WO2023015848A1 - 一种广波段太阳能吸收偶氮苯光储能材料的制备方法 - Google Patents

一种广波段太阳能吸收偶氮苯光储能材料的制备方法 Download PDF

Info

Publication number
WO2023015848A1
WO2023015848A1 PCT/CN2022/073616 CN2022073616W WO2023015848A1 WO 2023015848 A1 WO2023015848 A1 WO 2023015848A1 CN 2022073616 W CN2022073616 W CN 2022073616W WO 2023015848 A1 WO2023015848 A1 WO 2023015848A1
Authority
WO
WIPO (PCT)
Prior art keywords
azobenzene
energy storage
phase change
storage material
solar energy
Prior art date
Application number
PCT/CN2022/073616
Other languages
English (en)
French (fr)
Inventor
王潮霞
费良
殷允杰
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2023015848A1 publication Critical patent/WO2023015848A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6425Compounds containing hydrazine or azo groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/60General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing polyethers
    • D06P1/613Polyethers without nitrogen
    • D06P1/6138Polymerisation products of glycols, e.g. Carbowax, Pluronics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/651Compounds without nitrogen
    • D06P1/65106Oxygen-containing compounds
    • D06P1/65118Compounds containing hydroxyl groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/651Compounds without nitrogen
    • D06P1/6515Hydrocarbons
    • D06P1/65162Hydrocarbons without halogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/653Nitrogen-free carboxylic acids or their salts
    • D06P1/6533Aliphatic, araliphatic or cycloaliphatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds

Definitions

  • the invention relates to the preparation of fabrics, in particular to a method for preparing energy storage fabrics.
  • Phase change materials including organics, salt hydrates, or alloys.
  • organics are generally cost-effective energy storage with a wide choice of crystallization and melting points for the intended application.
  • phase transition temperature is as low as 35-40°C, it can realize the temperature management of the human body and adjust the microenvironment of the body surface.
  • phase transition is very sensitive to temperature, and the latent heat of PCM will be lost by self-heating when it is far away from the environment of the heat source.
  • energy barriers can be inserted into the solid-liquid phase transition, and the interaction between molecules can be used, so the phase transition temperature or latent heat release can be adjusted by adjusting the intermolecular forces, such as van der Waals forces and hydrogen bonds.
  • Control of intermolecular forces can be achieved by several types of photoswitching molecules, such as azolene/vinylheptafluoroethylene coupling, anthracene dimer, and azobenzene, which occur when two different wavelengths of light are continuously absorbed Reversible structural changes.
  • Azobenzene molecules change their physical properties through the change of intermolecular force between cis or trans isomers. By doping azobenzene into phase change materials, the phase change point of phase change materials can be controlled. At the same time, azobenzene molecules can be used as solar fuels (STF). In order to obtain large energy density, azobenzene derivatives increase the energy barrier through close packing. However, this compact structure requires the use of solvents to assist the charging and discharging of azobenzene can, and these solvents will aggravate environmental pollution.
  • the purpose of the present invention is to provide a preparation method based on azobenzene light energy storage fabric, the prepared azobenzene light energy storage fabric has high solar energy utilization rate, high light stability and cycle performance, and Friendly to the environment.
  • the phase change material is any one of alkanol, paraffin, fatty acid or polyethylene glycol.
  • the mass ratio of the alkoxyazobenzene to the phase change material is 0.1 ⁇ 5:1.
  • the mass ratio of the mixture of alkoxyazobenzene and phase change material to styrene is 1-10:1.
  • the initiator is azobisisobutyronitrile or persulfate.
  • the heating temperature in the step (1) is 30-100°C.
  • the mechanical force is one or more of homogeneous, ultrasonic and mechanical stirring.
  • the mass ratio of the azobenzene phase change material microcapsules to the nano cesium tungsten powder is 20-1:1.
  • the thickener is a natural or synthetic thickener.
  • the adhesive is synthetic resin or synthetic rubber.
  • the printing method is flat screen printing or rotary screen printing.
  • the mass ratio of the azobenzene phase change material microcapsules to the nano cesium tungsten powder is 20-1:1; the printing method is flat screen printing or rotary screen printing.
  • the azobenzene photo-energy storage fabric prepared by the present invention can be used for energy storage and release through color indication, and specifically includes the following steps: under a certain light source, the azobenzene exhibits light stability, that is, maintains a certain trans and cis According to the structure ratio of the formula, the ratio of the two structures of azobenzene shows different colors. The change of the cis-trans isomerization ratio of azobenzene is monitored through the color, so as to further indicate the state and process of energy charging and discharging. At the same time, the color change is a reversible cycle and can be used repeatedly.
  • the present invention selects polystyrene as the shell material, and uses microcapsule technology to coat the azobenzene phase change material to prevent leakage during use.
  • the polystyrene shell material The light transmittance is good, and the influence on the light energy absorbed by azobenzene is small. By optimizing the ratio of the shell material and the core material, the energy storage can be improved on the basis of ensuring the coating rate.
  • the invention introduces the nano cesium tungsten powder into the whole energy storage system, further promotes the utilization of solar spectrum and improves the absorption of solar energy.
  • Nano-cesium tungsten powder can absorb visible light and near-infrared light and convert it into heat. This part of the heat can be transferred to the adjacent azobenzene phase change material microcapsules to cause phase change and store energy.
  • nano cesium tungsten powder can emit heat under visible light to promote the transformation of azobenzene from cis to trans, which is beneficial to accelerate the release rate of energy.
  • nano-cesium tungsten powder is a blue powder, which can be combined with azobenzene to create a color-blocking effect.
  • Azobenzene produces different colors under different light conditions, and when mixed with blue, the color gamut of azobenzene color change is increased, making it easier to distinguish colors.
  • nano cesium tungsten powder improves the utilization rate of solar spectrum.
  • the nano-cesium tungsten powder particles convert light into heat, which is transferred to the azobenzene phase change material microcapsules to produce phase change and store energy.
  • the azobenzene phase-change material microcapsules can store light energy inside the microcapsules under ultraviolet light, and the azobenzene structure changes from trans to cis, and light energy changes into structural energy. Isomerization, the phase transition point of the azobenzene phase change material decreases.
  • the azobenzene molecules in the azobenzene phase change material microcapsules change from a cis structure to a trans structure, and the structure in the azobenzene molecule can be released in the form of heat energy, and the phase change point rises at the same time.
  • Azobenzene itself has photochromic properties under different light conditions. By compounding with blue nano-cesium tungsten powder, it can endow a wider color gamut, which can be converted between green and yellow, and further accurately monitor energy release.
  • PCM is used as a special "solvent", which can accelerate the charging of azobenzene without sacrificing the environmental pressure.
  • this solvent has the problem of leakage during the reapplication process.
  • microcapsules can coat the phase change component inside the capsule, thereby acting on textiles, and realizing textiles with energy storage properties.
  • nano-cesium tungsten powder can convert the visible part and near-infrared part of sunlight into heat and release it. Combining it with azobenzene phase change material microcapsules can transfer the converted heat Provide phase change materials to achieve effective storage of energy, and the addition of nano cesium tungsten powder can increase the utilization of solar spectrum.
  • the present invention realizes the release and storage state by monitoring the color change of azobenzene, thereby further constructing a photo-energy storage textile that can monitor energy visually.
  • the azobenzene photo-energy storage modification material of the present invention can act on fabrics through microcapsule technology without affecting photo-energy storage, and construct textiles with photo-energy storage properties;
  • the broad-spectrum utilization of solar energy can be realized, and the azobenzene light energy storage fabric can absorb ultraviolet, visible light and near-infrared light;
  • the present invention realizes the visual monitoring of energy storage; the azobenzene optical energy storage fabric has photochromic properties, thereby indicating the degree of energy storage and discharge of azobenzene, which has a greater effect than the discoloration of pure azobenzene molecules.
  • the change of the color gamut, the color change is more obvious.
  • Fig. 1 is the isomerization energy release diagram of the azobenzene light energy storage microcapsules of the present invention
  • Fig. 2 is a microscopic topography diagram of the azobenzene light energy storage fabric of the present invention
  • Fig. 3 is the heating diagram of the azobenzene light energy storage fabric of the present invention under visible light
  • Fig. 4 is a schematic diagram of the color change of the azobenzene light energy storage fabric of the present invention.
  • Fig. 5 is a graph showing the relationship between the color and energy of the azobenzene light energy storage fabric of the present invention.
  • Tetradecyloxy azobenzene and tetradecyl alcohol mixture (the ratio of 1:1 in mass ratio) and styrene are mixed in the ratio of 1:1 in mass ratio, add 10 times of volume of water, emulsifier (2 %wt) and azobenzenebisisobutyronitrile (1%wt), emulsified under the action of ultrasound, and reacted at 70°C for 6h to form azobenzene phase change material microcapsules.
  • Butaneoxy azobenzene and paraffin mixture (mass ratio of 1:2 ratio) and styrene are mixed in a mass ratio of 1:3, add 10 times the volume of water, emulsifier (2%wt) and azobisisobutyronitrile (1%wt), complete emulsification under the action of homogeneity, and react at 75° C. for 8 hours to form styrene microspheres.
  • Butaneoxy azobenzene and tetradecyl alcohol mixture (mass ratio is 1:5 ratio) and styrene are mixed under the ratio of mass ratio being 1:15, add the water of 3 times volume, emulsifier (3% wt) and azobisisobutyronitrile (1.5%wt), emulsified under the action of homogeneity, and reacted at 75°C for 8h to form styrene microspheres.
  • the energy release of its azobenzene is only 7J g -1 , and the increase in temperature is not obvious in the actual application process.
  • the azobenzene phase-change material microcapsules prepared in Example 1 are blended with nano cesium tungsten powder at a mass ratio of 1:5, and water, thickener (0.5%wt) and binder ( 0.5%wt), fully stirred to make printing slurry, and then acted on textiles by screen printing (as shown in Figure 2).
  • Azobenzene phase change material microcapsules and nano-cesium tungsten powder act uniformly on the surface of the fiber, and the two are in contact with each other, which is conducive to the transfer and absorption of heat energy in the process of light-to-heat conversion.
  • the azobenzene phase-change material microcapsules prepared in Example 2 are blended with nano-cesium tungsten powder at a mass ratio of 1:20, and water, thickener (2.5%wt) and binder ( 2.5%wt), fully stirred to make printing slurry, and then applied to textiles by rotary screen printing.
  • the temperature of the fully charged energy storage fabric can reach 72°C within 220s under visible light irradiation (AM1.5 light source, 100mW cm -2 ).
  • the present invention irradiates the azobenzene-based light energy storage fabric prepared in Example 5 under a visible light source, and its heat generation performance is shown in Figure 2.
  • the heat generated can cause the phase change material to undergo a phase change, thereby storing heat.
  • the cis-trans isomerization ratio of azobenzene can be indicated by the color change, and the corresponding energy value can be corresponding to the azobenzene cis-trans isomerization ratio (as shown in FIG. 5 ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种广波段太阳能吸收偶氮苯光储能材料的制备方法,将烷氧基偶氮苯和相变材料的混合物与苯乙烯进行混合,加入水、乳化剂和引发剂,在机械力的作用下完成乳化,后加热得到偶氮苯相变材料微胶囊;将制备的偶氮苯相变材料微胶囊与纳米铯钨粉共混合,加入水、增稠剂和粘合剂,搅拌制成印花浆料,通过印花的方式作用到纺织品上。该偶氮苯光储能材料能够吸收紫外光、可见光以及红外光,具有高的太阳能利用率,高的光稳定性以及循环性能,可将其应用于纺织品上,达到可穿戴的太阳能光热转化的目的,实现人体的温度管理。

Description

一种广波段太阳能吸收偶氮苯光储能材料的制备方法 技术领域
本发明涉及织物的制备,特别是涉及一种储能织物的制备方法。
背景技术
能源管理是基于储能和释放来控制环境温度的,它能够有效地促进能源利用,推动了新能源和环境储热的发展。利用相变材料(PCM),包括有机物、盐水合物或合金,可以提高潜热储存的储存能力。与无机PCMs相比,有机物通常具有成本效益的储能,具有广泛选择的结晶和熔点,符合预期的应用。当相变温度这低到35-40℃时,可实现对人体的温度管理,调节身体表面的微环境。
而相转变对温度十分敏感,PCM的潜热远离热源的环境后会发生自发热损失。对此可采用将能量势垒插入固-液相变中,由分子间相互作用的作用,因此相转变温度或潜热释放可以通过调节分子间力来调节,如范德华力和氢键。几种类型的光开关分子可实现分子间作用力的控制,如二氢唑烯/乙烯基七氟乙烯偶合、蒽二聚体和偶氮苯,其在连续吸收两种不同波长的光时发生可逆的结构变化。
偶氮苯分子通过顺式或反式异构体之间分子间力的变化从而改变物理性质,通过将偶氮苯掺杂到相变材料中,可实现对相变材料相变点的控制。同时,偶氮苯分子可作为太阳能燃料(STF),为了获得大的能量密度,偶氮苯衍生物通过紧密堆积来增加能垒,但是,这种紧密的结构需要采用溶剂辅助偶氮苯充放能,而且这些溶剂会加剧环境污染。
发明内容
发明目的:本发明的目的是提供一种基于偶氮苯光储能织物的制备方法,制备得到的偶氮苯光储能织物具有高的太阳能利用率,高的光稳定性以及循环性能,并且对环境友好。
技术方案:本发明所述的一种偶氮苯光储能织物的制备方法,其包括以下步骤:
(1)将烷氧基偶氮苯和相变材料的混合物与苯乙烯进行混合,加入水、乳化剂和引发剂,在机械力的作用下完成乳化,然后加热得到偶氮苯相变材料微胶囊;
(2)将制备的偶氮苯相变材料微胶囊与纳米铯钨粉共混合,加入水、增稠剂和粘合剂,搅拌制成印花浆料,通过印花的方式作用到纺织品上。
进一步地,所述步骤(1)中,相变材料为烷基醇、石蜡、脂肪酸或聚乙二醇中的任一种。
进一步地,所述步骤(1)中,烷氧基偶氮苯和相变材料的混合物中,烷氧基偶氮苯与相变材料的质量比为0.1~5:1。
进一步地,所述步骤(1)中,烷氧基偶氮苯与相变材料的混合物和苯乙烯的质量比例为1~10:1。
进一步地,所述步骤(1)中,引发剂为偶氮二异丁腈类物质或过硫酸盐类物质。
进一步地,所述步骤(1)中的加热温度为30~100℃。
进一步地,所述机械力为采用均质、超声、机械搅拌中的一种或多种。
进一步地,所述步骤(2)中,偶氮苯相变材料微胶囊与纳米铯钨粉的质量比例为20~1:1。
进一步地,所述步骤(2)中,增稠剂为天然或合成类增稠剂。
进一步地,所述步骤(2)中,粘合剂为合成树脂类或合成橡胶类。
进一步地,所述步骤(2)中,印花方式为平网印花或圆网印花。
所述步骤(2)中,偶氮苯相变材料微胶囊与纳米铯钨粉的质量比例为20~1:1;印花方式为平网印花或圆网印花。
本发明制得的偶氮苯光储能织物可通过颜色指示能量储存释放应用,具体包括以下步骤:在一定的光源下,烷氧基偶氮苯表现出光稳态,即保持一定的反式和顺式结构比例,两种结构偶氮苯的比例不同表现出不一样的颜色,通过颜色监控偶氮苯顺反异构比例的变化,从而进一步指示能量的充放能状态以及过程。同时颜色的变化是可逆循环,可重复使用。
本发明为了将偶氮苯相变材料作用到织物上,选用聚苯乙烯为壳材,采用微胶囊技术对偶氮苯相变材料进行包覆,防止在使用过程中产生泄露,聚苯乙烯壳材的透光性较好,对偶氮苯吸收光能的影响小,通过优选壳材和芯材的比例,能够在保证包覆率的基础上实现对储能量的提升。
本发明将纳米铯钨粉引入整个储能体系中,进一步促进对太阳能光谱的利用,提高太阳能量的吸收。纳米铯钨粉能够吸收可见光和近红外光,将其转化为热量,这部分热能够传递给相邻的偶氮苯相变材料微胶囊,使之产生相变,储存能量。在偶氮苯放热过程中(顺式转变为反式),在可见光下纳米铯钨粉可以发出热量,促进偶氮苯从顺式到反式的转变,有利于加速能量的释放速度。另一方面,纳米铯钨粉是一种蓝色的粉末,将其与偶氮苯相结合产生拼色的效果。偶氮苯在不同的光照下产生不同的颜色,再与蓝色拼色时,增加了偶氮苯变色的色域,使得颜色更容易区分。
纳米铯钨粉的加入提高了太阳能光谱的利用率。偶氮苯在模拟太阳光照射下,纳米铯钨粉颗粒将光转化为热,传递给偶氮苯相变材料微胶囊使之产生相变储存能量。随后该偶氮苯相变材料微胶囊能够在紫外光照下将光能储存在微胶囊内部,偶氮苯结构从反式转变为顺式,光能转变为结构能,同时随着偶氮苯的异构,偶氮苯相变材料的相变点下降。在蓝光或太阳光下,偶氮苯相变材料微胶囊中偶氮苯分子从顺式结构转变为反式结构,偶氮苯分子中的结构能以热能的形式释放出去,同时相变点升高,偶氮苯在特定温度下将相变能释放。偶氮苯本身随着不同的光照具有光致变色性能,通过与蓝色的纳米铯钨粉复配,赋予更广的色域变化,可在绿色和黄色之间转化,进一步准确监控能量释放。
本发明中将PCM作为一种特殊的“溶剂”,可以在不牺牲环境压力的情况下加速偶氮苯的充能。但是这种溶剂的存在再应用过程中具有泄露的问题,微胶囊作为一种有效地手段可将相变组份包覆在胶囊内部,从而作用到纺织品上,实现具有储能性能的纺织品。而纳米铯钨粉作为一种光热转化材料,能够将太阳光中可见光部分和近红外部分转化为热释放出来,将其与偶氮苯相变材料微胶囊结合,可将转化成的热传递给相变材料,从而实现能量的有效储存,同时纳米铯钨粉的加入可增加对太阳能光谱的利用提高。颜色作为一种信息传输的视觉表达,颜色变化已被应用于能量释放中的特定温度监测,而在任何给定时间 监测能量状态仍然具有很大的挑战性。因此,本发明基于偶氮苯光致变色性能,通过监控偶氮苯颜色的变化实现能够释放与储存的状态,从而进一步构建能够可视化监控能量的光储能纺织品。
有益效果:
(1)本发明的偶氮苯光储能改变材料在不影响光储能的前提下能够通过微胶囊技术作用到织物上,构建具有光储能性能的纺织品;
(2)通过加入纳米铯钨粉,可实现太阳能的广谱利用,偶氮苯光储能织物可吸收紫外、可见光以及近红外光;
(3)本发明实现了能量储存的可视化监控;偶氮苯光储能织物具有光致变色性能,从而指示偶氮苯储放能程度,相较于纯偶氮苯分子的变色,具有更大色域的变化,颜色变化更加明显。
附图说明
图1是本发明偶氮苯光储能微胶囊的异构能释放图;
图2是本发明偶氮苯光储能织物的微观形貌图;
图3是本发明偶氮苯光储能织物在可见光下发热图;
图4是本发明偶氮苯光储能织物的颜色变化示意图;
图5是本发明偶氮苯光储能织物颜色与能量关系图。
具体实施方式
下面结合实施例对本发明进一步地详细描述。
以下实施例中用到的原料和试剂均为市售。
一、基于偶氮苯相变材料微胶囊的制备
实施例1
将十四烷氧基偶氮苯和十四醇混合物(质量比为1:1的比例)和苯乙烯在质量比为1:1的比例下混合,加入10倍体积的水、乳化剂(2%wt)和偶氮苯二异丁腈(1%wt),在超声的作用下完成乳化,在70℃反应6h形成氮苯相变材料微胶囊。
实施例2
将十八烷氧基偶氮苯和聚乙二醇600混合物(质量比为1:5的比例)和苯乙烯在质量比为1:10的比例下混合,加入10倍体积的水、乳化剂(.%wt)和过硫酸钾(1%wt),在机械搅拌的作用下完成乳化,在40℃反应12h形成苯乙烯微球。
实施例3
将丁烷氧基偶氮苯和石蜡混合物(质量比为1:2的比例)和苯乙烯在质量比为1:3的比例下混合,加入10倍体积的水、乳化剂(2%wt)和偶氮二异丁腈(1%wt),在均质的作用下完成乳化,在75℃反应8h形成苯乙烯微球。
实施例4
将丁烷氧基偶氮苯和十四醇混合物(质量比为1:5的比例)和苯乙烯在质量比为1:15的比例下混合,加入3倍体积的水、乳化剂(3%wt)和偶氮二异丁腈(1.5%wt),在均质的作用下完成乳化,在75℃反应8h形成苯乙烯微球。如图1所示,其偶氮苯能量释放仅为7J g -1,在实际应用过程中对温度的提升不明显。
二、基于偶氮苯光储能织物的制备
实施例5
将实施例1制备的偶氮苯相变材料微胶囊与纳米铯钨粉以1:5的质量比进行共混,加入1倍体积的水、增稠剂(0.5%wt)以及粘合剂(0.5%wt),进行充分搅拌制成印花浆料,再通过丝网印花的方式作用到纺织品上(如图2所示)。偶氮苯相变材料微胶囊和纳米铯钨粉均匀作用在纤维表面,两者相互接触,有助于光热转化过程中热能的传递与吸收。
实施例6
将实施例2制备的偶氮苯相变材料微胶囊与纳米铯钨粉以1:20的质量比进行共混,加入5倍体积的水、增稠剂(2.5%wt)以及粘合剂(2.5%wt),进行充分搅拌制成印花浆料,再通过圆网印花的方式作用到纺织品上。如图3所示,在充完能的储能织物在可见光照射(AM1.5光源,100mW cm -2)下在220s内温度可以达到72℃。
三、基于偶氮苯光储能织物在颜色监控能量的应用
实施例7
本发明将实施例5制得的基于偶氮苯光储能织物在可见光光源下照射,其发热性能如图2所示,产生的热量能够是的相变材料产生相变,从而储存热量。随后在紫外光下照射,随着紫外光照的进行,织物颜色向红相移动,在蓝光照射下,颜色又可以回复到最初的状态(如图4所示)。通过颜色的变化可以指示偶氮苯顺反异构的比例,通过偶氮苯顺反异构的比例可以对应相应的能量值(如图5所示)。

Claims (10)

  1. 一种广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于包括以下步骤:
    (1)将烷氧基偶氮苯和相变材料的混合物与苯乙烯进行混合,加入水、乳化剂和引发剂,在机械力的作用下完成乳化,然后加热得到偶氮苯相变材料微胶囊;
    (2)将制备的偶氮苯相变材料微胶囊与纳米铯钨粉共混合,加入水、增稠剂和粘合剂,搅拌制成印花浆料,通过印花的方式作用到纺织品上。
  2. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(1)中,相变材料为烷基醇、石蜡、脂肪酸或聚乙二醇中的任一种。
  3. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(1)中,烷氧基偶氮苯和相变材料的混合物中,烷氧基偶氮苯与相变材料的质量比为0.1~5:1。
  4. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(1)中,烷氧基偶氮苯与相变材料的混合物和苯乙烯的质量比例为1~10:1。
  5. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(1)中,引发剂为偶氮二异丁腈类物质或过硫酸盐类物质。
  6. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(1)中的加热温度为30~100℃。
  7. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(2)中,偶氮苯相变材料微胶囊与纳米铯钨粉的质量比例为20~1:1。
  8. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(2)中,增稠剂为天然或合成类增稠剂。
  9. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(2)中,粘合剂为合成树脂类或合成橡胶类。
  10. 根据权利要求1所述的广波段太阳能吸收偶氮苯光储能材料的制备方法,其特征在于:所述步骤(2)中,印花方式为平网印花或圆网印花。
PCT/CN2022/073616 2021-08-10 2022-01-25 一种广波段太阳能吸收偶氮苯光储能材料的制备方法 WO2023015848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110911520.8A CN113774693A (zh) 2021-08-10 2021-08-10 一种广波段太阳能吸收偶氮苯光储能材料的制备方法
CN202110911520.8 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023015848A1 true WO2023015848A1 (zh) 2023-02-16

Family

ID=78837269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073616 WO2023015848A1 (zh) 2021-08-10 2022-01-25 一种广波段太阳能吸收偶氮苯光储能材料的制备方法

Country Status (2)

Country Link
CN (1) CN113774693A (zh)
WO (1) WO2023015848A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774693A (zh) * 2021-08-10 2021-12-10 江南大学 一种广波段太阳能吸收偶氮苯光储能材料的制备方法
CN114960238A (zh) * 2022-05-07 2022-08-30 江南大学 一种基于全波段光蓄热热致变色织物的制备方法及应用
CN115094647B (zh) * 2022-07-26 2023-08-01 达利(中国)有限公司 一种多级响应光致变色苯乙烯微胶囊的亲疏水可控印花织物的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102733192A (zh) * 2012-04-09 2012-10-17 福建众和股份有限公司 一种纳米相变微胶囊蓄热调温智能纺织品织物印染布的整理工艺
CN104128138A (zh) * 2014-08-15 2014-11-05 北京宇田相变储能科技有限公司 微胶囊储能组合物及其制备方法
CN104775310A (zh) * 2015-04-23 2015-07-15 北京宇田相变储能科技有限公司 多段感温变色的调温织物
CN105670601A (zh) * 2016-01-05 2016-06-15 清华大学深圳研究生院 具有温致变色功能的高效相变储能微胶囊及其制备方法
CN108504271A (zh) * 2018-05-11 2018-09-07 中国科学院广州能源研究所 一种智能节能复合膜的制备方法
CN110067038A (zh) * 2019-04-17 2019-07-30 浙江理工大学 一种蓄热用纳米智能纤维的制备方法
CN111748323A (zh) * 2020-07-22 2020-10-09 江南大学 一种基于偶氮苯光储能相变材料的制备方法及应用
CN112318656A (zh) * 2020-09-08 2021-02-05 北京林业大学 一种具有可控储放热能力的相变储能木材的制备方法
CN113774693A (zh) * 2021-08-10 2021-12-10 江南大学 一种广波段太阳能吸收偶氮苯光储能材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104861783B (zh) * 2015-04-21 2017-03-01 佛山市南方包装有限公司 一种含偶氮苯的微胶囊型液晶及其在光控液晶防伪油墨中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102733192A (zh) * 2012-04-09 2012-10-17 福建众和股份有限公司 一种纳米相变微胶囊蓄热调温智能纺织品织物印染布的整理工艺
CN104128138A (zh) * 2014-08-15 2014-11-05 北京宇田相变储能科技有限公司 微胶囊储能组合物及其制备方法
CN104775310A (zh) * 2015-04-23 2015-07-15 北京宇田相变储能科技有限公司 多段感温变色的调温织物
CN105670601A (zh) * 2016-01-05 2016-06-15 清华大学深圳研究生院 具有温致变色功能的高效相变储能微胶囊及其制备方法
CN108504271A (zh) * 2018-05-11 2018-09-07 中国科学院广州能源研究所 一种智能节能复合膜的制备方法
CN110067038A (zh) * 2019-04-17 2019-07-30 浙江理工大学 一种蓄热用纳米智能纤维的制备方法
CN111748323A (zh) * 2020-07-22 2020-10-09 江南大学 一种基于偶氮苯光储能相变材料的制备方法及应用
CN112318656A (zh) * 2020-09-08 2021-02-05 北京林业大学 一种具有可控储放热能力的相变储能木材的制备方法
CN113774693A (zh) * 2021-08-10 2021-12-10 江南大学 一种广波段太阳能吸收偶氮苯光储能材料的制备方法

Also Published As

Publication number Publication date
CN113774693A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023015848A1 (zh) 一种广波段太阳能吸收偶氮苯光储能材料的制备方法
Li et al. 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage
Ma et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector
Yang et al. Polyethylene glycol-based phase change materials with high photothermal conversion efficiency and shape stability in an aqueous environment for solar water heater
Yin et al. Shape-stable hydrated salts/polyacrylamide phase-change organohydrogels for smart temperature management
Xiao et al. The shape-stabilized light-to-thermal conversion phase change material based on CH3COONa· 3H2O as thermal energy storage media
Li et al. Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity
CN107384327A (zh) 氧化石墨烯掺杂二氧化硅无机壁材包覆的有机相变微胶囊及其制备方法
CN106479445A (zh) 一种双壳层相变储能微胶囊及其制备方法
CN108251067B (zh) 基于氧化石墨烯二氧化钛包覆石蜡的相变流体及其制备方法
Wang et al. An experimental study in full spectra of solar-driven magnesium nitrate hexahydrate/graphene composite phase change materials for solar thermal storage applications
CN109679585B (zh) 一种采用光固化法合成的相变微胶囊及其制备方法
Ke et al. In situ polymerization of organic and inorganic phase change microcapsule and enhancement of infrared stealth via nano iron
CN108753256A (zh) 十六胺/二氧化硅复合相变储能材料及其制备方法
CN105038720A (zh) 一种可高效利用太阳能的定形相变复合材料及其制备方法
CN106701033A (zh) 一种多孔介质复合相变材料的制备方法及制备装置
CN111059949B (zh) 一种新型强化复合相变流体及其制备方法和应用
CN105754554A (zh) 一种含纳米TiO2的纤维素基低温相变储能微胶囊及其制备方法
CN109821485B (zh) 用于动力锂电池热调控的相变储热胶囊的制备方法
Zhao et al. Enhanced photothermal conversion and thermal conductivity of phase change n-Octadecane microcapsules shelled with nano-SiC doped crosslinked polystyrene
CN106047305A (zh) 一种光热转换型有机/无机复合相变储能材料及其制备方法
Qin et al. Construction of wood-based cellulose micro-framework composite form-stable multifunctional materials with thermal and electrical response via incorporating erythritol-urea (thiourea)-carbon nanotubes
Wang et al. Study on the applicability of photoswitch molecules to optically-controlled thermal energy in different organic phase change materials
JPS63217196A (ja) 潜熱型蓄熱材
Wang et al. Preparation and performance of reversible thermochromic phase change microcapsules based on negative photochromic spiropyran

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22854853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22854853

Country of ref document: EP

Kind code of ref document: A1