high-speed signal pads 6018 and the second group of high-speed signal pads 6019.
  • the first group of high-speed signal pads 6018 and the second group of high-speed signal pads 6019 are both through-hole pads, and corresponding FPC pads are provided on the surface of the circuit board 300; the circuit board 300 is far away from the first group.
  • One end of the second flexible board 500 is provided with a gold finger.
  • the FPC pad on the circuit board 300 is connected to the gold finger through a wire arranged on the surface of the circuit board 300, that is, the second flexible board 500 passes through the first A group of high-speed signal pads 6018, a second group of high-speed signal pads 6019 and corresponding FPC pads transmit high-speed signals to the circuit board 300, and the high-speed signals transmitted to the circuit board 300 are transmitted to the circuit board 300 through the surface traces.
  • Gold finger to realize high-speed signal transmission.
  • the up-down direction is the length direction of the second flexible board 500
  • the left-right direction is the width direction of the second flexible board 500
  • the first row of signal pads are arranged in the second row of signal pads.
  • the first power signal pads 6011 of the first row of signal pads are arranged on the right side of the first row of signal pads on the second flexible board 500
  • the third power signal pads 6013 are arranged on the first row of signal pads.
  • the third group of low-speed signal pads 6016 are arranged on the left side of the second row of signal pads on the second flexible board 500, and the second group of high-speed The signal pad 6019 is arranged on the right side of the second row of signal pads of the second flexible board 500.
  • the COB signal in the light receiving sub-module 402 includes 8 pairs of high-speed signals, 10 low-speed signals and 2 power signals.
  • the first group of high-speed signal pads 6018 and the second group Each group of high-speed signal pads 6019 includes four pairs of high-speed signal pads, which can transmit four pairs of high-speed signals respectively, and each pair of high-speed signal pads on the second flexible board 500 are arranged at intervals.
  • the spacing between high-speed signal pads is relatively large. Therefore, in order to ensure the spacing requirements between the high-speed signal pads on the second flexible board 500, the present disclosure Separating pads are arranged between adjacent high-speed differential pairs of signal pads, and the spacing between the high-speed signal pads is increased by separating the pads.
  • the first group of high-speed signal pads 6018 includes 8 high-speed signal pads and 4 separate pads.
  • the 8 high-speed signal pads form 4 pairs of high-speed differential pairs. These 4 separate pads are used to separate 4 pairs of high-speed signal pads.
  • Differential pair That is, a first separation pad is provided between the third group of low-speed signal pads 6016 and the first pair of high-speed signal pads, and a second separation pad is provided between the first pair of high-speed signal pads and the second pair of high-speed signal pads.
  • a third separate pad is arranged between the second pair of high-speed signal pads and the third pair of high-speed signal pads, and a third pair of high-speed signal pads is arranged between the third pair of high-speed signal pads and the fourth pair of high-speed signal pads.
  • the second group of high-speed signal pads 6019 includes 8 high-speed signal pads and 5 separate pads.
  • the 8 high-speed signal pads form 4 pairs of high-speed differential pairs. These 5 separate pads are used to separate 4 pairs of high-speed signals.
  • Differential pair That is, a fifth separation pad is provided between the fourth group of low-speed signal pads 6017 and the fifth pair of high-speed signal pads, and a sixth pair of high-speed signal pads is provided between the fifth pair of high-speed signal pads and the sixth pair of high-speed signal pads.
  • a seventh separate pad is arranged between the sixth pair of high-speed signal pads and the seventh pair of high-speed signal pads, and a seventh pair of high-speed signal pads is arranged between the seventh pair of high-speed signal pads and the eighth pair of high-speed signal pads.
  • a ninth separate pad is provided on the side of the eighth pair of high-speed signal pads and the second row of signal pads on the second flexible board 500.
  • the first group of low-speed signal pads 6014 and the second group of low-speed signal pads 6015 each include two low-speed signal pads
  • the third group of low-speed signal pads 6016 and the fourth group of low-speed signal pads 6017 Each includes three low-speed signal pads, so 10 can be transmitted through the first group of low-speed signal pads 6014, the second group of low-speed signal pads 6015, the third group of low-speed signal pads 6016, and the fourth group of low-speed signal pads 6017
  • the low-speed signal meets the low-speed signal transmission integrity of the optical receiving sub-module 402.
  • FIG. 27 is a schematic diagram of the signal line connection between the light receiving sub-module and the second flexible board in an optical module provided by an embodiment of the disclosure.
  • the light receiving sub-module 402 includes a first transimpedance amplifier 5011 and a second transimpedance amplifier 5012, a first power signal pad 6011, a third power signal pad 6013, and a first group of low-speed signal pads 6014 ,
  • the third group of low-speed signal pads 6016 and the first group of high-speed signal pads 6018 are a group of signal pads, which are connected to the first transimpedance amplifier 5011; the second power signal pad 6012, the second group of low-speed signal welding
  • the disk 6015, the fourth group of low-speed signal pads 6017, and the second group of high-speed signal pads 6019 are a group of signal pads, which are all connected to the second transimpedance amplifier 5012.
  • the first power signal pad 6011 and the third power signal pad 6013 are respectively connected to the first transimpedance amplifier 5011 through power lines to transmit power signals; the two low-speed signal pads of the first group of low-speed signal pads 6014 The three low-speed signal pads of the disk and the third group of low-speed signal pads 6016 are respectively connected to the first transimpedance amplifier 5011 through low-speed signal lines to transmit the low-speed signals of the first transimpedance amplifier 5011; the first group of high-speed signal pads The four pairs of high-speed signal pads of 6018 are respectively connected to the first transimpedance amplifier 5011 through high-speed signal lines to transmit the high-speed signals of the first transimpedance amplifier 5011.
  • the second power signal pad 6012 is connected to the second transimpedance amplifier 5012 through a power line to transmit power signals; the two low-speed signal pads of the second group of low-speed signal pads 6015, and the fourth group of low-speed signal pads
  • the three low-speed signal pads of 6017 are respectively connected to the second transimpedance amplifier 5012 through low-speed signal lines to transmit the low-speed signal of the second transimpedance amplifier 5012; the four pairs of high-speed signal pads of the second group of high-speed signal pads 6019 are respectively
  • the high-speed signal line is connected to the second transimpedance amplifier 5012 to transmit the high-speed signal of the second transimpedance amplifier 5012.
  • the optical module provided by the embodiment of the present disclosure includes a circuit board 300, a light receiving sub-module 402, and a second flexible board 500.
  • the circuit board 300 is provided with FPC pads.
  • one end of the second flexible board 500 is inserted into the non-airtight housing and connected to the light receiving device; the other end is provided with the first row of signal pads and the second row of signals along the width direction of the flexible circuit board
  • the second row of signal pads are arranged along the width edge of the flexible circuit board, and the first row of signal pads are arranged away from the circuit board, that is, the first row of signal pads and the second row of signal pads are arranged side by side from left to right on the flexible circuit board.
  • the first row of signal pads includes power supply pads and the first low-speed signal pad group, without high-speed signal pads;
  • the second row of signal pads includes second low-speed signal pads and multiple groups of high-speed signal pads
  • the second low-speed signal pad is located between multiple high-speed signal pad groups to isolate multiple high-speed signal pad groups to avoid crosstalk of high-speed signals; power supply pads, first low-speed signal pad group, and second low-speed signal pad groups
  • the low-speed signal pad group and the multiple groups of high-speed signal pad groups are respectively connected to the FPC pads in a one-to-one correspondence.
  • the light receiving sub-module can be connected to the circuit board through the power pad, the first low-speed signal pad group, the second low-speed signal pad group, and multiple sets of high-speed signal pad groups to realize the power signal, low-speed signal, and high-speed signal.
  • the interconnection between the flexible circuit board and the circuit board realizes the light receiving performance of the light receiving sub-module.
  • the light-receiving device is placed in a non-airtight housing and is connected to the circuit board 300 through the second flexible board 500.
  • the QSFP-DD specification provides that the width of the second flexible board 500 is 16.4mm, 200G
  • the product COB signal includes 8 pairs of high-speed signals, 10 low-speed signals, and 2 power signals.
  • the present disclosure designs the signal pads on the second flexible board 500 into a double-row pad structure, that is, the second flexible board 500 is provided with a first A row of signal pads and a second row of signal pads.
  • the first row of signal pads includes a total of 3 power signal pads and 4 low-speed signal pads
  • the second row of signal pads includes a total of 6 low-speed signal pads, 8 pairs of high-speed signal pads and 10 separate pads
  • the first row of signal pads and the second row of signal pads on the second flexible board 500 are connected to the corresponding FPC pads on the circuit board in a one-to-one correspondence.
  • the interconnection of the multi-type COB signals of the optical receiving sub-module 402 between the second flexible board 500 and the circuit board 300 effectively saves structural space, which not only satisfies the signal integrity of the COB multi-type signal, but also satisfies the QSFP-DD
  • the limitation of the structure width in turn is conducive to the miniaturization of the optical module.
  • the flexible circuit board provided by the embodiment of the present disclosure adopts a double-row pad design, which is not limited to the flexible circuit board connected to the light receiving sub-module, and is also applicable to the flexible circuit board connected to the light emitting sub-module, which not only satisfies the requirements of light
  • the transmission integrity of the multi-type signal of the module satisfies the limitation of the structural width of the optical module, which is conducive to the miniaturization of the optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

提供一种光模块,包括:电路板;光发射组件,与所述电路板电连接,用于发射光信号;光接收组件,用于接收来自光模块外部的光信号;柔性板,用于连接所述光接收组件与所述电路板;其中,所述光接收组件包括:壳体;光接收器件,设置在所述壳体内,用于接收外部光纤的光信号;跨阻放大器,设置在插入所述壳体的所述柔性板表面上,与所述光接收器件电连接,并通过所述柔性板与所述电路板电连接,用于将放大后的电信号传送至所述电路板。本申请的光模块将光接收组件集成在柔性板上,再通过柔性板将光接收组件连接至电路板上,避免了发射端与接收端的芯片均集成在电路板上,通过外接柔性板从空间上分离了收发芯片的距离,运用空间隔离、位置隔离等手段,解决了电路串扰的问题。

Description

一种光模块
本公开要求在2020年04月22日提交中国专利局、申请号为202010322966.2、专利名称为“一种光模块”、在2020年05月22日提交中国专利局、申请号为202020885226.5、专利名称为“一种光模块”、在2020年06月12日提交中国专利局、申请号为202021096787.3、专利名称为“一种光模块”、在2020年10月14日提交中国专利局、申请号为202011096302.5、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光模块速率越来越高,但对光模块的体积要求越来越小,就给光模块设计带来了例如散热问题、小型化的问题,要在较小的光模块壳体内布局更多的光学元件且兼顾散热问题成为了行业内一个极大的挑战。。
发明内容
本公开实施例提供一种光模块,其主要包括:电路板,具有电路,用于提供电连接;光收发次模块,与电路板的电路连接,用于发射数据光信号以及接收数据光信号;光收发次模块包括:圆方管体,表面开设有第一管口和第三管口,用于承载调节连接部件和光接收器;光接收器,伸入第三管口,用于接收数据光信号;调节连接部件,一端伸入第一管口,伸入第一管口的一端设置有隔离器,另一端置于圆方管体的外部,置于圆方管体的外部的一端设置有光发射器;光发射器,用于发射具有偏振方向的出射光,出射光通过隔离器;其中,调节连接部件的旋转可以带动隔离器随其旋转,以改变隔离器的偏振方向与出射光的偏振方向之间的夹角。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络终端结构示意图;
图3为本公开实施例提供的一种光模块的结构示意图;
图4为本公开实施例提供的一种光模块的分解结构示意图;
图5为本公开实施例中电路板的结构图;
图6为本公开实施例中电路板的分解结构示意图;
图7为本公开实施例中光发射组件的结构图;
图8为本公开实施例中光接收组件的结构图;
图9为本公开实施例中光接收组件的分解结构示意图;
图10为本公开实施例中光接收组件的局部结构示意图;
图11为本公开实施例中光接收组件的局部剖视图;
图12为图11中B处局部放大示意图;
图13为本公开实施例提供的一种光接收组件与下壳体的局部装配剖面示意图;
图14为本公开实施例提供的一种光接收组件与下壳体的局部装配分解结构示意图;
图15为本公开实施例提供的另一种光接收组件与下壳体的局部装配剖面示意图;
图16为本公开实施例提供的另一种光接收组件与下壳体的另一角度局部装配剖面示意图;
图17为图16中A处放大示意图;
图18为本公开实施例提供的一种光模块中光接收次模块、第二柔性板与电路板的装配示意图;
图19为本公开实施例提供的一种光模块中光接收次模块、第二柔性板与电路板的另一角度装配示意图;
图20为本公开实施例提供的一种光模块中光接收次模块、第二柔性板与电路板的再一角度装配示意图;
图21为本公开实施例提供的一种光模块中光接收次模块与第二柔性板的装配分解示意图;
图22为本公开实施例提供的一种光模块中第二柔性板与电路板的装配示意图;
图23为本公开实施例提供的一种光模块中另一种电路板的结构示意图;
图24为本公开实施例提供的一种光模块中第二柔性板的结构示意图;
图25为本公开实施例提供的一种光模块中第二柔性板的局部结构示意图;
图26为本公开实施例提供的一种光模块中第二柔性板的另一角度局部结构示意图;
图27为本公开实施例提供的一种光模块中光接收次模块与第二柔性板的信号线连接示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光 信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信息以及接地等;采用金手指实现的电连接方式已经成为光模块行业的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接。
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的相互转换,从而实现在光纤与光网络终端之间建立信息连接。具体地,来自光纤的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接;光模块200与网线103之间通过光网络终端100建立连接。具体地,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。
至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的信息处理设备包括路由器、交换机、电子计算机等;光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,常见的光模块上位机还有光线路终端等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入金手指等光模块电口;在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100中,具体为光模块的电口插入笼子106内部的电连接器,光模块的光口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供光模块分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、 下壳体202、解锁部件203、电路板300及光收发组件400。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体;包裹腔体的外轮廓一般呈现方形体。具体地,下壳体202包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口具体可以是在同一方向的两端开口(204、205),也可以是在不同方向上的两处开口;其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口205,用于外部光纤接入以连接光模块内部的光收发组件400;电路板300、光收发组件400等光电器件位于包裹腔体中。
采用上壳体、下壳体结合的装配方式,便于将电路板300、光收发组件400等器件安装到壳体中,由上壳体、下壳体形成模块最外层的封装保护壳体;上壳体及下壳体一般采用金属材料,利用实现电磁屏蔽以及散热,一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。
解锁部件203位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件203具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、激光驱动芯片、限幅放大芯片、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发组件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,具体地,在硬性电路板一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发组件之间可以采用柔性电路板连接。
光收发组件包括光发射组件及光接收组件两部分,分别用于实现光信号的发射与光信号的接收。附图5为本公开实施例提供的一种电路板300的结构示意图,附图6为本公开实施例提供的一种电路板300的分解结构示意图。如图5、图6所示,光模块200包括至 少两个光发射组件与光接收组件402,至少两个光发射组件分别通过第一柔性板与电路板300电连接,光接收组件402通过第二柔性板500与电路板300电连接,且光发射组件与光接收组件402层叠设置,而不是将光发射组件与光接收组件设置在电路板300表面上,如此可不增加电路板300的空间需求,从而减小光模块的体积尺寸,实现光模块的小型化封装。
本示例中,至少两个光发射组件可包括第一光发射组件401与第二光发射组件403,第一光发射组件401通过第一柔性板600与电路板300电连接,第二光发射组件403通过第三柔性板700与电路板300电连接,实现多路光发射芯片的布局。
光发射组件一般包括壳体、光发射器与透镜组件,光发射器固定于壳体的内部,用于发射光束;透镜组件位于光发射器发光光路上,且固定在壳体的内部,用于改变光束的传输方向,使得激光光束进入外部光纤。即,光发射器发出的光经透镜组件反射后进入光纤中。
图7为本公开实施例提供的一种光发射组件的结构示意图。如图7所示,第一光发射组件401包括第一壳体及封装于第一壳体内的光发射器件,光发射器件包括光发射器、发射端光学元件和发射尾端光纤接头,该光发射器件可包括多个光发射器,以实现多路光信号的发射,提高光模块的传输速度。本示例中,第一光发射组件401中可包括4个激光器,实现4路光信号的发射。
同理,第二光发射组件403包括第三壳体及封装于第三壳体内的光发射器件,光发射器件包括光发射器、发射端光学元件和发射尾端光纤接头,该光发射器件可包括多个光发射器,以实现多路光信号的发射,提高光模块传输速度。本示例中,第二光发射组件403中可包括4个激光器,实现4路光信号的发射。
本公开实施例提供的光模块通过两个光发射组件,可实现8路光信号的发射。其也可包括第三光发射组件、第四光发射组件等,实现光模块多路光信号发射,提供光模块的传输速度,其均属于本公开实施例的保护范围。
第一柔性板600连接第一光发射组件401与电路板300时,第一柔性板600的一端插入第一光发射组件401的第一壳体内、且与光发射器件电连接,其另一端连接至电路板300的上表面,方便第一光发射组件401的安装与拆卸。且第一光发射组件401内的光发射器件可通过第一壳体进行散热,不需通过电路板300进行散热,提高了第一光发射组件401的散热效率。
同理,第三柔性板700连接第二光发射组件403与电路板300时,第三柔性板700的一端插入第二光发射组件403的第三壳体内、且与光发射器件电连接,其另一端连接至电路板300的上表面,方便第二光发射组件403的安装与拆卸。且第二光发射组件403内的光发射器件可通过第三壳体进行散热,不需通过电路板300进行散热,提高了第二光发射组件403的散热效率。
本示例中,第一柔性板600与第二柔性板700可并排连接至电路板300的上表面,即第一光发射组件401与第二光发射组件403并排设置,方便光发射组件与光纤的连接与布局。
第二柔性板500的一端固定于电路板300的下表面,另一端伸入光接收组件402的壳体中,即通过第二柔性板500连接光接收组件402与电路板300,如此不需将光接收组件402集成在电路板300上,避免光发射组件401与光接收组件402均集成在电路板300上。即第二柔性板500为设置光接收组件402等元器件的载体,通常由柔性材料制备而成。
图8为本公开实施例提供的一种光接收组件402的结构示意图,图9为本公开实施例提供的一种光接收组件402的分解结构示意图。如图8、图9所示,光接收组件402包括第二壳体、光电探测器、透镜组件(图中未示出)、阵列波导光栅4022与跨阻放大器501,阵列波导光栅4022(可以使用光纤阵列替代)固定于第二壳体的内部,用于接收外部光纤的光信号;透镜组件设置于阵列波导光栅4022与外部光纤101之间,用于将来自外部光纤101的光经透镜组件反射后进入阵列波导光栅4022中;第二柔性板500的一端插入第二壳体中,跨阻放大器501设置在插入第二壳体的第二柔性板500表面上,其与阵列波导光栅4022连接,用于放大阵列波导光栅4022输出的电信号,即通过跨阻放大器501将阵列波导光栅4022输出的微弱信号电流转换成有足够幅度的信号电压输出,使得从跨阻放大器501输出的电压信号的幅度满足后级系统板对信号幅度的要求。跨阻放大器501通过第二柔性板500与电路板300电连接,以将放大后的电信号传送至电路板300,电路板300对电信号进行后续处理。
由于第二柔性板500为柔性材料制备,柔韧性较强,为将第二柔性板500插入第二壳体中,在第二壳体内设置基板600A,该基板600A位于插入第二壳体的第二柔性板500与第二壳体的底板之间,用于支撑第二柔性板500。
本示例中,阵列波导光栅4022常为PIN光电二极管和雪崩光电二极管APD,其利用光电效应将外部光纤101中的光信号转换为电信号。
将集成有跨阻放大器501的第二柔性板500插入第二壳体中,与第二壳体中的阵列波导光栅4022连接,再将第二柔性板500固定安装于电路板300上,如此通过外接柔性板从空间上分离光发射组件401与光接收组件402,避免光发射通道与光接收通道布线距离较近。
将第二柔性板500固定安装于电路板300时,可将第二柔性板500与第一柔性板600、第三柔性板700分别安装于电路板300的不同侧,即光发射组件与光接收组件分别位于电路板300的不同侧,节省光模块的空间。也可将第二柔性板500与第一柔性板600、第三柔性板700安装于电路板300的同一侧,即光发射组件与光接收组件位于电路板300的同一侧。
第二壳体包括封装壳4024及压盖于封装壳4024上的盖板4023,封装壳4024与盖板4023形成接收腔体,光接收组件402放置于该接收腔体内,集成有跨阻放大器501的第二柔性板500插入该接收腔体内,从而实现光接收组件402的微光学COB封装。
附图10为本公开实施例提供的一种光接收组件402的局部结构示意图。如图10所示,封装壳4024由一个底板及四个与底板相邻的侧板组成,其中一个侧板上设有第一开槽4028,该第一开槽4028与第二柔性板500对应,即第二柔性板500通过该第一开槽4028插入封装壳4024内。
为对第二柔性板500插入封装壳4024时进行限位,封装壳4024的底板上设有安装槽4025,该安装槽4025与第一开槽4028相对应,即安装槽4025的底面与第一开槽4028的底面相平行,第二柔性板500的端面插入第一开槽4028时,将第二柔性板500与第一开槽4028对准,使得第二柔性板500的底面与第一开槽4028的底面接触;之后推动第二柔性板500,使得第二柔性板500的底面在安装槽4025的底面上移动,直至第二柔性板500的端面与安装槽4025的侧壁相抵接。
可根据阵列波导光栅4022在封装壳4024的位置及封装壳4024的尺寸来确定封装壳4024底板上的安装槽4025在第二柔性板500安装方向的尺寸,如此将第二柔性板500通过第一开槽4028伸入封装壳4024内、且固定于安装槽4025后,方便实现阵列波导光栅4022与第二柔性板500上跨阻放大器501的连接。
将第二柔性板500通过第一开槽4028插入封装壳4024中时,可将基板600A粘贴于封装壳4024安装槽的底面,再将第二柔性板500粘贴于基板600A上,以将第二柔性板500固定于封装壳4024内。
与第一开槽4028所在侧板相对的封装壳4024的另一侧板上设有第二开槽4026,该第二开槽4026与阵列波导光栅4022对应,即阵列波导光栅4022通过第二开槽4026插入封装壳4024内。
将阵列波导光栅4022通过第二开槽4026插入封装壳4024后,推动阵列波导光栅4022,直至阵列波导光栅4022的端面靠近安装槽4025的侧壁,然后可将阵列波导光栅4022粘贴于封装壳4024的底板上,以将阵列波导光栅4022固定于封装壳4024内。
光接收组件402的安装过程为:首先将阵列波导光栅4022通过第二开槽4026插进封装壳4024,直至阵列波导光栅4022的端面靠近安装槽4025的侧壁,之后将阵列波导光栅4022固定于封装壳4024的底板上;然后将跨阻放大器501固定在第二柔性板500的表面上;然后将集成有跨阻放大器501的第二柔性板500通过第一开槽4028插进封装壳4024,直至第二柔性板500的端面与安装槽4025的侧壁相抵接;固定好第二柔性板500与阵列波导光栅4022后,将盖板4023压盖于封装壳4024的开口处,将跨阻放大器501与阵列波导光栅4022封装于第二壳体内。
插入第二壳体的第二柔性板500的表面上可设置一个跨阻放大器501,即光模块具有一组光接收组件402与一组光发射组件401,如此与第一开槽4028所在侧板相对的侧板上设有一个第二开槽4026,通过外接柔性板将光接收组件电连接电路板300上。插入第二壳体的第二柔性板500的表面上还可设置多个跨阻放大器501,即光模块具有多组光接收组件402与多组光发射组件,多组光接收组件402封装于同一接收腔内,而多组光发射组件分别进行封装。
当插入第二壳体的第二柔性板500的表面上设置有多个跨阻放大器501时,与第一开槽4028所在侧板相对的侧板上并排设置有多个第二开槽(4026、4027),多组阵列波导光栅4022通过多个第二开槽(4026、4027)插入第二壳体内,以适应于高速率光模块。
将跨阻放大器501放置在第二柔性板500上时,可直接将跨阻放大器501粘贴于插入第二壳体的第二柔性板500的表面上,也可在第二柔性板500上挖孔,将跨阻放大器501 嵌在该孔内,跨阻放大器通过孔安装在基板600A的表面上。
附图11为本公开实施例提供的一种光接收组件402的剖面示意图;附图12为图11的B处放大示意图。如图11、图12所示,由于第二柔性板500为软体材质的板材制备,因而第二柔性板500易变形,因此,第二柔性板500与封装壳4024底板上的安装槽4025之间设有基板600A,基板600A能够防止第二柔性板500变形以及承托第二柔性板500。
本示例中,基板600A位于第二柔性板500的下方,可通过第一开槽4028插入安装槽4025中,来承托集成有跨阻放大器501的第二柔性板500的一端,且基板600A的端面与安装槽4025的侧壁相抵接。具体地,可将基板600A粘贴在与跨阻放大器501相对的第二柔性板500底面,然后将第二柔性板500与基板600A一起通过第一开槽4028插入安装槽4025中,直至第二柔性板500的端面、基板600A的端面与安装槽4025的侧壁相抵接。
本示例中,可在插入第二壳体的第二柔性板500上设置安装孔(图中未示出),跨阻放大器501通过该安装孔安装在基板600A的表面上,安装在基板600A上的跨阻放大器501与阵列波导光栅4022电连接,并通过第二柔性板500与电路板300电连接,用于将放大后的电信号传送至电路板300。
对于高速率200G光模块,一般具有多套光接收组件与光发射组件,即第二柔性板500上集成有多个跨阻放大器501,如此,可在插入第二壳体的第二柔性板500上设置多个安装孔(图中未示出),多个跨阻放大器501通过多个安装孔安装在基板600A的表面上。
本示例中,光模块具有两套光接收组件402,如此与第一开槽4028所在侧板相对的封装壳4024的另一侧板上设有第二开槽4026与第四开槽4027,第二开槽4026与第四开槽4027并列设置,且该第二开槽4026与第四开槽4027分别与两个阵列波导光栅4022对应,即一个阵列波导光栅4022通过第二开槽4026插入封装壳4024内,另一个阵列波导光栅4022通过第四开槽4027插入封装壳4024内。本示例中,两套光接收组件402包括两组光探测器,每组光探测器包括4个探测器,实现8路光信号的接收。
将两个阵列波导光栅4022分别通过第二开槽4026、第四开槽4027插入封装壳4024后,推动两个阵列波导光栅4022,直至两个阵列波导光栅4022的端面靠近安装槽4025的侧壁,然后可将两个阵列波导光栅4022分别粘贴于封装壳4024的底板上,以将两个阵列波导光栅4022固定于封装壳4024内。
两个光接收组件402的安装过程为:首先将两个阵列波导光栅4022分别通过第二开槽4026与第四开槽4027插进封装壳4024,直至两个阵列波导光栅4022的端面靠近安装槽4025的侧壁,之后将两个阵列波导光栅4022固定于封装壳4024的底板上;然后将两个跨阻放大器501通过第二柔性板500上的安装孔并列安装在基板600A上;然后将集成有两个跨阻放大器501的第二柔性板500与基板600A一起通过第一开槽4028插进封装壳4024,直至第二柔性板500与基板600A的端面与安装槽4025的侧壁相抵接;固定好第二柔性板500与阵列波导光栅4022后,将盖板4023压盖于封装壳4024的开口处,将两个跨阻放大器501与两个阵列波导光栅4022一起封装于第二壳体内。
第二柔性板500上集成的跨阻放大器501的数量不仅限于上述实施例的一个或两个, 其可根据实际需求集成多个跨阻放大器,使得光模块具有多个接收通道,其均属于本公开实施例的保护范围。
采用柔性板和接收芯片跨阻放大器集成在一起的布线结构,虽然在同轴封装形式上柔性板上集成电芯片会被采用,但其目的仅仅是在布线空间不足的情况下的被动选择,而且柔性板上仅能集成1颗接收芯片,而本公开基于COB方案主动采用外接柔性板,将接收电芯片集成在柔性板上,避免在电路板上集成接收电芯片,而且本公开能将两颗跨阻放大器集成在柔性板上,解决接收芯片集成在电路板上的问题,从而为电路板节省大量空间,实现了在较小的光模块壳体内布局更多的光学元件。
本公开实施例提供的光模块,特别是对于高速率200G光模块收发均有8个通道,采用外接柔性板分别实现光发射组件与电路板、光接收组件与电路板的电连接,避免在电路板上集成发射、接收电芯片,为电路板节省大量空间,实现了在较小的光模块壳体内布局更多的光学元件;且光发射组件与光接收组件分别进行SFP封装,通过封装壳体进行散热,不需通过电路板进行散热,提高了光模块的散热能力。
图13为本公开实施例提供的一种光接收组件与下壳体的局部装配剖面示意图,图14为本公开实施例提供的一种光接收组件与下壳体的局部装配分解结构示意图。如图13、图14所示,光接收组件402包括底板702、透镜组件(图中未示出)与光接收器件,光接收器件包括光电探测器、跨阻放大器与阵列波导光栅4022,跨阻放大器等器件设置在第二柔性板500上,光电探测器可设置在第二柔性板500上,也可不设置在第二柔性板500上,阵列波导光栅4022设置在底板702上,用于接收外部光纤的光信号,即阵列波导光栅4022的输出端与光电探测器连接,通过阵列波导光栅4022、光电探测器将外部光纤中传输的光信号转换为电信号。透镜组件设置于光接收器件与外部光纤之间,用于将来自外部光纤的光经透镜组件反射后进入光接收器件中,将光信号转换为电信号;第二柔性板500的另一端连接至电路板300的下表面,将转换后的电信号传送至电路板300,电路板300对电信号进行后续处理。
第二柔性板500一端的下表面连接至底板702的上表面,光电探测器与跨阻放大器等器件设置在第二柔性板500与底板702相匹配的部分上,如此光电探测器与跨阻放大器等产生的热量,可直接通过第二柔性板500、底板702、下壳体202传导出去,提高了导热效率。
光接收组件402除包括底板702外,还包括罩设于底板702上的罩体701,罩体701与底板702结合形成防尘壳体,光电探测器、跨阻放大器与阵列波导光栅4022均设置于防尘壳体内,以保护光接收组件402。
由于第二柔性板500为柔性材料制备,柔韧性较强,为将第二柔性板500连接至底板702,在底板702上设置基板600A,该基板600A位于第二柔性板500与底板702之间,用于支撑第二柔性板500,对第二柔性板500的强度进行补强。
基板600A的覆盖区域为第二柔性板500上光电探测器与跨阻放大器的设置区域,也就是说,在第二柔性板500上设置光电探测器与跨阻放大器的区域下方固定基板600A,通过基板600A来支撑设置有光电探测器与跨阻放大器等器件的第二柔性板500,避免第 二柔性板500变形,无法支撑接收电器件。
为方便安装基板600A,底板702上设置有凹槽,凹槽内设置有凸起,基板600A上设置有与凸起对应的安装槽,凸起可嵌于安装槽内,实现基板600A与底板702的卡装。
本示例中,基板600A的上表面贴装于第二柔性板500的下表面,将第二柔性板500连接至底板702时,将基板600A上的安装槽与底板702上的凸起对准,由左向右推动第二柔性板500,直至基板600A上的安装槽与底板702上的凸起装配到位,如此方便第二柔性板500的安装与拆卸。
安装光接收组件时,将集成有跨阻放大器、光电探测器的第二柔性板500插入防尘壳体中,即将第二柔性板500连接至底板702,通过基板600A实现第二柔性板500与底板702的固定,并与固定于底板702上的阵列波导光栅4022连接,再将第二柔性板500固定安装于电路板300的下表面上,如此通过外接柔性板连接电路板300与光接收组件402,跨阻放大器这颗发热量大的芯片可直接通过金属壳体导出散热。
罩体701可由一个顶板与四个侧板构成,四个侧板分别与防尘壳体的底板702连接。可在罩体701的一个侧板上设置第一开槽,将第二柔性板500与基板600A通过第一开槽插入防尘壳体内。与第一开槽所在侧板对应的侧板上可开设第二开槽,将阵列波导光栅4022通过第二开槽插入防尘壳体后,推动阵列波导光栅4022,直至阵列波导光栅4022的端面靠近第二柔性板500上的光电探测器,然后可将阵列波导光栅4022粘贴于防尘壳体的底板702上,以将阵列波导光栅4022固定于防尘壳体内。
光接收组件402的安装过程为:首先将阵列波导光栅4022通过第二开槽插进防尘壳体,之后将阵列波导光栅4022固定于防尘壳体的底板702上;然后将跨阻放大器、光电探测器等光接收器件固定在第二柔性板500的表面上;然后将集成有跨阻放大器、光电探测器等器件的第二柔性板500通过第一开槽插进防尘壳体,直至光电探测器与阵列波导光栅4022相抵接,从而将跨阻放大器、光电探测器与阵列波导光栅4022等器件封装于防尘壳体内。
可由光电探测器、跨阻放大器与阵列波导光栅4022组成一套光接收器件,光接收组件402可包括多套光接收器件,完成多路光路的接收。即插入防尘壳体的第二柔性板500的表面上设置多个跨阻放大器、光电探测器,光模块具有多组光接收器件与多组光发射组件,多组光接收器件封装于同一防尘壳体内,而多组光发射组件分别进行封装。
设置有多个跨阻放大器、光电探测器时,与第一开槽所在侧板相对的侧板上可并排设置有多个第二开槽,多组阵列波导光栅4022通过多个第二开槽插入防尘壳体内,以适应于高速率光模块。
将跨阻放大器、光电探测器等放置在第二柔性板500上时,可直接将跨阻放大器、光电探测器粘贴于第二柔性板500的表面上,也可在第二柔性板500上挖孔,将跨阻放大器嵌在该孔内,跨阻放大器通过孔安装在底板702的上表面上。
附图15为本公开实施例提供的另一种光接收组件与下壳体的局部装配剖面示意图;附图16为本公开实施例提供的另一种光接收组件与下壳体的另一角度局部装配剖面示意图。如图15、图16所示,由于第二柔性板500为软体材质的板材制备,因而第二柔性板 500易变形,因此,第二柔性板500与底板702之间设有基板600A,基板600A能够防止第二柔性板500变形以及承托第二柔性板500。
本示例中,可在底板702上设置凹槽,该凹槽的侧壁可与跨阻放大器的前端面相对应。安装第二柔性板500时,将基板600A粘贴在与跨阻放大器相对的第二柔性板500底面,然后将第二柔性板500与基板600A一起通过第一开槽插入防尘壳体中,直至第二柔性板500的端面、基板600A的端面与底板702的侧壁相抵接。
本示例中,可在第二柔性板500上设置安装孔501A,跨阻放大器501通过安装孔501A安装在基板600A的表面上。
图17为图16中A处放大示意图,如图17所示,也可在第二柔性板500上设置安装孔501A,跨阻放大器501通过该安装孔501A安装在底板702的表面上,安装在底板702的跨阻放大器501与光电探测器、阵列波导光栅4022电连接,并通过第二柔性板500与电路板300电连接,用于将放大后的电信号传送至电路板300。
相比于将跨阻放大器501通过安装孔501A安装在基板600A上,跨阻放大器501产生的热量通过基板、底板702、下壳体202导出散热,将跨阻放大器501通过安装孔501A安装在底板702上使得跨阻放大器501直接与防尘壳体接触,而防尘壳体又直接安装于下壳体202的上表面,如此跨阻放大器501产生的热量可通过底板702、下壳体202直接导出散热,散热效率更高。
将跨阻放大器等器件通过安装孔501A安装在底板702上时,基板600A的覆盖区域小于或等于第二柔性板500上安装孔501A的前端面至底板702的前端面之间的区域,即在底板702上设置凹槽,该凹槽的尺寸为底板702的前端面至第二柔性板500上安装孔501A的前端面之间的距离,将基板600A嵌在该凹槽内,以支撑第二柔性板500。
对于高速率200G光模块,一般具有多套光接收组件与光发射组件,即第二柔性板500上集成有多个跨阻放大器501,如此,可在插入防尘壳体的第二柔性板500上设置多个安装孔501A,多个跨阻放大器501通过多个安装孔501A安装在底板702的表面上。
第二柔性板500上集成的跨阻放大器501的数量不仅限于上述实施例的一个或两个,其可根据实际需求集成多个跨阻放大器,使得光模块具有多个接收通道,其均属于本公开实施例的保护范围。
采用柔性板和接收芯片跨阻放大器集成在一起的布线结构,虽然在同轴封装形式上柔性板上集成电芯片会被采用,但其目的仅仅是在布线空间不足的情况下的被动选择,而且柔性板上仅能集成1颗接收芯片,而本公开基于COB方案主动采用外接柔性板,将接收电芯片集成在柔性板上,避免在电路板上集成接收电芯片,而且本公开能将两颗跨阻放大器集成在柔性板上,解决接收芯片集成在电路板上的问题,从而为电路板节省大量空间,实现了在较小的光模块壳体内布局更多的光学元件。
本公开实施例提供的光模块,特别是对于高速率200G光模块收发均有8个通道,即光接收组件包括两组接收端尾端光纤接头、阵列波导光栅、光电探测器与跨阻放大器,每组光电探测器包括4个探测器,采用外接柔性板分别实现光发射组件与电路板、光接收组件与电路板的电连接,避免在电路板上集成发射、接收电芯片,为电路板节省大量空间, 实现了在较小的光模块壳体内布局更多的光学元件;且光发射组件与光接收组件分别进行SFP封装,柔性板贴装于防尘壳体的底板,如此放置于柔性板上的跨阻放大器、光电探测器等产生的热量可直接通过防尘壳体导出散热,不需通过电路板进行散热,提高了光模块的散热能力。
图18为本公开实施例提供的一种光模块中光接收次模块、第二柔性板与电路板的装配示意图,图19为本公开实施例提供的一种光模块中光接收次模块、第二柔性板与电路板的另一角度装配示意图,图20为本公开实施例提供的一种光模块中光接收次模块、第二柔性板与电路板的再一角度装配示意图。如图18、图19、图20所示,光接收次模块402包括非气密壳体及设置于非气密壳体内的接收光器件,第二柔性板500的一端插入光接收次模块402的非气密壳体内,与接收光器件连接;第二柔性板500的另一端设置有多个信号焊盘601,第二柔性板500通过信号焊盘601与电路板300连接,如此实现了接收光器件的多类信号在第二柔性板500与电路板300之间互连。
图21为本公开实施例提供的一种光模块中光接收次模块与第二柔性板的装配分解示意图。如图21所示,光接收次模块402的接收光器件包括光电探测器502与跨阻放大器501,光电探测器502可固定于非气密壳体的底面上,其可通过打线与第二柔性板500连接;第二柔性板500插入非气密壳体的一端设置有凹槽,跨阻放大器501可嵌设于该凹槽内,且跨阻放大器501的一端与光电探测器502连接、另一端可通过打线与第二柔性板500连接。从而实现了光电探测器502、跨阻放大器501与第二柔性板500的连接。光电探测器502用于将外部光纤传输的光信号转换为电信号,之后电信号传输至跨阻放大器501,通过跨阻放大器501对电信号进行放大,放大后的电信号可通过第二柔性板500传输至电路板300。
光接收次模块402内接收光器件的COB信号包含高速信号、低速信号与电源信号,第二柔性板500上的信号焊盘用于实现COB信号在第二柔性板500与电路板300之间的互连,若第二柔性板500上的信号焊盘采用单排焊盘设计,为满足高速信号、低速信号与电源信号的传输完整性,需保证信号焊盘之间的间距,如此会造成第二柔性板500的宽度尺寸较大,进而导致光接收次模块402的非气密壳体尺寸较大,光模块的整体尺寸较大,不利于光模块的小型化发展。因此本公开中第二柔性板500采用双排焊盘设计,即将传输高速信号、低速信号与电源信号的焊盘分为左右两排,如此可节省第二柔性板500的结构空间,进而有利于光模块的小型化发展。
图22为本公开实施例提供的一种光模块中第二柔性板与电路板的装配示意图。如图22所示,电路板300的一端设置有FPC焊盘、另一端设置有金手指,第二柔性板500上的信号焊盘601采用双排焊盘设计,包括第一排信号焊盘与第二排信号焊盘,第一排信号焊盘与第二排信号焊盘沿第二柔性板500的长度方向依次设置,且第二排信号焊盘沿第二柔性板500的宽度边缘设置,第一排信号焊盘远离金手指设置;即第一排信号焊盘与第二排信号焊盘沿第二柔性板500的长度方向左右设置,第一排信号焊盘远离电路板300上的金手指,第二排信号焊盘靠近电路板300上的金手指。
图23为本公开实施例提供的一种光模块中另一种电路板的结构示意图。如图23所示, 电路板300上设置的FPC焊盘301也采用双排焊盘设计,第一排信号焊盘、第二排信号焊盘分别与双排FPC焊盘301一一对应设置,第二柔性板500与电路板300连接时,第一排信号焊盘、第二排信号焊盘分别与FPC焊盘一一对应连接,如此接收光器件的多类信号通过第一排信号焊盘、第二排信号焊盘、FPC焊盘在第二柔性板500与电路板300之间互连。
图24为本公开实施例提供的一种光模块中第二柔性板的结构示意图,图25为本公开实施例提供的一种光模块中第二柔性板的局部结构示意图。如图24、图25所示,第一排信号焊盘包括电源焊盘与第一低速信号焊盘组,没有高速信号焊盘;其中,电源焊盘包括第一电源信号焊盘6011、第二电源信号焊盘6012与第三电源信号焊盘6013,第二电源信号焊盘6012设置于第一电源信号焊盘6011与第三电源信号焊盘6013之间,第一电源信号焊盘6011与第三电源信号焊盘6013分别设置于第二柔性板500相对的两侧边上,且第一电源信号焊盘6011与第三电源信号焊盘6013组合传输一个电源信号。即第二柔性板500与电路板300连接时,第二柔性板500上的第一电源信号焊盘6011、第二电源信号焊盘6012与第三电源信号焊盘6013分别与电路板300上相应的FPC焊盘301一一对应连接,实现第二柔性板500与电路板300之间的电连接,如此电路板300可通过第一电源信号焊盘6011、第二电源信号焊盘6012与第三电源信号焊盘6013向光接收次模块402的接收光器件提供电信号,以供接收光器件正常工作。
在本公开实施例中,第二柔性板500相对两侧边上的第一电源信号焊盘6011与第三电源信号焊盘6013均为圆弧形焊盘,电路板300上与第一电源信号焊盘6011、第三电源信号焊盘6013相应的FPC焊盘也为圆弧形FPC焊盘,第二柔性板500上的圆弧形焊盘与电路板300上的圆弧形FPC焊盘可形成圆形焊盘,从而实现第二柔性板500与电路板300的定位连接。在本示例中,圆弧形焊盘可为半圆形焊盘,也可为半椭圆形焊盘。
第一电源信号焊盘6011与第三电源信号焊盘6013上设置有圆弧形通孔,电路板300上的圆弧形FPC焊盘设置有圆弧形过孔,第二柔性板500与电路板300连接时,将第一电源信号焊盘6011、第三电源信号焊盘6013上的圆弧形通孔分别与圆弧形FPC焊盘上的圆弧形过孔对准,使得第一电源信号焊盘6011上的圆弧形通孔与电路板300上相应的圆弧形过孔拼接形成圆形孔,第三电源信号焊盘6013上的圆弧形通孔与电路板300上相应的圆弧形过孔拼接形成圆形孔,以对第二柔性板500进行定位。
对第二柔性板500进行定位之后,第一电源信号焊盘6011上的圆弧形通孔与电路板300上相应的圆弧形过孔焊接在一起,第三电源信号焊盘6013上的圆弧形通孔与电路板300上相应的圆弧形过孔焊接在一起,以实现第二柔性板500与电路板300的连接。
第二电源信号焊盘6012包括圆形焊盘与条形焊盘,圆形焊盘上设置有圆形通孔,电路板300上设置有相对应的圆形FPC焊盘,圆形FPC焊盘上设置有圆形过孔;第二柔性板500与电路板300连接时,将第二电源信号焊盘6012上的圆形通孔与圆形FPC焊盘上的圆形过孔对准焊接,以通过圆形焊盘实现第二柔性板500与电路板300的定位连接。
同理,电路板300上设置有相对应的条形焊盘,第二柔性板500与电路板300连接时,第二电源信号焊盘6012的条形焊盘与FPC焊盘的条形焊盘连接,以传输另一电源信号, 为光接收次模块402的接收光器件提供电信号。
第一排信号焊盘的第一低速信号焊盘组包括第一组低速信号焊盘6014与第二组低速信号焊盘6015,第一组低速信号焊盘6014位于第一电源信号焊盘6011与第二电源信号焊盘6012之间,第二组低速信号焊盘6015位于第二电源信号焊盘6012与第三电源信号焊盘6013之间。第二柔性板500与电路板300连接时,第二柔性板500上的第一组低速信号焊盘6014、第二组低速信号焊盘6015分别与电路板300上相应的FPC焊盘一一对应连接,实现第二柔性板500与电路板300之间的低速信号连接,如此光接收次模块402内接收光器件的低速信号可通过第一组低速信号焊盘6014、第二组低速信号焊盘6015传输至电路板300,实现光接收次模块402与电路板300之间的低速信号互连。
图26为本公开实施例提供的一种光模块中第二柔性板的另一角度局部结构示意图。如图26所示,第一组低速信号焊盘6014与第二组低速信号焊盘6015均为通孔焊盘,电路板300上设置有相应的过孔FPC焊盘;电路板300远离第二柔性板500的一端设置有金手指,电路板300上的过孔FPC焊盘通过布置在电路板300内部的走线与金手指连接,即电路板300上与低速信号焊盘连接的FPC焊盘通过过孔与电路板300内部的走线连接,通过电路板300内部走线实现低速信号的传输。
在本公开实施例中,光接收次模块402的接收光器件的低速信号较多,因此在第二排信号焊盘上还设置有第二低速信号焊盘组,第二低速信号焊盘组包括第三组低速信号焊盘6016与第四组低速信号焊盘6017,第三组低速信号焊盘6016设置于第二柔性板500宽度边缘的一端,第四组低速信号焊盘6017设置于第三组低速信号焊盘6016与第二柔性板500宽度边缘的另一端之间。第二柔性板500与电路板300连接时,第二柔性板500上的第一组低速信号焊盘6014、第二组低速信号焊盘6015、第三组低速信号焊盘6016、第四组低速信号焊盘6017分别与电路板300上相应的FPC焊盘一一对应连接,实现第二柔性板500与电路板300之间的低速信号连接,如此光接收次模块402内接收光器件的低速信号可分别通过第一组低速信号焊盘6014、第二组低速信号焊盘6015、第三组低速信号焊盘6016与第四组低速信号焊盘6017传输至电路板300,实现了光接收次模块402与电路板300之间的低速信号互连。
第二排信号焊盘还包括多组高速信号焊盘组,高速信号焊盘组包括第一组高速信号焊盘6018与第二组高速信号焊盘6019,第一组高速信号焊盘6018设置于第三组低速信号焊盘6016与第四组低速信号焊盘6017之间,第二组高速信号焊盘6019设置于第二柔性板500远离第三组低速信号焊盘6016的一端。即第二排信号焊盘上焊盘的分布顺序为第三组低速信号焊盘6016、第一组高速信号焊盘6018、第四组低速信号焊盘6017与第二组高速信号焊盘6019,由第四组低速信号焊盘6017来隔离第一组高速信号焊盘6018与第二组高速信号焊盘6019。第二柔性板500与电路板300连接时,第二柔性板500上的第一组高速信号焊盘6018、第二组高速信号焊盘6019分别与电路板300上相应的FPC焊盘一一对应连接,实现第二柔性板500与电路板300之间的高速信号连接,如此光接收次模块402内接收光器件的高速信号可分别通过第一组高速信号焊盘6018、第二组高速信号焊盘6019传输至电路板300,实现了光接收次模块402与电路板300之间的高速信号 互连。
在本公开实施例中,第一组高速信号焊盘6018与第二组高速信号焊盘6019均为通孔焊盘,电路板300的表面上设置有相应的FPC焊盘;电路板300远离第二柔性板500的一端设置有金手指,为满足高速信号的传输要求,电路板300上的FPC焊盘通过布置在电路板300表面的走线与金手指连接,即第二柔性板500通过第一组高速信号焊盘6018、第二组高速信号焊盘6019与相应的FPC焊盘将高速信号传输至电路板300上,传输至电路板300上的高速信号通过电路板300表面走线传输至金手指,以实现高速信号的传输。
在本公开实施例中,如图25所示,上下方向为第二柔性板500的长度方向,左右方向为第二柔性板500的宽度方向,如此第一排信号焊盘设置在第二排信号焊盘的上方,第一排信号焊盘的第一电源信号焊盘6011设置于第二柔性板500上第一排信号焊盘的右侧侧边上,第三电源信号焊盘6013设置于第二柔性板500上第一排信号焊盘的左侧侧边上,第三组低速信号焊盘6016设置于第二柔性板500第二排信号焊盘的左侧侧边上,第二组高速信号焊盘6019设置于第二柔性板500第二排信号焊盘的右侧侧边上。
在本公开实施例中,光接收次模块402内的COB信号包括8对高速信号、10条低速信号与2条电源信号,第二排信号焊盘中第一组高速信号焊盘6018与第二组高速信号焊盘6019均包括四对高速信号焊盘,可分别传输四对高速信号,且第二柔性板500上每对高速信号焊盘间隔设置。为满足8对高速信号100Ω+/-10%的技术管控要求,高速信号焊盘之间的间距较大,因此本公开为保证第二柔性板500上高速信号焊盘之间的间距需求,在相邻高速差分对信号焊盘之间设置有分隔焊盘,通过分隔焊盘来增加高速信号焊盘之间的间距。
具体地,第一组高速信号焊盘6018包括8个高速信号焊盘与4个分隔焊盘,8个高速信号焊盘组成4对高速差分对,这4个分隔焊盘用于分隔4对高速差分对。即第三组低速信号焊盘6016与第一对高速信号焊盘之间设置有第一个分隔焊盘,第一对高速信号焊盘与第二对高速信号焊盘之间设置有第二个分隔焊盘,第二对高速信号焊盘与第三对高速信号焊盘之间设置有第三个分隔焊盘,第三对高速信号焊盘与第四对高速信号焊盘之间设置有第四个分隔焊盘。
同理,第二组高速信号焊盘6019包括8个高速信号焊盘与5个分隔焊盘,8个高速信号焊盘组成4对高速差分对,这5个分隔焊盘用于分隔4对高速差分对。即第四组低速信号焊盘6017与第五对高速信号焊盘之间设置有第五个分隔焊盘,第五对高速信号焊盘与第六对高速信号焊盘之间设置有第六个分隔焊盘,第六对高速信号焊盘与第七对高速信号焊盘之间设置有第七个分隔焊盘,第七对高速信号焊盘与第八对高速信号焊盘之间设置有第八个分隔焊盘,第八对高速信号焊盘与第二柔性板500上第二排信号焊盘的侧边上设置有第九个分隔焊盘。
在本公开实施例中,第一组低速信号焊盘6014与第二组低速信号焊盘6015均包括两个低速信号焊盘,第三组低速信号焊盘6016与第四组低速信号焊盘6017均包括三个低速信号焊盘,如此可通过第一组低速信号焊盘6014、第二组低速信号焊盘6015、第三组低速信号焊盘6016与第四组低速信号焊盘6017传输10条低速信号,满足光接收次模块402 的低速信号传输完整性。
图27为本公开实施例提供的一种光模块中光接收次模块与第二柔性板的信号线连接示意图。如图27所示,光接收次模块402包括第一跨阻放大器5011与第二跨阻放大器5012,第一电源信号焊盘6011、第三电源信号焊盘6013、第一组低速信号焊盘6014、第三组低速信号焊盘6016与第一组高速信号焊盘6018为一组信号焊盘,其均与第一跨阻放大器5011连接;第二电源信号焊盘6012、第二组低速信号焊盘6015、第四组低速信号焊盘6017与第二组高速信号焊盘6019为一组信号焊盘,其均为第二跨阻放大器5012连接。
具体地,第一电源信号焊盘6011、第三电源信号焊盘6013分别通过电源线与第一跨阻放大器5011连接,以传输电源信号;第一组低速信号焊盘6014的两个低速信号焊盘、第三组低速信号焊盘6016的三个低速信号焊盘分别通过低速信号线与第一跨阻放大器5011连接,以传输第一跨阻放大器5011的低速信号;第一组高速信号焊盘6018的四对高速信号焊盘分别通过高速信号线与第一跨阻放大器5011连接,以传输第一跨阻放大器5011的高速信号。同理,第二电源信号焊盘6012通过电源线与第二跨阻放大器5012连接,以传输电源信号;第二组低速信号焊盘6015的两个低速信号焊盘、第四组低速信号焊盘6017的三个低速信号焊盘分别通过低速信号线与第二跨阻放大器5012连接,以传输第二跨阻放大器5012的低速信号;第二组高速信号焊盘6019的四对高速信号焊盘分别通过高速信号线与第二跨阻放大器5012连接,以传输第二跨阻放大器5012的高速信号。
本公开实施例提供的光模块包括电路板300、光接收次模块402与第二柔性板500,电路板300上设置有FPC焊盘,光接收次模块402包括非气密壳体及设置于非气密壳体内的接收光器件,第二柔性板500的一端插入非气密壳体内,与接收光器件连接;另一端沿柔性电路板宽度方向设置有第一排信号焊盘与第二排信号焊盘,第二排信号焊盘沿柔性电路板的宽度边缘设置,第一排信号焊盘远离电路板设置,即柔性电路板上由左至右并排设置有第一排信号焊盘与第二排信号焊盘;第一排信号焊盘包括电源焊盘与第一低速信号焊盘组,没有高速信号焊盘;第二排信号焊盘包括第二低速信号焊盘与多组高速信号焊盘组,且第二低速信号焊盘位于多组高速信号焊盘组之间,以隔离多组高速信号焊盘组,避免高速信号产生串扰;电源焊盘、第一低速信号焊盘组、第二低速信号焊盘组与多组高速信号焊盘组分别与FPC焊盘一一对应连接。光接收次模块可通过电源焊盘、第一低速信号焊盘组、第二低速信号焊盘组与多组高速信号焊盘组实现与电路板的连接,以实现电源信号、低速信号、高速信号在柔性电路板与电路板之间的互连,从而实现光接收次模块的光接收性能。
200G LTA1335C-PC项目中,接收光器件置于非气密壳体内,通过第二柔性板500与电路板300相连,其中QSFP-DD规格书给出第二柔性板500的宽度为16.4mm,200G产品COB信号包含8对高速信号、10条低速信号与2条电源信号,本公开将第二柔性板500上的信号焊盘设计成双排焊盘结构,即第二柔性板500上设置有第一排信号焊盘与第二排信号焊盘,第一排信号焊盘共包括3个电源信号焊盘与4个低速信号焊盘,第二排信号焊盘共包括6个低速信号焊盘、8对高速信号焊盘与10个分隔焊盘,且第二柔性板500上的第一排信号焊盘、第二排信号焊盘与电路板上相应的FPC焊盘一一对应连接,实现 了光接收次模块402的多类COB信号在第二柔性板500与电路板300之间的互联,如此有效节省了结构空间,既满足了COB多类信号的信号完整性,又满足了QSFP-DD结构宽度的受限性,进而有利于光模块的小型化发展。
本公开实施例提供的柔性电路板采用双排焊盘设计,其并不仅限于与光接收次模块连接的柔性电路板,也同样适用于与光发射次模块连接的柔性电路板,既满足了光模块多类信号的传输完整性,又满足了光模块结构宽度的受限性,有利于光模块的小型化发展。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (38)

  1. 一种光模块,其特征在于,包括:
    电路板;
    光发射组件,与所述电路板电连接,用于发射光信号;
    光接收组件,用于接收来自光模块外部的光信号;
    柔性板,用于连接所述光接收组件与所述电路板;
    其中,所述光接收组件包括:
    壳体;
    光接收器件,设置在所述壳体内,用于接收外部光纤的光信号;
    跨阻放大器,设置在插入所述壳体的所述柔性板表面上,与所述光接收器件电连接,并通过所述柔性板与所述电路板电连接,用于将放大后的电信号传送至所述电路板。
  2. 根据权利要求1所述的光模块,其特征在于,所述壳体内设有基板,用于支撑插入所述壳体的柔性板。
  3. 根据权利要求2所述的光模块,其特征在于,所述壳体包括封装壳及压盖于所述封装壳上的盖板,其中,
    所述封装壳与所述盖板相邻的一侧板上设有第一开槽,所述柔性板通过所述第一开槽插入所述壳体内;与所述第一开槽所在侧板相对的侧板上设有第二开槽,所述光接收器件通过所述第二开槽插入所述壳体内。
  4. 根据权利要求3所述的光模块,其特征在于,所述封装壳的底板上设有安装槽,所述安装槽与所述第一开槽对应,所述基板嵌在所述安装槽内。
  5. 根据权利要求3所述的光模块,其特征在于,插入所述壳体的所述柔性板的表面上设置有多个跨阻放大器时,与所述第一开槽所在侧板相对的侧板上并排设有多个第二开槽,多个光接收器件通过多个所述第二开槽插入所述壳体内。
  6. 根据权利要求5所述的光模块,其特征在于,所述壳体内设有多个光接收器件时,所述光模块设有多个光发射组件,多个所述光发射组件分别与所述电路板电连接。
  7. 根据权利要求4所述的光模块,其特征在于,所述壳体上连接所述第一开槽所述侧板与所述第二开槽所述侧板的侧板上设有观察孔,所述观察孔的位置与所述安装槽的内壁相对应。
  8. 根据权利要求1所述的光模块,其特征在于,所述柔性板朝向所述电路板的一侧设有走线层,多个所述跨阻放大器通过所述走线层与所述电路板连接;
    所述走线层的下方设有电源走线层,所述电源走线层设置在所述跨阻放大器的一侧。
  9. 一种光模块,其特征在于,包括:
    电路板;
    光发射组件,与所述电路板电连接,用于发射光信号;
    光接收组件,用于接收来自光模块外部的光信号;
    柔性板,用于连接所述光接收组件与所述电路板;
    其中,所述光接收组件包括:
    壳体;
    光接收器件,设置在所述壳体内,用于接收外部光纤的光信号;
    基板,设置在所述壳体内,用于支撑插入所述壳体的柔性板;
    跨阻放大器,通过所述柔性板上设置的安装孔安装在所述基板的表面上,与所述光接收器件电连接,并通过所述柔性板与所述电路板电连接,用于将放大后的电信号传送至所述电路板。
  10. 根据权利要求9所述的光模块,其特征在于,所述壳体内设有多个光接收器件时,插入所述壳体的所述柔性板上并排设有多个安装孔,多个所述跨阻放大器通过多个所述安装孔安装在所述基板的表面上。
  11. 一种光模块,其特征在于,包括:
    电路板;
    至少两个光发射组件,包括至少两个第一壳体及封装于所述第一壳体内的光发射器件,用于发射光信号;
    至少两个第一柔性板,其一端插入所述第一壳体内、且与所述光发射器件电连接,其另一端连接至所述电路板的上表面,用于连接所述光发射组件与所述电路板;
    光接收组件,包括第二壳体及封装于所述第二壳体内的光接收器件,用于接收来自光模块外部的光信号,且所述光发射组件与所述光接收组件层叠设置;
    第二柔性板,其插入所述第二壳体的一端设置有所述光接收器件,其另一端连接至所述电路板的下表面,用于连接所述光接收组件与所述电路板。
  12. 根据权利要求11所述的光模块,其特征在于,至少两个所述第一柔性板并排连接至所述电路板的上表面。
  13. 根据权利要求11所述的光模块,其特征在于,所述第一壳体设置在所述第二壳体的上方。
  14. 根据权利要求11所述的光模块,其特征在于,所述光发射器件包括多个光发射器,用于发射多路光信号。
  15. 根据权利要求11所述的光模块,其特征在于,所述第二壳体内设有多组光接收器件,多组所述光接收器件分别与至少两个所述光发射器件相对应。
  16. 根据权利要求15所述的光模块,其特征在于,多组所述光接收器件均包括多个光探测器,用于接收多路光信号。
  17. 根据权利要求11所述的光模块,其特征在于,所述第二壳体内设有基板,用于支撑插入所述第二壳体的第二柔性板。
  18. 一种光模块,其特征在于,包括:
    电路板;
    至少两个光发射组件,包括至少两个第一壳体及封装于所述第一壳体内的光发射器件,用于发射光信号;
    至少两个第一柔性板,其一端插入所述第一壳体内、且与所述光发射器件电连接,其 另一端连接至所述电路板的上表面,用于连接所述光发射组件与所述电路板;
    光接收组件,包括第二壳体及封装于所述第二壳体内的光接收器件与基板,用于接收来自光模块外部的光信号,且所述光发射组件与所述光接收组件层叠设置;
    第二柔性板,所述基板支撑插入所述第二壳体内的所述第二柔性板,且所述光接收器件通过所述第二柔性板上设置的安装孔安装在所述基板的表面上,其另一端连接至所述电路板的下表面,用于连接所述光接收组件与所述电路板。
  19. 根据权利要求18所述的光模块,其特征在于,所述第二壳体内封装有多组光接收器件时,所述第二柔性板上设置有多组安装孔,所述第二壳体内的多组光接收器件分别通过多组所述安装孔安装在所述基板的表面上。
  20. 一种光模块,其特征在于,包括:
    下壳体,与上壳体结合形成腔体;
    电路板,设置于所述腔体内部,用于提供电连接;
    光接收组件,设置于所述下壳体的上表面,包括底板、光电探测器、跨阻放大器及设置于所述底板上的阵列波导光栅/光纤阵列,用于接收来自光模块外部的光信号;
    柔性板,其一端的下表面连接至所述底板的上表面,所述跨阻放大器设置于所述柔性板的上表面,其另一端的上表面连接至所述电路板的下表面,用于连接所述光接收组件与所述电路板。
  21. 根据权利要求20所述的光模块,其特征在于,所述光接收组件还包括罩设于所述底板上的罩体,所述罩体与所述底板形成防尘壳体,所述光电探测器、所述跨阻放大器与所述阵列波导光栅均设置于所述防尘壳体内。
  22. 根据权利要求20所述的光模块,其特征在于,所述柔性板与所述底板之间设置有基板,用于支撑位于所述底板上方的柔性板。
  23. 根据权利要求22所述的光模块,其特征在于,所述基板的覆盖区域为所述柔性板上所述光电探测器与所述跨阻放大器的设置区域。
  24. 根据权利要求22所述的光模块,其特征在于,所述基板卡装于所述底板上。
  25. 根据权利要求24所述的光模块,其特征在于,所述底板上设置有凹槽,所述凹槽内设置有凸起;所述基板上设置有与所述凸起对应的安装槽,所述基板通过所述安装槽、所述凸起安装于所述底板上。
  26. 根据权利要求21所述的光模块,其特征在于,所述光接收组件包括多组光接收器件,多组所述光接收器件均设置于所述防尘壳体内。
  27. 一种光模块,其特征在于,包括:
    下壳体,与上壳体结合形成腔体;
    电路板,设置于所述腔体内部,用于提供电连接;
    光接收组件,设置于所述下壳体的上表面,包括底板、光电探测器、跨阻放大器及设置于所述底板上的阵列波导光栅/光纤阵列,用于接收来自光模块外部的光信号;
    柔性板,其一端的下表面连接至所述底板的上表面,其位于所述底板上方的一端设置有安装孔,所述跨阻放大器通过所述安装孔安装在所述底板的上表面上;其另一端的上表 面连接至所述电路板的下表面,用于连接所述光接收组件与所述电路板。
  28. 根据权利要求27所述的光模块,其特征在于,所述柔性板上设置有多组安装孔,多组所述跨阻放大器分别通过多组所述安装孔安装在所述底板的上表面上。
  29. 一种光模块,其特征在于,包括:
    电路板,其一端设置有FPC焊盘、另一端设置有金手指;
    光接收次模块,与所述电路板电连接,用于接收光信号;
    柔性电路板,一端与所述光接收次模块连接,另一端沿所述柔性电路板长度方向依次设置有第一排信号焊盘与第二排信号焊盘,所述第二排信号焊盘沿所述柔性电路板的宽度边缘设置,所述第一排信号焊盘远离所述金手指设置;所述第一排信号焊盘包括电源焊盘与第一低速信号焊盘组,没有高速信号焊盘;所述第二排信号焊盘包括第二低速信号焊盘组与多组高速信号焊盘组,所述第二低速信号焊盘组位于多组所述高速信号焊盘组之间;所述电源焊盘、所述第一低速信号焊盘组、所述第二低速信号焊盘组与所述高速信号焊盘组分别与所述FPC焊盘一一对应连接。
  30. 根据权利要求29所述的光模块,其特征在于,所述第一排信号焊盘的电源焊盘包括第一电源信号焊盘、第二电源信号焊盘与第三电源信号焊盘,所述第二电源信号焊盘位于所述第一电源信号焊盘、所述第三电源信号焊盘之间,所述第一电源信号焊盘与所述第三电源信号焊盘分别位于所述柔性电路板相对的两侧边上,且所述第一电源信号焊盘与所述第三电源信号焊盘组合传输一个电源信号;
    所述第一电源信号焊盘与所述第三电源信号焊盘均为圆弧形焊盘,所述电路板上设置有与所述圆弧形焊盘对应的圆弧形FPC焊盘,所述柔性电路板通过所述圆弧形焊盘与所述电路板上相应的圆弧形FPC焊盘进行定位连接。
  31. 根据权利要求30所述的光模块,其特征在于,所述第二电源信号焊盘包括设置有通孔的圆形焊盘与条形焊盘,所述柔性电路板通过所述圆形焊盘与所述电路板的相应FPC焊盘进行定位连接,其通过所述条形焊盘与所述电路板相应的FPC焊盘连接传输另一电源信号。
  32. 根据权利要求30所述的光模块,其特征在于,所述第一低速信号焊盘组包括第一组低速信号焊盘与第二组低速信号焊盘,所述第一组低速信号焊盘位于所述第一电源信号焊盘与所述第二电源信号焊盘之间,所述第二组低速信号焊盘位于所述第二电源信号焊盘与所述第三电源信号焊盘之间;所述柔性电路板通过所述第一组低速信号焊盘、所述第二组低速信号焊盘与所述电路板上相应的FPC焊盘连接传输低速信号。
  33. 根据权利要求32所述的光模块,其特征在于,所述第一组低速信号焊盘与所述第二组低速信号焊盘均为通孔焊盘,所述电路板上设置有相应的过孔FPC焊盘,所述柔性电路板通过所述通孔焊盘与所述过孔FPC焊盘连接传输低速信号。
  34. 根据权利要求33所述的光模块,其特征在于,所述第一组低速信号焊盘与所述第二组低速信号焊盘均包括两个低速信号焊盘。
  35. 根据权利要求32所述的光模块,其特征在于,所述第二低速信号焊盘组包括第三组低速信号焊盘与第四组低速信号焊盘,所述第三组低速信号焊盘位于所述柔性电路板 宽度边缘的一端;
    所述高速信号焊盘组包括第一组高速信号焊盘与第二组高速信号焊盘,所述第二组高速信号焊盘位于所述柔性电路板宽度边缘的另一端,所述第四组低速信号焊盘位于所述第一组高速信号焊盘与所述第二组高速信号焊盘之间,所述第一组高速信号焊盘位于所述第三组低速信号焊盘与所述第四组低速信号焊盘之间;所述柔性电路板通过所述第一组高速信号焊盘、所述第二组高速信号焊盘与所述电路板上相应的FPC焊盘连接传输高速信号。
  36. 根据权利要求35所述的光模块,其特征在于,所述第三组低速信号焊盘与所述第四组低速信号焊盘均包括三个低速信号焊盘;
    所述第一组高速信号焊盘与所述第二组高速信号焊盘均包括四对高速信号焊盘,且每对所述高速信号焊盘间隔设置。
  37. 根据权利要求29所述的光模块,其特征在于,与所述高速信号焊盘组连接的FPC焊盘通过所述电路板表面走线与所述金手指连接,以传输高速信号。
  38. 根据权利要求35所述的光模块,其特征在于,所述第一电源信号焊盘、所述第三电源信号焊盘、所述第一组低速信号焊盘、所述第三组低速信号焊盘与所述第一组高速信号焊盘为一组信号焊盘,其分别与所述光接收次模块的一接收器件连接;所述第二电源信号焊盘、所述第二组低速信号焊盘、所述第四组低速信号焊盘与所述第二组高速信号焊盘为一组信号焊盘,其分别与所述光接收次模块的另一接收器件连接。
PCT/CN2020/135331 2020-04-22 2020-12-10 一种光模块 WO2021212868A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010322966.2 2020-04-22
CN202010322966.2A CN111555811B (zh) 2020-04-22 2020-04-22 一种光模块
CN202020885226.5 2020-05-22
CN202020885226.5U CN212086203U (zh) 2020-05-22 2020-05-22 一种光模块
CN202021096787.3U CN212486512U (zh) 2020-06-12 2020-06-12 一种光模块
CN202021096787.3 2020-06-12
CN202011096302.5A CN114371535B (zh) 2020-10-14 2020-10-14 一种光模块
CN202011096302.5 2020-10-14

Publications (1)

Publication Number Publication Date
WO2021212868A1 true WO2021212868A1 (zh) 2021-10-28

Family

ID=78271111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135331 WO2021212868A1 (zh) 2020-04-22 2020-12-10 一种光模块

Country Status (1)

Country Link
WO (1) WO2021212868A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116243439A (zh) * 2023-03-23 2023-06-09 成都光创联科技有限公司 附带有柔性电路板的光器件外壳及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257081A1 (en) * 2005-05-12 2006-11-16 Hitachi Cable, Ltd. Board assembly, optical transceiver using same and method for mounting same on object
CN202068674U (zh) * 2011-07-11 2011-12-07 索尔思光电(成都)有限公司 一种设有高速信号焊盘的柔性板
CN103513342A (zh) * 2012-06-19 2014-01-15 深圳新飞通光电子技术有限公司 多路光学组件及包含其的带光发射功率监控功能的并行光模块
US20160291271A1 (en) * 2015-04-02 2016-10-06 Hitachi Metals, Ltd. Optical module
CN207081862U (zh) * 2017-03-31 2018-03-09 武汉博昇光电股份有限公司 一种多通道光收发一体模块
CN108873193A (zh) * 2018-06-25 2018-11-23 青岛海信宽带多媒体技术有限公司 光接收次模块及光模块
CN109633832A (zh) * 2018-12-17 2019-04-16 青岛海信宽带多媒体技术有限公司 光模块及其焊接方法
CN109991705A (zh) * 2019-03-26 2019-07-09 武汉联特科技有限公司 一种高速并行双向传输光模块
CN110213880A (zh) * 2018-02-28 2019-09-06 苏州旭创科技有限公司 柔性电路板、电路板组件、光收发组件及光模块
CN111555811A (zh) * 2020-04-22 2020-08-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN212086203U (zh) * 2020-05-22 2020-12-04 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257081A1 (en) * 2005-05-12 2006-11-16 Hitachi Cable, Ltd. Board assembly, optical transceiver using same and method for mounting same on object
CN202068674U (zh) * 2011-07-11 2011-12-07 索尔思光电(成都)有限公司 一种设有高速信号焊盘的柔性板
CN103513342A (zh) * 2012-06-19 2014-01-15 深圳新飞通光电子技术有限公司 多路光学组件及包含其的带光发射功率监控功能的并行光模块
US20160291271A1 (en) * 2015-04-02 2016-10-06 Hitachi Metals, Ltd. Optical module
CN207081862U (zh) * 2017-03-31 2018-03-09 武汉博昇光电股份有限公司 一种多通道光收发一体模块
CN110213880A (zh) * 2018-02-28 2019-09-06 苏州旭创科技有限公司 柔性电路板、电路板组件、光收发组件及光模块
CN108873193A (zh) * 2018-06-25 2018-11-23 青岛海信宽带多媒体技术有限公司 光接收次模块及光模块
CN109633832A (zh) * 2018-12-17 2019-04-16 青岛海信宽带多媒体技术有限公司 光模块及其焊接方法
CN109991705A (zh) * 2019-03-26 2019-07-09 武汉联特科技有限公司 一种高速并行双向传输光模块
CN111555811A (zh) * 2020-04-22 2020-08-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN212086203U (zh) * 2020-05-22 2020-12-04 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116243439A (zh) * 2023-03-23 2023-06-09 成都光创联科技有限公司 附带有柔性电路板的光器件外壳及其制备方法
CN116243439B (zh) * 2023-03-23 2024-01-23 成都光创联科技有限公司 附带有柔性电路板的光器件外壳及其制备方法

Similar Documents

Publication Publication Date Title
CN111555811B (zh) 一种光模块
WO2021227317A1 (zh) 一种光模块
US8238359B2 (en) Communication module and communication apparatus
CN214795314U (zh) 一种光模块
CN214795313U (zh) 一种光模块
WO2021227643A1 (zh) 一种光模块
WO2022083366A1 (zh) 一种光模块
CN114035287B (zh) 一种光模块
CN213302586U (zh) 一种光模块
CN114035285B (zh) 一种光模块
CN114035286B (zh) 一种光模块
CN114035288B (zh) 一种光模块
CN212486512U (zh) 一种光模块
CN114488438B (zh) 一种光模块
CN114488439B (zh) 一种光模块
CN112505855A (zh) 一种光模块
CN216772051U (zh) 一种光模块
WO2021212868A1 (zh) 一种光模块
CN212086203U (zh) 一种光模块
WO2022016932A1 (zh) 一种光模块
CN111239935B (zh) 光模块
CN218767433U (zh) 一种光模块
US20220337022A1 (en) Light Emission Assembly and an Optical Module
CN114371535B (zh) 一种光模块
CN115220160B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931738

Country of ref document: EP

Kind code of ref document: A1