WO2023013922A1 - 단위 셀 정렬 장치 및 정렬 방법 - Google Patents

단위 셀 정렬 장치 및 정렬 방법 Download PDF

Info

Publication number
WO2023013922A1
WO2023013922A1 PCT/KR2022/010488 KR2022010488W WO2023013922A1 WO 2023013922 A1 WO2023013922 A1 WO 2023013922A1 KR 2022010488 W KR2022010488 W KR 2022010488W WO 2023013922 A1 WO2023013922 A1 WO 2023013922A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
angle
gripper
unit
unit cell
Prior art date
Application number
PCT/KR2022/010488
Other languages
English (en)
French (fr)
Inventor
김융
권영태
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023578099A priority Critical patent/JP2024524954A/ja
Priority to CN202280047169.5A priority patent/CN117597807A/zh
Priority to EP22853301.4A priority patent/EP4343902A1/en
Publication of WO2023013922A1 publication Critical patent/WO2023013922A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a unit cell alignment device and alignment method.
  • Electrodes are classified into coin-type batteries, cylindrical batteries, prismatic batteries, and pouch-type batteries according to the shape of a battery case in which an electrode assembly is embedded.
  • electrode assemblies built into a battery case are a jelly-roll type in which a separator is interposed between a positive electrode and a negative electrode, a stack type in which a plurality of unit cells are stacked with a separator interposed between a positive electrode and a negative electrode, and a separator between unit cells. It is classified as a stack/folding type wound with a film.
  • the stack/folding type may be manufactured by transferring unit cells including an electrode and a separator, placing them on a separator film, and winding the separator film.
  • a problem such as a defective overhang may occur due to misalignment between unit cells.
  • Patent Document 1 Korean Patent Publication No. 10-2021-0055186
  • One of the objects of the present invention is to improve alignment accuracy of unit cells seated on a separation film.
  • Another object of the present invention is to improve overhang defects.
  • Another object of the present invention is to improve a folding gap defect.
  • An embodiment of the present invention is a first transfer unit for transferring a unit cell including an electrode and a separator in a first direction; a first vision unit for measuring a distorted angle of the electrode; a gripper that grips and moves the unit cell; and a control unit controlling the gripper.
  • the control unit adjusts an angle of the gripper based on a distorted angle of the electrode measured by the first vision unit before the gripper grips the unit cell, and after the gripper grips the unit cell.
  • the gripper is returned so that the angle of the gripper is the angle before adjustment, and the twisted angle of the electrode is an angle formed by a central axis of the electrode and an imaginary line in a second direction perpendicular to the first direction and the plane.
  • the angle of the gripper is an angle between an imaginary line in the second direction and a central axis of the gripper.
  • One embodiment of the present invention comprises the steps of transferring a unit cell including an electrode and a separator in a first direction; measuring the twisted angle of the electrode; adjusting the angle of the gripper based on the measured twisted angle of the electrode; gripping the unit cell with the gripper having an adjusted angle; and returning the gripper so that an angle of the gripper gripping the unit cell becomes an angle before adjustment.
  • the twisted angle of the electrode is an angle formed by a central axis of the electrode and an imaginary line in a second direction perpendicular to the first direction and a plane, and the angle of the gripper is an imaginary line in the second direction.
  • a unit cell alignment method which is an angle formed by a central axis of the gripper.
  • One of the effects of the present invention is to improve alignment accuracy of unit cells seated on a separation film.
  • Another effect of the present invention is to improve overhang defects.
  • Another effect of the present invention is to improve a folding gap defect.
  • FIG. 1 is a side view of a unit cell alignment device according to an embodiment of the present invention.
  • FIG. 2 is a plan view for explaining alignment of unit cells according to an embodiment of the present invention.
  • FIG. 3 is a plan view illustrating additional alignment of unit cells according to an embodiment of the present invention.
  • FIG. 1 is a side view of a unit cell alignment device according to an embodiment of the present invention.
  • An apparatus for arranging unit cells 10 includes a transfer unit 110, a vision unit 120, a gripper 130, and a control unit 140.
  • the unit cell 10 includes electrodes 11 and 13 and a separator 12 .
  • the unit cell 10 may have a structure in which electrodes 11 and 13 and separator 12 are alternately stacked.
  • the unit cell 10 includes a first electrode 11, a separator 12 laminated on both sides of the first electrode 11, and a laminated layer on both sides of the first electrode 11. It may include second electrodes 13 stacked on each of the separated membranes 12, but the structure of the unit cell 10 is not limited thereto.
  • first electrode 11 and the second electrode 13 may be an anode, and the other may be a cathode.
  • the first electrode 11 may be a cathode and the second electrode 13 may be an anode.
  • a cross-sectional area of the first electrode 11 as a cathode may be larger than that of the second electrode 13 as an anode.
  • the cross-sectional area means a cross-sectional area in a plane formed by the first direction (x) and the second direction (y).
  • Each of the first electrode 11 and the second electrode 13 may have a structure in which a tab is formed at one end, but the tab of the electrode is omitted in the drawing.
  • Separator 12 is disposed between electrodes 11 and 13 .
  • the cross-sectional area of the separation membrane 12 may be larger than the cross-sectional areas of the electrodes 11 and 13 .
  • the cross-sectional area of the first electrode 11, which is a cathode may be larger than the cross-sectional area of the second electrode 13, which is an anode.
  • the separator 12, the first electrode 11, and the second electrode 13 the cross-sectional area may decrease in order.
  • the transfer unit 110 transfers the unit cell 10 .
  • the transfer unit 110 may include a first transfer unit 111 and a second transfer unit 112 .
  • the first transfer unit 111 transfers the unit cell 10 including the electrodes 11 and 13 and the separator 12 in a first direction (x).
  • the first transfer unit 111 may continuously transfer a plurality of unit cells 10 spaced apart from each other by a predetermined distance.
  • the first transfer unit 111 may be a conveyor belt.
  • the first transfer unit 111 has a first area A1, which is an area where the electrodes 11 and 13 are measured as the first vision unit 122, and the electrodes 11 and 13 are transferred to the gripper 130. It may have a second area A2, which is an area that is gripped and measured as the second vision unit 122.
  • the second transfer unit 112 transfers the separation film 20 and the unit cell 10 disposed on the separation film 20 .
  • the unit cell 10 may be supplied to the second transfer unit 112 by a gripper 130 to be described later and seated on the separation film 20 .
  • a stack/fold type electrode assembly may be formed by winding the separation film 20 on which the unit cells 10 are seated in a later process.
  • the second transfer unit 112 may be a pair of rollers. Accordingly, the unit cell 10 may be inserted between a pair of rollers by the gripper 130 and press-fit together with the separation film 20 .
  • the vision unit 120 measures positional information of the electrodes 11 and 13, and may specifically measure twisted angles of the electrodes 11 and 13. However, the vision unit 120 may further measure other positional information such as the position of the electrodes 11 and 13 and the alignment state between the electrodes 11 and 13, and may measure the positional information of the separator 12 according to the design. may be Information measured by the vision unit 120 may be transmitted to the controller 140 .
  • the vision unit 120 includes a first vision unit 121 and a second vision unit 122 .
  • Each of the first vision unit 121 and the second vision unit 122 may measure the twisted angle ⁇ 1 of the electrodes 11 and 13 in different areas.
  • Each of the first vision unit 121 and the second vision unit 122 may include a vision device, and the vision device may be a camera, an X-ray, or the like.
  • the gripper 130 may serve to grip and move the unit cell 10 . Specifically, the gripper 130 may grip the unit cell 10 and supply the gripped unit cell 10 to the second transfer unit 112 . The gripper 130 may grip one end or both ends of the unit cell 10 .
  • the gripper 130 includes a body and an arm, and the arm may hold the unit cell 10 and move it while fixing it.
  • the controller 140 controls the gripper 130 .
  • the control unit 140 may control the movement distance, movement speed, angle, etc. of the gripper 130 .
  • the controller 140 may control the gripper 130 based on information measured by the vision unit 120 .
  • the vision unit 120 the gripper 130 , and the control unit 140 of the unit cell alignment device according to an embodiment of the present invention will be described in more detail.
  • FIG. 2 is a plan view for explaining alignment of unit cells according to an embodiment of the present invention.
  • the first transfer unit 111 has a first area A1 and a second area A2 adjacent to the first area A1.
  • the unit cell 10 is transported along the first direction (x), and thus the unit cell 10 sequentially passes through the first area A1 and the second area A2.
  • the first vision unit 121 is disposed on the first area A1 of the transfer unit 111
  • the second vision unit 122 is disposed on the second area A2 of the transfer unit 111 .
  • the first area A1 is a first measurement area for measuring the unit cell 10 with the first vision unit 121
  • the second area A2 is a unit passing through the first area A1. This is the second measurement area for measuring the cell 10 with the second vision unit 122 .
  • the unit cell 10 stops for a certain period of time in the first area A1 while being transferred to the first transfer unit 111, is measured by the first vision unit 121, and is transferred again to the second area A2. It may be measured by the second vision unit 122 by stopping for a certain period of time. Also, as will be described later, the second area A2 may be an area where the unit cell 10 is gripped by the gripper 130 . Meanwhile, the first area A1 and the second area A2 are areas introduced for convenience of explanation, and may not have a boundary that can be seen with the naked eye.
  • each of the first vision unit 121 and the second vision unit 122 is in the second direction of the first area A1 and the second area A2 of the first transfer unit 110 . It may appear to be disposed on (y), but this is only to help the understanding of the description, and each of the first vision unit 121 and the second vision unit 122 is the first area of the first transfer unit 110 ( It should be noted that A1) and the second area A2 are arranged in the third direction z, respectively.
  • the cross-sectional area of the separator 12 may be larger than the cross-sectional area of the electrodes 11 and 13, so in the drawing, the unit cell 10 has the separator 12 protruding outward of the outermost electrode 13. It is shown as having an arranged structure.
  • the first vision unit 121 measures the twisted angle ⁇ 1 of the electrodes 11 and 13 in the first area A1 of the first transfer unit 111 .
  • the twisted angle ⁇ 1 of the electrodes 11 and 13 is the virtual line V in the first direction (x) and the second direction (y) perpendicular to the plane and the center of the electrodes 11 and 13 It is an angle formed by axis C1.
  • the central axis C1 of the electrodes 11 and 13 is the central axis in the second direction y when the electrodes 11 and 13 are ideally aligned without twisting.
  • the central axis C1 of the electrodes 11 and 13 that are not aligned may not be directed in the second direction y.
  • the first vision unit 121 measures a distorted angle ⁇ 1 of at least one of the first electrode 11 and the second electrode 13 .
  • the first vision unit 121 may measure the twisted angle ⁇ 1 of the first electrode 11 .
  • the first vision unit 121 may measure the twisted angle ⁇ 1 of the first electrode 11 disposed inside the unit cell 10, not the second electrode 13, which is the outermost electrode, and thus, Unit cells 10 may be aligned based on one electrode 11 .
  • the first electrode 11 may be a cathode having a larger cross-sectional area than the second electrode 13, and thus, by aligning the unit cells 10 with respect to the first electrode 11, which is a cathode, overhang defects are prevented. can be improved
  • the first vision unit 121 measures the twisted angle of the second electrode 13 or measures the twisted angle of each of the first electrode 11 and the second electrode 13. may be
  • the unit cell 10 is transferred to the second area A2 of the first transfer unit 111, and the gripper 130 is also transferred to the second area A2 of the first transfer unit 111. Move to and grip the unit cell 10.
  • the controller 140 controls the gripper 130 to grip the unit cell 10 based on the twisted angle ⁇ 1 of the electrodes 11 and 13 measured by the first vision unit 121 ( 130) to adjust the angle ⁇ 2.
  • the controller 140 adjusts the angle ⁇ 2 of the gripper 130 by rotating the gripper 130 by the angle ⁇ 1 of the electrodes 11 and 13 . Therefore, after adjustment, the central axis C2 of the gripper 130 is parallel to the central axis C1 of the electrodes 11 and 13 .
  • the angle ⁇ 2 of the gripper 130 may be adjusted before, during, or after the movement of the gripper 130 .
  • the angle ⁇ 2 of the gripper 130 is a virtual line V in a second direction y perpendicular to the first direction x and a plane and the central axis C2 of the gripper 130 is the angle that The central axis C2 of the gripper 130 is the central axis in the second direction y when the gripper 130 is aligned and not adjusted.
  • the central axis C2 of the gripper 130 may not be directed in the second direction y.
  • the control unit 140 returns the gripper 130 so that the angle ⁇ 2 of the gripper 130 becomes the angle before adjustment. let it In other words, after the gripper 130 grips the unit cell 10, the control unit 140 returns the gripper 130 by rotating it again by an angle rotated before the gripper 130 grips the unit cell 10. let it Accordingly, the central axis C2 of the gripper 130 again faces the second direction y and is parallel to an arbitrary imaginary line V in the second direction y. The returned gripper 130 is still located in the second area A2 of the transfer unit 111 .
  • the unit cell 10 is rotated by the angle ⁇ 1 at which the electrodes 11 and 13 of the unit cell 10 are rotated by the gripper 130. ) and return the gripper 130 holding the unit cell 10 to perform primary alignment on the unit cell 10 .
  • alignment errors of the unit cells 10 may still occur even after alignment in this way. Therefore, according to one embodiment of the present invention, additional alignment of the unit cells 10 may be performed as described below.
  • FIG. 3 is a plan view illustrating additional alignment of unit cells according to an embodiment of the present invention.
  • the second vision unit 122 is an electrode in a state of being gripped by the gripper 130.
  • the twisted angle ⁇ 1 of (11, 13) is additionally measured.
  • the alignment of the unit cell 10 should be correct by the first correction described in FIG. 2, but an alignment error of the unit cell 10 may still occur due to an error in measurement or adjustment.
  • the second vision unit 122 also measures the twisted angle ⁇ 1 of at least one of the first electrode 11 and the second electrode 13 . It may be preferable in terms of additional alignment that the second vision unit 122 measures the distorted angle of the same electrode as the electrode measured by the first vision unit 121 .
  • the second vision unit 122 may measure the twisted angle ⁇ 1 of the first electrode 11, which is a negative electrode, similarly to the first vision unit 121.
  • the second vision unit 122 measures the twisted angle of the second electrode 13 together with the first vision unit 121, or the first electrode 11 and the second electrode 13 ) may be to measure each twisted angle. If necessary, a distorted angle of an electrode different from the electrode measured by the first vision unit 121 may be measured.
  • the control unit 140 calculates the angle ⁇ 2 of the gripper 130 returned based on the twisted angle ⁇ 1 of the electrodes 11 and 13 measured by the second vision unit 122. adjust further. Specifically, the controller 140 further adjusts the angle ⁇ 2 of the gripper 130 by rotating the gripper 130 as much as the distorted angle ⁇ 1 of the electrodes 11 and 13 after the gripper 130 is returned. do. Accordingly, the central axis C2 of the gripper 130 may not face the second direction y again.
  • the angle ⁇ 2 of the gripper 130 may be additionally adjusted in the second area A2 of the first transfer unit 111, or may be adjusted while moving to the second transfer unit 112 of the gripper 130, or moved It may be adjusted later.
  • control unit 140 may further control the gripper 130 to supply the unit cells 10 to the second transfer unit 112 while maintaining an additionally adjusted angle. That is, the control unit 140 maintains an additionally adjusted angle of the gripper 130 gripping the unit cell 10 and moves the unit cell 10 to the second area A2 of the first transfer unit 111. It can be controlled to move to the transfer unit 112 . Accordingly, the unit cells 10 may be supplied to the second transfer unit 112 with improved alignment.
  • alignment of the unit cell 10 may be corrected by controlling the angle ⁇ 2 of the gripper 130 gripping the unit cell 10 .
  • alignment of the unit cells 10 may be further improved by performing correction twice before and after the unit cells 10 are gripped by the gripper 130 .
  • alignment accuracy of the unit cells 10 seated on the separation film 20 may be improved, and through this, a folding gap defect may also be improved.
  • the overhang defect can be further improved by aligning the unit cells 10 with the first electrode 11 serving as a cathode.
  • the unit cell alignment method of the present invention includes the steps of transferring the unit cell 10 including the electrodes 11 and 13 and the separator 12 in a first direction (x), the twisted angle of the electrodes 11 and 13 ( Measuring ⁇ 1), adjusting the angle ⁇ 2 of the gripper 130 based on the measured twisted angles ⁇ 1 of the electrodes 11 and 13, the unit cell 10 with the angle-adjusted gripper ( 130) and returning the gripper 130 so that the angle ⁇ 2 of the gripper 130 holding the unit cell 10 becomes the angle before adjustment.
  • the unit cell alignment method of the present invention includes the step of additionally measuring the distorted angle ⁇ 1 of the electrodes 11 and 13 after the gripper 130 is returned, and the additionally measured distorted angles of the electrodes 11 and 13.
  • An additional step of adjusting the angle ⁇ 2 of the gripper 130 based on the angle may be further included.
  • the unit cell transfer step is a first transfer step of transferring the electrodes 11 and 13 to the first area A1 where the twisted angle ⁇ 1 of the electrodes 11 and 13 is measured, and the electrodes 11 and 13 are A second transfer step of transferring to the second area A2 gripped by the gripper 130 may be included.
  • the step of additionally measuring the twisted angle ⁇ 2 of the electrodes 11 and 13 may be performed in the second area A2.
  • first, second, etc. is for distinguishing elements from each other, and does not mean a priority between elements or an absolute order.
  • a first element in some parts of this specification may be referred to as a second element in other parts of this specification.
  • control unit 140 control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 단위 셀 정렬 장치는 전극 및 분리막을 포함하는 단위 셀을 제1 방향으로 이송하는 제1 이송부; 상기 전극의 틀어진 각도를 측정하는 제1 비전부; 상기 단위 셀을 파지하여 이동시키는 그리퍼(gripper); 및 상기 그리퍼를 제어하는 제어부; 를 포함하고, 상기 제어부는 상기 그리퍼가 상기 단위 셀을 파지하기 전 상기 제1 비전부로 측정된 상기 전극의 틀어진 각도에 기초하여 상기 그리퍼의 각도를 조정하고, 상기 그리퍼가 상기 단위 셀을 파지한 후 상기 그리퍼의 각도가 조정 전 각도가 되도록 상기 그리퍼를 복귀시킨다.

Description

단위 셀 정렬 장치 및 정렬 방법
본 출원은 2021년 8월 3일자 한국 특허 출원 제10-2021-0101704호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 단위 셀 정렬 장치 및 정렬 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라, 재충전이 가능한 이차 전지는 다양한 모바일 기기의 에너지원으로서 광범위하게 사용되고 있다. 또한, 이차 전지는 기존의 가솔린 차량이나 디젤 차량의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기 자동차, 하이브리드 자동차 등의 에너지원으로서 또한 주목받고 있다.
이차 전지는 전극 조립체가 내장되는 전지 케이스의 형상에 따라 코인형 전지, 원통형 전지, 각형 전지 및 파우치형 전지로 분류된다. 일반적으로, 전지 케이스에 내장되는 전극 조립체는 양극과 음극 사이에 분리막을 개재하여 권취한 젤리-롤형, 양극과 음극 사이에 분리막이 개재된 복수의 단위 셀들을 적층한 스택형, 및 단위 셀들을 분리 필름으로 권취한 스택/폴딩형으로 분류된다.
이 중 스택/폴딩형은 전극 및 분리막을 포함하는 단위 셀들을 이송하여 분리 필름 상에 안착시키고, 분리 필름으로 권취시켜 제조할 수 있다. 이 때, 단위 셀의 이송 중 전극이 틀어지는 경우 단위 셀들 간의 정렬이 맞지 않아 오버행 불량 등의 문제가 발생할 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허 제10-2021-0055186호
본 발명의 목적 중 하나는 분리 필름 상에 안착되는 단위 셀의 정렬 정확도를 향상시키는 것이다.
본 발명의 목적 중 다른 하나는 오버행 불량을 개선하는 것이다.
본 발명의 목적 중 다른 하나는 폴딩 갭(gap) 불량을 개선하는 것이다.
본 발명은의 일 실시예는 전극 및 분리막을 포함하는 단위 셀을 제1 방향으로 이송하는 제1 이송부; 상기 전극의 틀어진 각도를 측정하는 제1 비전부; 상기 단위 셀을 파지하여 이동시키는 그리퍼(gripper); 및 상기 그리퍼를 제어하는 제어부; 를 포함하고, 상기 제어부는 상기 그리퍼가 상기 단위 셀을 파지하기 전 상기 제1 비전부로 측정된 상기 전극의 틀어진 각도에 기초하여 상기 그리퍼의 각도를 조정하고, 상기 그리퍼가 상기 단위 셀을 파지한 후 상기 그리퍼의 각도가 조정 전 각도가 되도록 상기 그리퍼를 복귀시키며, 상기 전극의 틀어진 각도는 상기 제1 방향과 평면 상에서 수직한 제2 방향으로의 가상선 및 상기 전극의 중심축이 이루는 각도이고, 상기 그리퍼의 각도는 상기 제2 방향으로의 가상선 및 상기 그리퍼의 중심축이 이루는 각도인, 단위 셀 정렬 장치를 제공한다.
본 발명의 일 실시예는 전극 및 분리막을 포함하는 단위 셀을 제1 방향으로 이송하는 단계; 상기 전극의 틀어진 각도를 측정하는 단계; 측정된 상기 전극의 틀어진 각도에 기초하여 그리퍼의 각도를 조정하는 단계; 상기 단위 셀을 각도가 조정된 상기 그리퍼로 파지하는 단계; 및 상기 단위 셀을 파지한 상기 그리퍼의 각도가 조정 전 각도가 되도록 상기 그리퍼를 복귀시키는 단계; 를 포함하며, 상기 전극의 틀어진 각도는 상기 제1 방향과 평면 상에서 수직한 제2 방향으로의 가상선 및 상기 전극의 중심축이 이루는 각도이고, 상기 그리퍼의 각도는 상기 제2 방향으로의 가상선 및 상기 그리퍼의 중심축이 이루는 각도인, 단위 셀 정렬 방법을 제공한다.
본 발명의 효과 중 하나는 분리 필름 상에 안착되는 단위 셀의 정렬 정확도를 향상시키는 것이다.
본 발명의 효과 중 다른 하나는 오버행 불량을 개선하는 것이다.
본 발명의 효과 중 다른 하나는 폴딩 갭(gap) 불량을 개선하는 것이다.
도 1은 본 발명의 일 실시예에 따른 단위 셀 정렬 장치의 측면도다.
도 2는 본 발명의 일 실시예에 따른 단위 셀의 정렬을 설명하기 위한 평면도다.
도 3은 본 발명의 일 실시예에 따른 단위 셀의 추가 정렬을 설명하기 위한 평면도다.
이하 첨부된 도면을 참조하여, 본 발명의 실시예를 상세히 설명하기로 한다. 도면에는 설명의 편의를 위해 각 구성 중 전부 또는 일부가 과장되게 표현되어 있을 수 있다.
또한, 본 발명이 첨부된 도면이나 본 명세서에서 설명된 내용으로 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명이 다양한 형태로 구현될 수 있음은 당업자에게 명백할 것이다.
도 1은 본 발명의 일 실시예에 따른 단위 셀 정렬 장치의 측면도다.
본 발명의 일 실시예에 따른 단위 셀(10) 정렬 장치는 이송부(110), 비전부(120), 그리퍼(130) 및 제어부(140)를 포함한다.
단위 셀(10)은 전극(11, 13) 및 분리막(12)을 포함한다. 구체적으로, 단위 셀(10)은 전극(11, 13) 및 분리막(12)이 교대로 적층된 구조일 수 있다. 본 발명의 일 실시예에 따르면, 단위 셀(10)은 제1 전극(11), 제1 전극(11)의 양면 상에 적층된 분리막(12) 및 제1 전극(11)의 양면 상에 적층된 분리막(12) 각각 상에 적층된 제2 전극(13)을 포함할 수 있으나, 단위 셀(10)의 구조가 이에 제한되는 것은 아니다.
제1 전극(11) 및 제2 전극(13) 중 하나는 양극이고, 다른 하나는 음극일 수 있다. 예컨대, 제1 전극(11)은 음극이고, 제2 전극(13)은 양극일 수 있다. 음극인 제1 전극(11)의 단면적은 양극인 제2 전극(13)의 단면적보다 클 수 있다. 여기서 단면적은 제1 방향(x) 및 제2 방향(y)이 이루는 평면에서의 단면적을 의미한다. 제1 전극(11) 및 제2 전극(13) 각각은 일 단부에 탭(tab)이 형성된 구조일 수 있으나, 도면 상으로는 전극의 탭을 생략하여 도시하였다.
분리막(12)은 전극(11, 13) 사이에 배치된다. 분리막(12)의 단면적은 전극(11, 13)의 단면적보다 클 수 있다. 전술한 바와 같이, 음극인 제1 전극(11)의 단면적은 양극인 제2 전극(13)의 단면적보다 클 수 있으며, 이 경우 분리막(12), 제1 전극(11), 제2 전극(13) 순으로 단면적이 작아질 수 있다.
이송부(110)는 단위 셀(10)을 이송한다. 이송부(110)는 제1 이송부(111) 및 제2 이송부(112)를 포함할 수 있다.
제1 이송부(111)는 전극(11, 13) 및 분리막(12)을 포함하는 단위 셀(10)을 제1 방향(x)으로 이송한다. 제1 이송부(111)는 서로 일정 간격 이격된 복수의 단위 셀(10)을 연속적으로 이송할 수 있다. 제1 이송부(111)는 컨베이어 벨트일 수 있다.
후술하는 바와 같이, 제1 이송부(111)는 전극(11, 13)이 제1 비전부(122)로 측정되는 영역인 제1 영역(A1) 및 전극(11, 13)이 그리퍼(130)로 파지되고 제2 비전부(122)로 측정되는 영역인 제2 영역(A2)을 가질 수 있다.
제2 이송부(112)는 분리 필름(20) 및 분리 필름(20) 상에 배치된 단위 셀(10)을 이송한다. 이 때, 단위 셀(10)은 후술하는 그리퍼(130)에 의해 제2 이송부(112)로 공급되어, 분리 필름(20) 상에 안착될 수 있다. 따라서, 후 공정에서 단위 셀(10)이 안착된 분리 필름(20)을 권취함으로써 스택/폴딩형 전극 조립체가 형성될 수 있다.
제2 이송부(112)는 한 쌍의 롤러일 수 있다. 따라서, 단위 셀(10)은 그리퍼(130)에 의해 한 쌍의 롤러 사이로 투입되어, 분리 필름(20)과 함께 압입될 수 있다.
비전부(120)는 전극(11, 13)의 위치 정보를 측정하며, 구체적으로 전극(11, 13)의 틀어진 각도를 측정할 수 있다. 다만, 비전부(120)는 전극(11, 13)의 위치, 전극(11, 13) 간의 정렬 상태 등 다른 위치 정보를 더 측정할 수도 있으며, 설계에 따라 분리막(12)의 위치 정보를 측정할 수도 있다. 비전부(120)로 측정된 정보는 제어부(140)로 전송될 수 있다.
비전부(120)는 제1 비전부(121) 및 제2 비전부(122)를 포함한다. 제1 비전부(121) 및 제2 비전부(122) 각각은 서로 다른 영역에서 전극(11, 13)의 틀어진 각도(θ1)를 측정할 수 있다. 제1 비전부(121) 및 제2 비전부(122) 각각은 비전 장치를 포함할 수 있으며, 비전 장치는 카메라, 엑스레이 등일 수 있다.
그리퍼(130)는 단위 셀(10)을 파지하여 이동시키는 역할을 수행할 수 있다. 구체적으로, 그리퍼(130)는 단위 셀(10)을 파지하여 파지된 단위 셀(10)을 제2 이송부(112)로 공급할 수 있다. 그리퍼(130)는 단위 셀(10)의 일 단부 또는 양 단부를 파지할 수 있다. 그리퍼(130)는 바디 및 암(arm)을 포함하며, 암이 단위 셀(10)을 파지하여 고정시킨 채로 이동시키는 것일 수 있다.
제어부(140)는 그리퍼(130)를 제어한다. 제어부(140)는 그리퍼(130)의 이동 거리, 이동 속도, 각도 등을 제어할 수 있다. 이 때, 제어부(140)는 비전부(120)로 측정된 정보에 기초하여 그리퍼(130)를 제어할 수 있다.
이하 도 2 및 도 3을 참고하여, 본 발명의 일 실시예에 따른 단위 셀 정렬 장치의 비전부(120), 그리퍼(130) 및 제어부(140)에 대해 보다 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 단위 셀의 정렬을 설명하기 위한 평면도다.
제1 이송부(111)는 제1 영역(A1) 및 제1 영역(A1)과 인접한 제2 영역(A2)을 갖는다. 단위 셀(10)은 제1 방향(x)을 따라 이송되며, 따라서 단위 셀(10)은 제1 영역(A1) 및 제2 영역(A2)을 순차적으로 통과한다. 제1 비전부(121)는 이송부(111)의 제1 영역(A1) 상에 배치되고, 제2 비전부(122)는 이송부(111)의 제2 영역(A2) 상에 배치된다. 달리 말하면, 제1 영역(A1)은 단위 셀(10)을 제1 비전부(121)로 측정하기 위한 제1 측정 영역이며, 제2 영역(A2)은 제1 영역(A1)을 통과한 단위 셀(10)을 제2 비전부(122)로 측정하기 위한 제2 측정 영역이다. 이 때, 단위 셀(10)은 제1 이송부(111)로 이송 중 제1 영역(A1)에서 일정 기간 정지하여 제1 비전부(121)로 측정되며, 다시 이송되어 제2 영역(A2)에서 일정 기간 정지하여 제2 비전부(122)로 측정될 수 있다. 또한, 후술하는 바와 같이 제2 영역(A2)은 단위 셀(10)이 그리퍼(130)로 파지되는 영역일 수도 있다. 한편, 제1 영역(A1) 및 제2 영역(A2)은 설명의 편의를 위해 도입되는 영역으로, 서로 육안으로 확인되는 경계를 갖는 것은 아닐 수 있다.
한편, 도 2 및 도 3에서 제1 비전부(121) 및 제2 비전부(122) 각각이 제1 이송부(110)의 제1 영역(A1) 및 제2 영역(A2) 각각의 제2 방향(y) 상에 배치되는 것으로 보일 수 있으나, 이는 설명의 이해를 돕기 위한 것일 뿐, 제1 비전부(121) 및 제2 비전부(122) 각각은 제1 이송부(110)의 제1 영역(A1) 및 제2 영역(A2) 각각의 제3 방향(z) 상에 배치되는 것임을 밝혀 둔다.
또한, 전술한 바와 같이 분리막(12)의 단면적은 전극(11, 13)의 단면적보다 클 수 있으며, 따라서 도면에는 단위 셀(10)이 최외각 전극(13)의 외측으로 분리막(12)이 돌출되어 배치된 구조를 갖는 것으로 도시하였다.
도 2(a)를 참고하면, 제1 비전부(121)는 제1 이송부(111)의 제1 영역(A1)에서 전극(11, 13)의 틀어진 각도(θ1)를 측정한다.
본 명세서에서, 전극(11, 13)의 틀어진 각도(θ1)는 제1 방향(x)과 평면 상에서 수직한 제2 방향(y)으로의 가상선(V) 및 전극(11, 13)의 중심축(C1)이 이루는 각도이다. 전극(11, 13)의 중심축(C1)은 전극(11, 13)이 틀어지지 않고 이상적으로 정렬된 상태일 때, 제2 방향(y)으로의 중심축이다. 다만, 정렬이 맞지 않는 전극(11, 13)의 중심축(C1)은 제2 방향(y)을 향하지 않을 수 있다.
제1 비전부(121)는 제1 전극(11) 및 제2 전극(13) 중 적어도 하나의 전극의 틀어진 각도(θ1)를 측정한다. 제1 비전부(121)는 제1 전극(11)의 틀어진 각도(θ1)를 측정하는 것일 수 있다. 제1 비전부(121)는 최외각 전극인 제2 전극(13)이 아닌 단위 셀(10)의 내부에 배치된 제1 전극(11)의 틀어진 각도(θ1)를 측정할 수 있으며, 따라서 제1 전극(11)을 기준으로 단위 셀(10)을 정렬시킬 수 있다. 전술한 바와 같이, 제1 전극(11)은 제2 전극(13)보다 단면적이 큰 음극일 수 있으며, 따라서 음극인 제1 전극(11)을 기준으로 단위 셀(10)을 정렬시킴으로써 오버행 불량을 개선할 수 있다. 다만, 이에 제한되는 것은 아니며, 제1 비전부(121)는 제2 전극(13)의 틀어진 각도를 측정하거나, 제1 전극(11) 및 제2 전극(13) 각각의 틀어진 각도를 측정하는 것일 수도 있다.
도 2(b)를 참고하면, 단위 셀(10)은 제1 이송부(111)의 제2 영역(A2)으로 이송되며, 그리퍼(130) 역시 제1 이송부(111)의 제2 영역(A2)으로 이동하여 단위 셀(10)을 파지한다.
이 때, 제어부(140)는 그리퍼(130)가 단위 셀(10)을 파지하기 전, 제1 비전부(121)로 측정된 전극(11, 13)의 틀어진 각도(θ1)에 기초하여 그리퍼(130)의 각도(θ2)를 조정한다. 구체적으로, 제어부(140)는 그리퍼(130)를 전극(11, 13)의 틀어진 각도(θ1)만큼 회전시킴으로써, 그리퍼(130)의 각도(θ2)를 조정한다. 따라서, 조정 후 그리퍼(130)의 중심축(C2)은 전극(11, 13)의 중심축(C1)과 평행하다. 그리퍼(130)의 각도(θ2)는 그리퍼(130)의 이동 전에 조정될 수도 있고, 이동 중에 조정될 수도 있으며, 또는 이동 후에 조정될 수도 있다.
본 명세서에서, 그리퍼(130)의 각도(θ2)는 제1 방향(x)과 평면 상에서 수직한 제2 방향(y)으로의 가상선(V) 및 그리퍼(130)의 중심축(C2)이 이루는 각도이다. 그리퍼(130)의 중심축(C2)은 그리퍼(130)가 조정되지 않고 정렬된 상태일 때, 제2 방향(y)으로의 중심축이다. 다만, 도면에 도시된 바와 같이 조정 후에는 그리퍼(130)의 중심축(C2)이 제2 방향(y)을 향하지 않을 수 있다.
도 2(c)를 참고하면, 제어부(140)는 그리퍼(130)가 단위 셀(10)을 파지한 후, 그리퍼(130)의 각도(θ2)가 조정 전 각도가 되도록 그리퍼(130)를 복귀시킨다. 달리 말하면, 제어부(140)는 그리퍼(130)가 단위 셀(10)을 파지한 후, 그리퍼(130)가 단위 셀(10)을 파지하기 전 회전한 각도만큼 다시 회전시킴으로써 그리퍼(130)를 복귀시킨다. 따라서, 그리퍼(130)의 중심축(C2)은 다시 제2 방향(y)을 향하며, 제2 방향(y)으로의 임의의 가상선(V)과 평행해진다. 복귀된 그리퍼(130)는 여전히 이송부(111)의 제2 영역(A2) 위치한다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 단위 셀 정렬 장치는 그리퍼(130)가 단위 셀(10)의 전극(11, 13)이 틀어진 각도(θ1)만큼 회전시킨 상태로 단위 셀(10)을 파지하고, 단위 셀(10)을 파지한 그리퍼(130)를 복귀시킴으로써 단위 셀(10)에 대한 1차 정렬을 수행한다. 다만, 이와 같이 정렬한 후에도 단위 셀(10)의 정렬 오차가 여전히 발생할 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 후술하는 바와 같이 단위 셀(10)의 추가 정렬을 실시할 수 있다.
도 3은 본 발명의 일 실시예에 따른 단위 셀의 추가 정렬을 설명하기 위한 평면도다.
도 3(a)를 참고하면, 제2 비전부(122)는 제1 이송부(111)의 제2 영역(A2)에서 그리퍼(130)가 복귀된 후, 그리퍼(130)로 파지된 상태에서 전극(11, 13)의 틀어진 각도(θ1)를 추가로 측정한다. 이상적인 경우, 도 2에서 설명한 1차 보정으로 단위 셀(10)의 정렬이 맞아야 하나, 측정이나 조정 상의 오차 등으로 인해 단위 셀(10)의 정렬 오차가 여전히 발생할 수 있기 때문이다.
제2 비전부(122) 역시 제1 전극(11) 및 제2 전극(13) 중 적어도 하나의 전극의 틀어진 각도(θ1)를 측정한다. 제2 비전부(122)는 제1 비전부(121)로 측정된 전극과 동일한 전극의 틀어진 각도를 측정하는 것이 추가 정렬의 측면에서 바람직할 수 있다. 예컨대, 제2 비전부(122)는 제1 비전부(121)와 마찬가지로 음극인 제1 전극(11)의 틀어진 각도(θ1)를 측정하는 것일 수 있다. 다만, 이에 제한되는 것은 아니며, 제2 비전부(122)는 제1 비전부(121)와 함께 제2 전극(13)의 틀어진 각도를 측정하거나, 제1 전극(11) 및 제2 전극(13) 각각의 틀어진 각도를 측정하는 것일 수도 있다. 필요에 따라, 제1 비전부(121)로 측정한 전극과 상이한 전극의 틀어진 각도를 측정할 수도 있다.
도 3(b)를 참고하면, 제어부(140)는 제2 비전부(122)로 측정된 전극(11, 13)의 틀어진 각도(θ1)에 기초하여 복귀된 그리퍼(130)의 각도(θ2)를 추가로 조정한다. 구체적으로, 제어부(140)는 그리퍼(130)를 그리퍼(130)가 복귀된 후 전극(11, 13)의 틀어진 각도(θ1)만큼 회전시킴으로써, 그리퍼(130)의 각도(θ2)를 추가로 조정한다. 따라서, 그리퍼(130)의 중심축(C2)은 다시 제2 방향(y)을 향하지 않을 수 있다. 그리퍼(130)의 각도(θ2)는 제1 이송부(111)의 제2 영역(A2)에서 추가로 조정될 수도 있고, 그리퍼(130)의 제2 이송부(112)로 이동 중에 조정될 수도 있으며, 또는 이동 후에 조정될 수도 있다.
도 3(c)를 참고하면, 제어부(140)는 그리퍼(130)가 추가로 조정된 각도를 유지하며 단위 셀(10)을 제2 이송부(112)로 공급하도록 더 제어할 수 있다. 즉, 제어부(140)는 단위 셀(10)을 파지한 그리퍼(130)가 추가로 조정된 각도를 유지하며 단위 셀(10)을 제1 이송부(111)의 제2 영역(A2)에서 제2 이송부(112)까지 이동하도록 제어할 수 있다. 따라서, 단위 셀(10)은 정렬이 개선된 상태로 제2 이송부(112)에 공급될 수 있다.
전술한 바와 같이, 본 발명의 일 실시예에 따르면 단위 셀(10)을 파지하는 그리퍼(130)의 각도(θ2)를 제어함으로써 단위 셀(10)의 정렬을 보정할 수 있다. 또한, 단위 셀(10)이 그리퍼(130)로 파지되기 전과 후 2회의 보정을 수행함으로써 단위 셀(10)의 정렬을 더욱 개선할 수 있다. 또한, 정렬된 상태의 단위 셀(10)을 제공함으로써, 분리 필름(20) 상에 안착되는 단위 셀(10)의 정렬 정확도를 향상시킬 수 있으며, 이를 통해 폴딩 갭 불량 역시 개선할 수 있다. 뿐만 아니라, 음극인 제1 전극(11)을 기준으로 단위 셀(10)을 정렬시킴으로써 오버행 불량을 더욱 개선할 수 있다.
본 발명의 단위 셀 정렬 방법은, 전극(11, 13) 및 분리막(12)을 포함하는 단위 셀(10)을 제1 방향(x)으로 이송하는 단계, 전극(11, 13)의 틀어진 각도(θ1)를 측정하는 단계, 측정된 전극(11, 13)의 틀어진 각도(θ1)에 기초하여 그리퍼(130)의 각도(θ2)를 조정하는 단계, 단위 셀(10)을 각도가 조정된 그리퍼(130)로 파지하는 단계 및 단위 셀(10)을 파지한 그리퍼(130)의 각도(θ2)가 조정 전 각도가 되도록 그리퍼(130)를 복귀시키는 단계를 포함한다.
또한, 본 발명의 단위 셀 정렬 방법은, 그리퍼(130)가 복귀된 후 전극(11, 13)의 틀어진 각도(θ1)를 추가로 측정하는 단계 및 추가로 측정된 전극(11, 13)의 틀어진 각도에 기초하여 상기 그리퍼(130)의 각도(θ2)를 추가로 조정하는 단계를 더 포함할 수 있다.
한편, 단위 셀 이송 단계는 전극(11, 13)을 전극(11, 13)의 틀어진 각도(θ1)가 측정되는 제1 영역(A1)으로 이송하는 제1 이송 단계 및 전극(11, 13)이 그리퍼(130)로 파지되는 제2 영역(A2)으로 이송하는 제2 이송 단계를 포함할 수 있다. 이 때, 전극(11, 13)의 틀어진 각도(θ2)를 추가로 측정하는 단계는 제2 영역(A2)에서 수행될 수 있다.
그 외에 다른 설명은 본 발명의 일 실시예에 따른 단위 셀 정렬 장치에서 설명한 내용과 실질적으로 동일하게 적용이 가능한 바, 자세한 내용은 생략한다.
이상으로, 본 발명의 일 실시예에 따른 단위 셀 정렬 장치 및 방법을 예시적으로 설명하였으나, 본 발명의 실시 형태를 전술한 형태로 제한하고자 하는 것은 아니다. 당업자는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서, 본 명세서 및 첨부된 도면을 참고하여 본 발명을 적절히 변경하여 실시할 수 있을 것이다.
본 명세서에서, 제1, 제2 등의 순번은 구성요소를 서로 구별하기 위한 것이며, 구성요소 간의 우선순위를 의미하거나 절대적인 순번을 의미하는 것이 아니다. 본 명세서의 일부분에서 제1 구성요소는 본 명세서의 다른 부분에서 제2 구성요소로 지칭될 수도 있다.
본 명세서에서, 제1 방향(x), 제2 방향(y), 제3 방향(z) 등의 방향은 도면을 기준으로 설명하였다. 본 명세서에서 설명된 방향은 관점에 따라 다르게 설명될 수 있음은 물론이다.
본 명세서에서, 본 명세서의 용어 및 표현은 광범위하게 해석되어야 하며 제한적인 의미로 해석되어서는 안 된다. 본 명세서에서, “포함”한다라는 표현은 언급된 구성 이외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 본 명세서에서, 단수형의 표현은 문맥 상 명시적으로 배제하지 않는 한 복수형을 포함한다. 또한, 각 실시예들은 서로 조합이 가능하며, 모순되지 않는 한 특정 실시예에서 설명된 내용은 다른 실시예에도 적용될 수 있다.
[부호의 설명]
10: 단위 셀
11: 제1 전극
12: 분리막
13: 제2 전극
20: 분리 필름
110: 이송부
111: 제1 이송부
112: 제2 이송부
120: 비전부
121: 제1 비전부
122: 제2 비전부
130: 그리퍼
140: 제어부

Claims (14)

  1. 전극 및 분리막을 포함하는 단위 셀을 제1 방향으로 이송하는 제1 이송부;
    상기 전극의 틀어진 각도를 측정하는 제1 비전부;
    상기 단위 셀을 파지하여 이동시키는 그리퍼(gripper); 및
    상기 그리퍼를 제어하는 제어부; 를 포함하고,
    상기 제어부는 상기 그리퍼가 상기 단위 셀을 파지하기 전 상기 제1 비전부로 측정된 상기 전극의 틀어진 각도에 기초하여 상기 그리퍼의 각도를 조정하고, 상기 그리퍼가 상기 단위 셀을 파지한 후 상기 그리퍼의 각도가 조정 전 각도가 되도록 상기 그리퍼를 복귀시키며,
    상기 전극의 틀어진 각도는 상기 제1 방향과 평면 상에서 수직한 제2 방향으로의 가상선 및 상기 전극의 중심축이 이루는 각도이고,
    상기 그리퍼의 각도는 상기 제2 방향으로의 가상선 및 상기 그리퍼의 중심축이 이루는 각도인,
    단위 셀 정렬 장치.
  2. 제1항에 있어서,
    상기 제어부는 상기 그리퍼가 상기 단위 셀을 파지하기 전 상기 그리퍼를 상기 전극의 틀어진 각도만큼 회전시키는,
    단위 셀 정렬 장치.
  3. 제1항에 있어서,
    상기 단위 셀은 제1 전극, 상기 제1 전극의 양면 상에 적층된 분리막 및 상기 제1 전극의 양면 상에 적층된 상기 분리막 각각 상에 적층된 제2 전극을 포함하며,
    상기 제1 비전부는 상기 제1 전극의 틀어진 각도를 측정하는,
    단위 셀 정렬 장치.
  4. 제3항에 있어서,
    상기 제1 전극은 음극이고, 상기 제2 전극은 양극인,
    단위 셀 정렬 장치.
  5. 제1항에 있어서,
    상기 그리퍼가 복귀된 후 상기 전극의 틀어진 각도를 추가로 측정하는 제2 비전부; 를 더 포함하며,
    상기 제어부는 상기 제2 비전부로 측정된 상기 전극의 틀어진 각도에 기초하여 복귀된 상기 그리퍼의 각도를 추가로 조정하는,
    단위 셀 정렬 장치.
  6. 제5항에 있어서,
    상기 제어부는 복귀된 상기 그리퍼를 상기 그리퍼가 복귀된 후 상기 전극의 틀어진 각도만큼 회전시키는,
    단위 셀 정렬 장치.
  7. 제5항에 있어서,
    상기 단위 셀은 제1 전극, 상기 제1 전극의 양면 상에 적층된 분리막 및 상기 제1 전극의 양면 상에 적층된 상기 분리막 각각 상에 적층된 제2 전극을 포함하며,
    상기 제1 비전부 및 상기 제2 비전부 각각은 상기 제1 전극의 틀어진 각도를 측정하는,
    단위 셀 정렬 장치.
  8. 제7항에 있어서,
    상기 제1 전극은 음극이고, 상기 제2 전극은 양극인,
    단위 셀 정렬 장치.
  9. 제5항에 있어서,
    상기 제1 비전부는 상기 제1 이송부의 제1 영역에서 상기 전극의 틀어진 각도를 측정하고,
    상기 그리퍼는 상기 제1 이송부의 제1 영역과 인접한 제2 영역에서 상기 전극을 파지하며,
    상기 제2 비전부는 상기 제1 이송부의 제2 영역에서 상기 전극의 틀어진 각도를 추가로 측정하는,
    단위 셀 정렬 장치.
  10. 제5항에 있어서,
    분리 필름 및 상기 분리 필름 상에 배치된 상기 단위 셀을 이송하는 제2 이송부; 를 더 포함하며,
    상기 그리퍼는 상기 단위 셀을 이동시켜 상기 제2 이송부로 공급하며,
    상기 제어부는 상기 그리퍼가 추가로 조정된 각도를 유지하며 상기 단위 셀을 상기 제2 이송부로 공급하도록 더 제어하는,
    단위 셀 정렬 장치.
  11. 전극 및 분리막을 포함하는 단위 셀을 제1 방향으로 이송하는 단계;
    상기 전극의 틀어진 각도를 측정하는 단계;
    측정된 상기 전극의 틀어진 각도에 기초하여 그리퍼의 각도를 조정하는 단계;
    상기 단위 셀을 각도가 조정된 상기 그리퍼로 파지하는 단계; 및
    상기 단위 셀을 파지한 상기 그리퍼의 각도가 조정 전 각도가 되도록 상기 그리퍼를 복귀시키는 단계; 를 포함하며,
    상기 전극의 틀어진 각도는 상기 제1 방향과 평면 상에서 수직한 제2 방향으로의 가상선 및 상기 전극의 중심축이 이루는 각도이고,
    상기 그리퍼의 각도는 상기 제2 방향으로의 가상선 및 상기 그리퍼의 중심축이 이루는 각도인,
    단위 셀 정렬 방법.
  12. 제11항에 있어서,
    상기 그리퍼가 복귀된 후 상기 전극의 틀어진 각도를 추가로 측정하는 단계; 및
    추가로 측정된 상기 전극의 틀어진 각도에 기초하여 복귀된 상기 그리퍼의 각도를 추가로 조정하는 단계; 를 더 포함하는,
    단위 셀 정렬 방법.
  13. 제12항에 있어서,
    상기 단위 셀을 제1 방향으로 이송하는 단계는 상기 전극을 상기 전극의 틀어진 각도가 측정되는 제1 영역으로 이송하는 제1 이송 단계 및 상기 전극이 상기 그리퍼로 파지되는 제2 영역으로 이송하는 제2 이송 단계를 포함하는,
    단위 셀 정렬 방법.
  14. 제13항에 있어서,
    상기 전극의 틀어진 각도를 추가로 측정하는 단계는 상기 제2 영역에서 수행되는,
    단위 셀 정렬 방법.
PCT/KR2022/010488 2021-08-03 2022-07-19 단위 셀 정렬 장치 및 정렬 방법 WO2023013922A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023578099A JP2024524954A (ja) 2021-08-03 2022-07-19 単位セルの整列装置及び整列方法
CN202280047169.5A CN117597807A (zh) 2021-08-03 2022-07-19 单元电池对准装置和方法
EP22853301.4A EP4343902A1 (en) 2021-08-03 2022-07-19 Unit cell alignment device and alignment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210101704A KR20230020087A (ko) 2021-08-03 2021-08-03 단위 셀 정렬 장치 및 정렬 방법
KR10-2021-0101704 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023013922A1 true WO2023013922A1 (ko) 2023-02-09

Family

ID=85156109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010488 WO2023013922A1 (ko) 2021-08-03 2022-07-19 단위 셀 정렬 장치 및 정렬 방법

Country Status (5)

Country Link
EP (1) EP4343902A1 (ko)
JP (1) JP2024524954A (ko)
KR (1) KR20230020087A (ko)
CN (1) CN117597807A (ko)
WO (1) WO2023013922A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120060705A (ko) * 2010-12-02 2012-06-12 주식회사 엘지화학 전극조립체의 폴딩 장치
KR20160051347A (ko) * 2014-11-03 2016-05-11 주식회사 엘지화학 스티치 커팅부를 포함하는 전극조립체 제조장치 및 이를 사용하여 제조된 전극조립체
KR20190092019A (ko) * 2018-01-30 2019-08-07 주식회사 엘지화학 단위셀의 이송방법 및 이송장치
KR20190091745A (ko) * 2018-01-29 2019-08-07 주식회사 엘지화학 전극 조립체 제조방법 및 이차전지 제조방법
KR20210055186A (ko) 2019-11-07 2021-05-17 주식회사 엘지화학 폴딩형 전극조립체 및 그 제조 방법
KR20210101704A (ko) 2020-02-10 2021-08-19 삼성전자주식회사 전자 장치 및 전자 장치의 고속 화면 운용 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120060705A (ko) * 2010-12-02 2012-06-12 주식회사 엘지화학 전극조립체의 폴딩 장치
KR20160051347A (ko) * 2014-11-03 2016-05-11 주식회사 엘지화학 스티치 커팅부를 포함하는 전극조립체 제조장치 및 이를 사용하여 제조된 전극조립체
KR20190091745A (ko) * 2018-01-29 2019-08-07 주식회사 엘지화학 전극 조립체 제조방법 및 이차전지 제조방법
KR20190092019A (ko) * 2018-01-30 2019-08-07 주식회사 엘지화학 단위셀의 이송방법 및 이송장치
KR20210055186A (ko) 2019-11-07 2021-05-17 주식회사 엘지화학 폴딩형 전극조립체 및 그 제조 방법
KR20210101704A (ko) 2020-02-10 2021-08-19 삼성전자주식회사 전자 장치 및 전자 장치의 고속 화면 운용 방법

Also Published As

Publication number Publication date
CN117597807A (zh) 2024-02-23
EP4343902A1 (en) 2024-03-27
JP2024524954A (ja) 2024-07-09
KR20230020087A (ko) 2023-02-10

Similar Documents

Publication Publication Date Title
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2020045772A1 (ko) 2차 전지용 전극 생산 시스템
WO2020184835A1 (ko) 이차전지용 라미네이션장치 및 방법
WO2020116846A1 (ko) 라미네이션장치 및 방법, 그를 포함하는 이차전지 제조설비
WO2020159293A1 (ko) 전극 적층 로더장치 및 이를 구비한 전극 적층 시스템
WO2022019599A1 (ko) 단위 셀 제조 장치 및 방법
WO2020231054A1 (ko) 전극 조립체 및 이의 검사 방법
WO2022145905A1 (ko) 전극시트의 불량 검출 시스템
WO2022019638A1 (ko) 전극 컷팅 장치용 동력전달유닛
WO2021112481A1 (ko) 전극조립체 제조방법 및 제조장치, 그를 포함한 이차전지 제조방법
WO2019146947A1 (ko) 전극 조립체 제조방법 및 이차전지 제조방법
WO2021096068A1 (ko) 이차 전지 제조용 전극 자동공급 장치 및 이를 이용한 전극 자동공급 방법
WO2022191510A1 (ko) 전극 조립체의 제조 장치 및 전극 조립체의 제조 방법
WO2022014753A1 (ko) 이차전지 스텍킹 장비
WO2022164257A1 (ko) 분리막 접착장치
WO2023013922A1 (ko) 단위 셀 정렬 장치 및 정렬 방법
WO2022080968A1 (ko) 전극 정렬부를 포함하는 전극 제조장치 및 이를 포함하는 전극조립체 제조장치
WO2022177123A1 (ko) 전극 탭의 불량 검출 시스템 및 이를 이용한 전극 탭의 불량 검출 방법
WO2022260245A1 (ko) 전극판 또는 단위셀 적층 검사 장치
WO2022164209A1 (ko) 전극 커팅 장치 및 이를 포함하는 전극 제조장치
WO2022149952A1 (ko) 커팅장치, 그를 포함하는 이차전지용 라미네이션 설비 및 방법
WO2023022434A1 (ko) 전극 커팅장치 및 이를 포함하는 셀 제조장치
WO2020231186A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 조립체 및 이차전지
WO2021112551A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2023106656A1 (ko) 전극용 오토 스플라이싱 장치 및 오토 스플라이싱 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578099

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022853301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280047169.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022853301

Country of ref document: EP

Effective date: 20231219

NENP Non-entry into the national phase

Ref country code: DE