WO2023015582A1 - 制备腔室的确定方法及装置 - Google Patents

制备腔室的确定方法及装置 Download PDF

Info

Publication number
WO2023015582A1
WO2023015582A1 PCT/CN2021/113178 CN2021113178W WO2023015582A1 WO 2023015582 A1 WO2023015582 A1 WO 2023015582A1 CN 2021113178 W CN2021113178 W CN 2021113178W WO 2023015582 A1 WO2023015582 A1 WO 2023015582A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation chamber
use stage
preparation
target object
combination
Prior art date
Application number
PCT/CN2021/113178
Other languages
English (en)
French (fr)
Inventor
李振兴
汪玉明
王芳
陈三城
沈振华
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/647,737 priority Critical patent/US11495602B1/en
Publication of WO2023015582A1 publication Critical patent/WO2023015582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3288Maintenance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of semiconductor technology, in particular to a method and device for determining a chamber.
  • DRAM Dynamic Random Access Memory
  • DRAM Dynamic Random Access Memory
  • each storage unit usually includes a transistor structure and a capacitor.
  • the capacitor stores data information, and the transistor structure controls reading and writing of the data information in the capacitor.
  • the first aspect of the present disclosure provides a determined method of preparing a chamber, comprising:
  • the current radio frequency power hours of the preparation chamber of the current process step determine the preparation of the current process step
  • the preparation chamber that the target object will enter in the next process step is determined in the method; wherein, the target object is an object that has been processed by the preparation chamber of the current process step.
  • an embodiment of the present disclosure provides an apparatus for determining a preparation chamber, including:
  • the acquiring unit is configured to acquire the current radio frequency power hours of the preparation chamber in the current process step, and acquire the current radio frequency power hours of the preparation chamber to be selected in the next process step;
  • the stage determination unit is configured to determine according to the current radio frequency power hours of the preparation chamber in the current process step, the current radio frequency power hours of the preparation chamber to be selected, and the set continuous use stages The use stage of the current radio frequency power hours of the preparation chamber in the current process step, and the use stage of the current radio frequency power hours of the preparation chamber to be selected; wherein, the multiple continuous use stages Based on the division of the use cycle of the preparation chamber, the use cycle is the working time of the preparation chamber between the end of the current cleaning and the start of the next cleaning;
  • the chamber determination unit is configured to, according to the use stage of the current radio frequency power hours of the preparation chamber in the current process step, and the use stage of the current radio frequency power hours of the preparation chamber to be selected, from The preparation chamber that the target object will enter in the next process step is determined among the preparation chambers to be selected; wherein, the target object is an object that has been processed by the preparation chamber of the current process step.
  • Fig. 1 is some flow charts of the determination method provided by the embodiment of the present disclosure
  • Fig. 2a is some structural schematic diagrams of the prepared capacitor provided by the embodiment of the present disclosure.
  • Figure 2b is another structural schematic diagram of the prepared capacitor provided by the embodiment of the present disclosure.
  • Fig. 2c is another structural schematic diagram of the prepared capacitor provided by the embodiment of the present disclosure.
  • Figure 2d is another structural schematic diagram of the prepared capacitor provided by the embodiment of the present disclosure.
  • FIG. 3 is another flow chart of the determination method provided by the embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a first preparation chamber unit provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a second preparation chamber unit provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a first combination, a second combination and a third combination provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a fourth combination provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a fifth combination and a sixth combination provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a seventh combination and an eighth combination provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of a device for determining a preparation chamber provided by an embodiment of the present disclosure.
  • each process step may process a large number of items, such as wafers.
  • multiple preparation chambers can be used in the same process step, so that large batches of wafers can be distributed to different preparation chambers for processing in the same process step.
  • deposits will accumulate on the inner wall of the preparation chamber (including the surface of the slide table, etc.), and the deposit will become thicker with the continuous use of the preparation chamber or the increase in the number of times of use.
  • the deposit When the deposit is thick enough to a certain extent, it will be affected by external force or its own gravity and fall off to produce dust particles. These dust particles falling on the surface of the wafer may cause the components to fail. For this reason, during the production process, it is often necessary to clean the inner wall of the preparation chamber and other parts in the inspection equipment to remove accumulated deposits to prevent contamination of the wafer due to shedding.
  • high-frequency cleaning of the preparation chamber will lead to reduced productivity and shorter service life of the equipment.
  • the embodiment of the present disclosure provides a method for determining the preparation chamber, which can determine the current radio frequency power hours of the preparation chamber corresponding to adjacent process steps and the use stages based on the use cycle of the preparation chamber.
  • the preparation chamber of the next process step that the target object can enter can be directly determined according to the use stage of the current RF power hours of each preparation chamber room. Therefore, the target object can be directly controlled to enter the determined preparation chamber for the preparation process of the next process step, thereby saving manpower and improving the degree of automation.
  • Fig. 1 is some flow charts of the determination method provided by the embodiment of the present disclosure.
  • the method for determining the preparation chamber provided by the embodiment of the present disclosure may include the following steps:
  • the total time spent on performing corresponding process steps in the preparation chamber between the end of the current cleaning and the start of the next cleaning is defined as the service cycle. That is to say, the preparation chamber needs to be cleaned after working for a service period, so as to ensure that the preparation chamber is as clean as possible.
  • the wafer can be sent into the corresponding preparation chamber according to the process steps required for processing, so that the operation process of the corresponding process steps can be performed in the chamber until the next A wash starts.
  • the real-time working time that the preparation chamber will put into performing the corresponding process steps after the cleaning is completed and before the next cleaning starts, that is, within a service cycle can be defined as radio frequency (RF) hours.
  • RF radio frequency
  • the use period is 24h and the RF power hours are 5h, it means that in the 24h use period, the preparation chamber has been used for 5h, and if it continues to be used for 19h, the preparation chamber needs to be cleaned . It should be noted that if the preparation chamber is idle, this time is not included in the use cycle, nor is it included in the radio frequency power hours.
  • Fig. 2a is some structural schematic diagrams of the prepared capacitors provided by the embodiments of the present disclosure.
  • Fig. 2b is another structural schematic diagram of the prepared capacitor provided by the embodiment of the present disclosure.
  • Fig. 2c is still some structural schematic diagrams of the prepared capacitors provided by the embodiments of the present disclosure.
  • Fig. 2d is still some structural schematic diagrams of the prepared capacitors provided by the embodiments of the present disclosure.
  • the process of forming a capacitor can be as follows: first form a support layer 10, then form a mask layer 20 on the support layer, then etch the mask layer 20, and form in the mask layer 20 A plurality of mask holes 21 arranged at intervals form an etching mask.
  • the support layer 10 is etched to form a plurality of capacitance holes 11 arranged at intervals in the support layer 10 .
  • a first electrode layer, a dielectric layer and a second electrode layer are formed on the inner wall of the capacitor hole to form a capacitor.
  • the current process step may be, for example, a mask etching process step in the process of forming the capacitor hole. That is to say, through the current process steps, the mask layer in the process of forming the capacitor can be etched to form mask holes.
  • the mask layer may be made of a semiconductor (Poly) material, so that the mask hole may be formed by using a semiconductor etching process.
  • the current process step can be a semiconductor etching process step.
  • the current process step may also be a deposition process step for forming various film layers, or may also be an etching process step or a deposition process step for forming a transistor, which is not limited herein.
  • the next process step may be, for example, a supporting layer etching process step in the process of forming the capacitor hole. That is to say, through the next process step, the support layer in the process of forming the capacitor can be etched to form the capacitor hole.
  • a HARC (High Aspect Ratio Contact, high aspect ratio contact) etching process may be used to form a plurality of capacitor holes arranged at intervals in the support layer. This allows the next process step to be a HARC etch process step.
  • the next process step may also be a deposition process step for forming each film layer, or may also be an etching process step or a deposition process step for forming a transistor, which is not limited here.
  • the current process step is the mask etching process step in the process of forming the capacitor hole
  • the next process step is the support layer etching process step in the process of forming the capacitor hole for example.
  • obtaining the current radio frequency power hours of the preparation chamber of the current process step may specifically include: obtaining the current etching time when the preparation chamber corresponding to the current etching step completes the etching process
  • the current RF power hours corresponding to the preparation chamber of the step may specifically include: obtaining the current etching time when the preparation chamber corresponding to the current etching step completes the etching process
  • the current RF power hours corresponding to the preparation chamber of the step may specifically include: obtaining the current etching time when the preparation chamber corresponding to the current etching step completes the etching process The current RF power hours corresponding to the preparation chamber of the step.
  • the mask hole preparation chamber for etching the mask layer to form the mask hole, the mask layer in the process of forming the capacitor is etched, and after the mask hole is formed, the mask hole preparation chamber can determine After the etching is completed, how long the preparation chamber has been used in the current service cycle, and the determined time is updated to the latest radio frequency power hours.
  • step S10 and obtaining the current radio frequency power hours of the preparation chamber to be selected in the next process step may specifically include: before the preparation chamber corresponding to the next etching step starts the etching process , to obtain the current RF power hours corresponding to the preparation chamber to be selected in the next etching step.
  • the support layer in the process of forming the capacitor is etched, and after the capacitor hole is formed, the HARC preparation chamber can determine that after this etching is completed, the preparation chamber in the current service cycle How long the chamber has been in use and update the determined time with the latest RF power hours.
  • the latest RF power hours can be extracted from the HARC preparation chamber as the current RF power hours. It is also possible to enable the HARC preparation chamber to report its latest radio frequency power hours in real time. Therefore, the current radio frequency power hours corresponding to the preparation chamber of the next etching step can be obtained.
  • the current radio frequency power hours of the preparation chamber in the current process step determine the current radio frequency power of the preparation chamber in the current process step.
  • the use cycle of each preparation chamber can be divided into a plurality of continuous use stages, for example, divided into sequentially appearing first use stage to Nth use stage.
  • the number of use phases corresponding to each preparation chamber can be made the same.
  • the use period of each mask hole preparation chamber is divided into the first use stage to the Nth use stage that appear sequentially.
  • the division of the use cycle of the HARC preparation chamber can also be the first use stage to the Nth use stage that appear in sequence.
  • the use cycle of each mask hole preparation chamber is divided into the first use stage to the third use stage that appear sequentially.
  • the use cycle division of the HARC preparation chamber can also be the first use stage to the third use stage that appear in sequence.
  • the number of use stages divided by the service cycle of the mask hole preparation chamber can be greater than the number of use stages divided by the service cycle of the HARC preparation chamber according to actual applications, or, it can also be divided according to actual applications.
  • the number of use stages divided by the use cycle of the mask hole preparation chamber is smaller than the number of use stages divided by the use cycle of the HARC preparation chamber, which is not limited herein.
  • N may be 2, 3, 4, 5 or a higher value, which may be determined according to actual application requirements, and is not limited herein.
  • the duration of each use stage among multiple consecutive use stages may be made the same.
  • the duration of the previous usage stage is longer than the duration of the subsequent usage stage among multiple consecutive usage stages.
  • the duration of the first use stage is longer than the duration of the second use stage
  • the duration of the second use stage is longer than the duration of the third use stage
  • the duration of the third use stage is longer than the duration of the fourth use stage Duration
  • the duration of the use stage in the middle may be longer than the duration of the use stages at both ends.
  • the duration of the yth usage phase may be longer than the duration of the first usage phase
  • the duration of the yth usage phase may be longer than the duration of the Nth usage phase.
  • the duration of the second usage phase is longer than the duration of the first usage phase
  • the duration of the second usage phase is longer than the duration of the third usage phase.
  • the duration of the first usage phase is 8h
  • the duration of the second usage phase is 10h
  • the duration of the third usage phase is 7h.
  • each mask hole preparation chamber corresponds to the first usage stage to the Nth usage stage.
  • the scope of the first use stage corresponding to each mask hole preparation chamber is the same
  • the range of the second use stage corresponding to each mask hole preparation chamber is the same
  • the third use stage corresponding to each mask hole preparation chamber The ranges of the two use stages are the same, and the range of the Nth use stage corresponding to each mask hole preparation chamber is the same.
  • the range of the first use stage D11 corresponding to each mask hole preparation chamber can be 0h ⁇ D11 ⁇ 8h, and each mask hole preparation chamber
  • the range of the second use stage D12 corresponding to the film hole preparation chamber may be 8h ⁇ D12 ⁇ 16h, and the range of the third use stage D13 corresponding to each mask hole preparation chamber may be 16h ⁇ D13 ⁇ 24h.
  • each HARC preparation chamber corresponds to the first use stage to the Nth use stage.
  • each HARC preparation chamber corresponds to the same range of the first use stage, each HARC preparation chamber corresponds to the same range of the second use stage, and each HARC preparation chamber corresponds to the same range of the third use stage , each HARC preparation chamber corresponds to the same range of the Nth use stage.
  • the range of the first use stage D21 corresponding to each HARC preparation chamber can be 0h ⁇ D21 ⁇ 8h, and each HARC preparation chamber corresponds to
  • the range of the second use stage D22 can be 8h ⁇ D22 ⁇ 16h
  • the range of the third use stage D23 corresponding to each HARC preparation chamber can be 16h ⁇ D23 ⁇ 24h.
  • each mask hole preparation chamber corresponds to the first usage stage to the Nth usage stage
  • each HARC preparation chamber corresponds to the first usage stage to the Nth usage stage.
  • the use cycle of the mask hole preparation chamber is 24h and the use cycle of the HARC preparation chamber is 24h as an example
  • the range of the first use stage D11 corresponding to each mask hole preparation chamber can be 0h ⁇ D11 ⁇ 8h
  • the range of the first use stage D21 corresponding to each HARC preparation chamber can be 0h ⁇ D21 ⁇ 8h.
  • the range of the second use stage D12 corresponding to each mask hole preparation chamber can be 8h ⁇ D12 ⁇ 16h, and the range of the second use stage D22 corresponding to each HARC preparation chamber can be 8h ⁇ D22 ⁇ 16h .
  • the range of the third use stage D13 corresponding to each mask hole preparation chamber can be 16h ⁇ D13 ⁇ 24h, and the range of the third use stage D23 corresponding to each HARC preparation chamber can be 16h ⁇ D23 ⁇ 24h .
  • the processed articles in the preparation chamber can be taken out to carry out the preparation process of the next process step. That is to say, after determining the use phase of the current RF power hours of the preparation chamber in the current process step, before determining the preparation chamber that the target object will enter in the next process step from the combination, it also includes:
  • the target object processed by the preparation chamber corresponding to the current process step carries an identification tag; wherein, the identification tag carries the information of the use stage corresponding to the preparation chamber where the target object is located.
  • the target object may be an object that has been processed in the preparation chamber corresponding to the current process step.
  • the target object is taken out of the preparation chamber, and the target object is made to carry a corresponding identification tag.
  • the identification label carries the information of the use stage corresponding to the preparation chamber where the target object is located.
  • the mask hole preparation chambers include: preparation chamber A11, preparation chamber A12, preparation chamber A13, preparation chamber A14, preparation chamber A15, preparation chamber A16, preparation chamber A17, preparation chamber A18 .
  • the target object T1 processed by the preparation chamber A11 carries the identification label of the use stage corresponding to the preparation chamber A11
  • the target object T2 processed by the preparation chamber A12 carries the identification label of the use stage corresponding to the preparation chamber A12
  • the target object T3 processed by the preparation chamber A13 carries the identification label of the use stage corresponding to the preparation chamber A13
  • the target object T4 processed by the preparation chamber A14 carries the identification label of the use stage corresponding to the preparation chamber A14
  • the target object T5 processed by the preparation chamber A15 carries the identification label of the use stage corresponding to the preparation chamber A15
  • the target object T6 processed by the preparation chamber A16 carries the identification label of the use stage corresponding to the preparation chamber A16
  • the target object T7 processed by the preparation chamber A17 carries the identification label of the use stage corresponding to the preparation chamber A17
  • the target object T8 processed by the preparation chamber A18 carries the identification label of the use stage corresponding to the preparation chamber A18.
  • the target object may be a wafer.
  • the target object may be a wafer on which mask holes are formed after a mask etching process step.
  • the target object may also be other achievable objects, which is not limited here.
  • the preparation chambers that have been working for different periods can be screened out for division, and then directly according to The use phase of the current radio frequency power hours of each preparation chamber determines the preparation chamber used in the next process step of the target object.
  • the target object can be controlled to enter the determined preparation chamber to carry out the preparation process of the next process step, thereby saving manpower and improving the degree of automation.
  • the preparation chamber is cleaned and before the preparation chamber is cleaned next time, as the preparation chamber is used, impurities in the chamber may increase. If the wafer is processed in a mask hole preparation chamber with a small RF power hour, and then processed in a HARC preparation chamber with a small RF power hour, this can reduce the probability of wafer defects. If the wafer is processed in the mask hole preparation chamber with high RF power hours, and then processed in the HARC preparation chamber with high RF power hours, the probability of wafer defects will be greater.
  • Fig. 3 is another flow chart of the determination method provided by the embodiment of the present disclosure.
  • the preparation chamber to be entered by the target object in the next process step is determined from the preparation chambers to be selected, which may specifically include the following steps:
  • the plurality of first preparation chamber units correspond one-to-one with the stages of use.
  • the preparation chamber corresponding to the current process step is a mask hole preparation chamber
  • the service cycle of the mask hole preparation chamber is 24h as an example
  • the range of the first use stage D11 can be 0h ⁇ D11 ⁇ 8h
  • the range of the second use stage D12 can be 8h ⁇ D12 ⁇ 16h
  • the range of the third use stage D13 can be 16h ⁇ D13 ⁇ 24h.
  • the mask hole preparation chambers include: preparation chamber A11 , preparation chamber A12 , preparation chamber A13 , preparation chamber A14 , preparation chamber A15 , preparation chamber A16 , preparation chamber A17 , and preparation chamber A18 .
  • the current radio frequency power hours of the preparation chamber A11 is 5 hours
  • the current radio frequency power hours of the preparation chamber A12 is 17 hours
  • the current radio frequency power hours of the preparation chamber A13 is 9 hours
  • the current radio frequency power hours of the preparation chamber A14 are The number is 10h
  • the current radio frequency power hour of preparation chamber A15 is 6h
  • the current radio frequency power hour of preparation chamber A16 is 20h
  • the current radio frequency power hour of preparation chamber A17 is 4h
  • the current radio frequency power of preparation chamber A18 is 4h.
  • the power hours are 13h.
  • FIG. 4 is a schematic diagram of a first preparation chamber unit provided by an embodiment of the present disclosure.
  • the preparation chambers A13 , A14 , and A18 are in the second use stage, and the preparation chambers A13 , A14 , and A18 are used as the first preparation chamber unit DY12 corresponding to the second use stage.
  • the preparation chambers A12 and A16 are in the third use stage, and the preparation chambers A12 and A16 are used as the first preparation chamber unit DY13 corresponding to the third use stage.
  • the plurality of second preparation chamber units corresponds one to one to a use phase.
  • the preparation chamber corresponding to the next process step is a HARC preparation chamber
  • the service period of the mask hole preparation chamber is 24h as an example
  • the range of the first use stage D21 can be 0h ⁇ D21 ⁇ 8h
  • the range of the second use stage D22 can be 8h ⁇ D22 ⁇ 16h
  • the range of the third use stage D23 can be 16h ⁇ D23 ⁇ 24h.
  • the HARC preparation chamber includes: preparation chamber A21, preparation chamber A22, preparation chamber A23, preparation chamber A24, preparation chamber A25, preparation chamber A26, preparation chamber A27, preparation chamber A28.
  • the current radio frequency power hours of the preparation chamber A21 is 3 hours
  • the current radio frequency power hours of the preparation chamber A22 is 12 hours
  • the current radio frequency power hours of the preparation chamber A23 is 23 hours
  • the current radio frequency power hours of the preparation chamber A24 are The number of hours is 4h
  • the current radio frequency power hours of the preparation chamber A25 is 18h
  • the current radio frequency power hours of the preparation chamber A26 is 7h
  • the current radio frequency power hours of the preparation chamber A27 is 16h
  • the current radio frequency power of the preparation chamber A28 is 18h.
  • the power hours are 10h.
  • FIG. 5 is a schematic diagram of a second preparation chamber unit provided by an embodiment of the present disclosure.
  • the preparation chambers A22 , A27 and A28 are in the second use stage, and the preparation chambers A22 , A27 and A28 are used as the second preparation chamber unit DY22 corresponding to the second use stage.
  • the preparation chambers A23 and A25 are in the third use stage, and the preparation chambers A23 and A25 are used as the second preparation chamber unit DY23 corresponding to the third use stage.
  • the first preparation chamber unit corresponding to the first use stage may be combined with the second preparation chamber unit corresponding to use stages other than the first use stage.
  • the first preparation chamber unit DY11 corresponding to the first use stage can be combined with the second preparation chamber unit DY22 corresponding to the second use stage, and the first preparation chamber unit DY22 corresponding to the first use stage
  • the first preparation chamber unit DY11 can also be combined with the second preparation chamber unit DY23 corresponding to the third use stage.
  • the rest of the first preparation chamber units DY12, DY13 and the second preparation chamber units DY21-DY13 can be combined arbitrarily.
  • the first preparation chamber unit corresponding to the first use stage may be combined with the second preparation chamber unit corresponding to at least one of the second use stage to the Nth use stage.
  • the first preparation chamber unit DY11 corresponding to the first use stage may only be combined with the second preparation chamber unit DY22 corresponding to the second use stage.
  • the first preparation chamber unit DY11 corresponding to the first use stage may also be combined only with the second preparation chamber unit DY23 corresponding to the third use stage.
  • the first preparation chamber unit DY11 corresponding to the first use stage can only be combined with the second preparation chamber unit DY22 corresponding to the second use stage, while the first preparation chamber unit DY11 corresponding to the first use stage Combination of the second preparation chamber unit DY23 corresponding to the third use stage.
  • the first preparation chamber unit corresponding to the second use stage to the Nth use stage may be connected to at least one second preparation chamber unit corresponding to at least one of the first use stage to the N use stage
  • the units are combined, and the first preparation chamber unit corresponding to the first use stage is different from the second preparation chamber unit corresponding to the combination of the first preparation chamber units from the second use stage to the Nth use stage.
  • the first preparation chamber unit DY12 can be combined with the second preparation chamber unit DY21 corresponding to the first use phase.
  • the first preparation chamber unit DY13 corresponding to the third use stage can be combined with the second preparation chamber unit DY21 corresponding to the first use stage.
  • the first preparation chamber unit DY11 corresponding to the first use stage is combined with the second preparation chamber unit DY22 corresponding to the second use stage, then the first preparation chamber unit DY12 corresponding to the second use stage can be Combination of the second preparation chamber unit DY23 corresponding to the third use stage.
  • the first preparation chamber unit DY13 corresponding to the third use stage can be combined with the second preparation chamber unit DY21 corresponding to the first use stage.
  • the target object carries an identification label with the information of the use stage corresponding to the preparation chamber where it is located, so that based on the identification label carried by the target object, it can be determined from the combination that the target object will enter in the next process step preparation chamber.
  • the target object T1 carries an identification tag corresponding to the use phase of the preparation chamber A11, and the combination of the preparation chamber A11 can be found according to the identification tag, so that the next step corresponding to the target object T1 can be determined according to the combination.
  • Preparation chamber for process steps.
  • the target object T2 carries the identification label corresponding to the use stage of the preparation chamber A12, and the combination of the preparation chamber A12 can be found according to the identification label, so that the preparation of the next process step corresponding to the target object T2 can be determined according to the combination Chamber. The rest are the same and will not be repeated here.
  • the preparation chamber that the target objects will enter in the next process step is determined from the combination, which will be described through specific examples below. It should be noted that the following examples are for better explaining the present disclosure, but not limiting the present disclosure.
  • a combination of the first preparation chamber unit corresponding to the first use stage and the second preparation chamber unit corresponding to the second use stage can be used as the first combination.
  • the first combination can be selected from the combinations, and it can be determined that the target object carrying the information of the first use stage corresponds to the second preparation chamber corresponding to the second use stage unit.
  • a combination of the first preparation chamber unit corresponding to the kth usage stage and the second preparation chamber unit corresponding to the k+1th usage stage may be used as the second combination.
  • k is an integer, and 1 ⁇ k ⁇ N.
  • the second combination can be selected from the combinations based on the information of the k-th use stage carried by the target object, and it can be determined that the target object carrying the information of the k-th use stage corresponds to the second preparation corresponding to the k+1-th use stage chamber unit.
  • the combination of the first preparation chamber unit corresponding to the Nth use stage and the second preparation chamber unit corresponding to the first use stage can be used as the third combination.
  • the third combination can be selected from the combinations, and it can be determined that the target object carrying the information of the Nth use stage corresponds to the second preparation chamber corresponding to the first use stage unit.
  • Fig. 6 is a schematic diagram of a first combination, a second combination and a third combination provided by an embodiment of the present disclosure.
  • the preparation chambers A11, A15 and A17 in the first preparation chamber unit DY11 corresponding to the first use stage and the second preparation chambers corresponding to the second use stage can serve as the first combination ZH11.
  • the first combination ZH11 corresponding to the first preparation chamber unit DY11 can be selected from the combinations, so that the target can be determined according to the first combination ZH11
  • the preparation chambers corresponding to the object T1 are the preparation chambers A22, A27 and A28 in the second preparation chamber unit DY22 corresponding to the second use stage. In this way, the target objects T1 can be distributed into the preparation chambers A22, A27 and A28 for processing, thereby improving the preparation efficiency.
  • the preparation chambers A13, A14 and A18 in the first preparation chamber unit DY12 corresponding to the second use stage and the preparation chambers A23 and A25 in the second preparation chamber unit DY23 corresponding to the third use stage can be As the second combination ZH21.
  • the second combination ZH21 corresponding to the first preparation chamber unit DY12 can be selected from the combination, so that the target can be determined according to the second combination ZH21
  • the preparation chambers corresponding to the object T2 are the preparation chambers A23 and A25 in the second preparation chamber unit DY23 corresponding to the third use stage. In this way, the target objects T2 can be distributed and sent into the preparation chambers A23 and A25 for processing, thereby improving the preparation efficiency.
  • the preparation chambers A12 and A16 in the first preparation chamber unit DY13 corresponding to the 3rd use stage and the preparation chambers A21, A24 and A26 in the second preparation chamber unit DY21 corresponding to the 1st use stage can be As the third combination ZH31.
  • the third combination ZH31 corresponding to the first preparation chamber unit DY13 can be selected from the combinations, so that the target can be determined according to the third combination ZH31
  • the preparation chambers corresponding to the object T3 are the preparation chambers A21, A24 and A26 in the second preparation chamber unit DY21 corresponding to the first use stage. In this way, the target objects T3 can be distributed and sent to the preparation chambers A21 , A24 and A26 for processing, thereby improving the preparation efficiency.
  • the combination of the first preparation chamber unit corresponding to the p-th use stage and the second preparation chamber unit corresponding to the N-p+1 use stage can be used as the fourth combination; wherein , p is an integer, and 1 ⁇ p ⁇ N.
  • the fourth combination can be selected from the combinations, and it can be determined that the target object carrying the information of the p-th use stage corresponds to the N-p+1-th use stage. 2. Prepare the chamber unit.
  • FIG. 7 is a schematic diagram of a fourth combination provided by an embodiment of the present disclosure.
  • the preparation chambers A11, A15 and A17 in the first preparation chamber unit DY11 corresponding to the first use stage and the second preparation chambers corresponding to the third use stage can serve as the fourth combination ZH41.
  • the fourth combination ZH41 corresponding to the first preparation chamber unit DY11 can be selected from the combinations, so that the target can be determined according to the fourth combination ZH41
  • the preparation chambers corresponding to the object T1 are the preparation chambers A23 and A25 in the second preparation chamber unit DY23 corresponding to the third use stage. In this way, the target objects T1 can be distributed and sent into the preparation chambers A23 and A25 for processing, thereby improving the preparation efficiency.
  • the preparation chambers A13, A14 and A18 in the first preparation chamber unit DY12 corresponding to the second use stage and the preparation chambers A22, A27 and A27 in the second preparation chamber unit DY22 corresponding to the second use stage A28 can be used as the fourth combination ZH42.
  • the fourth combination ZH42 corresponding to the first preparation chamber unit DY12 can be selected from the combinations, so that the target can be determined according to the fourth combination ZH42
  • the preparation chambers corresponding to the object T2 are the preparation chambers A22, A27 and A28 in the second preparation chamber unit DY22 corresponding to the second use stage. In this way, the target object T2 can be dispersed and sent to A22, A27 and A28 for processing, improving the preparation efficiency.
  • the preparation chambers A12 and A16 in the first preparation chamber unit DY13 corresponding to the 3rd use stage and the preparation chambers A21, A24 and A26 in the second preparation chamber unit DY21 corresponding to the 1st use stage can be As the fourth combination ZH43.
  • the fourth combination ZH43 corresponding to the first preparation chamber unit DY13 can be selected from the combinations, so that the target can be determined according to the fourth combination ZH43
  • the preparation chambers corresponding to the object T3 are the preparation chambers A21, A24 and A26 in the second preparation chamber unit DY21 corresponding to the first use stage. In this way, the target objects T3 can be distributed and sent to the preparation chambers A21 , A24 and A26 for processing, thereby improving the preparation efficiency.
  • the first preparation chamber unit corresponding to the mth usage stage and the first preparation chamber unit corresponding to the The combination of the second preparation chamber unit of the use stage is used as the fifth combination; wherein, m is an integer, and In this way, based on the information of the m-th use stage carried by the target object, the fifth combination can be selected from the combinations, and it can be determined that the target object carrying the information of the m-th use stage corresponds to the corresponding A second preparation chamber unit for each phase of use.
  • the first preparation chamber unit corresponding to the qth use stage is connected to the corresponding The combination of the second preparation chamber unit of each use stage is used as the sixth combination; wherein, q is an integer, and In this way, based on the information of the qth use stage carried by the target object, the sixth combination can be selected from the combinations, and it can be determined that the target object carrying the information of the qth use stage corresponds to the corresponding A second preparation chamber unit for each phase of use.
  • FIG. 8 is a schematic diagram of a fifth combination and a sixth combination provided by an embodiment of the present disclosure.
  • the preparation chamber in the first preparation chamber unit DY11 corresponding to the first use stage and the second preparation chamber unit DY25 corresponding to the fifth use stage can be used as the fifth combination ZH51.
  • the fifth combination ZH51 corresponding to the first preparation chamber unit DY11 can be selected from the combination, and the preparation chamber corresponding to the target object T1 can be determined as The preparation chamber in the second preparation chamber unit DY25 corresponding to the fifth usage phase.
  • the target objects T1 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chambers in the first preparation chamber unit DY12 corresponding to the second use stage and the preparation chambers in the second preparation chamber unit DY26 corresponding to the sixth use stage can be used as the fifth combination ZH52.
  • the fifth combination ZH52 corresponding to the first preparation chamber unit DY12 can be selected from the combination, and the preparation chamber corresponding to the target object T2 can be determined as The preparation chamber in the second preparation chamber unit DY26 corresponding to the sixth usage phase.
  • the target objects T2 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY13 corresponding to the third use stage and the preparation chamber in the second preparation chamber unit DY27 corresponding to the seventh use stage can be used as the fifth combination ZH53.
  • the fifth combination ZH53 corresponding to the first preparation chamber unit DY13 can be selected from the combination, and the preparation chamber corresponding to the target object T3 can be determined as The preparation chamber in the second preparation chamber unit DY27 corresponding to the 7th usage phase. In this way, the target objects T3 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chambers in the first preparation chamber unit DY14 corresponding to the fourth use stage and the preparation chambers in the second preparation chamber unit DY28 corresponding to the eighth use stage can be used as the fifth combination ZH54.
  • the fifth combination ZH54 corresponding to the first preparation chamber unit DY14 can be selected from the combination, and the preparation chamber corresponding to the target object T4 can be determined as The preparation chamber in the second preparation chamber unit DY28 corresponding to the 8th usage phase.
  • the target objects T4 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY15 corresponding to the fifth use stage and the preparation chamber in the second preparation chamber unit DY29 corresponding to the ninth use stage can be used as the fifth combination ZH55.
  • the fifth combination ZH55 corresponding to the first preparation chamber unit DY15 can be selected from the combination, and the preparation chamber corresponding to the target object T5 can be determined as The preparation chamber in the second preparation chamber unit DY29 corresponding to the 9th usage phase.
  • the target objects T5 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY16 corresponding to the sixth use stage and the preparation chamber in the second preparation chamber unit DY21 corresponding to the first use stage can be used as the sixth combination ZH61.
  • the sixth combination ZH61 corresponding to the first preparation chamber unit DY16 can be selected from the combination, and the preparation chamber corresponding to the target object T6 can be determined as The preparation chamber in the second preparation chamber unit DY21 corresponding to the first use stage.
  • the target objects T6 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chambers in the first preparation chamber unit DY17 corresponding to the seventh use stage and the preparation chambers in the second preparation chamber unit DY22 corresponding to the second use stage can be used as the sixth combination ZH62.
  • the sixth combination ZH62 corresponding to the first preparation chamber unit DY17 can be selected from the combination, and the preparation chamber corresponding to the target object T7 can be determined as The preparation chamber in the second preparation chamber unit DY22 corresponding to the second use stage.
  • the target objects T7 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY18 corresponding to the 8th use stage and the preparation chamber in the second preparation chamber unit DY23 corresponding to the 3rd use stage can be used as the sixth combination ZH63.
  • the sixth combination ZH63 corresponding to the first preparation chamber unit DY18 can be selected from the combination, and the preparation chamber corresponding to the target object T8 can be determined as The preparation chamber in the second preparation chamber unit DY23 corresponding to the third use stage. In this way, the target objects T8 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chambers in the first preparation chamber unit DY19 corresponding to the ninth use stage and the preparation chambers in the second preparation chamber unit DY24 corresponding to the fourth use stage can be used as the sixth combination ZH64.
  • the sixth combination ZH64 corresponding to the first preparation chamber unit DY19 can be selected from the combination, and the preparation chamber corresponding to the target object T9 can be determined as The preparation chamber in the second preparation chamber unit DY24 corresponding to the 4th usage phase. In this way, the target objects T9 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the first preparation chamber unit corresponding to the g-th use stage and the first preparation chamber unit corresponding to the The combination of the second preparation chamber unit of each use stage is used as the seventh combination; wherein, g is an integer, and In this way, based on the information of the g-th use stage carried by the target object, the seventh combination can be selected from the combinations, and it can be determined that the target object carrying the information of the g-th use stage corresponds to the corresponding A second preparation chamber unit for each phase of use.
  • the first preparation chamber unit corresponding to the h-th use phase and the corresponding The combination of the second preparation chamber unit of each use stage is used as the eighth combination; h is an integer, and In this way, based on the information of the hth use stage carried by the target object, the eighth combination can be selected from the combinations, and it can be determined that the target object carrying the information of the hth use stage corresponds to the corresponding A second preparation chamber unit for each phase of use.
  • FIG. 9 is a schematic diagram of a seventh combination and an eighth combination provided by an embodiment of the present disclosure.
  • the preparation chamber in the first preparation chamber unit DY11 corresponding to the first use stage and the second preparation chamber unit DY25 corresponding to the fifth use stage can be used as the seventh combination ZH71.
  • the seventh combination ZH71 corresponding to the first preparation chamber unit DY11 can be selected from the combination, and the preparation chamber corresponding to the target object T1 can be determined as The preparation chamber in the second preparation chamber unit DY25 corresponding to the fifth usage phase.
  • the target objects T1 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chambers in the first preparation chamber unit DY12 corresponding to the second use stage and the preparation chambers in the second preparation chamber unit DY26 corresponding to the sixth use stage can be used as the seventh combination ZH72.
  • the seventh combination ZH72 corresponding to the first preparation chamber unit DY12 can be selected from the combination, and the preparation chamber corresponding to the target object T2 can be determined as The preparation chamber in the second preparation chamber unit DY26 corresponding to the sixth usage phase.
  • the target objects T2 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY13 corresponding to the third use stage and the preparation chamber in the second preparation chamber unit DY27 corresponding to the seventh use stage can be used as the seventh combination ZH73.
  • the seventh combination ZH73 corresponding to the first preparation chamber unit DY13 can be selected from the combination, and the preparation chamber corresponding to the target object T3 can be determined as The preparation chamber in the second preparation chamber unit DY27 corresponding to the 7th usage phase.
  • the target objects T3 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY14 corresponding to the fourth use stage and the preparation chamber in the second preparation chamber unit DY28 corresponding to the eighth use stage can be used as the seventh combination ZH74.
  • the seventh combination ZH74 corresponding to the first preparation chamber unit DY14 can be selected from the combination, and the preparation chamber corresponding to the target object T4 can be determined as The preparation chamber in the second preparation chamber unit DY28 corresponding to the 8th usage phase.
  • the target objects T4 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY15 corresponding to the fifth use stage and the preparation chamber in the second preparation chamber unit DY21 corresponding to the first use stage can be used as the eighth combination ZH81.
  • the eighth combination ZH81 corresponding to the first preparation chamber unit DY15 can be selected from the combination, and the preparation chamber corresponding to the target object T5 can be determined as The preparation chamber in the second preparation chamber unit DY21 corresponding to the first use stage.
  • the target objects T5 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY16 corresponding to the sixth use stage and the preparation chamber in the second preparation chamber unit DY22 corresponding to the second use stage can be used as the eighth combination ZH82.
  • the eighth combination ZH82 corresponding to the first preparation chamber unit DY16 can be selected from the combination, and the preparation chamber corresponding to the target object T6 can be determined as The preparation chamber in the second preparation chamber unit DY22 corresponding to the second use stage.
  • the target objects T6 can be dispersed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY17 corresponding to the seventh use stage and the preparation chamber in the second preparation chamber unit DY23 corresponding to the third use stage can be used as the eighth combination ZH83.
  • the eighth combination ZH83 corresponding to the first preparation chamber unit DY17 can be selected from the combination, and the preparation chamber corresponding to the target object T7 can be determined as The preparation chamber in the second preparation chamber unit DY23 corresponding to the third use stage. In this way, the target objects T7 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • the preparation chamber in the first preparation chamber unit DY18 corresponding to the 8th use stage and the preparation chamber in the second preparation chamber unit DY24 corresponding to the 4th use stage can be used as the eighth combination ZH84.
  • the eighth combination ZH84 corresponding to the first preparation chamber unit DY18 can be selected from the combination, and the preparation chamber corresponding to the target object T8 can be determined as The preparation chamber in the second preparation chamber unit DY24 corresponding to the 4th usage stage.
  • the target objects T8 can be distributed and sent into the determined preparation chamber for processing, thereby improving the preparation efficiency.
  • Fig. 10 is a schematic diagram of a device for determining a preparation chamber provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides an apparatus for determining a preparation chamber, which may include: an acquisition unit 101 , a stage determination unit 102 , and a chamber determination unit 103 .
  • the acquisition unit is configured to acquire the current radio frequency power hours of the preparation chamber corresponding to the current process step and the next process step.
  • the stage determining unit is configured to determine the current radio frequency power hours of each preparation chamber according to the current radio frequency power hours of each preparation chamber and the set continuous use stages. Stage; wherein, multiple consecutive use stages are divided based on the use cycle of the preparation chamber, and the use cycle is the working time of the preparation chamber between the end of the current cleaning and the start of the next cleaning;
  • the chamber determination unit is configured to determine the preparation chamber corresponding to the next process step of the target object according to the use stage of the current radio frequency power hours of each preparation chamber; wherein, the target object is The object processed by the preparation chamber of the current process step.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种制备腔室的确定方法及装置,可以根据相邻工艺步骤对应的制备腔室的当前射频功率时数以及基于制备腔室的使用周期划分出的使用阶段,确定出每一个制备腔室的当前射频功率时数所在的使用阶段。并针对过当前工艺步骤的制备腔室处理完的目标物体,可以根据每一个制备腔室的当前射频功率时数所在的使用阶段,直接确定出目标物体所能进入的下一个工艺步骤的制备腔室。从而可以直接控制目标物体进入已确定出的制备腔室内,以进行下一个工艺步骤的制备过程,进而可以节省人力,提高自动化程度。

Description

制备腔室的确定方法及装置
相关申请的交叉引用
本申请要求在2021年08月12日提交中国专利局、申请号为202110925197.X、申请名称为“制备腔室的确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及半导体技术领域,特别涉及制备腔室的确定方法及装置。
背景技术
随着半导体技术和存储技术不断发展,电子设备不断向小型化、集成化方向发展,动态随机存储器(Dynamic Random Access Memory,简称DRAM)因其具有较高的存储密度以及较快的读写速度被广泛地应用在各种电子设备中。动态随机存储器一般由多个存储单元组成,每个存储单元通常包括晶体管(Transistor)结构和电容(Capacitor)器。电容器存储数据信息,晶体管结构控制电容器中的数据信息的读写。
通常,需要经过多个工艺步骤以制备半导体器件,不同的工艺步骤需要用到不同的制备腔室来完成其制备过程。然而,目前普遍是操作人员对不同工艺步骤所需要用到的制备腔室的搭配模式进行人为确定,导致耗费人力。
发明内容
根据一些实施例,本公开第一方面提供制备腔室的确定方法,包括:
获取当前工艺步骤的制备腔室的当前射频功率时数,以及获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数;
根据所述当前工艺步骤的制备腔室的当前射频功率时数、所述待选取的制备腔室的当前射频功率时数、以及设定的连续多个使用阶段,确定所述当 前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及确定所述待选取的制备腔室的当前射频功率时数所在的使用阶段;其中,所述连续多个使用阶段基于所述制备腔室的使用周期划分,所述使用周期为所述制备腔室在当前清洗结束至下一次清洗开始之间的工作时长;
根据所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及所述待选取的制备腔室的当前射频功率时数所在的使用阶段,从所述待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室;其中,所述目标物体为经过所述当前工艺步骤的制备腔室处理完的物体。
根据一些实施例,本公开实施例提供了制备腔室的确定装置,包括:
获取单元,被配置为获取当前工艺步骤的制备腔室的当前射频功率时数,以及获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数;
阶段确定单元,被配置为根据所述当前工艺步骤的制备腔室的当前射频功率时数、所述待选取的制备腔室的当前射频功率时数、以及设定的连续多个使用阶段,确定所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及确定所述待选取的制备腔室的当前射频功率时数所在的使用阶段;其中,所述连续多个使用阶段基于所述制备腔室的使用周期划分,所述使用周期为所述制备腔室在当前清洗结束至下一次清洗开始之间的工作时长;
腔室确定单元,被配置为根据所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及所述待选取的制备腔室的当前射频功率时数所在的使用阶段,从所述待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室;其中,所述目标物体为经过所述当前工艺步骤的制备腔室处理完的物体。
附图说明
图1为本公开实施例提供的确定方法的一些流程图;
图2a为本公开实施例提供的制备电容器的一些结构示意图;
图2b为本公开实施例提供的制备电容器的另一些结构示意图;
图2c为本公开实施例提供的制备电容器的又一些结构示意图;
图2d为本公开实施例提供的制备电容器的又一些结构示意图;
图3为本公开实施例提供的确定方法的另一些流程图;
图4为本公开实施例提供的第一制备腔室单元的示意图;
图5为本公开实施例提供的第二制备腔室单元的示意图;
图6为本公开实施例提供的第一组合、第二组合以及第三组合的示意图;
图7为本公开实施例提供的第四组合的示意图;
图8为本公开实施例提供的第五组合以及第六组合的示意图;
图9为本公开实施例提供的第七组合以及第八组合的示意图;
图10为本公开实施例提供的制备腔室的确定装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是 示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
通常,需要经过多个工艺步骤以制备半导体器件,不同的工艺步骤需要用到不同的制备腔室来完成其制备过程。例如,需要制备半导体器件中的晶体管和电容器。在实际应用中,每个工艺步骤可能会对大批量的物品,例如晶圆(wafer),进行加工。为了提高生产效率,可以采用多个制备腔室应用于同一工艺步骤中,以将大批量的晶圆分散到不同的制备腔室中进行同一工艺步骤的加工。
在实际应用中,例如,制备腔室内壁(包括载片台等表面)会积累上沉积物,该沉积物会随着该制备腔室的持续使用时间或使用次数的增加而变厚,当累积的沉积物厚到一定程度时,会受外力或自身重力影响而脱落产生微尘颗粒,这些微尘颗粒掉落在晶圆表面可能使元件失效。为此,在生产过程中,常需要对审查设备中的制备腔室内壁及其他部件进行清洁,去除积累的沉积物,以防止因其脱落而导致的晶圆玷污。但高频率地进行制备腔室清理又会导致产能降低和设备使用寿命变短的问题。
有鉴于此,本公开实施例提供了制备腔室的确定方法,可以根据相邻工艺步骤对应的制备腔室的当前射频功率时数以及基于制备腔室的使用周期划分出的使用阶段,确定出每一个制备腔室的当前射频功率时数所在的使用阶段。并针对过当前工艺步骤的制备腔室处理完的目标物体,可以根据每一个制备腔室的当前射频功率时数所在的使用阶段,直接确定出目标物体所能进入的下一个工艺步骤的制备腔室。从而可以直接控制目标物体进入已确定出的制备腔室内,以进行下一个工艺步骤的制备过程,进而可以节省人力,提高自动化程度。
图1为本公开实施例提供的确定方法的一些流程图。参照图1,本公开实施例提供的制备腔室的确定方法,可以包括如下步骤:
S10、获取当前工艺步骤的制备腔室的当前射频功率时数,以及获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数。
在本公开实施例中,将制备腔室在当前清洗结束至下一次清洗开始之间,投入执行相应的工艺步骤的工作时间的总时长,定义为使用周期。也就是说,制备腔室在工作一个使用周期后需要进行清洗,以保证制备腔室内尽可能洁净。在清洗完成后,在需要对晶圆进行处理时,可以依据处理所需的工艺步骤,将晶圆送入相应的制备腔室内,以在该腔室内执行相应的工艺步骤的操作过程,直至下一次清洗开始。可以将制备腔室在清洗完成后且在下一次清洗开始前,即一个使用周期内,将投入执行相应的工艺步骤的实时工作时间,定义为射频(RF)时数。例如,若使用周期为24h,射频功率时数为5h,其意味着在24h这个使用周期中,该制备腔室已经被使用了5h,若再继续使用19h,该制备腔室就需要进行清洗了。需要说明的是,若制备腔室闲置不用,该时间不计入使用周期内,也不计入射频功率时数内。
图2a为本公开实施例提供的制备电容器的一些结构示意图。图2b为本公开实施例提供的制备电容器的另一些结构示意图。图2c为本公开实施例提供的制备电容器的又一些结构示意图。图2d为本公开实施例提供的制备电容器的又一些结构示意图。参照图2a至图2d,形成电容器的过程可以如下所示:先形成支撑层10,之后在支撑层上形成掩膜层20,之后对掩膜层20进行刻蚀,在掩膜层20中形成间隔设置的多个掩膜孔21,从而形成刻蚀掩膜。之后基于该刻蚀掩膜层20的图形,对支撑层10进行刻蚀,在支撑层10内形成间隔设置的多个电容孔11。待形成电容孔11后,在电容孔的内壁上形成第一电极层、介质层和第二电极层,以形成电容器。
在本公开实施例中,当前工艺步骤例如可以为形成电容孔过程中的掩膜刻蚀工艺步骤。也就是说,通过当前工艺步骤,可以对形成电容器过程中的掩膜层进行刻蚀,以形成掩膜孔。示例性地,掩膜层可以采用半导体(Poly)材料,这样可以采用半导体刻蚀工艺形成掩膜孔。这样可以使当前工艺步骤为半导体刻蚀工艺步骤。当然,在实际应用中,当前工艺步骤也可以是形成各个膜层的沉积工艺步骤,或者也可以是形成晶体管中的刻蚀工艺步骤或沉积工艺步骤,在此不作限定。
在本公开实施例中,下一个工艺步骤例如可以为形成电容孔过程中的支撑层刻蚀工艺步骤。也就是说,通过下一个工艺步骤,可以对形成电容器过程中的支撑层进行刻蚀,以形成电容孔。示例性地,可以采用HARC(High Aspect Ratio Contact,高深宽比接触)刻蚀工艺在支撑层内形成间隔设置的多个电容孔。这样可以使下一个工艺步骤为HARC刻蚀工艺步骤。当然,在实际应用中,下一个工艺步骤也可以是形成各个膜层的沉积工艺步骤,或者也可以是形成晶体管中的刻蚀工艺步骤或沉积工艺步骤,在此不作限定。
下面以当前工艺步骤为形成电容孔过程中的掩膜刻蚀工艺步骤,下一个工艺步骤为形成电容孔过程中的支撑层刻蚀工艺步骤为例进行说明。
在本公开实施例中,步骤S10中,获取当前工艺步骤的制备腔室的当前射频功率时数,具体可以包括:在当前刻蚀步骤对应的制备腔室完成刻蚀工艺时,获取当前刻蚀步骤的制备腔室对应的当前射频功率时数。示例性地,在刻蚀掩膜层形成掩膜孔的掩膜孔制备腔室内,对形成电容器过程中的掩膜层进行刻蚀,形成掩膜孔后,掩膜孔制备腔室可以确定出在完成此次刻蚀后,在本使用周期内该制备腔室已经使用了多长时间,并将确定出的时间更新为最新的射频功率时数。可以从掩膜孔制备腔室提取其最新的射频功率时数作为当前射频功率时数。也可以使掩膜孔制备腔室将其最新的射频功率时数进行实时上报。从而可以得到当前刻蚀步骤的制备腔室对应的当前射频功率时数。
在本公开实施例中,步骤S10中,以及获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数,具体可以包括:在下一个刻蚀步骤对应的制备腔室开始刻蚀工艺前,获取下一个刻蚀步骤中待选取的制备腔室对应的当前射频功率时数。
示例性地,在HARC制备腔室内,对形成电容器过程中的支持层进行刻蚀,形成电容孔后,HARC制备腔室可以确定出在完成此次刻蚀后,在本使用周期内该制备腔室已经使用了多长时间,并将确定出的时间更新为最新的射频功率时数。可以从HARC制备腔室提取其最新的射频功率时数作为当前 射频功率时数。也可以使HARC制备腔室将其最新的射频功率时数进行实时上报。从而可以得到下一个刻蚀步骤的制备腔室对应的当前射频功率时数。
S20、根据当前工艺步骤的制备腔室的当前射频功率时数、待选取的制备腔室的当前射频功率时数、以及设定的连续多个使用阶段,确定当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及确定待选取的制备腔室的当前射频功率时数所在的使用阶段。
在本公开实施例中,可以将每一个制备腔室的使用周期划分为连续的多个使用阶段,例如划分为顺序出现的第1个使用阶段至第N个使用阶段。在一些示例中,可以使各制备腔室对应的使用阶段的数量相同。示例性地,每一个掩膜孔制备腔室的使用周期划分为顺序出现的第1个使用阶段至第N个使用阶段。且,HARC制备腔室的使用周期划分也可以为顺序出现的第1个使用阶段至第N个使用阶段。例如,每一个掩膜孔制备腔室的使用周期划分为顺序出现的第1个使用阶段至第3个使用阶段。HARC制备腔室的使用周期划分也可以为顺序出现的第1个使用阶段至第3个使用阶段。当然,在实际应用中,可以根据实际应用将掩膜孔制备腔室的使用周期划分的使用阶段的数量大于HARC制备腔室的使用周期划分的使用阶段的数量,或者,也可以根据实际应用将掩膜孔制备腔室的使用周期划分的使用阶段的数量小于HARC制备腔室的使用周期划分的使用阶段的数量,在此不作限定。
需要说明的是,N可以为2、3、4、5或更高的数值,其可以根据实际应用的需求进行确定,在此不作限定。
在本公开实施例中,可以使连续多个使用阶段中的各使用阶段的时长相同。示例性地,第1个使用阶段至第N个使用阶段中的每一个使用阶段的时长相同。例如,以N=3为例,第1个使用阶段的时长、第2个使用阶段的时长以及第3个使用阶段的时长均为8h。
在本公开实施例中,也可以使连续多个使用阶段中,前一个使用阶段的时长大于后一个使用阶段的时长。示例性地,第1个使用阶段的时长大于第2个使用阶段的时长,第2个使用阶段的时长大于第3个使用阶段的时长,第3 个使用阶段的时长大于第4个使用阶段的时长,第N-1个使用阶段的时长大于第N个使用阶段的时长。例如,以N=3为例,第1个使用阶段的时长为10h,第2个使用阶段的时长为9h,第3个使用阶段的时长为8h。
在本公开实施例中,也可以使连续多个使用阶段中,处于中间的使用阶段的时长大于处于两端的使用阶段的时长。示例性地,以1<y<N为例,第y个使用阶段的时长可以大于第1个使用阶段的时长,且第y个使用阶段的时长可以大于第N个使用阶段的时长。例如,以N=3为例,第2个使用阶段的时长大于第1个使用阶段的时长,且第2个使用阶段的时长大于第3个使用阶段的时长。例如,以N=3为例,第1个使用阶段的时长为8h,第2个使用阶段的时长为10h,第3个使用阶段的时长为7h。
在本公开实施例中,针对当前工艺步骤对应的各制备腔室,各制备腔室对应的同一顺序出现的使用阶段的范围相同。示例性地,每一个掩膜孔制备腔室对应第1个使用阶段至第N个使用阶段。每一个掩膜孔制备腔室对应的第1个使用阶段的范围相同,每一个掩膜孔制备腔室对应的第2个使用阶段的范围相同,每一个掩膜孔制备腔室对应的第3个使用阶段的范围相同,每一个掩膜孔制备腔室对应的第N个使用阶段的范围相同。例如,以N=3,掩膜孔制备腔室的使用周期为24h为例,每一个掩膜孔制备腔室对应的第1个使用阶段D11的范围可以为0h<D11≤8h,每一个掩膜孔制备腔室对应的第2个使用阶段D12的范围可以为8h<D12≤16h,每一个掩膜孔制备腔室对应的第3个使用阶段D13的范围可以为16h<D13≤24h。
在本公开实施例中,针对下一个工艺步骤对应的各制备腔室,各制备腔室对应的同一顺序出现的使用阶段的范围相同。示例性地,每一个HARC制备腔室对应第1个使用阶段至第N个使用阶段。每一个HARC制备腔室对应的第1个使用阶段的范围相同,每一个HARC制备腔室对应的第2个使用阶段的范围相同,每一个HARC制备腔室对应的第3个使用阶段的范围相同,每一个HARC制备腔室对应的第N个使用阶段的范围相同。例如,以N=3,HARC制备腔室的使用周期为24h为例,每一个HARC制备腔室对应的第1 个使用阶段D21的范围可以为0h<D21≤8h,每一个HARC制备腔室对应的第2个使用阶段D22的范围可以为8h<D22≤16h,每一个HARC制备腔室对应的第3个使用阶段D23的范围可以为16h<D23≤24h。
在本公开实施例中,所有制备腔室对应的同一顺序出现的使用阶段的范围相同。示例性地,每一个掩膜孔制备腔室对应第1个使用阶段至第N个使用阶段,每一个HARC制备腔室对应第1个使用阶段至第N个使用阶段。例如,以N=3,掩膜孔制备腔室的使用周期为24h以及HARC制备腔室的使用周期为24h为例,每一个掩膜孔制备腔室对应的第1个使用阶段D11的范围可以为0h<D11≤8h,且每一个HARC制备腔室对应的第1个使用阶段D21的范围可以为0h<D21≤8h。每一个掩膜孔制备腔室对应的第2个使用阶段D12的范围可以为8h<D12≤16h,且每一个HARC制备腔室对应的第2个使用阶段D22的范围可以为8h<D22≤16h。每一个掩膜孔制备腔室对应的第3个使用阶段D13的范围可以为16h<D13≤24h,且每一个HARC制备腔室对应的第3个使用阶段D23的范围可以为16h<D23≤24h。
S30、根据当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及待选取的制备腔室的当前射频功率时数所在的使用阶段,从待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室。
在本公开实施例中,在制备腔室内完成当前工艺步骤的制备过程后,可以将制备腔室内被处理的物品取出,以进行下一个工艺步骤的制备过程。也就是说,在确定当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段之后,在从组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室之前,还包括:将经过当前工艺步骤对应的制备腔室处理的目标物体携带上识别标签;其中,识别标签携带有目标物体所在的制备腔室对应的使用阶段的信息。示例性地,目标物体可以为经过当前工艺步骤对应的制备腔室中且已处理完的物体。将目标物体从该制备腔室中取出,并使该目标物体携带有相应的识别标签。该识别标签携带有该目标物体所在的制备腔室对应的使用阶段的信息。例如,若掩膜孔制备腔室包括:制备腔室A11、制备腔室A12、 制备腔室A13、制备腔室A14、制备腔室A15、制备腔室A16、制备腔室A17、制备腔室A18。则经过制备腔室A11处理的目标物体T1携带有制备腔室A11对应的使用阶段的识别标签,则经过制备腔室A12处理的目标物体T2携带有制备腔室A12对应的使用阶段的识别标签,则经过制备腔室A13处理的目标物体T3携带有制备腔室A13对应的使用阶段的识别标签,则经过制备腔室A14处理的目标物体T4携带有制备腔室A14对应的使用阶段的识别标签,则经过制备腔室A15处理的目标物体T5携带有制备腔室A15对应的使用阶段的识别标签,则经过制备腔室A16处理的目标物体T6携带有制备腔室A16对应的使用阶段的识别标签,则经过制备腔室A17处理的目标物体T7携带有制备腔室A17对应的使用阶段的识别标签,则经过制备腔室A18处理的目标物体T8携带有制备腔室A18对应的使用阶段的识别标签。
示例性地,目标物体可以为晶圆。例如,目标物体可以为经过掩膜刻蚀工艺步骤后,形成掩膜孔的晶圆。当然,目标物体也可以是其他能够实现的物体,在此不作限定。
本公开实施例通过定义制备腔室的使用阶段,直接根据制备腔室的当前射频功率时数所在的使用阶段,可以将已经工作了不同时段的制备腔室筛选出来以进行划分,进而可以直接根据每一个制备腔室的当前射频功率时数所在的使用阶段,将目标物体所要进行的下一个工艺步骤使用的制备腔室确定出来。这样可以控制目标物体进入已确定出的制备腔室内,进行下一个工艺步骤的制备过程,进而可以节省人力,提高自动化程度。
示例性地,在半导体器件的制备过程中,在制备腔室清洗后,且在制备腔室进行下一次清洗前,随着制备腔室的使用,腔室内的杂质可能会越来越多。若晶圆进入射频功率时数较小的掩膜孔制备腔室内加工,之后进入射频功率时数较小的HARC制备腔室内加工,这样可以使晶圆出现缺陷的几率较小。若晶圆进入射频功率时数较大的掩膜孔制备腔室内加工,之后进入射频功率时数较大的HARC制备腔室内加工,这样可以使晶圆出现缺陷的几率较大。这样若仅使晶圆进入射频功率时数较小的掩膜孔制备腔室内加工,之后 进入射频功率时数较小的HARC制备腔室内加工,这样导致射频功率时数较大的HARC制备腔室闲置。这样若仅使晶圆进入射频功率时数较大的掩膜孔制备腔室内加工,之后进入射频功率时数较大的HARC制备腔室内加工,这样导致晶圆出现缺陷的几率增大。
图3为本公开实施例提供的确定方法的另一些流程图。在本公开实施例中,参见图3,步骤S30中、从待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室,具体可以包括如下步骤:
S31、根据每一个制备腔室的当前射频功率时数所在的使用阶段,将当前工艺步骤对应的制备腔室分为多个第一制备腔室单元,将下一个工艺步骤待选取的制备腔室分为多个第二制备腔室单元。
在一些示例中,多个第一制备腔室单元与使用阶段一一对应。例如,以N=3为例,当前工艺步骤对应的制备腔室为掩膜孔制备腔室,且掩膜孔制备腔室的使用周期为24h为例,第1个使用阶段D11的范围可以为0h<D11≤8h,第2个使用阶段D12的范围可以为8h<D12≤16h,第3个使用阶段D13的范围可以为16h<D13≤24h。若掩膜孔制备腔室包括:制备腔室A11、制备腔室A12、制备腔室A13、制备腔室A14、制备腔室A15、制备腔室A16、制备腔室A17、制备腔室A18。其中,制备腔室A11的当前射频功率时数为5h,制备腔室A12的当前射频功率时数为17h,制备腔室A13的当前射频功率时数为9h,制备腔室A14的当前射频功率时数为10h,制备腔室A15的当前射频功率时数为6h,制备腔室A16的当前射频功率时数为20h,制备腔室A17的当前射频功率时数为4h,制备腔室A18的当前射频功率时数为13h。
因此,参照图4,制备腔室A11、A15以及A17处于第1个使用阶段,则将制备腔室A11、A15以及A17作为对应第1个使用阶段的第一制备腔室单元DY11。其中,图4为本公开实施例提供的第一制备腔室单元的示意图。
以及,参照图4,制备腔室A13、A14以及A18处于第2个使用阶段,则将制备腔室A13、A14以及A18作为对应第2个使用阶段的第一制备腔室单元DY12。
以及,参照图4,制备腔室A12以及A16处于第3个使用阶段,则将制备腔室A12以及A16作为对应第3个使用阶段的第一制备腔室单元DY13。
在一些示例中,多个第二制备腔室单元与使用阶段一一对应。例如,以N=3为例,下一个工艺步骤对应的制备腔室为HARC制备腔室,且掩膜孔制备腔室的使用周期为24h为例,第1个使用阶段D21的范围可以为0h<D21≤8h,第2个使用阶段D22的范围可以为8h<D22≤16h,第3个使用阶段D23的范围可以为16h<D23≤24h。若HARC制备腔室包括:制备腔室A21、制备腔室A22、制备腔室A23、制备腔室A24、制备腔室A25、制备腔室A26、制备腔室A27、制备腔室A28。其中,制备腔室A21的当前射频功率时数为3h,制备腔室A22的当前射频功率时数为12h,制备腔室A23的当前射频功率时数为23h,制备腔室A24的当前射频功率时数为4h,制备腔室A25的当前射频功率时数为18h,制备腔室A26的当前射频功率时数为7h,制备腔室A27的当前射频功率时数为16h,制备腔室A28的当前射频功率时数为10h。
因此,参照图5,制备腔室A21、A24以及A26处于第1个使用阶段,则将制备腔室A21、A24以及A26作为对应第1个使用阶段的第二制备腔室单元DY21。其中,图5为本公开实施例提供的第二制备腔室单元的示意图。
以及,参照图5,制备腔室A22、A27以及A28处于第2个使用阶段,则将制备腔室A22、A27以及A28作为对应第2个使用阶段的第二制备腔室单元DY22。
以及,参照图5,制备腔室A23以及A25处于第3个使用阶段,则将制备腔室A23以及A25作为对应第3个使用阶段的第二制备腔室单元DY23。
S32、将多个第一制备腔室单元和多个第二制备腔室单元进行组合。
在本公开实施例中,可以使第1个使用阶段对应的第一制备腔室单元与除第1个使用阶段之外的使用阶段对应的第二制备腔室单元进行组合。示例性地,以N=3为例,第1个使用阶段对应的第一制备腔室单元DY11可以与第2个使用阶段对应的第二制备腔室单元DY22组合,第1个使用阶段对应的第一制备腔室单元DY11也可以与第3个使用阶段对应的第二制备腔室单 元DY23组合。其余第一制备腔室单元DY12、DY13与第二制备腔室单元DY21~DY13可以任意组合。
在本公开实施例中,可以使对应第1个使用阶段的第一制备腔室单元与对应第2个使用阶段至第N个使用阶段中的至少一个的第二制备腔室单元进行组合。示例性地,以N=3为例,第1个使用阶段对应的第一制备腔室单元DY11可以仅与第2个使用阶段对应的第二制备腔室单元DY22组合。或者,第1个使用阶段对应的第一制备腔室单元DY11也可以仅与第3个使用阶段对应的第二制备腔室单元DY23组合。或者,第1个使用阶段对应的第一制备腔室单元DY11可以仅与第2个使用阶段对应的第二制备腔室单元DY22组合,同时第1个使用阶段对应的第一制备腔室单元DY11与第3个使用阶段对应的第二制备腔室单元DY23组合。
在本公开实施例中,可以使对应第2个使用阶段至第N个使用阶段的第一制备腔室单元与对应第1个使用阶段至第N个使用阶段的至少一个的第二制备腔室单元进行组合,且对应第1个使用阶段的第一制备腔室单元与对应第2个使用阶段至第N个使用阶段的第一制备腔室单元组合的第二制备腔室单元不同。示例性地,以N=3为例,若第1个使用阶段对应的第一制备腔室单元DY11与第2个使用阶段对应的第二制备腔室单元DY22组合,则第2个使用阶段对应的第一制备腔室单元DY12可以与第1个使用阶段对应的第二制备腔室单元DY21组合。第3个使用阶段对应的第一制备腔室单元DY13可以与第1个使用阶段对应的第二制备腔室单元DY21组合。或者,若第1个使用阶段对应的第一制备腔室单元DY11与第2个使用阶段对应的第二制备腔室单元DY22组合,则第2个使用阶段对应的第一制备腔室单元DY12可以与第3个使用阶段对应的第二制备腔室单元DY23组合。第3个使用阶段对应的第一制备腔室单元DY13可以与第1个使用阶段对应的第二制备腔室单元DY21组合。
S33、基于目标物体,从组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室。之后,将目标物体送入下一个工艺步骤对应的制备腔室中。
在本公开实施例中,目标物体携带有其所在的制备腔室对应的使用阶段的信息的识别标签,这样可以基于目标物体携带的识别标签,从组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室。示例性地,目标物体T1携带有制备腔室A11对应的使用阶段的识别标签,可以根据该识别标签,找到制备腔室A11所在的组合,从而可以根据该组合确定出目标物体T1对应的下一个工艺步骤的制备腔室。目标物体T2携带有制备腔室A12对应的使用阶段的识别标签,可以根据该识别标签,找到制备腔室A12所在的组合,从而可以根据该组合确定出目标物体T2对应的下一个工艺步骤的制备腔室。其余同理,在此不作赘述。
针对上述基于目标物体携带的识别标签,基于目标物体携带的识别标签,从组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室,下面通过具体实施例进行说明。需要说明的是,下述实施例是为了更好的解释本公开,但不限制本公开。
在本公开一些实施例中,可以将对应第1个使用阶段的第一制备腔室单元与对应第2个使用阶段的第二制备腔室单元的组合作为第一组合。这样可以基于目标物体携带的第1个使用阶段的信息,从组合中选取第一组合,确定出携带有第1个使用阶段信息的目标物体对应于对应第2个使用阶段的第二制备腔室单元。
并且,可以将对应第k个使用阶段的第一制备腔室单元与对应第k+1个使用阶段的第二制备腔室单元的组合作为第二组合。其中,k为整数,且1<k<N。这样可以基于目标物体携带的第k个使用阶段的信息,从组合中选取第二组合,确定出携带有第k个使用阶段信息的目标物体对应于对应第k+1个使用阶段的第二制备腔室单元。
以及,可以将对应第N个使用阶段的第一制备腔室单元与对应第1个使用阶段的第二制备腔室单元的组合作为第三组合。这样可以基于目标物体携带的第N个使用阶段的信息,从组合中选取第三组合,确定出携带有第N个使用阶段信息的目标物体对应于对应第1个使用阶段的第二制备腔室单元。
图6为本公开实施例提供的第一组合、第二组合以及第三组合的示意图。
示例性地,参照图6,以N=3为例,对应第1个使用阶段的第一制备腔室单元DY11中的制备腔室A11、A15以及A17与对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室A22、A27以及A28可以作为第一组合ZH11。这样可以基于目标物体T1携带的第1个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY11相对应的第一组合ZH11,从而可以根据第一组合ZH11,确定出该目标物体T1对应的制备腔室为对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室A22、A27以及A28。这样可以将目标物体T1分散送入制备腔室A22、A27以及A28中进行加工,提高制备效率。
并且,对应第2个使用阶段的第一制备腔室单元DY12中的制备腔室A13、A14以及A18与对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室A23以及A25可以作为第二组合ZH21。这样可以基于目标物体T2携带的第2个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY12相对应的第二组合ZH21,从而可以根据第二组合ZH21,确定出该目标物体T2对应的制备腔室为对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室A23以及A25。这样可以将目标物体T2分散送入制备腔室A23以及A25中进行加工,提高制备效率。
以及,对应第3个使用阶段的第一制备腔室单元DY13中的制备腔室A12以及A16与对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室A21、A24以及A26可以作为第三组合ZH31。这样可以基于目标物体T3携带的第3个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY13相对应的第三组合ZH31,从而可以根据第三组合ZH31,确定出该目标物体T3对应的制备腔室为对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室A21、A24以及A26。这样可以将目标物体T3分散送入制备腔室A21、A24以及A26中进行加工,提高制备效率。
在本公开另一些实施例中,可以将对应第p个使用阶段的第一制备腔室 单元与对应第N-p+1个使用阶段的第二制备腔室单元的组合作为第四组合;其中,p为整数,且1≤p≤N。这样可以基于目标物体携带的第p个使用阶段的信息,从组合中选取第四组合,确定出携带有第p个使用阶段信息的目标物体对应于对应第N-p+1个使用阶段的第二制备腔室单元。
图7为本公开实施例提供的第四组合的示意图。
示例性地,参照图7,以N=3为例,对应第1个使用阶段的第一制备腔室单元DY11中的制备腔室A11、A15以及A17与对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室A23以及A25可以作为第四组合ZH41。这样可以基于目标物体T1携带的第1个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY11相对应的第四组合ZH41,从而可以根据第四组合ZH41,确定出该目标物体T1对应的制备腔室为对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室A23以及A25。这样可以将目标物体T1分散送入制备腔室A23以及A25中进行加工,提高制备效率。
并且,对应第2个使用阶段的第一制备腔室单元DY12中的制备腔室A13、A14以及A18与对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室A22、A27以及A28可以作为第四组合ZH42。这样可以基于目标物体T2携带的第2个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY12相对应的第四组合ZH42,从而可以根据第四组合ZH42,确定出该目标物体T2对应的制备腔室为对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室A22、A27以及A28。这样可以将目标物体T2分散送入A22、A27以及A28中进行加工,提高制备效率。
以及,对应第3个使用阶段的第一制备腔室单元DY13中的制备腔室A12以及A16与对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室A21、A24以及A26可以作为第四组合ZH43。这样可以基于目标物体T3携带的第3个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY13相对应的第四组合ZH43,从而可以根据第四组合ZH43,确定出该目标物体T3对应的制备腔室为对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室 A21、A24以及A26。这样可以将目标物体T3分散送入制备腔室A21、A24以及A26中进行加工,提高制备效率。
在本公开又一些实施例中,在N为奇数时,可以将对应第m个使用阶段的第一制备腔室单元与对应第
Figure PCTCN2021113178-appb-000001
个使用阶段的第二制备腔室单元的组合作为第五组合;其中,m为整数,且
Figure PCTCN2021113178-appb-000002
这样可以基于目标物体携带的第m个使用阶段的信息,从组合中选取第五组合,确定出携带有第m个使用阶段信息的目标物体对应于对应第
Figure PCTCN2021113178-appb-000003
个使用阶段的第二制备腔室单元。
以及,将对应第q个使用阶段的第一制备腔室单元与对应第
Figure PCTCN2021113178-appb-000004
个使用阶段的第二制备腔室单元的组合作为第六组合;其中,q为整数,且
Figure PCTCN2021113178-appb-000005
这样可以基于目标物体携带的第q个使用阶段的信息,从组合中选取第六组合,确定出携带有第q个使用阶段信息的目标物体对应于对应第
Figure PCTCN2021113178-appb-000006
个使用阶段的第二制备腔室单元。
图8为本公开实施例提供的第五组合以及第六组合的示意图。
示例性地,参照图8,以N=9为例,对应第1个使用阶段的第一制备腔室单元DY11中的制备腔室与对应第5个使用阶段的第二制备腔室单元DY25中的制备腔室可以作为第五组合ZH51。这样可以基于目标物体T1携带的第1个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY11相对应的第五组合ZH51,确定出该目标物体T1对应的制备腔室为对应第5个使用阶段的第二制备腔室单元DY25中的制备腔室。这样可以将目标物体T1分散送入确定出的制备腔室中进行加工,提高制备效率。
并且,对应第2个使用阶段的第一制备腔室单元DY12中的制备腔室与对应第6个使用阶段的第二制备腔室单元DY26中的制备腔室可以作为第五组合ZH52。这样可以基于目标物体T2携带的第2个使用阶段的信息,可以 从组合中选取出与第一制备腔室单元DY12相对应的第五组合ZH52,确定出该目标物体T2对应的制备腔室为对应第6个使用阶段的第二制备腔室单元DY26中的制备腔室。这样可以将目标物体T2分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第3个使用阶段的第一制备腔室单元DY13中的制备腔室与对应第7个使用阶段的第二制备腔室单元DY27中的制备腔室可以作为第五组合ZH53。这样可以基于目标物体T3携带的第3个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY13相对应的第五组合ZH53,确定出该目标物体T3对应的制备腔室为对应第7个使用阶段的第二制备腔室单元DY27中的制备腔室。这样可以将目标物体T3分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第4个使用阶段的第一制备腔室单元DY14中的制备腔室与对应第8个使用阶段的第二制备腔室单元DY28中的制备腔室可以作为第五组合ZH54。这样可以基于目标物体T4携带的第4个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY14相对应的第五组合ZH54,确定出该目标物体T4对应的制备腔室为对应第8个使用阶段的第二制备腔室单元DY28中的制备腔室。这样可以将目标物体T4分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第5个使用阶段的第一制备腔室单元DY15中的制备腔室与对应第9个使用阶段的第二制备腔室单元DY29中的制备腔室可以作为第五组合ZH55。这样可以基于目标物体T5携带的第5个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY15相对应的第五组合ZH55,确定出该目标物体T5对应的制备腔室为对应第9个使用阶段的第二制备腔室单元DY29中的制备腔室。这样可以将目标物体T5分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第6个使用阶段的第一制备腔室单元DY16中的制备腔室与对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室可以作为第六 组合ZH61。这样可以基于目标物体T6携带的第6个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY16相对应的第六组合ZH61,确定出该目标物体T6对应的制备腔室为对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室。这样可以将目标物体T6分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第7个使用阶段的第一制备腔室单元DY17中的制备腔室与对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室可以作为第六组合ZH62。这样可以基于目标物体T7携带的第7个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY17相对应的第六组合ZH62,确定出该目标物体T7对应的制备腔室为对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室。这样可以将目标物体T7分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第8个使用阶段的第一制备腔室单元DY18中的制备腔室与对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室可以作为第六组合ZH63。这样可以基于目标物体T8携带的第8个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY18相对应的第六组合ZH63,确定出该目标物体T8对应的制备腔室为对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室。这样可以将目标物体T8分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第9个使用阶段的第一制备腔室单元DY19中的制备腔室与对应第4个使用阶段的第二制备腔室单元DY24中的制备腔室可以作为第六组合ZH64。这样可以基于目标物体T9携带的第9个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY19相对应的第六组合ZH64,确定出该目标物体T9对应的制备腔室为对应第4个使用阶段的第二制备腔室单元DY24中的制备腔室。这样可以将目标物体T9分散送入确定出的制备腔室中进行加工,提高制备效率。
在本公开又一些实施例中,在N为偶数时,可以将对应第g个使用阶段 的第一制备腔室单元与对应第
Figure PCTCN2021113178-appb-000007
个使用阶段的第二制备腔室单元的组合作为第七组合;其中,g为整数,且
Figure PCTCN2021113178-appb-000008
这样可以基于目标物体携带的第g个使用阶段的信息,从组合中选取第七组合,确定出携带有第g个使用阶段信息的目标物体对应于对应第
Figure PCTCN2021113178-appb-000009
个使用阶段的第二制备腔室单元。
以及,将对应第h个使用阶段的第一制备腔室单元与对应第
Figure PCTCN2021113178-appb-000010
个使用阶段的第二制备腔室单元的组合作为第八组合;h为整数,且
Figure PCTCN2021113178-appb-000011
这样可以基于目标物体携带的第h个使用阶段的信息,从组合中选取第八组合,确定出携带有第h个使用阶段信息的目标物体对应于对应第
Figure PCTCN2021113178-appb-000012
个使用阶段的第二制备腔室单元。
图9为本公开实施例提供的第七组合以及第八组合的示意图。
示例性地,参照图9,以N=8为例,对应第1个使用阶段的第一制备腔室单元DY11中的制备腔室与对应第5个使用阶段的第二制备腔室单元DY25中的制备腔室可以作为第七组合ZH71。这样可以基于目标物体T1携带的第1个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY11相对应的第七组合ZH71,确定出该目标物体T1对应的制备腔室为对应第5个使用阶段的第二制备腔室单元DY25中的制备腔室。这样可以将目标物体T1分散送入确定出的制备腔室中进行加工,提高制备效率。
并且,对应第2个使用阶段的第一制备腔室单元DY12中的制备腔室与对应第6个使用阶段的第二制备腔室单元DY26中的制备腔室可以作为第七组合ZH72。这样可以基于目标物体T2携带的第2个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY12相对应的第七组合ZH72,确定出该目标物体T2对应的制备腔室为对应第6个使用阶段的第二制备腔室单元DY26中的制备腔室。这样可以将目标物体T2分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第3个使用阶段的第一制备腔室单元DY13中的制备腔室与对应第7个使用阶段的第二制备腔室单元DY27中的制备腔室可以作为第七组合ZH73。这样可以基于目标物体T3携带的第3个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY13相对应的第七组合ZH73,确定出该目标物体T3对应的制备腔室为对应第7个使用阶段的第二制备腔室单元DY27中的制备腔室。这样可以将目标物体T3分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第4个使用阶段的第一制备腔室单元DY14中的制备腔室与对应第8个使用阶段的第二制备腔室单元DY28中的制备腔室可以作为第七组合ZH74。这样可以基于目标物体T4携带的第4个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY14相对应的第七组合ZH74,确定出该目标物体T4对应的制备腔室为对应第8个使用阶段的第二制备腔室单元DY28中的制备腔室。这样可以将目标物体T4分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第5个使用阶段的第一制备腔室单元DY15中的制备腔室与对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室可以作为第八组合ZH81。这样可以基于目标物体T5携带的第5个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY15相对应的第八组合ZH81,确定出该目标物体T5对应的制备腔室为对应第1个使用阶段的第二制备腔室单元DY21中的制备腔室。这样可以将目标物体T5分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第6个使用阶段的第一制备腔室单元DY16中的制备腔室与对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室可以作为第八组合ZH82。这样可以基于目标物体T6携带的第6个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY16相对应的第八组合ZH82,确定出该目标物体T6对应的制备腔室为对应第2个使用阶段的第二制备腔室单元DY22中的制备腔室。这样可以将目标物体T6分散送入确定出的制备腔室中 进行加工,提高制备效率。
以及,对应第7个使用阶段的第一制备腔室单元DY17中的制备腔室与对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室可以作为第八组合ZH83。这样可以基于目标物体T7携带的第7个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY17相对应的第八组合ZH83,确定出该目标物体T7对应的制备腔室为对应第3个使用阶段的第二制备腔室单元DY23中的制备腔室。这样可以将目标物体T7分散送入确定出的制备腔室中进行加工,提高制备效率。
以及,对应第8个使用阶段的第一制备腔室单元DY18中的制备腔室与对应第4个使用阶段的第二制备腔室单元DY24中的制备腔室可以作为第八组合ZH84。这样可以基于目标物体T8携带的第8个使用阶段的信息,可以从组合中选取出与第一制备腔室单元DY18相对应的第八组合ZH84,确定出该目标物体T8对应的制备腔室为对应第4个使用阶段的第二制备腔室单元DY24中的制备腔室。这样可以将目标物体T8分散送入确定出的制备腔室中进行加工,提高制备效率。
图10为本公开实施例提供的制备腔室的确定装置的示意图。
参照图10,本公开实施例还提供了制备腔室的确定装置,可以包括:获取单元101、阶段确定单元102以及腔室确定单元103。
在本公开实施例中,获取单元被配置为获取当前工艺步骤和下一个工艺步骤对应制备腔室的当前射频功率时数。
在本公开实施例中,阶段确定单元被配置为根据每一个制备腔室的当前射频功率时数以及设定的连续多个使用阶段,确定每一个制备腔室的当前射频功率时数所在的使用阶段;其中,连续多个使用阶段基于制备腔室的使用周期划分,使用周期为制备腔室在当前清洗结束至下一次清洗开始之间的工作时长;
在本公开实施例中,腔室确定单元被配置为根据每一个制备腔室的当前射频功率时数所在的使用阶段,确定目标物体对应的下一个工艺步骤的制备 腔室;其中,目标物体为经过当前工艺步骤的制备腔室处理完的物体。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及 其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种制备腔室的确定方法,包括:
    获取当前工艺步骤的制备腔室的当前射频功率时数,以及获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数;
    根据所述当前工艺步骤的制备腔室的当前射频功率时数、所述待选取的制备腔室的当前射频功率时数、以及设定的连续多个使用阶段,确定所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及确定所述待选取的制备腔室的当前射频功率时数所在的使用阶段;其中,所述连续多个使用阶段基于所述制备腔室的使用周期划分,所述使用周期为所述制备腔室在当前清洗结束至下一次清洗开始之间的工作时长;
    根据所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及所述待选取的制备腔室的当前射频功率时数所在的使用阶段,从所述待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室;其中,所述目标物体为经过所述当前工艺步骤的制备腔室处理完的物体。
  2. 如权利要求1所述的制备腔室的确定方法,其中,所述连续多个使用阶段包括顺序出现的第1个使用阶段至第N个使用阶段;N为大于1的整数;
    所述从所述待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室,包括:
    根据每一个所述制备腔室的当前射频功率时数所在的使用阶段,将所述当前工艺步骤对应的制备腔室分为多个第一制备腔室单元,将所述下一个工艺步骤待选取的制备腔室分为多个第二制备腔室单元;其中,所述多个第一制备腔室单元与使用阶段一一对应,所述多个第二制备腔室单元与使用阶段一一对应;
    将所述多个第一制备腔室单元和所述多个第二制备腔室单元进行组合;其中,第1个使用阶段对应的第一制备腔室单元与除第1个使用阶段之外的使用阶段对应的第二制备腔室单元进行组合;
    基于所述目标物体,从所述组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室。
  3. 如权利要求2所述的制备腔室的确定方法,其中,在所述确定所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段之后,在所述从所述组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室之前,还包括:
    将经过所述当前工艺步骤对应的制备腔室处理的目标物体携带上识别标签;其中,所述识别标签携带有所述目标物体所在的制备腔室对应的使用阶段的信息;
    所述从所述组合中确定出目标物体在下一个工艺步骤将要进入的制备腔室,包括:
    基于所述目标物体携带的识别标签,从所述组合中确定出所述目标物体在下一个工艺步骤将要进入的制备腔室。
  4. 如权利要求3所述的制备腔室的确定方法,其中,所述将所述多个第一制备腔室单元和所述多个第二制备腔室单元进行组合,包括:
    对应所述第1个使用阶段的第一制备腔室单元与对应第2个使用阶段至第N个使用阶段中的至少一个的第二制备腔室单元进行组合;
    对应所述第2个使用阶段至第N个使用阶段的第一制备腔室单元与对应第1个使用阶段至第N个使用阶段的至少一个的第二制备腔室单元进行组合,且对应所述第1个使用阶段的第一制备腔室单元与对应所述第2个使用阶段至第N个使用阶段的第一制备腔室单元组合的第二制备腔室单元不同。
  5. 如权利要求4所述的制备腔室的确定方法,其中,所述基于所述目标物体携带的识别标签,从所述组合中确定出所述目标物体在下一个工艺步骤将要进入的制备腔室,包括:
    基于目标物体携带的第1个使用阶段的信息,从所述组合中选取第一组合,确定出携带有所述第1个使用阶段信息的目标物体对应于对应第2个使用阶段的第二制备腔室单元;其中,所述第一组合为对应所述第1个使用阶 段的第一制备腔室单元与对应第2个使用阶段的第二制备腔室单元的组合;
    基于目标物体携带的第k个使用阶段的信息,从所述组合中选取第二组合,确定出携带有所述第k个使用阶段信息的目标物体对应于对应第k+1个使用阶段的第二制备腔室单元;其中,所述第二组合为对应所述第k个使用阶段的第一制备腔室单元与对应第k+1个使用阶段的第二制备腔室单元的组合;k为整数,且1<k<N;
    基于目标物体携带的第N个使用阶段的信息,从所述组合中选取第三组合,确定出携带有所述第N个使用阶段信息的目标物体对应于对应第1个使用阶段的第二制备腔室单元;其中,所述第三组合为对应所述第N个使用阶段的第一制备腔室单元与对应第1个使用阶段的第二制备腔室单元的组合。
  6. 如权利要求4所述的制备腔室的确定方法,其中,所述基于所述目标物体携带的识别标签,从所述组合中确定出所述目标物体在下一个工艺步骤将要进入的制备腔室,包括:
    基于目标物体携带的第p个使用阶段的信息,从所述组合中选取第四组合,确定出携带有所述第p个使用阶段信息的目标物体对应于对应第N-p+1个使用阶段的第二制备腔室单元;其中,所述第四组合为对应所述第p个使用阶段的第一制备腔室单元与对应第N-p+1个使用阶段的第二制备腔室单元的组合;p为整数,且1≤p≤N。
  7. 如权利要求4所述的制备腔室的确定方法,其中,N为奇数;所述基于所述目标物体携带的识别标签,从所述组合中确定出所述目标物体在下一个工艺步骤将要进入的制备腔室,包括:
    基于目标物体携带的第m个使用阶段的信息,从所述组合中选取第五组合,确定出携带有所述第m个使用阶段信息的目标物体对应于对应第
    Figure PCTCN2021113178-appb-100001
    个使用阶段的第二制备腔室单元;其中,所述第五组合为对应所述第m个使用阶段的第一制备腔室单元与对应第
    Figure PCTCN2021113178-appb-100002
    个使用阶段的第二制备腔室单元 的组合;m为整数,且
    Figure PCTCN2021113178-appb-100003
    基于目标物体携带的第q个使用阶段的信息,从所述组合中选取第六组合,确定出携带有所述第q个使用阶段信息的目标物体对应于对应第
    Figure PCTCN2021113178-appb-100004
    个使用阶段的第二制备腔室单元;其中,所述第六组合为对应所述第q个使用阶段的第一制备腔室单元与对应第
    Figure PCTCN2021113178-appb-100005
    个使用阶段的第二制备腔室单元的组合;q为整数,且
    Figure PCTCN2021113178-appb-100006
  8. 如权利要求4所述的制备腔室的确定方法,其中,N为偶数;所述基于所述目标物体携带的识别标签,从所述组合中确定出所述目标物体在下一个工艺步骤将要进入的制备腔室,包括:
    基于目标物体携带的第g个使用阶段的信息,从所述组合中选取第七组合,确定出携带有所述第g个使用阶段信息的目标物体对应于对应第
    Figure PCTCN2021113178-appb-100007
    个使用阶段的第二制备腔室单元;其中,所述第七组合为对应所述第g个使用阶段的第一制备腔室单元与对应第
    Figure PCTCN2021113178-appb-100008
    个使用阶段的第二制备腔室单元的组合;g为整数,且
    Figure PCTCN2021113178-appb-100009
    基于目标物体携带的第h个使用阶段的信息,从所述组合中选取第八组合,确定出携带有所述第h个使用阶段信息的目标物体对应于对应第
    Figure PCTCN2021113178-appb-100010
    个使用阶段的第二制备腔室单元;其中,所述第八组合为对应所述第h个使用阶段的第一制备腔室单元与对应第
    Figure PCTCN2021113178-appb-100011
    个使用阶段的第二制备腔室单元的组合;h为整数,且
    Figure PCTCN2021113178-appb-100012
  9. 如权利要求1-8任一项所述的制备腔室的确定方法,其中,所述连续多个使用阶段中的各使用阶段的时长相同;或者,
    所述连续多个使用阶段中,前一个使用阶段的时长大于后一个使用阶段 的时长;或者,
    所述连续多个使用阶段中,处于中间的使用阶段的时长大于处于两端的使用阶段的时长。
  10. 如权利要求1-8任一项所述的制备腔室的确定方法,其中,各所述制备腔室对应的使用阶段的数量相同。
  11. 如权利要求10所述的制备腔室的确定方法,其中,针对所述当前工艺步骤对应的各制备腔室,各所述制备腔室对应的同一顺序出现的使用阶段的范围相同;和/或,
    针对所述下一个工艺步骤对应的各制备腔室,各所述制备腔室对应的同一顺序出现的使用阶段的范围相同。
  12. 如权利要求11所述的制备腔室的确定方法,其中,所有制备腔室对应的同一顺序出现的使用阶段的范围相同。
  13. 如权利要求1-8任一项所述的制备腔室的确定方法,其中,所述工艺步骤包括刻蚀步骤;
    所述当前工艺步骤包括:形成电容孔过程中的掩膜刻蚀工艺步骤;
    所述下一个工艺步骤包括:形成所述电容孔过程中的支撑层刻蚀工艺步骤;
    所述获取当前工艺步骤的制备腔室的当前射频功率时数,包括:
    在所述当前刻蚀步骤对应的制备腔室完成刻蚀工艺时,获取所述当前刻蚀步骤的制备腔室对应的当前射频功率时数;
    所述获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数,包括:
    在所述下一个刻蚀步骤对应的制备腔室开始刻蚀工艺前,获取所述下一个刻蚀步骤中待选取的制备腔室对应的当前射频功率时数。
  14. 如权利要求1-8任一项所述的制备腔室的确定方法,其中,所述从所述待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室之后,还包括:
    将所述目标物体送入所述下一个工艺步骤对应的制备腔室中。
  15. 一种制备腔室的确定装置,包括:
    获取单元,被配置为获取当前工艺步骤的制备腔室的当前射频功率时数,以及获取下一个工艺步骤中待选取的制备腔室的当前射频功率时数;
    阶段确定单元,被配置为根据所述当前工艺步骤的制备腔室的当前射频功率时数、所述待选取的制备腔室的当前射频功率时数、以及设定的连续多个使用阶段,确定所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及确定所述待选取的制备腔室的当前射频功率时数所在的使用阶段;其中,所述连续多个使用阶段基于所述制备腔室的使用周期划分,所述使用周期为所述制备腔室在当前清洗结束至下一次清洗开始之间的工作时长;
    腔室确定单元,被配置为根据所述当前工艺步骤的制备腔室的当前射频功率时数所在的使用阶段,以及所述待选取的制备腔室的当前射频功率时数所在的使用阶段,从所述待选取的制备腔室中确定出目标物体在下一个工艺步骤将要进入的制备腔室;其中,所述目标物体为经过所述当前工艺步骤的制备腔室处理完的物体。
PCT/CN2021/113178 2021-08-12 2021-08-18 制备腔室的确定方法及装置 WO2023015582A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/647,737 US11495602B1 (en) 2021-08-12 2022-01-12 Method and device for determining fabrication chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110925197.X 2021-08-12
CN202110925197.XA CN113658885B (zh) 2021-08-12 2021-08-12 制备腔室的确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/647,737 Continuation US11495602B1 (en) 2021-08-12 2022-01-12 Method and device for determining fabrication chamber

Publications (1)

Publication Number Publication Date
WO2023015582A1 true WO2023015582A1 (zh) 2023-02-16

Family

ID=78491554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113178 WO2023015582A1 (zh) 2021-08-12 2021-08-18 制备腔室的确定方法及装置

Country Status (2)

Country Link
CN (1) CN113658885B (zh)
WO (1) WO2023015582A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087361A (ja) * 2008-10-01 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法
CN106298604A (zh) * 2015-06-24 2017-01-04 北京北方微电子基地设备工艺研究中心有限责任公司 一种晶片传输方法和装置
CN107958838A (zh) * 2017-11-08 2018-04-24 上海华力微电子有限公司 一种根据射频时数改善一体化刻蚀工艺面内均匀性的方法
CN109962001A (zh) * 2017-12-26 2019-07-02 中微半导体设备(上海)股份有限公司 一种等离子体腔室的运行方法和等离子反应器
CN110416111A (zh) * 2018-04-28 2019-11-05 北京北方华创微电子装备有限公司 实现多个腔室匹配的方法和实现多个腔室匹配的装置
CN111968905A (zh) * 2020-08-03 2020-11-20 北京北方华创微电子装备有限公司 半导体设备的射频起辉控制方法及装置
CN113073312A (zh) * 2021-03-25 2021-07-06 北京北方华创微电子装备有限公司 半导体工艺设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213442A (ja) * 1995-02-06 1996-08-20 Hitachi Ltd マルチチャンバプロセス装置
JPH08239765A (ja) * 1995-02-28 1996-09-17 Hitachi Ltd マルチチャンバースパッタリング装置
US7901545B2 (en) * 2004-03-26 2011-03-08 Tokyo Electron Limited Ionized physical vapor deposition (iPVD) process
JP4569956B2 (ja) * 2005-01-24 2010-10-27 東京エレクトロン株式会社 基板処理装置の復旧処理方法,基板処理装置,プログラム
CN104752256B (zh) * 2013-12-25 2018-10-16 中微半导体设备(上海)有限公司 一种等离子体刻蚀方法和系统
US10256076B2 (en) * 2015-10-22 2019-04-09 Applied Materials, Inc. Substrate processing apparatus and methods
CN107541773A (zh) * 2016-06-29 2018-01-05 北京北方华创微电子装备有限公司 一种腔室温度控制方法、装置及半导体工艺设备
CN111463143B (zh) * 2019-01-22 2023-03-24 北京屹唐半导体科技股份有限公司 半导体设备腔室、用于腔室的系统和沉积物状态控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087361A (ja) * 2008-10-01 2010-04-15 Hitachi Kokusai Electric Inc 半導体装置の製造方法
CN106298604A (zh) * 2015-06-24 2017-01-04 北京北方微电子基地设备工艺研究中心有限责任公司 一种晶片传输方法和装置
CN107958838A (zh) * 2017-11-08 2018-04-24 上海华力微电子有限公司 一种根据射频时数改善一体化刻蚀工艺面内均匀性的方法
CN109962001A (zh) * 2017-12-26 2019-07-02 中微半导体设备(上海)股份有限公司 一种等离子体腔室的运行方法和等离子反应器
CN110416111A (zh) * 2018-04-28 2019-11-05 北京北方华创微电子装备有限公司 实现多个腔室匹配的方法和实现多个腔室匹配的装置
CN111968905A (zh) * 2020-08-03 2020-11-20 北京北方华创微电子装备有限公司 半导体设备的射频起辉控制方法及装置
CN113073312A (zh) * 2021-03-25 2021-07-06 北京北方华创微电子装备有限公司 半导体工艺设备

Also Published As

Publication number Publication date
CN113658885A (zh) 2021-11-16
CN113658885B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
JP2001127011A (ja) 半導体ウェーハの分割方法
US11630640B2 (en) Median value determination in a data processing system
WO2017198070A1 (zh) 一种多通道数据存储器及其存取方法及装置、存储介质
CN103344660B (zh) 一种按照电路图形进行缺陷检测的电子显微镜分析方法
TWI709049B (zh) 隨機漫步、基於叢集的隨機漫步方法、裝置以及設備
WO2023015582A1 (zh) 制备腔室的确定方法及装置
CN108460070A (zh) 一种基于数据库的数据处理方法、装置及设备
CN110442480A (zh) 一种镜像数据清理方法、装置及系统
US8785303B2 (en) Methods for depositing amorphous silicon
CN111584356A (zh) 刻蚀过程的控制方法、控制装置、存储介质和刻蚀设备
CN117057303B (zh) 版图图形生成方法、设备和介质
US11495602B1 (en) Method and device for determining fabrication chamber
US20090191689A1 (en) Method of Arranging Dies in a Wafer for Easy Inkless Partial Wafer Process
US20220365516A1 (en) Scheduling substrate routing and processing
CN103529653A (zh) 多层矢量图形存储为曝光数据的方法及系统
US20070300086A1 (en) Processor core wear leveling in a multi-core platform
TW201913366A (zh) 在基於處理器的系統中利用經壓縮返回地址堆疊(cras)提供高效遞迴處理
CN113076520A (zh) 基于gpu的异构大型矩阵求解方法
CN102623369A (zh) 一种晶圆检验方法
CN107112322B (zh) 以减小电感的模式安排的金属-绝缘体-金属(mim)电容器以及相关方法
CN107656306B (zh) 全波形反演并行计算方法及系统
US10446421B2 (en) Crystal oscillator and the use thereof in semiconductor fabrication
CN117751439A (zh) 用于清洁进程列管理的方法和系统
CN114265691A (zh) 一种numa感知的基于k-truss分解的社区发现方法
CN108595795A (zh) 版图数据检查分配方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE