WO2023015820A1 - 一种车辆及其电池包的气密性检测方法 - Google Patents

一种车辆及其电池包的气密性检测方法 Download PDF

Info

Publication number
WO2023015820A1
WO2023015820A1 PCT/CN2021/141431 CN2021141431W WO2023015820A1 WO 2023015820 A1 WO2023015820 A1 WO 2023015820A1 CN 2021141431 W CN2021141431 W CN 2021141431W WO 2023015820 A1 WO2023015820 A1 WO 2023015820A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
pressure
air
vehicle
airtightness
Prior art date
Application number
PCT/CN2021/141431
Other languages
English (en)
French (fr)
Inventor
成磊
荆俊雅
刘亚洲
王毅
赵宏远
Original Assignee
宇通客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇通客车股份有限公司 filed Critical 宇通客车股份有限公司
Priority to EP21931933.2A priority Critical patent/EP4155706A1/en
Publication of WO2023015820A1 publication Critical patent/WO2023015820A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3272Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers for verifying the internal pressure of closed containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the invention relates to a method for detecting air tightness of a vehicle and a battery pack thereof, and belongs to the technical field of battery pack safety.
  • the safety of new energy power batteries is the lifeline of new energy vehicles and the fundamental guarantee for the sustainable and healthy development of the new energy vehicle industry.
  • the protection level of power battery packs is an important indicator to measure the safety of power batteries. The water in the bag will eventually lead to safety accidents such as battery short circuit and vehicle fire.
  • the protection level test of the power battery pack of new energy vehicles generally adopts the air tightness detection method. Some high-risk vehicles are checked for air tightness when they are not running, and can only be detected when the protection of the power battery pack fails, and it is impossible to provide early warning of the power battery pack with the risk of protection failure.
  • the main problems of the current detection method are: professional detection personnel need to carry special external detection equipment for detection, and additional compressed air is needed during detection; a single built-in or external pressure sensor is used to measure the pressure of the power battery pack.
  • the detection is easily affected by the accuracy of the sensor itself, resulting in inaccurate detection data; the air tightness detection of the battery pack must be carried out when the vehicle is stopped, which affects the use and operation of the vehicle; the battery pack can only be tested regularly by the testing personnel. And judge whether the airtightness of the battery pack is qualified through fixed standards, and the airtightness test of the battery pack cannot be carried out at any time.
  • the object of the present invention is to provide a method for detecting the airtightness of a vehicle and its battery pack, so as to realize the automatic detection of the airtightness of the battery pack at any time to judge the protection level of the battery pack.
  • the present invention provides a vehicle, including a battery pack, a system controller and an air source, the battery pack is provided with a detection port and an air inlet, and the detection port is provided with a device for detecting the internal pressure of the battery pack
  • An air pressure detector the system controller is connected to the air pressure detector for sampling, the air inlet is connected to the air source through an air pipeline, and a solenoid valve is arranged on the air pipeline, and the system controller controls and connects the solenoid valve;
  • the system controller executes instructions to implement the following method for detecting the airtightness of the battery pack, and the method includes the following steps:
  • the detection port and the air inlet are set on the battery pack of the vehicle, and the air pressure detector is installed at the detection port to detect the gas pressure in the battery pack.
  • the controller controls the opening and closing of the solenoid valve to control the inflation of the battery pack.
  • the battery pack is inflated to make the internal pressure greater than the atmospheric pressure, and the gas pressure in the battery pack is obtained after the inflation is completed, and the air tightness of the battery pack is judged according to the change of the gas pressure.
  • the invention does not need to use professional equipment to detect the airtightness after the vehicle stops running, and can detect the airtightness of the battery pack when the vehicle is running, and timely alarm when the airtightness of the battery pack is poor, which enhances the safety of the vehicle during driving grade.
  • the air pressure detector includes an internal sensing terminal for detecting the internal gas pressure of the battery pack and an external sensing terminal for detecting the atmospheric pressure, and the air pressure detector calculates the internal gas pressure of the battery pack and the atmospheric pressure.
  • the difference in pressure which is used as a relative pressure to reflect the gas pressure inside the battery pack.
  • the integrated air pressure detector collects the gas pressure inside and outside the battery pack at the same time, and calculates the relative pressure to judge the air tightness of the battery pack, which can eliminate the influence of the pressure detector's own accuracy on the pressure detection and enhance the reliability of the judgment.
  • the above-mentioned vehicle also includes an air pressure detector for detecting the atmospheric pressure outside the battery pack, calculates the difference between the gas pressure inside the battery pack and the atmospheric pressure, and uses the difference as an indicator to reflect the gas pressure inside the battery pack. relative pressure.
  • the relative pressure is calculated by using two air pressure detectors to detect the gas pressure inside and outside the battery pack. Compared with only setting one air pressure detector in the battery pack, the obtained atmospheric pressure is real-time detection data rather than set data. Make the detection result more accurate.
  • the battery pack is also provided with an explosion-proof safety valve for pressure relief, and the pressure relief pressure of the explosion-proof safety valve is greater than the maximum pressure that the battery pack can reach during the air tightness test of the battery pack.
  • an explosion-proof safety valve for pressure relief is installed on the battery pack.
  • the pressure relief pressure of the explosion-proof safety valve is greater than the maximum pressure that the battery pack can reach during the air tightness test of the battery pack.
  • the method of detecting the airtightness of the battery pack according to the change amount of the gas pressure inside the battery pack is: if the change amount of the relative pressure within the set time period is greater than the set threshold value, it is considered that the battery pack is The poor airtightness of the bag fails.
  • the airtightness of the battery pack is judged by the change in relative pressure over a period of time. If the change in relative pressure within a set period of time is greater than the set threshold, it is considered that the battery pack has gas leakage and the airtightness is poor.
  • the method of detecting the airtightness of the battery pack according to the variation of the internal gas pressure of the battery pack is: setting a change threshold of the relative pressure, if the relative pressure of the battery pack reaches the change threshold If the time is less than the set time, it is considered that the airtightness of the battery pack fails.
  • the airtightness of the battery pack is judged by the time when the relative pressure changes. If the time for a certain change in the relative pressure of the battery pack is longer than the set time, it is considered that the battery pack has gas leakage, and the airtightness of the battery pack is poor. .
  • the line of the air pressure detector is led out from the air pressure detector toward the inside of the battery pack, and is connected to the terminal of the connector sealed and arranged on the battery pack toward the inside of the battery pack, and the connector The air pressure detector is connected to the terminal facing the outside of the battery pack.
  • the air inlet is provided with a pressure-limiting waterproof air intake valve, and the inlet of the pressure-limiting waterproof air intake valve is provided with a waterproof and breathable membrane.
  • the pressure-limiting waterproof inlet valve can ensure that the battery pack can be inflated when the inflation pressure reaches the opening pressure of the pressure-limiting waterproof inlet valve, so as to avoid unexpected gas exchange inside and outside the battery pack due to thermal expansion and contraction.
  • gas and impurities enter the battery pack, and the waterproof membrane can prevent external dust and water vapor from entering the battery pack and causing damage to the battery pack.
  • a pressure controller for adjusting the inflation pressure is also arranged on the air pipeline.
  • the pressure controller can ensure that the air source maintains a certain inflation pressure during the process of inflating the battery pack to prevent the battery pack from being overcharged.
  • the system controller stores the result of the airtightness test as historical test data, and obtains the qualified correspondence between the relative pressure when the airtightness is qualified and the time required to reach the relative pressure according to the historical test data According to the qualified corresponding relationship, predict whether the airtightness of the battery pack will fail or not; the prediction method is that after the relative pressure of the tested battery pack is detected, if the time for the tested battery pack to reach the relative pressure is longer than the qualified If the time corresponding to the same relative pressure in the corresponding relationship is considered, the airtightness of the tested battery pack is considered qualified; otherwise, it is considered unqualified.
  • the system controller stores the data and judgment results of each test in order to predict the airtightness of the battery pack. If the airtightness of the battery pack is predicted to be at risk of failure, it can give an alarm in advance to enhance the safety level of the vehicle.
  • the system controller is provided with a wireless communication interface, and the communication interface is used to connect to a remote monitoring data center, and the system controller uploads the result of the air tightness detection of the battery pack to the remote monitoring data center, Early warning of failure of the airtightness of the battery pack is provided through the remote monitoring data center.
  • the system controller can be connected wirelessly with the remote monitoring data center, and send the data and results of each air tightness test to the remote monitoring data center, which can comprehensively analyze the air tightness test data of multiple vehicles and improve the accuracy of air tightness prediction. accuracy.
  • the present invention also provides a method for detecting the airtightness of the battery pack of a vehicle, which adopts the method for detecting the airtightness of the battery pack in the vehicle.
  • Fig. 1 is the structural representation of battery pack of the present invention
  • Fig. 2 is a schematic diagram of the structure of the air inlet of the battery pack of the present invention.
  • Fig. 3 is the flowchart of the method embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the air pressure-time variation curve of the method embodiment of the present invention.
  • 1 is the battery pack
  • 10 is the battery pack shell
  • 11 is the pressure-limiting waterproof air intake valve
  • 111 is the base of the pressure-limiting waterproof air intake valve
  • 112 is the spring
  • 113 is the slider
  • 114 is the air flow channel
  • 115 is the waterproof Breathable membrane
  • 12 is gas pressure detector
  • 13 is low pressure connector
  • 2 system controller
  • 3 vehicle air source
  • 4 is pressure controller
  • 5 is solenoid valve
  • 6 is air pipeline
  • 7 is communication harness
  • 8 is the remote monitoring data center.
  • a vehicle of the present invention simultaneously detects the pressure inside and outside the battery pack after inflating the battery pack, and calculates the gas pressure difference. If the change in the gas pressure difference exceeds a threshold within a period of time, it can be judged that the protection level of the battery pack is unqualified and a fault is issued. Alarm to remind to replace the battery pack; it can also predict whether the protection level of the battery pack will decrease during the whole life cycle according to the rate of gas leakage in the battery pack, so as to provide early warning.
  • the detection port is used to install an internal and external integrated high-precision gas pressure detector 12, the gas pressure detector 12 is airtightly matched with the detection port, which meets the protection level of the battery pack.
  • the gas pressure detector 12 has a detection chip and two sensing ends, wherein the first sensing end is in contact with the gas in the battery pack for detecting the gas pressure in the battery pack, and the second sensing end is in contact with the atmosphere for Check atmospheric pressure.
  • the detection chip detects the gas pressure inside and outside the battery pack at the same time, and calculates the gas pressure difference.
  • the error generated by the two sensing ends of the same detector when detecting the air pressure can be eliminated when calculating the pressure difference, which can avoid the accuracy of the gas pressure detector itself.
  • the signal output end of the gas pressure detector 12 is connected to the system controller 2 to feed back the gas pressure difference inside and outside the battery pack to the system controller 2 .
  • an air pressure detector can also be installed inside the battery pack to detect the internal air pressure of the battery pack, and another air pressure detector can be arranged outside the battery pack to detect the external atmospheric pressure of the battery pack. By calculating the gas pressure inside the battery pack and the atmospheric pressure The difference is used as a relative pressure to reflect the internal pressure of the battery pack.
  • An opening for communication is also provided on the battery pack shell 10 for installing a low-voltage connector 13 , that is, a low-voltage electronic connector.
  • the low-voltage connector 13 is airtightly matched with the opening for communication, meeting the protection level of the battery pack.
  • the signal input end of the low-voltage connector 13 is connected to the gas pressure detector 12 inside the battery pack, the signal output end of the low-voltage connector 13 is connected to the system controller 2 outside the battery pack, and the gas pressure difference obtained by the gas pressure detector 12 is passed through the low-voltage Connector 13 feeds back to the controller.
  • the detection chip Since the sensing end of the gas pressure detector 12 outside the battery pack only detects the atmospheric pressure, the detection chip is mainly arranged on the sensing end of the gas pressure detector 12 located in the battery pack, so the wiring harness of the detector will also be connected from the gas pressure
  • the detector 12 is drawn from the sensing end located in the battery pack. The purpose of this setting is to not need to consider the waterproof problem of the detector wiring (the battery pack itself is waterproof if it reaches the protection level), and the wiring harness is connected to the seal set on the battery pack.
  • the low-voltage connector 13 is connected to the wire harness outside the battery pack through the low-voltage connector 13, and then connected to the system controller.
  • the detection chip of the gas pressure detector 12 is arranged at the sensing end located outside the battery pack, then there is no need to arrange a wiring harness inside the battery pack, and there is no need to add a connector on the battery pack, but it is necessary to solve the possible problems at the connection between the detector and the wiring harness. Therefore, in this embodiment, the detection chip of the gas pressure detector 12 is arranged in the battery pack.
  • An air inlet is also provided on the battery pack shell 10, so that the vehicle air source 3 inflates the battery pack to ensure the positive pressure of the battery pack and test the airtightness when the gas pressure in the battery pack is insufficient, as shown in Figure 2 (Fig. Only the air inlet is shown in the figure, the detection port and the communication port are not shown), the air inlet is provided with a pressure-limited waterproof air inlet valve 11, and the base 111 of the pressure-limited waterproof air inlet valve 11 is tightly connected with the battery pack shell 10, and the The inlet of the air valve is equipped with a waterproof and breathable membrane 115 to prevent external salt spray particles, dust, and water vapor from entering the battery pack.
  • the waterproof and breathable membrane 115 has a structural design that is anti-splash, anti-touch, and anti-extrusion.
  • the spring 112 is a compression spring, which can realize that when the intake pressure reaches the specified limit, the gas pushes the slider 113 to compress the spring 112, and the air flow channel 114 is opened to realize the air flow in the battery pack.
  • the system controller 2 cuts off the vehicle air source 3 and connects the air pipeline 6 of the battery pack, the gas pressure drops below the specified limit, the spring 112 stretches, pushes the slider 113 to reset, and the air flow channel of the battery pack 1 114 is closed to prevent outside gas and impurities from entering.
  • the battery pack shell is also provided with an air outlet (not shown in Figure 2), and the air outlet is provided with an explosion-proof safety valve, which can prevent the battery pack from bursting or exploding when the gas pressure in the battery pack is too high.
  • the pressure relief pressure level of the explosion-proof safety valve should be greater than the maximum pressure that the battery pack can reach during the air-tightness test of the battery pack.
  • the above-mentioned new energy vehicle also includes a system controller 2 , a pressure controller 4 , a solenoid valve 5 for controlling the on-off of the air circuit, and a vehicle air source 3 .
  • the system controller 2 is a vehicle controller.
  • the system controller 2 may also be an independently configured controller.
  • the system controller 2 is connected to the signal output end of the low-voltage connector 13 on the battery pack casing 10 through the communication harness 7 to receive the gas pressure difference inside and outside the battery pack output by the gas pressure detector 12 .
  • a pressure controller 4 and a solenoid valve 5 are provided on the air pipeline 6 connecting the air source 3 of the vehicle to the air inlet of the battery pack.
  • the pressure controller 4 adopts an electronically controlled air pressure controller as another embodiment
  • the air pressure of the gas source of the whole vehicle can also be controlled by using a mechanical pressure limiting valve.
  • Both the pressure controller 4 and the solenoid valve 5 are connected with the system controller 2 through the communication harness 7 .
  • the system controller 2 sends an instruction to the pressure controller 4, and the pressure level of the gas from the vehicle air source 3 is set through the pressure controller 4, and the solenoid valve 5 is also controlled to open.
  • the whole vehicle gas source 3 can charge the battery pack 1 with gas at a set pressure.
  • the air source 3 of the whole vehicle usually adopts compressed air or other inert gas and flame retardant gas.
  • the system controller 2 has a timing function, and can record the time when the gas pressure difference is sent when the battery pack 1 is tested for air tightness, and then calculate the change rate of the gas pressure difference inside and outside the battery pack within the set time.
  • the system controller 2 is also connected to the alarm device of the vehicle.
  • the alarm device is an alarm signal light installed on the vehicle dashboard, which can send an early warning signal at the vehicle instrument according to the result of the air tightness test of the battery pack to remind the vehicle to drive.
  • the staff can repair and maintain the battery pack in a timely manner; the detection data and results can also be uploaded to the vehicle remote monitoring data center 8 through wireless transmission, such as satellite signal transmission, to realize real-time remote early warning of the protection level of the battery pack.
  • the process of testing the airtightness of the battery pack for new energy vehicles is shown in Figure 3, including the following steps: first, the system controller 2 controls the pressure controller 4 to set the inflation pressure level, when the gas pressure in the battery pack is detected When it is less than the set value, open the solenoid valve 5 and inflate the battery pack 1 from the vehicle air source 3 to ensure that the battery pack is in a positive pressure state, that is, the gas pressure inside the battery pack is greater than atmospheric pressure.
  • the system controller 2 can also set the frequency of inflating the battery pack according to requirements, and perform the following steps each time it is inflated.
  • the high-precision gas pressure detector integrated inside and outside detects the gas pressure inside and outside the battery pack, and calculates the gas pressure difference. At this time, because the gas pressure in the battery pack is greater than the atmospheric pressure, the calculated The gas pressure difference is the relative pressure that the gas pressure in the battery pack is higher than the atmospheric pressure.
  • the system controller controls the solenoid valve to close and stop charging the battery pack.
  • the system controller starts timing from the moment when the battery pack is stopped to inflate, and tests the gas leakage in the battery pack.
  • the gas pressure detector continuously monitors the gas pressure and atmospheric pressure in the battery pack, and calculates the relative pressure. When the relative pressure change reaches the set change amount, it will be sent to the system controller through the low pressure connector.
  • the system controller receives the relative pressure, records the corresponding time, and judges whether the variation of the relative pressure within the set time exceeds the set threshold.
  • the threshold value is set considering that there are some parts on the battery pack that are in contact with the interior of the battery pack and the atmosphere at the same time, it is impossible to completely isolate the interior of the battery pack from the atmosphere, and the gas in the battery pack will still have a reasonable gas loss, so the setting this threshold.
  • the specific method for the system controller to judge the airtightness of the battery pack based on the relative pressure is: when the system controller detects the airtightness of the battery pack, when the relative pressure of the battery pack after inflation reaches the set value X, the recording time is T 10 , When the relative pressure drops to Y 1 , the recording time is T 11 , when the relative pressure drops to Y 2 , the recording time is T 12 , that is, the relative pressure is recorded sequentially at Y 1 , Y 2 , Y 3 , ..., Y n The times are T 11 , T 12 , T 13 , ..., T 1n , and draw the time-pressure change curve as the test curve, that is, the leakage curve. As shown in FIG.
  • the abscissa is the relative pressure
  • the ordinate is the time corresponding to the relative pressure. Compare the time-air pressure change curve obtained by each air tightness test of the battery pack with the preset qualified curve. If at a certain relative pressure, the time corresponding to the test curve is longer than the time corresponding to the qualified curve, as shown in Fig.
  • the protection level of the battery pack can also be judged according to the amount of change in the relative pressure within the set time period.
  • the relative pressure of the battery pack reaches X, the relative pressure of the battery pack is obtained at intervals of the set time. If the relative pressure of the battery pack is less than the set threshold, it is considered that the airtightness of the battery pack is poor and the protection level is unqualified.
  • the system controller also stores the data of each airtightness test on the battery pack as historical test data. After collecting enough historical test data, it can also perform a test on the results of the next battery pack airtightness test based on the historical test data. predict.
  • the specific method of predicting the airtightness of the battery pack according to the historical test data is as follows: judging the change trend of the relative pressure according to the previous test curves in the historical test data, and predicting the airtightness of the battery pack according to the change trend, for example, using mathematics Statistical method, using historical test data to calculate the corresponding forecast time T m1 , T m2 , T m3 , ..., T mn when the relative pressure is Y 1 , Y 2 , Y 3 , ..., Y n , and draw For the time-pressure prediction curve, compare the predicted curve with the qualified curve to determine whether there is a risk of failure of the protection level. If the predicted curve is lower than the qualified curve, it is considered that there is a risk of failure of the protection level.
  • the system controller sends an alarm signal at the vehicle instrument to prompt the driver to repair or replace the battery pack.
  • a method for detecting air tightness of a vehicle battery pack according to the present invention has been introduced clearly enough in the vehicle embodiment, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种车辆及其电池包(1)的气密性检测方法,属于电池包(1)安全技术领域。在车辆的电池包(1)上设置检测口和进气口,检测口处设置气压探测器(12)来检测电池包(1)内气体压力,进气口与气源(3)通过空气管路(6)连接,在空气管路(6)上设置电磁阀(5),系统控制器(2)控制电磁阀(5)的合断来控制对电池包(1)的充气。气密性检测时,对电池包(1)充气使其内部压力大于大气压力,在充气结束后获取电池包(1)内气体压力,根据气体压力的变化量判断电池包(1)的气密性。通过车载装置检测电池包(1)的气密性,并在车辆寿命周期内,实时监控电池包(1)的防护等级,还能通过远程监控数据中心(8),根据监控结果对车辆进行远程预警,降低了车辆的安全隐患。

Description

一种车辆及其电池包的气密性检测方法 技术领域
本发明涉及一种车辆及其电池包的气密性检测方法,属于电池包安全技术领域。
背景技术
新能源动力电池的安全性是新能源汽车的生命线,是新能源汽车产业持续健康发展的根本保障,动力电池包的防护等级是衡量动力电池安全的一个重要指标,因动力电池包防护失效引起电池包进水,最终导致电池短路、车辆起火等安全事故时有发生。
目前,新能源汽车动力电池包的防护等级测试一般采用气密性检测方法,在新车下线时,采用专门的外接充气检测设备进行检验;车辆使用周期内,一般通过售后服务人员携带检测设备定期对部分高风险车辆在其不运行时进行气密性的排查,而且只能在动力电池包防护失效时,才能检测出来,无法对存在防护失效风险的动力电池包进行提前预警。
目前的检测方法存在的问题主要为:需要由专业的检测人员携带专门的外接检测设备进行检测,检测时,还需要额外的压缩空气;采用内置或外置的单个压力传感器对动力电池包进行压力检测时易受传感器本身精度的影响,导致检测数据不准确;电池包的气密性检测必须在车辆停止的情况下进行,影响车辆的使用及运营;只能由检测人员对电池包定期检测,并通过固定的标准判断电池包的气密性是否合格,无法随时对电池包进行气密性检测。
发明内容
本发明的目的在于提供一种车辆及其电池包的气密性检测方法,以实现对电池包气密性随时自动检测来判断电池包的防护等级。
为了实现上述目的,本发明提供了一种车辆,包括电池包、系统控制器和气源,所述电池包设置有检测口和进气口,所述检测口设置有用于检测电池包内部压力的气压探测器,系统控制器采样连接气压探测器,所述进气口与气源通过空气管路连接,所述空气管 路上设置有电磁阀,系统控制器控制连接电磁阀;
所述系统控制器执行指令实现如下对电池包气密性检测的方法,所述方法包括如下步骤:
1)对电池包充气,当电池包内部气体压力大于设定压力时结束充气,所述设定压力大于大气压力;
2)获取充气结束后电池包内气体压力的变化量,根据电池包内部气体压力的变化量对电池包的气密性进行检测。
在车辆的电池包上设置检测口和进气口,检测口处设置气压探测器来检测电池包内气体压力,进气口与气源通过空气管路连接,在空气管路上设置电磁阀,系统控制器控制电磁阀的合断来控制对电池包的充气。气密性检测时,对电池包充气使其内部压力大于大气压力,在充气结束后获取电池包内气体压力,根据气体压力的变化量判断电池包的气密性。本发明无需在车辆停止行驶后通过专业设备进行气密性检测,可以在车辆行驶时对电池包的气密性进行检测,在电池包气密性差时及时报警,增强了车辆行驶过程中的安全等级。
进一步地,在上述车辆中,所述气压探测器包括用于检测电池包内部气体压力的内部感应端和用于检测大气压力的外部感应端,所述气压探测器计算电池包内部气体压力和大气压力的差值,将该差值作为用来反映电池包内部气体压力的相对压力。
通过一体式的气压探测器同时采集电池包内外的气体压力,并计算相对压力来判断电池包的气密性,可以消除压力探测器自身精度对压力检测的影响,增强判断的可靠性。
进一步地,在上述车辆中,还包括用于检测电池包外部大气压力的气压探测器,计算电池包内部气体压力和大气压力的差值,将该差值作为用来反映电池包内部气体压力的相对压力。
通过两个气压探测器分别检测电池包内外的气体压力,来计算相对压力,与只在电池包内设置一个气压探测器相比,获取的大气压力为实时检测数据而非设定好的数据,使检测结果更加准确。
进一步地,在上述车辆中,电池包上还设置有用于泄压的防爆安全阀,防爆安全阀的泄压压力大于电池包气密性检测过程中电池包能达到的最大压力。
为了防止电池包内气体压力过高导致电池包胀破,在电池包上设置泄压的防爆安全阀,在检测电池包气密性时,为了防止因防爆安全阀泄露气体导致检测结果不准确,防爆安全阀的泄压压力大于电池包气密性检测过程中电池包能达到的最大压力。
进一步地,在上述车辆中,根据电池包内部气体压力的变化量对电池包的气密性进行检测的方法为:若在设定时间段内相对压力的变化量大于设定阈值,则认为电池包的气密性差失效。
通过一段时间内相对压力的变化量来判断电池包的气密性,若设定时间段内相对压力的变化量大于设定阈值,则认为电池包出现了气体泄漏,气密性较差。
进一步地,在上述车辆中,根据电池包内部气体压力的变化量对电池包的气密性进行检测的方法为:设定相对压力的变化阈值,若电池包的相对压力达到所述变化阈值的时间小于设定时间,则认为电池包的气密性失效。
通过相对压力发生变化的时间来判断电池包的气密性,若电池包的相对压力发生一定变化的时间大于设定的时间,则认为电池包出现了气体泄漏,电池包的气密性较差。
进一步地,在上述车辆中,所述气压探测器的线路从气压探测器上朝向电池包内部引出,与密封设置在电池包上的连接器的朝向电池包内的接线端相连,所述连接器朝向电池包外的接线端连接所述气压探测器。
进一步地,在上述车辆中,所述进气口设置有限压防水进气阀,所述限压防水进气阀的入口设置有防水透气膜。
限压防水进气阀可以保证当充气压力达到限压防水进气阀的开启压力时,才能对电池包进行充气,避免外界因热胀冷缩等原因导致非预期的电池包内外的气体交换,进而导致气体、杂质进入电池包,防水膜可以阻止外部粉尘、水汽进入电池包,对电池包造成损害。
进一步地,在上述车辆中,所述空气管路上还设置有用于调节充气压力的压力控制器。
压力控制器可以保证气源向电池包充气的过程中,维持一定的充气压力,防止电池包被充爆。
进一步地,在上述车辆中,所述系统控制器存储气密性检测的结果作为历史测试数据,并根据历史测试数据得到气密性合格时相对压力与达到该相对压力所需的时间的合格对应关系,根据所述合格对应关系对电池包的气密性是否失效进行预测;预测方法为,检测到被测电池包的相对压力后,若被测电池包达到该相对压力的时间长于所述合格对应关系中相同相对压力所对应的时间,则认为被测电池包的气密性合格;反之则认为不合格。
系统控制器存储每次检测的数据和判断结果,以便对电池包的气密性进行预测,若预测到电池包的气密性存在失效风险,可以提前对进行报警,增强车辆的安全等级。
进一步地,在上述车辆中,所述系统控制器设置有无线通信接口,所述通信接口用于连接远程监控数据中心,系统控制器将电池包气密性检测的结果上传至远程监控数据中心,通过远程监控数据中心对电池包的气密性进行失效预警。
系统控制器可以与远程监控数据中心无线连接,将每次气密性检测的数据和结果发送到远程监控数据中心,可以对多辆车的气密性检测数据综合分析,提高气密性预测的准确性。
本发明还提供一种车辆电池包的气密性检测方法,采用上述车辆中对电池包气密性检测的方法。
附图说明
图1为本发明的电池包的结构示意图;
图2为本发明的电池包的进气口结构示意图;
图3为本发明方法实施例的流程图;
图4为本发明方法实施例的气压-时间变化曲线示意图。
图中1为电池包,10为电池包外壳,11为限压防水进气阀,111为限压防水进气阀的底座,112为弹簧,113为滑块,114为气流通道,115为防水透气膜,12为气体压力探测器,13为低压连接器,2为系统控制器,3为整车气源,4为压力控制器,5为电磁阀,6为空气管路,7为通讯线束,8为远程监控数据中心。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
车辆实施例:
本发明的一种车辆通过向电池包充气后同时检测电池包内外的压力,并计算气体压力差,如果气体压力差在一段时间内的变化超过阈值,可判断电池包防护等级不合格,发出故障报警,提醒更换电池包;还能根据电池包内气体泄漏的速率,预测电池包在全生命周期内的防护等级是否降低,以便提前预警。
以一种安装锂离子动力电池包的新能源汽车为例,如图1所示,新能源汽车包括电池包1,电池包1包括电池本体和电池包外壳10,在电池包外壳10上设置有一个检测口,检测口用于安装内外一体式高精度的气体压力探测器12,该气体压力探测器12与检测口气密配合,符合电池包防护等级。此外,该气体压力探测器12具有检测芯片和两个感应端,其中第一感应端与电池包内的气体接触,用于检测电池包内的气体压力,第二感应端与大气接触,用于检测大气压力。检测芯片同时检测电池包内外的气体压力,并计算气体压力差,同一探测器的两个感应端在检测气压时所产生的误差可以在计算压力差时消除,可以避免气体压力探测器自身精度对压力检测的影响。气体压力探测器12的信号输出端连接系统控制器2,以向系统控制器2反馈电池包内外的气体压力差。
作为其他实施方式,也可在电池包内部设置一个气压探测器检测电池包内部气压,在电池包外部设置另一个气压探测器检测电池包外部大气压力,通过计算电池包内部气体压力和大气压力的差作为用来反映电池包内部压力的相对压力。
电池包外壳10上还设置有一个用于通信的开口,用于安装低压连接器13,即低压电子连接器,该低压连接器13与用于通信的开口气密配合,符合电池包防护等级。低压连接器13的信号输入端与气体压力探测器12在电池包内部连接,低压连接器13的信号输出端在电池包外连接系统控制器2,气体压力探测器12获取的气体压力差通过低压连接器13反馈到控制器。由于气体压力探测器12在电池包外的感应端仅是对大气压进行探测,检测芯片主要布置在气体压力探测器12上位于电池包内的感应端处,因此探测器的线束也将从气体压力探测器12上位于电池包内的感应端处引出,这样设置的目的是不需要考虑探测器接线处的防水问题(达到防护等级的电池包本身就防水),而线束连接电池包上密封设置的低压连接器13,通过低压连接器13连接电池包外部的线束,进而与系统控制器相连。若气体压力探测器12的检测芯片设置在位于电池包外的感应端,则不需要在电池包内部设置线束,不需要在电池包上增加连接器,但需要解决探测器与线束连接处可能存在的防水问题,因此本实施例中气体压力探测器12的检测芯片设置在电池包内。
电池包外壳10上还设置有一个进气口,以便整车气源3在电池包内气体压力不足时向电池包充气以保证电池包正压及测试气密性,如图2所示(图中仅显示了进气口,检测口和通信口未进行显示),进气口设置有限压防水进气阀11,限压防水进气阀11的底座111与电池包外壳10紧固连接,进气阀的入口配置防水透气膜115,阻止外部盐雾颗粒、粉尘、水汽进入电池包内,同时,防水透气膜115具备防溅泥、防触碰、防挤压的结构设计。进气阀内有弹簧112及滑块113,弹簧112为压簧,可以实现当进气压力达到规定限制时,气体推动滑块113使弹簧112压缩,气流通道114开启,实现对电池包内进行充气;充气结束后,系统控制器2切断整车气源3连通电池包的空气管路6,气体压力降低至规定限制以下,弹簧112伸长,推动滑块113复位,电池包1的气流通道114封闭,避免外界气体、杂质进入。
电池包外壳上还设置有一个出气口(图2中未示出),出气口设置有防爆安全阀,在电池包内气体压力过高时,可以防止电池包发生胀破或爆炸。为避免检测电池包的气密 性时因防爆安全阀泄露气体影响检测结果,防爆安全阀的泄压压力等级应大于电池包气密性检测过程中电池包能达到的最大压力。
上述的新能源汽车还包括系统控制器2、压力控制器4、用于控制气路通断的电磁阀5和整车气源3。本实施例中系统控制器2采用整车控制器,作为其他实施例,系统控制器2还可以是独立设置的控制器。系统控制器2通过通讯线束7连接电池包外壳10上低压连接器13的信号输出端,用于接收气体压力探测器12输出的电池包内外的气体压力差。整车气源3与电池包进气口连接的空气管路6上设置有压力控制器4和电磁阀5,本实施例中,压力控制器4采用电控的气压控制器,作为其他实施方式,还可采用机械限压阀对整车气源的气体进行气压控制。压力控制器4和电磁阀5都通过通讯线束7与系统控制器2连接。在需要对电池包1充气时,系统控制器2发送指令给压力控制器4,通过压力控制器4对来自整车气源3的气体进行压力等级设定,还控制电磁阀5打开,此时,整车气源3即可对电池包1充设定压力的气体。整车气源3通常采用压缩空气或其他惰性气体、阻燃气体。
系统控制器2具备计时功能,可以在对电池包1进行气密性检测时,根据发来气体压力差的时间进行记录,进而计算出设定时间内电池包内外气体压力差的变化率。此外,系统控制器2还与车辆的报警装置连接,报警装置为设置在车辆仪表盘处的报警信号灯,可以根据对电池包气密性检测的结果在整车仪表处发出预警信号,提醒车辆驾驶员及时对电池包维修维护;也可通过无线传输的方式,如卫星信号传输,将检测数据及结果上传至整车远程监控数据中心8,实现电池包防护等级的实时远程预警。
新能源汽车对电池包的气密性进行检测时的流程如图3所示,包括如下步骤:首先,系统控制器2控制压力控制器4设定充气压力等级,当检测到电池包内气体压力小于设定值时,打开电磁阀5,由整车气源3对电池包1进行充气,保证电池包处于正压状态,即电池包内部的气体压力大于大气压力。系统控制器2还可以根据需求设定对电池包充气的频率,并在每次充气时执行如下步骤。
1)在对电池包充气过程中,内外一体式的高精度气体压力探测器检测电池包内外的气体压力,并计算气体压力差,此时由于电池包内的气体压力大于大气压力,计算出的气体压力差即为电池包内的气体压力高于大气压力的相对压力,当此相对压力达到气密性检测的设定压力时,系统控制器控制电磁阀关闭,停止对电池包充气。
2)系统控制器从停止对电池包充气时刻起开始计时,对电池包内气体的泄漏量进行测试,气体压力探测器持续监测电池包内的气体压力和大气压力,计算出相对压力,每当相对压力变化达到设定的变化量时,通过低压连接器发送给系统控制器。
3)系统控制器接收相对压力,并记录对应的时间,判断设定时间内的相对压力的变化量是否超过设定阈值。设定阈值是考虑到电池包上具有一些同时接触电池包内部和大气的零部件,不可能实现电池包内部和大气的完全隔离,电池包内的气体仍会存在合理的气体损失,故设定此阈值。
若设定时间内相对压力的变化量大于设定阈值,则认为电池包存在额外的气体泄露,气密性较差,防护等级不合格。
系统控制器基于相对压力判断电池包气密性的具体方法为:系统控制器对电池包气密性检测时,当电池包充气后的相对压力达到设定值X时,记录时间为T 10,当相对压力降到Y 1时,记录时间为T 11,当相对压力降到Y 2时,记录时间为T 12,即依次记录相对压力为Y 1、Y 2、Y 3、…、Y n时刻的时间为T 11、T 12、T 13、…、T 1n,绘制作为测试曲线的时间-气压变化曲线,即泄漏量曲线。如图4所示,横坐标为相对压力,纵坐标为对应相对压力的时间。将每次对电池包进行气密性检测所获取的时间-气压变化曲线与预设置的合格曲线进行比较,若在一定的相对压力时,测试曲线对应的时间大于合格曲线对应的时间,例如图4中的历史测试1,横坐标相同时,测试曲线对应的纵坐标大于合格曲线对应的纵坐标,则认为电池包气密性良好,防护等级合格;若在一定的相对压力时,测试曲线对应的时间小于合格曲线对应的时间,例如图4中的历史测试6,横坐标相同时,若存在测试曲线对应的纵坐标小于合格曲线对应的纵坐标,则认为电池包气密性较差,防护等级失效。
此外,作为其他实施例,还能根据设定时间段内相对压力的变化量判断电池包的防护等级,当电池包的相对压力达到X后,间隔设定时间获取电池包的相对压力,若获取的电池包的相对压力小于设定阈值,则认为电池包的气密性较差,防护等级不合格。
系统控制器还存储每次对电池包进行气密性检测的数据作为历史测试数据,在收集到足够的历史测试数据后,还能根据历史测试数据对下一次检测电池包气密性的结果进行预测。
根据历史测试数据对电池包的气密性进行预测的具体方法为:根据历史测试数据中历次的测试曲线判断相对压力的变化趋势,根据变化趋势对电池包的气密性进行预测,例如采用数学统计的方法,利用历史测试数据,分别计算出相对压力为Y 1、Y 2、Y 3、…、Y n时,对应的预测时间T m1、T m2、T m3,…,T mn,并绘制时间-气压预测曲线,将预测曲线与合格曲线比较,判断是否存在防护等级失效风险,若预测曲线低于合格曲线,则认为存在防护等级失效风险的可能。
在检测到电池包防护等级失效或预测到电池包防护等级存在失效风险时,系统控制器在整车仪表处发出报警信号,提示驾驶员对电池包进行维修或更换。
方法实施例:
本发明的一种车辆电池包的气密性检测方法,该方法在车辆实施例中已经介绍的足够清楚,此处不再赘述。

Claims (12)

  1. 一种车辆,其特征在于,包括电池包、系统控制器和气源,所述电池包设置有检测口和进气口,所述检测口设置有用于检测电池包内部压力的气压探测器,系统控制器采样连接气压探测器,所述进气口与气源通过空气管路连接,所述空气管路上设置有电磁阀,系统控制器控制连接电磁阀;
    所述系统控制器执行指令实现如下对电池包气密性检测的方法,包括如下步骤:
    1)对电池包充气,当电池包内部气体压力大于设定压力时结束充气,所述设定压力大于大气压力;
    2)获取充气结束后电池包内气体压力的变化量,根据电池包内部气体压力的变化量对电池包的气密性进行检测。
  2. 根据权利要求1所述的车辆,其特征在于,所述气压探测器包括用于检测电池包内部气体压力的内部感应端和用于检测大气压力的外部感应端,所述气压探测器计算电池包内部气体压力和大气压力的差值,将该差值作为用来反映电池包内部气体压力的相对压力。
  3. 根据权利要求1所述的车辆,其特征在于,还包括用于检测电池包外部大气压力的气压探测器,计算电池包内部气体压力和大气压力的差值,并将该差值作为用来反映电池包内部气体压力的相对压力。
  4. 根据权利要求2或3所述的车辆,其特征在于,电池包上还设置有用于泄压的防爆安全阀,防爆安全阀的泄压压力大于电池包气密性检测过程中电池包能达到的最大压力。
  5. 根据权利要求4所述的车辆,其特征在于,根据电池包内部气体压力的变化量对电池包的气密性进行检测的方法为:若在设定时间段内相对压力的变化量大于设定阈值,则认为电池包的气密性失效。
  6. 根据权利要求4所述的车辆,其特征在于,根据电池包内部气体压力的变化量对电池包的气密性进行检测的方法为:设定相对压力的变化阈值,若电池包的相对压力达到所述变化阈值的时间小于设定时间,则认为电池包的气密性失效。
  7. 根据权利要求5或6所述的车辆,其特征在于,所述气压探测器的线路从气压探测 器上朝向电池包内部引出,与密封设置在电池包上的连接器的朝向电池包内的接线端相连,所述连接器朝向电池包外的接线端连接所述系统控制器。
  8. 根据权利要求7所述的车辆,其特征在于,所述进气口设置有限压防水进气阀,限压防水进气阀的入口设置有防水透气膜。
  9. 根据权利要求8所述的车辆,其特征在于,所述空气管路上还设置有用于调节充气压力的压力控制器。
  10. 根据权利要求9所述的车辆,其特征在于,所述系统控制器存储气密性检测的结果作为历史测试数据,并根据历史测试数据得到气密性合格时相对压力与达到该相对压力所需的时间的合格对应关系,根据所述合格对应关系对电池包的气密性是否失效进行预测;预测方法为,检测到被测电池包的相对压力后,若被测电池包达到该相对压力的时间长于所述合格对应关系中相同相对压力所对应的时间,则认为被测电池包的气密性合格;反之则认为不合格。
  11. 根据权利要求10所述的车辆,其特征在于,所述系统控制器设置有无线通信接口,所述通信接口用于连接远程监控数据中心,系统控制器将电池包气密性检测的结果上传至远程监控数据中心,通过远程监控数据中心对电池包的气密性进行失效预警。
  12. 一种车辆电池包的气密性检测方法,其特征在于,采用权利要求1-11任一项所述的车辆对电池包气密性检测的方法。
PCT/CN2021/141431 2021-08-11 2021-12-27 一种车辆及其电池包的气密性检测方法 WO2023015820A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21931933.2A EP4155706A1 (en) 2021-08-11 2021-12-27 Vehicle, and gas tightness detection method for battery pack of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110919824.9A CN114646433A (zh) 2021-08-11 2021-08-11 一种车辆及其电池包的气密性检测方法
CN202110919824.9 2021-08-11

Publications (1)

Publication Number Publication Date
WO2023015820A1 true WO2023015820A1 (zh) 2023-02-16

Family

ID=81992617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141431 WO2023015820A1 (zh) 2021-08-11 2021-12-27 一种车辆及其电池包的气密性检测方法

Country Status (3)

Country Link
EP (1) EP4155706A1 (zh)
CN (1) CN114646433A (zh)
WO (1) WO2023015820A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117330261B (zh) * 2023-09-27 2024-06-04 深圳市康泰电气设备有限公司 一种开关设备充气柜漏气检测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117848627A (zh) * 2024-03-06 2024-04-09 宁德时代新能源科技股份有限公司 气密检测方法、设备、存储介质、电池系统和用电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130027151A (ko) * 2011-09-07 2013-03-15 주식회사 비주 파우치 셀의 리크 테스트 장치
CN106329018A (zh) * 2016-11-23 2017-01-11 北京新能源汽车股份有限公司 一种动力电池密封管理装置及汽车
CN106840542A (zh) * 2016-12-27 2017-06-13 深圳市朗能动力技术有限公司 一种应用新能源电池包上的气密性检测系统及其检测方法
CN107192517A (zh) * 2017-05-17 2017-09-22 中通客车控股股份有限公司 一种客车车载动力电池箱气密性检测系统及方法
CN111024323A (zh) * 2019-11-29 2020-04-17 长春市汇腾机电设备有限公司 纯电动汽车动力电池包气密性检测仪
CN111509321A (zh) * 2019-01-30 2020-08-07 北京新能源汽车股份有限公司 一种电池包系统、电池包气密性检测方法及电动汽车
CN112026583A (zh) * 2019-06-03 2020-12-04 北汽福田汽车股份有限公司 用于检测电池包的方法和系统,车辆
CN112432741A (zh) * 2020-11-04 2021-03-02 中广核工程有限公司 核电站安全壳压力监测装置及监测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047733A (zh) * 2012-12-31 2013-04-17 深圳市中兴新地通信器材有限公司 具有自动除尘功能的智能新风系统及其控制方法
CN107402107B (zh) * 2016-05-20 2020-12-25 比亚迪股份有限公司 用于电池包的密封性检测装置、方法及电池包
CN205826241U (zh) * 2016-07-06 2016-12-21 青海时代新能源科技有限公司 气密性检测装置
CN106568554B (zh) * 2016-11-02 2019-02-12 常州普莱德新能源电池科技有限公司 一种检测动力电池系统状态的方法
CN108663169A (zh) * 2017-03-28 2018-10-16 长城汽车股份有限公司 气密检测设备与方法
CN108939228B (zh) * 2018-06-07 2024-03-26 苏州申博医疗科技有限公司 一种可检测吸药流速的干粉吸入器外壳及干粉吸入器
CN209570681U (zh) * 2018-12-29 2019-11-01 四川鑫唐新能源科技有限公司 阶梯使用动力锂电池鉴别系统
CN110525560B (zh) * 2019-09-29 2021-02-19 潍坊歌尔微电子有限公司 一种基于气压传感器测量自行车行驶距离的方法及自行车
CN111855101A (zh) * 2020-07-19 2020-10-30 方博科技(深圳)有限公司 一种新型差压气密性测试仪
CN111947997A (zh) * 2020-08-26 2020-11-17 盐城德旺仪器设备有限公司 一种恒流大气采样器
CN112378597B (zh) * 2020-10-28 2023-04-25 东软睿驰汽车技术(沈阳)有限公司 电池包测试分析方法、装置及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130027151A (ko) * 2011-09-07 2013-03-15 주식회사 비주 파우치 셀의 리크 테스트 장치
CN106329018A (zh) * 2016-11-23 2017-01-11 北京新能源汽车股份有限公司 一种动力电池密封管理装置及汽车
CN106840542A (zh) * 2016-12-27 2017-06-13 深圳市朗能动力技术有限公司 一种应用新能源电池包上的气密性检测系统及其检测方法
CN107192517A (zh) * 2017-05-17 2017-09-22 中通客车控股股份有限公司 一种客车车载动力电池箱气密性检测系统及方法
CN111509321A (zh) * 2019-01-30 2020-08-07 北京新能源汽车股份有限公司 一种电池包系统、电池包气密性检测方法及电动汽车
CN112026583A (zh) * 2019-06-03 2020-12-04 北汽福田汽车股份有限公司 用于检测电池包的方法和系统,车辆
CN111024323A (zh) * 2019-11-29 2020-04-17 长春市汇腾机电设备有限公司 纯电动汽车动力电池包气密性检测仪
CN112432741A (zh) * 2020-11-04 2021-03-02 中广核工程有限公司 核电站安全壳压力监测装置及监测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117330261B (zh) * 2023-09-27 2024-06-04 深圳市康泰电气设备有限公司 一种开关设备充气柜漏气检测装置

Also Published As

Publication number Publication date
EP4155706A1 (en) 2023-03-29
CN114646433A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US20220336171A1 (en) Electrical system with on-line sampling verification function and verification method thereof
US20220341993A1 (en) Electrical system with on-line sampling verification function and verification method thereof
CN109559872B (zh) 带压力补偿功能的变压器胶囊式油枕及其控制监测方法
WO2023015820A1 (zh) 一种车辆及其电池包的气密性检测方法
CN110568350B (zh) 一种免维护的智能式气体密度监测装置、方法和系统
CN112985711A (zh) 气密性检测设备及其方法
CN107192517A (zh) 一种客车车载动力电池箱气密性检测系统及方法
CN110005949B (zh) 自动补气式气密门及气密门控制方法
KR102606913B1 (ko) 배터리 팩 충전 시스템 및 그 충전방법
CN209085838U (zh) 内置高压储气瓶的便携式密度继电器校验装置
CN103090183B (zh) 一种sf6气体电子控制充气仪
CN113008479A (zh) 一种电池包密封性的监测方法和系统
CN212872065U (zh) 一种气体密度继电器在线校验装置
CN105093018A (zh) 一种应用于电力系统中的气体可视化监测平台
CN2653493Y (zh) 六氟化硫气体密度继电器测试仪
CN211929385U (zh) 一种全寿命周期智能监控的气体密度继电器及监测系统
CN211653513U (zh) 一种热工自动化现场检测用装置
CN218916735U (zh) 电池包气密性测试装置
CN111256914A (zh) 一种发动机油道水道试漏装置及方法
CN111561601A (zh) 一种安全阀的增安控制装置及状态监测、测评方法
CN211651950U (zh) 一种发动机油道水道试漏装置
CN111044229B (zh) 一种低压管路保压内检测系统及检测方法
CN220230862U (zh) 一种水力发电机气密监测及预警装置
CN117129848A (zh) 一种多功能便携式混合气体密度继电器校验装置及方法
CN115569320B (zh) 一种车辆及其电池防火装置和控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021931933

Country of ref document: EP

Effective date: 20220929

NENP Non-entry into the national phase

Ref country code: DE