WO2022014753A1 - 이차전지 스텍킹 장비 - Google Patents

이차전지 스텍킹 장비 Download PDF

Info

Publication number
WO2022014753A1
WO2022014753A1 PCT/KR2020/009407 KR2020009407W WO2022014753A1 WO 2022014753 A1 WO2022014753 A1 WO 2022014753A1 KR 2020009407 W KR2020009407 W KR 2020009407W WO 2022014753 A1 WO2022014753 A1 WO 2022014753A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
roller
secondary battery
separation membrane
moved
Prior art date
Application number
PCT/KR2020/009407
Other languages
English (en)
French (fr)
Inventor
김선규
김성철
김용성
지대영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2020/009407 priority Critical patent/WO2022014753A1/ko
Priority to KR1020237000968A priority patent/KR20230027154A/ko
Publication of WO2022014753A1 publication Critical patent/WO2022014753A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/02Advancing webs by friction roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/048Registering, tensioning, smoothing or guiding webs longitudinally by positively actuated movable bars or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/08Separating articles from piles using pneumatic force
    • B65H3/0808Suction grippers
    • B65H3/0816Suction grippers separating from the top of pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/02Folding limp material without application of pressure to define or form crease lines
    • B65H45/06Folding webs
    • B65H45/10Folding webs transversely
    • B65H45/101Folding webs transversely in combination with laying, i.e. forming a zig-zag pile
    • B65H45/103Folding webs transversely in combination with laying, i.e. forming a zig-zag pile by a carriage which reciprocates above the laying station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to secondary battery stacking equipment.
  • a secondary battery is a device that converts electrical energy into chemical energy, stores it, and generates electricity when needed. Both charging and discharging occur at one electrode, and the anode (Anode, -pole) and the cathode (Cathode, +pole) are distinguished based on the discharge response.
  • a secondary battery includes a positive and negative electrode plate coated with an active material on a current collector, a separator separating the positive and negative plates, an electrolyte that transfers ions through the separator, a case accommodating the positive and negative plates, the separator and the negative electrode; and a lead tab connected to the negative electrode plate and drawn out.
  • the secondary battery may be classified into a cylindrical type, a prismatic type, and a pouched type according to its shape.
  • the pouch-type secondary battery is widely used in the secondary battery industry because its shape can be relatively free including a case such as a flexible pouch, and the manufacturing process is relatively easy and the manufacturing cost is low.
  • a pouch-type secondary battery is a pouch-type secondary battery incorporating a thermally expansible layer disclosed in Korean Patent Application Laid-Open No. 10-2018-0095982 A (published on August 29, 2018), and such a pouch-type secondary battery includes a positive electrode, an electrode current collector including a negative electrode and a separator; A pouch surrounding the electrode current collector is included.
  • An object of the present invention is to provide a secondary battery stacking equipment capable of minimizing vibration or tearing of a separator during secondary battery manufacturing.
  • Another object of the present invention is to provide a secondary battery stacking device capable of more rapidly manufacturing a stackel.
  • An embodiment of the present invention is a secondary battery stacking equipment for manufacturing a stack cell in which the positive electrode and the negative electrode are alternately disposed with a separator therebetween, the separator is wound, an unwinder supplying the separator, and a separator guide at least one guide roller, a lamination table in which the positive electrode and the negative electrode are alternately disposed with the separator interposed therebetween; a buffer roller for guiding the separator; and a first for moving the buffer roller from the first position to the second position.
  • a roller moving mechanism that alternately performs an operation and a second operation of moving the buffer roller from the second position to the first position, and a first robot that moves on the lamination table and places the anode electrode on the separator on the lamination table; It may include a second robot that raises the negative electrode on the separator on the lamination table after being moved on the table, and a separator feeder disposed between the guide roller and the buffer roller in the movement path of the separator.
  • the separator feeder may feed the separator while the buffer roller is moved from the first position to the second position.
  • the separator feeder may feed the separator while the buffer roller is moved from the second position to the first position.
  • the roller moving mechanism may include a carrier on which the buffer roller is mounted, a screw through which the carrier is linearly moved, and a driving source for rotating the screw.
  • Each of the first position and the second position may be an upper periphery of the stacking table.
  • the distance between the first position and the second position may be longer than the width of the stacking table.
  • the first robot may be moved on the stacking table while the buffer roller is moved from the first position to the second position.
  • the first robot can seat the anode electrode on the separator.
  • the second robot may be moved on the stacking table while the buffer roller is moved from the second position to the first position.
  • the second robot can seat the negative electrode on the separator.
  • It may further include a dancer roller disposed between the guide roller and the separation membrane feeder in the movement path of the separation membrane to maintain the tension of the separation membrane.
  • It may further include a dancer roller disposed between the separation membrane feeder and the buffer roller in the movement path of the separation membrane to maintain the tension of the separation membrane.
  • the secondary battery stacking equipment may further include a sensor for detecting the separator, and a roller moving mechanism for moving the rollers constituting the separator feeder in the longitudinal direction of the roller when the position of the separator sensed by the sensor is out of a set range. .
  • the separator feeder forcibly transports the separator, so that the load on the separator is not large, and vibration or tearing of the separator that may occur when the load on the separator is large can be minimized.
  • the separator feeder can be stopped to provide an appropriate tension required for the separator, and the separator can be stacked reliably without being folded or misaligned.
  • FIG. 1 is a plan view showing a stack cell of a secondary battery according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a stack cell of a secondary battery according to an embodiment of the present invention
  • FIG. 3 is a perspective view showing a secondary battery stacking device according to an embodiment of the present invention.
  • FIG. 4 is a view showing a secondary battery stacking equipment according to an embodiment of the present invention.
  • FIG. 5 is a view when the second robot shown in FIG. 4 moves the cathode electrode on the stacking table
  • FIG. 6 is a view when the second robot shown in FIG. 5 puts the negative electrode on the separator
  • FIG. 7 is a view when the buffer roller shown in FIG. 6 is moved from the first position to the second position and the first robot moves the anode electrode onto the lamination table;
  • FIG. 8 is a view when the first robot shown in FIG. 7 puts the anode electrode on the separator;
  • FIG. 9 is a view when the buffer roller shown in FIG. 8 is moved from the second position to the first position and the second robot moves the cathode electrode onto the lamination table;
  • FIG. 10 is a view when the second robot shown in FIG. 9 puts the negative electrode on the separator
  • FIG. 11 is a view when the buffer roller shown in FIG. 10 is moved from the first position to the second position and the first robot moves the anode electrode onto the stacking table;
  • FIG. 13 is a plan view when the meandering travel of the separator shown in FIG. 12 is corrected.
  • FIG. 1 is a plan view illustrating a stack cell of a secondary battery according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a stack cell of a secondary battery according to an embodiment of the present invention.
  • the positive electrode 2 and the negative electrode 3 can be divided into a separator 4, and the positive electrode 2 and the negative electrode 3 are separated by a separator ( 4) can be arranged alternately.
  • a positive electrode tab 2a may be attached to the positive electrode 2
  • a negative electrode tab 3a may be attached to the negative electrode 3 .
  • the anode electrode may be a first electrode, and the cathode electrode may be a second electrode facing the anode electrode.
  • the separator 4 may be disposed to surround the anode electrode 2 and the cathode electrode 3 .
  • the separator 4 may be disposed so as not to surround the positive electrode tab 2a and the negative electrode tab 3a.
  • the separation membrane 4 may be divided into an inner separation membrane 5 and an external separation membrane 6 according to its position.
  • the inner separator 5 may be defined as a portion located inside the outer separator 6 among the separators 4, and has an approximately zigzag shape when manufactured by the secondary battery stacking equipment 10 (refer to FIG. 3 ) It may be a folded shape.
  • the outer separator 6 may be a portion extending from one end of the inner separator 5, and may be defined as a portion surrounding the inner separator 5, the plurality of positive electrodes 2 and the plurality of negative electrodes 3 together. .
  • Such a stack cell 1 may be assembled by a secondary battery stacking device, as shown in FIGS. 3 to 11 .
  • the separator 4, the positive electrode 2, and the negative electrode 3 can each be put into secondary battery stacking equipment after manufacturing is completed, and the secondary battery stacking equipment includes the positive electrode 2 and the negative electrode (3)
  • the anode electrode 2, the separator 4, and the cathode electrode 3 may be stacked so that the separator 4 is interposed therebetween.
  • the secondary battery stacking equipment can manufacture the stack cell 1 in which the positive electrode 2 and the negative electrode 3 are alternately arranged with the separator 4 interposed therebetween.
  • FIG. 3 is a perspective view illustrating a secondary battery stacking device according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a secondary battery stacking device according to an embodiment of the present invention
  • FIG. 5 is a diagram when the second robot shown in FIG. 4 moves the negative electrode on the stacking table
  • FIG. 6 is a diagram
  • the second robot shown in Fig. 5 is a view when the cathode electrode is placed on the separator
  • Fig. 7 is the buffer roller shown in Fig. 6 is moved from the first position to the second position and the first robot places the anode electrode on the stacking table. It is a diagram when moving.
  • FIG. 8 is a view when the first robot shown in FIG. 7 puts the anode electrode on the separator
  • FIG. 9 is the buffer roller shown in FIG. 8 is moved from the second position to the first position
  • the second robot moves the cathode electrode is a view when the second robot shown in FIG. 9 puts the cathode electrode on the separator
  • FIG. 11 is a view when the buffer roller shown in FIG. 10 is moved from the first position. It is a diagram when it is moved to position 2 and the first robot moves the anode electrode onto the stacking table.
  • the secondary battery stacking equipment 10 alternately disposes the positive electrode 2 and the negative electrode 3 with the separator 4 interposed therebetween while supplying the separator 4 so that the separator 4 is folded in a zigzag shape. It may be a Z-Stacking device.
  • the secondary battery stacking equipment 10 includes an unwinder 20, an unwinder 20 for which the separator 4 is wound, supplies the separator 4, and at least one guide roller 30 for guiding the separator 4 can do.
  • the separation membrane 4 When the unwinder 20 is stopped, the separation membrane 4 may be maintained in a wound state, and the separation membrane 4 may be unwound while rotating in a direction opposite to the winding direction of the separation membrane 4 .
  • the unwinder 20 may supply the separation membrane 4 at a constant speed.
  • the unwinder 20 may include a roller (or bobbin) on which the separation membrane 4 is wound, and a roller rotation mechanism such as a motor rotating the roller may be connected to the roller.
  • the guide roller 30 may be a roller for guiding the separation membrane 4 unwound in the unwinder 20 .
  • the guide roller 30 may be rotatably disposed.
  • the guide roller 30 may guide the separation membrane 4 so that the separation membrane 4 is bent.
  • the guide roller 30 may maintain the tension of the separation membrane 4 .
  • the guide roller 30 may form a movement path of the separation membrane 4 .
  • the secondary battery stacking equipment 10 may include a stacking table 40 .
  • the stack cell 1 constituting the secondary battery may be manufactured on the stacking table 40 .
  • the stacking table 40 may be a stage in which the stack cell 1 is manufactured.
  • the anode electrode 2, the cathode electrode 3, and the separator 4 constituting the stack cell 1 are placed on the stacking table 40 with the anode electrode 2 and the cathode electrode 3 interposed between the separator 4 They can be placed alternately.
  • An anode alignment table 41 and a cathode alignment table 42 may be respectively disposed around the stacking table 40 .
  • the anode electrode 2 may be mounted on the anode alignment table 41 .
  • the cathode electrode 3 may be mounted on the cathode alignment table 42 .
  • the anode alignment table 41 and the cathode alignment table 42 may be disposed to be spaced apart from each other with the stacking table 40 interposed therebetween.
  • a positive electrode magazine 43 in which positive electrodes are stacked may be disposed around the positive electrode alignment table 41 .
  • a negative electrode magazine 44 in which negative electrodes are stacked may be disposed around the negative electrode alignment table 42 .
  • the secondary battery stacking equipment 10 may further include a buffer roller 50 for guiding the separator 4 .
  • the buffer roller 50 may include a pair of rollers 51 and 52 spaced apart from each other with the separation membrane 4 interposed therebetween. Any one of the pair of rollers 51 and 52 may be in contact with one surface of the separation membrane 4 , and the other of the pair of rollers 51 and 52 may be in contact with the other surface of the separation membrane 4 . have.
  • the buffer roller 50 may push or pull a part of the separation membrane 4 in a horizontal direction, and, for example, may be a running roller that pushes the separation membrane 4 in a left direction or a right direction.
  • a roller moving mechanism 60 may be connected to the buffer roller 50 .
  • the buffer roller 50 may be changed in position by the roller moving mechanism 60 .
  • the buffer roller 50 may be moved to the first position P1 and the second position P2 by the roller moving mechanism 60 .
  • the first location P1 and the second location P2 may be horizontally spaced apart from each other.
  • Each of the first position P1 and the second position P2 may be an upper periphery of the stacking table 40 .
  • the distance L1 between the first position P1 and the second position P2 may be longer than the width L2 of the stacking table 40 .
  • the first position P1 and the second position P2 may be positions at which the buffer roller 50 moves past the upper side of the stacking table 40 .
  • the buffer roller 50 may be moved from the first position P1 to the second position P2 , and conversely may be moved from the second position P2 to the first position P1 .
  • the buffer roller 50 may be a traveling roller that moves along a traveling path between the first position P1 and the second position P2 .
  • This travel path may be above the stacking table 40 .
  • the roller moving mechanism 60 may execute a first operation (first mode) for moving the buffer roller 50 from the first position P1 to the second position P2 .
  • the roller moving mechanism 60 may perform a second operation (second mode) of moving the buffer roller 50 from the second position P2 to the first position P1 .
  • the roller moving mechanism 60 may alternately perform the first operation and the second operation.
  • the buffer roller 50 may reciprocate between the first position P1 and the second position P2 .
  • the roller moving mechanism 60 is a mechanism for linearly moving the buffer roller 50 reciprocally, and various mechanisms are applicable.
  • An example of the roller moving mechanism 60 is a carrier 62 on which the buffer roller 50 is mounted, a screw 64 guided so that the carrier 62 is linearly moved, and a driving source 66 for rotating the screw 64 . ) may be included.
  • the buffer roller 50 may be rotatably disposed on the carrier 62 , and when the carrier 62 moves, it may be linearly moved together with the carrier 62 .
  • the carrier 62 may include a hollow part through which the screw 64 passes, and a female thread may be formed on the inner circumference of the hollow part.
  • Male threads that mesh with the female threads of the carrier 62 may be formed on the outer periphery of the screw 64 , and when the screw 64 rotates, the carrier 62 moves along the screw 64 in the longitudinal direction of the screw 64 . can be moved to
  • the driving source 66 may include a motor that rotates the screw 64 .
  • roller moving mechanism 60 can reciprocate and linearly move the buffer roller 50, various configurations such as a linear motor are applicable.
  • the secondary battery stacking equipment 10 includes a first robot 70 that transports the positive electrode 2 to the separator 4 on the stacking table 40 , and the negative electrode 3 on the stacking table 40 . It may include a second robot 80 for transporting to the separation membrane (4).
  • the first robot 70 may move the anode electrode 2 of the anode magazine 43 to the anode alignment table 41 .
  • the first robot 70 can move the anode electrode 2 on the stacking table 40 and then place the anode electrode 2 on the separator 4 on the stacking table 40 .
  • the first robot 70 can move the anode electrode 2 of the anode alignment table 41 onto the stacking table 40 , and the stacking part 4c mounted on the stacking table 40 by moving the anode electrode 2 on the stacking table 40 . ) can be moved upwards.
  • the second robot 80 can move the negative electrode 3 of the negative electrode magazine 44 to the negative electrode alignment table 42 .
  • the second robot 80 can move the negative electrode 3 onto the stacking table 40 , and then place the negative electrode 3 on the separator 4 on the stacking table 40 .
  • the second robot 80 can move the negative electrode 3 of the negative electrode alignment table 43 onto the stacking table 40 , and the stacking part 4c mounted on the stacking table 40 with the negative electrode 3 . ) can be moved upwards.
  • the position and shape of the part 4c of the separation membrane 4 may be changed, and may be changed according to the position of the buffer roller 50 .
  • the position and shape of the feeding part 4b in the separation membrane 4 may be changed by the buffer roller 50 .
  • the load on the separation membrane 4 may be large, and when the tension acting on the separation membrane 4 is large, a shaking phenomenon occurs. may be torn or torn.
  • the secondary battery stacking equipment 10 may include a separator feeder 90 .
  • the separator feeder 90 may include a pair of rollers 91 and 92 , and any one of the pair of rollers 91 and 92 may be in contact with one surface of the separator 4 , and a pair of The other of the rollers 91 and 92 of the may be in contact with the other surface of the separation membrane (4).
  • the pair of rollers 91 and 92 may be rotated in opposite directions, and a portion of the separation membrane 4 positioned between the pair of rollers 91 and 92 is a pair of rollers 91 and 92 ) can be forcibly pushed out.
  • the separation membrane feeder 90 may minimize expansion due to tension of the separation membrane 4 , and may push the separation membrane 4 in the same direction as the running direction of the separation membrane 4 .
  • the separation membrane feeder 90 may forcefully push the separation membrane 4 to minimize the vibration or tearing of the separation membrane 4 .
  • the portion 4c after the separation membrane feeder 90 of the separation membrane 4 may be temporarily loosened and the tension acting on the separation membrane 4 may be reduced.
  • the separation membrane feeder 90 is preferably located before the buffer roller 50 in the moving path of the separation membrane 4 , and forces the separation membrane 4 at the previous position of the buffer roller 50 in the feeding direction of the separation membrane 4 . can be transported
  • the separation membrane feeder 90 may be disposed between the guide roller 30 and the buffer roller 50 in the movement path of the separation membrane 4 .
  • the separator 4 While the stack cell 1 is being manufactured, the separator 4 includes an introduction part 4a positioned between the unwinder 20 and the separator feeder 90 in the movement path of the separator 4, and a stacking table 40. It may be divided into a stacked portion 4b placed on top and a feeding portion 4c positioned between the introduction portion 4a and the stacked portion 4b in the movement path of the separation membrane 4 .
  • the feeding part 4c has passed through the separator feeder 90 , it may be defined as a part that has not yet been placed on the lamination table 40 .
  • the stacking portion 4b may be defined as a portion of the separator 4 that is in the feeding portion 4c before being placed on the stacking table 40 and is already placed on the stacking table 40 .
  • the separator feeder 90 may not be continuously driven (on), and may alternately be driven (on) and stopped (off).
  • the separation membrane feeder 90 may drive the separation membrane 4 by a certain amount.
  • the separation membrane 4 is also enlarged, and the separation membrane feeder 90 may be installed to correspond to the facing separation membrane 4 .
  • the separation membrane feeder 90 prevents a large load (or tension) from being temporarily applied to the portion 4c after the separation membrane feeder 90 of the separation membrane 4, and stops (off) when the load on the separation membrane 4 is small. ), it is preferable to maintain the separation membrane 4 to have a tension in a predetermined range.
  • the separation membrane feeder 90 is driven (on) only when the load acting on the separation membrane 4 is large, and it is preferable to temporarily lower the tension of the separation membrane 4 .
  • the separation membrane feeder 90 is driven while the buffer roller 50 is moved from the first position P1 to the second position P2 as shown in FIGS. 7 and 11 to feed the separation membrane 4 .
  • An example of the separator feeder 90 is capable of being driven while the buffer roller 50 is moved from the first position P1 to the second position P2.
  • Another example of the separator feeder 90 maintains a stop state when the buffer roller 50 is at the first position P1, and the buffer roller 50 is moved toward the second position P2 while moving toward the second position P2. It is possible to start driving when P3 is reached, and to stop when the buffer roller 50 has reached the second position P2.
  • the first setting position P3 may be a position between the first position P1 and the second position P2.
  • the first setting position (P3) may be closer to the second position (P2) than the first position (P1).
  • the feeding part 4c which is a portion of the separation membrane 4 after the separation membrane feeder 90, starts before the buffer roller 50 reaches the second position P2. may be loosened, and when the buffer roller 50 reaches the second position P2, the tension applied to the separation membrane 4 is not large, and when the buffer roller 50 reaches the second position P2 Vibration or tearing of the separation membrane 4 that may be generated can be minimized.
  • the separation membrane feeder 90 may feed the separation membrane 4 while the buffer roller 50 is moved from the second position P2 to the first position P2 .
  • An example of the separator feeder 90 is capable of being driven while the buffer roller 50 is moved from the second position P2 to the first position P1.
  • Another example of the separation membrane feeder 90 maintains a stop state when the buffer roller 50 is at the second position P2, and starts driving when the buffer roller 50 reaches the second set position P4, and the buffer When the roller 50 reaches the first position P1, it is possible to stop.
  • the second setting position P4 may be a position between the first position P1 and the second position P2.
  • the second setting position (P4) may be closer to the first position (P1) than the second position (P2).
  • the feeding part 4c which is a portion of the separation membrane 4 after the separation membrane feeder 90, starts before the buffer roller 50 reaches the first position P1. may be loosened, and when the buffer roller 50 reaches the first position P1, the tension applied to the separation membrane 4 is not large, and when the buffer roller 50 reaches the first position P1 Vibration or tearing of the separation membrane 4 that may be generated can be minimized.
  • the first robot 70 moves over the stacking table 40 while the buffer roller 50 is moved from the first position P1 to the second position P2 as shown in FIGS. 7 and 11 .
  • the first robot 70 may seat the anode electrode 2 on the separator 4 .
  • the separator 4 does not interfere with the anode electrode 2 , and the anode electrode 2 can be reliably seated on the separator 4 .
  • the first robot 70 moves the positive electrode magazine 43 . can lift the anode electrode, and as shown in FIG. 8 , while the first robot 70 puts the anode electrode on the anode alignment table 41 on the stacking part 4b on the stacking table 40 , the new positive electrode lifted from the positive electrode magazine 43 may be raised to the positive electrode alignment table 41 .
  • the first robot 70 can simultaneously perform the operation of placing the anode electrode 2 on the stacking unit 4b on the stacking table 40 and the action of placing the new anode electrode on the anode alignment table 41 . And, the total manufacturing time of the stack cell 1 can be shortened.
  • the second robot 80 moves over the stacking table 40 while the buffer roller 50 is moved from the second position P2 to the first position P1 .
  • the second robot 80 may seat the negative electrode 3 on the separator 4 .
  • the separator 4 does not interfere with the cathode electrode 3 , and the cathode electrode 3 can be reliably seated on the separator 4 .
  • the second robot 80 moves the cathode magazine 44 .
  • the cathode magazine 44 can lift the cathode electrode
  • the second robot 80 puts the cathode electrode on the cathode aligning table 42 on the stacking part 4b on the stacking table 40 , the new negative electrode lifted from the negative electrode magazine 44 may be placed on the negative electrode alignment table 42 .
  • the second robot 80 can simultaneously perform the operation of placing the negative electrode 3 on the stacking unit 4b on the stacking table 40 and the operation of placing a new negative electrode on the negative electrode alignment table 42 . And, the total manufacturing time of the stack cell 1 can be shortened.
  • the secondary battery stacking equipment 10 is disposed between the guide roller 30 and the separator feeder 90 in the movement path of the separator 4 and further includes a dancer roller 100 to maintain the tension of the separator 4 can
  • the dancer roller 100 may include a roller that moves along an arc-shaped trajectory about a central axis, and the tension may be maintained while the introduction part 4a of the separation membrane 4 is guided along these rollers.
  • the secondary battery stacking equipment 10 may further include a dancer roller 110 disposed between the separator feeder 90 and the buffer roller 50 in the movement path of the separator 4 to maintain the tension of the separator 4 .
  • the dancer roller 110 may include a roller that moves along an arc-shaped trajectory about a central axis, and the tension of the feeding part 4c of the separation membrane 4 may be maintained while being guided along these rollers.
  • a pair of dancer rollers 100 and 110 may be provided, and a pair of dancer rollers 100 and 100 is a front dancer roller ( 100 , and a rear dancer roller 1100 disposed after the separation membrane feeder 90 in the moving path of the separation membrane 4 .
  • the dancer rollers 100 and 110 maintain the tension of the separation membrane 4 to minimize the separation membrane 4 from obliquely traveling in the forward travel path.
  • FIG. 12 is a plan view when the separator in accordance with an embodiment of the present invention travels in a meandering manner
  • FIG. 13 is a plan view in which the meandering travel of the separator shown in FIG. 12 is corrected.
  • the secondary battery stacking equipment 10 may further include a sensor 120 for detecting the separator 4 .
  • the sensor 120 is a sensor capable of sensing the position of the separator 4 , and may include, for example, a distance sensor such as an infrared distance sensor or an ultrasonic distance sensor.
  • the sensor 120 may be a meander detection sensor that detects a meander of the separator 4, the meander detection sensor may measure the degree of meandering of the separator 4, and transmit the measured result to a controller (not shown). have.
  • the separation membrane 4 sensed by the sensor 120 may travel within a set range.
  • a part of the separation membrane 4 may slide obliquely in the forward travel path (ie, the set range), and the sensor 120 may sense the separation membrane 4 .
  • the secondary battery stacking equipment 10 removes the roller 91 constituting the separator feeder 90 in the longitudinal direction of the roller 91 .
  • (Y) may further include a roller moving mechanism 130 for moving.
  • the roller moving mechanism 130 may be driven by correction data transmitted from the controller.
  • the roller moving mechanism 130 may move the roller 91 so that the separation membrane 4 out of the set range re-enters within the set range.
  • the roller moving mechanism 130 may be connected to the frame 94 on which the roller 91 is rotatably mounted to linearly move the frame 94 .
  • roller moving mechanism 130 is configured to move the roller 91 of the separation membrane feeder 90, it is not limited to the type, and it is possible to include a screw and a motor for rotating the screw, a linear motor, etc. can be composed of

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 실시예는 양극전극과 음극전극이 분리막을 사이에 두고 교대로 배치되는 스텍 셀을 제조하는 이차전지 스텍킹 장비에 있어서, 분리막이 감기고, 분리막을 공급하는 언와인더와, 분리막을 안내하는 적어도 하나의 가이드 롤러와, 양극전극과 음극전극이 분리막을 사이에 두고 교대로 배치되는 적층 테이블과, 분리막을 안내하는 버퍼 롤러와, 버퍼 롤러를 제1위치에서 제2위치로 이동시키는 제1동작과 버퍼 롤러를 제2위치에서 제1위치로 이동시키는 제2동작을 교대로 실시하는 롤러 이동기구와, 적층 테이블 위로 이동된 후 양극전극을 적층 테이블 위의 분리막에 올리는 제1로봇과, 적층 테이블 위로 이동된 후 음극전극을 적층 테이블 위의 분리막에 올리는 제2로봇과, 분리막의 이동 경로 중 가이드 롤러와 버퍼 롤러 사이에 배치된 분리막 피더를 포함한다.

Description

이차전지 스텍킹 장비
본 발명은 이차전지 스텍킹 장비에 관한 것이다.
이차전지는 전기에너지를 화학에너지로 변환하여 저장해 두었다가 필요할 때에 전기를 만들어내는 소자로서, 한 개의 전극에서 충전과 방전이 모두 일어나고, 산화전극(Anode, -극)과 환원전극(Cathode, +극)은 방전 반응을 기준으로 구별된다.
이차전지는 집전체에 활물질이 도포된 양극판 및 음극판과, 양극판과 음극판을 분리하는 분리막(separator)과, 분리막을 통하여 이온을 전달하는 전해액과, 양극판과 분리막 및 음극판을 수용하는 케이스와, 양극판과 음극판에 연결되어 밖으로 인출되는 리드탭 등을 포함한다.
이차전지는 그 형상에 따라 원통형 (cylinder type), 각형(prismatic type) 및 파우치형(pouched type) 등으로 분류될 수 있다.
파우치형 이차전지는 유연성을 가진 파우치 등의 케이스를 포함하여 그 형상이 비교적 자유로울 수 있고, 제조 공정이 비교적 쉽고, 제조 비용이 낮아서 이차전지 업계에서 널리 사용되고 있다.
파우치형 이차전지의 일 예는 대한민국 공개특허공보 10-2018-0095982 A(2018년08월29일 공개)에 개시된 열팽창성 층을 도입한 파우치형 이차전지가 있고, 이러한 파우치형 이차전지는 양극, 음극, 세퍼레이터를 포함하는 전극집전체; 전극집전체를 감싸는 파우치를 포함한다.
본 발명은 이차전지 제조 도중에 분리막이 떨리거나 찢기는 것을 최소화할 수 있는 이차전지 스텍킹 장비를 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 스텍셀을 보다 신속하게 제조할 수 있는 이차전지 스텍킹 장비를 제공하는데 그 목적이 있다.
본 발명의 실시 예는 양극전극과 음극전극이 분리막을 사이에 두고 교대로 배치되는 스텍 셀을 제조하는 이차전지 스텍킹 장비에 있어서, 분리막이 감기고, 분리막을 공급하는 언와인더와, 분리막을 안내하는 적어도 하나의 가이드 롤러와, 양극전극과 음극전극이 분리막을 사이에 두고 교대로 배치되는 적층 테이블과, 분리막을 안내하는 버퍼 롤러와, 버퍼 롤러를 제1위치에서 제2위치로 이동시키는 제1동작과 버퍼 롤러를 제2위치에서 제1위치로 이동시키는 제2동작을 교대로 실시하는 롤러 이동기구와, 적층 테이블 위로 이동된 후 양극전극을 적층 테이블 위의 분리막 에 올리는 제1로봇과, 적층 테이블 위로 이동된 후 음극전극을 적층 테이블 위의 분리막에 올리는 제2로봇과, 분리막의 이동 경로 중 가이드 롤러와 버퍼 롤러 사이에 배치된 분리막 피더를 포함할 수 있다.
분리막 피더는 버퍼 롤러가 제1위치에서 제2위치로 이동되는 동안 분리막을 피딩할 수 있다.
분리막 피더는 버퍼 롤러가 제2위치에서 제1위치로 이동되는 동안 분리막을 피딩할 수 있다.
롤러 이동기구는 버퍼 롤러가 장착된 캐리어와, 캐리어가 직선 이동 안내되는 스크류와, 스크류를 회전시키는 구동원을 포함할 수 있다.
제1위치와 제2위치 각각은 적층 테이블의 상측 주변일 수 있다.
제1위치와 제2위치 사이의 거리는 적층 테이블의 폭 보다 길 수 있다.
제1로봇은 버퍼 롤러가 제1위치에서 제2위치로 이동되는 동안 적층 테이블 위에 이동될 수 있다.
제1로봇은 버퍼 롤러가 제2위치로 이동 완료되면, 양극전극을 분리막 위에 안착시킬 수 있다.
제2로봇은 버퍼 롤러가 제2위치에서 제1위치로 이동되는 동안 적층 테이블 위에 이동될 수 잇다.
제2로봇은 버퍼 롤러가 제1위치로 이동 완료되면, 음극전극을 분리막 위에 안착시킬 수 있다.
분리막의 이동 경로 중 가이드 롤러와 분리막 피더 사이에 배치되어 분리막의 텐션을 유지시키는 댄서 롤러를 더 포함할 수 있다.
분리막의 이동 경로 중 분리막 피더와 버퍼 롤러 사이에 배치되어 분리막의 텐션을 유지시키는 댄서 롤러를 더 포함할 수 있다.
이차전지 스텍킹 장비는 분리막를 감지하는 센서와, 센서에 의해 감지된 분리막의 위치가 설정범위를 벗어나면, 분리막 피더를 구성하는 롤러를 롤러의 길이 방향으로 이동시키는 롤러 이동기구를 더 포함할 수 있다.
본 발명의 실시 예에 따르면, 분리막 피더가 분리막을 강제로 이송하여, 분리막의 부하가 크지 않게 할 수 있고, 분리막의 부하가 클 때 발생될 수 잇는 분리막의 떨림이나 찢김이 최소화될 수 있다.
또한, 분리막의 부하가 작을 경우, 분리막 피더가 정지되어 분리막에 필요한 적정 텐션을 제공할 수 있고, 분리막이 접히거나 어긋나지 않고 신뢰성 높게 적층되게 할 수 있다.
또한, 다수개 스텍셀의 전체 제조 시간을 단축하거나 단위 시간당 스텍셀의 제조 수량을 최대화할 수 있다.
또한, 대형화된 스텍셀의 경우에도, 정밀도 높은 스텍셀을 제조할 수 있다.
도 1는 본 발명의 실시 예에 따른 이차전지의 스텍 셀이 도시된 평면도,
도 2는 본 발명의 실시 예에 따른 이차전지의 스텍 셀의 단면도,
도 3는 본 발명의 실시 예에 따른 이차전지 스텍킹 장비가 도시된 사시도,
도 4은 본 발명의 실시 예에 따른 이차전지 스텍킹 장비가 도시된 도,
도 5는 도 4에 도시된 제2로봇이 음극전극을 적층 테이블 위로 이동시킬 때의 도,
도 6는 도 5에 도시된 제2로봇이 음극전극을 분리막 위에 올릴 때의 도,
도 7은 도 6에 도시된 버퍼 롤러가 제1위치에서 제2위치로 이동되고 제1로봇이 양극전극을 적층 테이블 위로 이동시킬 때의 도,
도 8은 도 7에 도시된 제1로봇이 양극전극을 분리막 위에 올릴 때의 도,
도 9은 도 8에 도시된 버퍼 롤러가 제2위치에서 제1위치로 이동되고 제2로봇이 음극전극을 적층 테이블 위로 이동시킬 때의 도,
도 10는 도 9에 도시된 제2로봇이 음극전극을 분리막 위에 올릴 때의 도,
도 11은 도 10에 도시된 버퍼 롤러가 제1위치에서 제2위치로 이동되고 제1로봇이 양극전극을 적층 테이블 위로 이동시킬 때의 도,
도 12은 본 발명의 실시 예에 따른 분리막이 사행 주행할 때의 평면도,
도 13는 도 12에 도시된 분리막의 사행 주행을 보정하였을 때의 평면도이다.
이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다.
도 1는 본 발명의 실시 예에 따른 이차전지의 스텍 셀이 도시된 평면도이고, 도 2는 본 발명의 실시 예에 따른 이차전지의 스텍 셀의 단면도이다.
도 1 및 도 2에 도시된 스텍 셀(1)은 양극전극(2)와 음극전극(3)이 분리막(4)으로 구분될 수 있고, 양극전극(2)과 음극전극(3)은 분리막(4)을 사이에 두고 교대로 배치될 수 있다.
양극전극(2)에는 양극 탭(2a)이 부착될 수 있고, 음극전극(3)에는 음극 탭(3a)이 부착될 수 있다.
양극전극은 제1전극일 수 있고, 음극전극은 양극전극을 향하는 제2전극일 수 있다.
분리막(4)은 양극전극(2) 및 음극전극(3)을 둘러싸도록 배치될 수 있다. 분리막(4)은 양극 탭(2a) 및 음극 탭(3a)을 감싸지 않게 배치될 수 있다.
분리막(4)는 그 위치에 따라 내부 분리막(5)과, 외부 분리막(6)으로 구분될 수 있다.
내부 분리막(5)은 분리막(4) 중 외부 분리막(6)의 내부에 위치하는 부분으로 정의될 수 있고, 이차전지 스텍킹 장비(10, 도 3 참조)에 의해 제조 완료되었을 때, 대략 지그재그 형상으로 접힌 형상일 수 있다.
외부 분리막(6)은 내부 분리막(5)의 일단에서 연장된 부분일 수 있고, 내부 분리막(5)과, 복수개 양극전극(2) 및 복수개 음극전극(3)을 함께 감싸는 부분으로 정의될 수 있다.
이러한, 스텍 셀(1)은 도 3 내지 도 11에 도시된 바와 같은, 이차전지 스텍킹 장비에 의해 조립될 수 있다.
분리막(4)과, 양극전극(2)과, 음극전극(3) 각각은 제조 완료된 후, 이차전지 스텍킹 장비로 투입될 수 있고, 이차전지 스텍킹 장비는 양극전극(2)과, 음극전극(3)이 분리막(4)을 사이에 두고 배치되도록 양극전극(2)과 분리막(4) 및 음극전극(3)을 적층할 수 있다. 이차전지 스텍킹 장비는 양극전극(2)과 음극전극(3)이 분리막(4)을 사이에 두고 교대로 배치되는 스텍 셀(1)을 제조할 수 있다.
이하, 스텍 셀(1)을 조립하는 이차전지 스텍킹 장비에 대해 설명한다.
도 3는 본 발명의 실시 예에 따른 이차전지 스텍킹 장비가 도시된 사시도이다.
도 4은 본 발명의 실시 예에 따른 이차전지 스텍킹 장비가 도시된 도이고, 도 5는 도 4에 도시된 제2로봇이 음극전극을 적층 테이블 위로 이동시킬 때의 도이며, 도 6는 도 5에 도시된 제2로봇이 음극전극을 분리막 위에 올릴 때의 도이고, 도 7은 도 6에 도시된 버퍼 롤러가 제1위치에서 제2위치로 이동되고 제1로봇이 양극전극을 적층 테이블 위로 이동시킬 때의 도이다.
도 8은 도 7에 도시된 제1로봇이 양극전극을 분리막 위에 올릴 때의 도이고, 도 9은 도 8에 도시된 버퍼 롤러가 제2위치에서 제1위치로 이동되고 제2로봇이 음극전극을 적층 테이블 위로 이동시킬 때의 도이며, 도 10는 도 9에 도시된 제2로봇이 음극전극을 분리막 위에 올릴 때의 도이고, 도 11은 도 10에 도시된 버퍼 롤러가 제1위치에서 제2위치로 이동되고 제1로봇이 양극전극을 적층 테이블 위로 이동시킬 때의 도이다.
이차전지 스텍킹 장비(10)는 분리막(4)이 지그재그 형상으로 접히도록 분리막(4)을 공급하면서 분리막(4)을 사이에 두고 양극전극(2)과 음극전극(3)을 교대로 배치시키는 Z-Stacking 장비일 수 있다.
이차전지 스텍킹 장비(10)는 분리막(4)이 감기고, 분리막(4)을 공급하는 언와인더(20, Unwinder)와, 분리막(4)을 안내하는 적어도 하나의 가이드 롤러(30)를 포함할 수 있다.
언와인더(20)는 정지시, 분리막(4)이 감긴 상태를 유지할 수 있고, 분리막(4)이 감긴 방향과 반대 방향으로 회전되면서 분리막(4)을 풀 수 있다. 언와인더(20)는 일정 속도로 분리막(4)을 공급할 수 있다.
언와인더(20)는 분리막(4)이 감기는 롤러(또는 보빈)를 포함할 수 있고, 이러한 롤러에는 롤러를 회전시키는 모터 등의 롤러 회전기구가 연결될 수 있다.
가이드 롤러(30)는 언와인더(20)에서 풀린 분리막(4)을 가이드 하는 롤러일 수 있다. 가이드 롤러(30)는 회전 가능하게 배치될 수 있다. 가이드 롤러(30)는 분리막(4)이 꺽이도록 분리막(4)을 안내할 수 있다. 가이드 롤러(30)는 분리막(4)의 텐션을 유지시킬 수 있다.
가이드 롤러(30)는 분리막(4)의 이동 경로를 형성할 수 있다.
이차전지 스텍킹 장비(10)는 적층 테이블(40)을 포함할 수 있다. 이차전지를 구성하는 스텍 셀(1)은 적층 테이블(40) 위에서 제조될 수 있다. 적층 테이블(40)은 스텍 셀(1)이 제조되는 스테이지일 수 있다.
스텍 셀(1)을 구성하는 양극전극(2)과 음극전극(3) 및 분리막(4)은 적층 테이블(40) 위에서 양극전극(2)과 음극전극(3)이 분리막(4)을 사이에 두고 교대로 배치될 수 있다.
적층 테이블(40)의 주변에는 양극 얼라인 테이블(41)과, 음극 얼라인 테이블(42)이 각각 배치될 수 있다.
양극 얼라인 테이블(41)에는 양극전극(2)이 올려질 수 있다.
음극 얼라인 테이블(42)에는 음극전극(3)이 올려질 수 있다.
양극 얼라인 테이블(41)과 음극 얼라인 테이블(42)은 적층 테이블(40)을 사이에 두고 서로 이격되게 배치될 수 있다.
양극 얼라인 테이블(41)의 주변에는 양극전극들이 적층되는 양극 매거진(43)이 배치될 수 있다. 그리고, 음극 얼라인 테이블(42)의 주변에는 음극전극들이 적층되는 음극 매거진(44)이 배치될 수 있다.
이차전지 스텍킹 장비(10)는 분리막(4)을 안내하는 버퍼 롤러(50)를 더 포함할 수 있다.
버퍼 롤러(50)는 분리막(4)을 사이에 두고 이격되게 배치되 한 쌍의 롤러(51)(52)를 포함할 수 있다. 한 쌍의 롤러(51)(52) 중 어느 하나는 분리막(4)의 일면과 접촉될 수 있고, 한 쌍의 롤러(51)(52) 중 다른 하나는 분리막(4)의 타면과 접촉될 수 있다.
버퍼 롤러(50)는 분리막(4)의 일부를 수평 방향으로 밀거나 당길 수 있고, 일 예로, 분리막(4)을 좌측 방향으로 밀거나 우측 방향으로 미는 주행 롤러일 수 있다.
버퍼 롤러(50)에는 롤러 이동기구(60)가 연결될 수 있다. 버퍼 롤러(50)는 롤러 이동기구(60)에 의해 위치 가변될 수 있다. 버퍼 롤러50)는 롤러 이동기구(60)에 의해 제1위치(P1)과 제2위치(P2)로 이동될 수 있다.
제1위치(P1)와 제2위치(P2)는 수평 방향으로 서로 이격된 위치일 수 있다. 제1위치(P1)와 제2위치(P2) 각각은 적층 테이블(40)의 상측 주변일 수 있다.
제1위치(P1)와 제2위치(P2) 사이의 거리(L1)는 적층 테이블(40)의 폭(L2) 보다 길 수 있다.
제1위치(P1)와 제2위치(P2)는 버퍼 롤러(50)가 적층 테이블(40)의 상측을 지나 이동되는 위치일 수 있다.
버퍼 롤러(50)는 제1위치(P1)에서 제2위치(P2)로 이동될 수 있고, 반대로 제2위치(P2)에서 제1위치(P1)로 이동될 수 있다. 버퍼 롤러(50)는 제1위치(P1)와 제2위치(P2) 사이의 주행 경로를 따라 이동되는 주행 롤러일 수 있다.
이러한 주행 경로는 적층 테이블(40)의 위일 수 있다.
롤러 이동기구(60)는 버퍼 롤러(50)를 제1위치(P1)에서 제2위치(P2)로 이동시키는 제1동작(제1모드)을 실행할 수 있다. 롤러 이동기구(60)는 버퍼 롤러(50)를 제2위치(P2)에서 제1위치(P1)로 이동시키는 제2동작(제2모드)을 실시할 수 있다. 롤러 이동기구(60)는 제1동작과 제2동작을 교대로 실시할 수 있다.
롤러 이동기구(60)이 제1동작과 제2동작을 교대로 실시할 경우, 버퍼 롤러(50)는 제1위치(P1)와 제2위치(P2)를 왕복 운동할 수 있다.
롤러 이동기구(60)는 버퍼 롤러(50)를 왕복 직선 이동시키는 기구로서, 다양한 메커니즘이 적용 가능하다. 롤러 이동기구(60)의 일 예는 버퍼 롤러(50)가 장착된 캐리어(62)와, 캐리어(62)가 직선 이동되도록 안내되는 스크류(64)와, 스크류(64)를 회전시키는 구동원(66)을 포함할 수 있다.
버퍼 롤러(50)는 캐리어(62)에 회전 가능하게 배치될 수 있고, 캐리어(62)의 이동시, 캐리어(62)와 함께 직선 이동될 수 있다.
캐리어(62)는 스크류(64)가 관통되는 중공부를 포함할 수 있고, 중공부의 내둘레에는 암나사가 형성될 수 있다.
스크류(64)의 외둘레에는 캐리어(62)의 암나사와 치합되는 수나사가 형성될 수 있고, 스크류(64)의 회전시, 캐리어(62)는 스크류(64)를 따라 스크류(64)의 길이 방향으로 이동될 수 있다.
구동원(66)은 스크류(64)를 회전시키는 모터를 포함할 수 있다.
롤러 이동기구(60)는 버퍼 롤러(50)를 왕복 직선 이동시킬 수 있는 구성이면, 리니어 모터 등의 다양한 구성이 적용 가능함은 물론이다.
이차전지 스텍킹 장비(10)는 양극전극(2)을 적층 테이블(40) 위의 분리막(4)으로 운반하는 제1로봇(70)과, 음극전극(3)을 적층 테이블(40) 위의 분리막(4)으로 운반하는 제2로봇(80)을 포함할 수 있다.
제1로봇(70)은 양극 매거진(43)의 양극전극(2)을 양극 얼라인 테이블(41)로 옮길 수 있다.
제1로봇(70)은 양극전극(2)을 적층 테이블(40) 위로 이동한 후 양극전극(2)을 적층 테이블(40) 위의 분리막(4)에 올릴 수 있다.
제1로봇(70)은 양극 얼라인 테이블(41)의 양극전극(2)을 적층 테이블(40) 위로 이동시킬 수 있고, 양극전극(2)을 적층 테이블(40) 위에 올려진 적층부(4c) 위로 옮길 수 있다.
제2로봇(80)은 음극 매거진(44)의 음극전극(3)을 음극 얼라인 테이블(42)로 옮길 수 있다.
제2로봇(80)은 음극전극(3)을 적층 테이블(40) 위로 이동한 후 음극전극(3)을 적층 테이블(40) 위의 분리막(4)에 올릴 수 있다.
제2로봇(80)은 음극 얼라인 테이블(43)의 음극전극(3)을 적층 테이블(40) 위로 이동시킬 수 있고, 음극전극(3)을 적층 테이블(40) 위에 올려진 적층부(4c) 위로 옮길 수 있다.
스텍 셀(1)의 제조 도중에, 분리막(4) 중 일부(4c)의 위치 및 형상은 가변될 수 있고, 버퍼 롤러(50)의 위치에 따라 가변될 수 있다.
스텍 셀(1)의 제조 도중에, 분리막(4) 중 피딩부(4b)의 위치 및 형상은 버퍼 롤러(50)에 의해 가변될 수 있다.
버퍼 롤러(50)가 제1위치(P1)나 제2위치(P2)에 위치될 때, 분리막(4)의 부하가 클 수 있고, 분리막(4)에 작용하는 장력이 클 경우 떨림 현상이 발생되거나 찢길 수 있다.
이차전지 스텍킹 장비(10)는 분리막 피더(90)를 포함할 수 있다.
분리막 피더(90)는 한 쌍의 롤러(91)(92)를 포함할 수 있고, 한 쌍의 롤러(91)(92) 중 어느 하나는 분리막(4)의 일면과 접촉될 수 있고, 한 쌍의 롤러(91)(92) 중 다른 하나는 분리막(4)의 타면과 접촉될 수 있다.
한 쌍의 롤러(91)(92)는 서로 반대 방향으로 회전될 수 있고, 분리막(4) 중 한 쌍의 롤러(91)(92) 사이에 위치하는 부분은 한 쌍의 롤러(91)(92)에 의해 강제로 밀려날 수 있다.
분리막 피더(90)는 분리막(4)의 텐션에 의한 팽창을 최소화할 수 있고, 분리막(4)의 주행 방향과 동일한 방향으로 분리막(4)을 밀어낼 수 있다.
분리막 피더(90)는 분리막(4)의 떨림 현상이나 찢김을 최소화도록 분리막(4)의 강제로 밀어줄 수 있다. 분리막 피더(90)의 구동시, 분리막(4) 중 분리막 피더(90) 이후의 부분(4c)은 일시적으로 느슨하게 풀리면서 분리막(4)에 작용하는 장력이 감소될 수 있다.
분리막 피더(90)는 분리막(4)의 이동 경로 중 버퍼 롤러(50) 이전에 위치되는 것이 바람직하고, 분리막(4)의 공급 방향으로 버퍼 롤러(50)의 이전 위치에서 분리막(4)을 강제 이송시킬 수 있다.
분리막 피더(90)는 분리막(4)의 이동 경로 중 가이드 롤러(30)와 버퍼 롤러(50) 사이에 배치될 수 있다.
스텍 셀(1)이 제조되는 도중에, 분리막(4)은 분리막(4)의 이동 경로 중 언와인터(20)와 분리막 피더(90)의 사이에 위치하는 도입부(4a)와, 적층 테이블(40) 위에 올려진 적층부(4b)와, 분리막(4)의 이동 경로 중 도입부(4a)과 적층부(4b)의 사이에 위치하는 피딩부(4c)로 구분될 수 있다.
피딩부(4c)는 분리막 피더(90)를 통과하엿지만, 아직 적층 테이블(40) 위에 올려지지 않는 부분으로 정의될 수 있다.
적층부(4b)는 적층 테이블(40)에 올려지기 전에 피딩부(4c) 상태에 있다가, 분리막(4) 중 이미 적층 테이블(40) 위에 올려진 부분으로 정의될 수 있다.
스텍 셀(1)이 제조되는 도중에, 분리막 피더(90)는 계속 구동(온)되지 않고, 구동(온)과 정지(오프)를 교대를 실시할 수 있다.
분리막 피더(90)는 분리막(4)을 일정량 만큼씩 주행할 수 있다.
스텍셀(1)이 대형화될 경우, 분리막(4)도 대형화되고, 분리막 피더(90)는 대향화된 분리막(4)에 대응하기 위해 설치될 수 있다.
분리막 피더(90)는 분리막(4) 중 분리막 피더(90)의 이후 부분(4c)에 일시적으로 큰 부하(또는 장력)가 걸리지 않게 하는 것으로서, 분리막(4)의 부하가 작을 경우에는 정지(오프)되어, 분리막(4)에 소정 범위의 장력을 갖도록 유지시키는 것이 바람직하다.
반대로, 분리막 피더(90)는 분리막(4)에 작용하는 부하가 클 경우에만 구동(온)되어, 분리막(4)의 장력을 일시적으로 낮추는 것이 바람직하다.
분리막 피더(90)는 도 7 및 도 11에 도시된 바와 같이, 버퍼 롤러(50)가 제1위치(P1)에서 제2위치(P2)로 이동되는 동안 구동되어, 분리막(4)을 피딩할 수 있다.
분리막 피더(90)의 일 예는 버퍼 롤러(50)가 제1위치(P1)에서 제2위치(P2)로 이동되는 내내 구동되는 것이 가능하다.
분리막 피더(90)의 다른 예는 버퍼 롤러(50)가 제1위치(P1)일 때 정지상태를 유지하고, 버퍼 롤러(50)가 제2위치(P2)를 향해 이동되던 도중에 제1설정위치(P3)에 도달되면 구동 개시되고, 버퍼 롤러(50)가 제2위치(P2)에 도달 완료되면 정지되는 것이 가능하다.
제1설정위치(P3)는 제1위치(P1)와 제2위치(P2) 사이의 위치일 수 있다. 제1설정위치(P3)는 제1위치(P1) 보다 제2위치(P2)에 더 근접할 수 있다.
상기와 같이, 분리막 피더(90)가 구동되면, 분리막(4) 중 분리막 피더(90) 이후 부분인 피딩부(4c)은 버퍼 롤러(50)가 제2위치(P2)에 도달되기 이전 시점부터 느슨해질 수 있고, 버퍼 롤러(50)가 제2위치(P2)에 도달되었을 때, 분리막(4)에 가해지는 장력은 크지 않으며, 버퍼 롤러(50)가 제2위치(P2)에 도달되었을 때 발생될 수 있는 분리막(4)의 떨림이나 찢김은 최소화될 수 있다.
분리막 피더(90)는 도 9에 도시된 바와 같이, 버퍼 롤러(50)가 제2위치(P2)에서 제1위치(P2)로 이동되는 동안 분리막(4)을 피딩할 수 있다.
분리막 피더(90)의 일 예는 버퍼 롤러(50)가 제2위치(P2)에서 제1위치(P1)로 이동되는 내내 구동되는 것이 가능하다.
분리막 피더(90)의 다른 예는 버퍼 롤러(50)가 제2위치(P2)일 때 정지상태를 유지하고, 버퍼 롤러(50)가 제2설정위치(P4)에 도달되면 구동 개시되고, 버퍼 롤러(50)가 제1위치(P1)에 도달 완료되면 정지되는 것이 가능하다.
제2설정위치(P4)는 제1위치(P1)와 제2위치(P2) 사이의 위치일 수 있다. 제2설정위치(P4)는 제2위치(P2) 보다 제1위치(P1)에 더 근접할 수 있다.
상기와 같이, 분리막 피더(90)가 구동되면, 분리막(4) 중 분리막 피더(90) 이후 부분인 피딩부(4c)은 버퍼 롤러(50)가 제1위치(P1)에 도달되기 이전 시점부터 느슨해질 수 있고, 버퍼 롤러(50)가 제1위치(P1)에 도달되었을 때, 분리막(4)에 가해지는 장력은 크지 않으며, 버퍼 롤러(50)가 제1위치(P1)에 도달되었을 때 발생될 수 있는 분리막(4)의 떨림이나 찢김은 최소화될 수 있다.
한편, 제1로봇(70)은 도 7 및 도 11에 도시된 바와 같이, 버퍼 롤러(50)가 제1위치(P1)에서 제2위치(P2)로 이동되는 동안 적층 테이블(40) 위로 이동될 수 있다. 버퍼 롤러(50)와 제1로봇(70)이 함께 작동하는 시간이 길수록 스텍 셀(1)의 전체 제조시간은 단축될 수 있다.
도 8에 도시된 바와 같이, 버퍼 롤러(50)가 제2위치(P2)로 이동 완료되면, 제1로봇(70)은 양극전극(2)을 분리막(4) 위에 안착시킬 수 있다. 이 경우, 분리막(4)은 양극전극(2)을 방해하지 않고, 양극전극(2)은 신뢰성 높게 분리막(4) 위에 안착될 수 있다.
한편, 제2로봇(80)이 도 5에 도시된 바와 같이, 음극전극(3)을 적층 테이블(40) 위 적층부(4b)에 올리는 동안, 제1로봇(70)은 양극 매거진(43)의 양극전극을 들어올릴 수 있고, 도 8에 도시된 바와 같이, 제1로봇(70)이 양극 얼라인 테이블(41)에 있었던 양극전극을 적층 테이블(40) 위 적층부(4b)에 올리는 동안, 양극 매거진(43)에 들어올렸던 새로운 양극전극을 양극 얼라인 테이블(41)로 올릴 수 있다.
즉, 제1로봇(70)은 양극전극(2)을 적층 테이블(40) 위의 적층부(4b)에 올리는 동작과, 새로운 양극전극을 양극 얼라인 테이블(41)에 올리는 동작을 병행할 수 있고, 스텍 셀(1)의 전체 제조시간은 단축될 수 있다.
또한, 제2로봇(80)은 도 5 및 도 9에 도시된 바와 같이, 버퍼 롤러(50)가 제2위치(P2)에서 제1위치(P1)로 이동되는 동안 적층 테이블(40) 위로 이동될 수 있다. 버퍼 롤러(50)와 제2로봇(80)이 함께 작동하는 시간이 길수록 스텍 셀(1)의 전체 제조시간은 단축될 수 있다.
도 6 및 도 10에 도시된 바와 같이, 버퍼 롤러(50)가 제1위치(P1)로 이동 완료되면, 제2로봇(80)은 음극전극(3)을 분리막(4) 위에 안착시킬 수 있다. 이 경우, 분리막(4)은 음극전극(3)을 방해하지 않고, 음극전극(3)은 신뢰성 높게 분리막(4) 위에 안착될 수 있다.
한편, 제1로봇(70)이 도 8에 도시된 바와 같이, 양극전극(3)을 적층 테이블(40) 위 적층부(4b)에 올리는 동안, 제2로봇(80)은 음극 매거진(44)의 음극전극을 들어올릴 수 있고, 도 10에 도시된 바와 같이, 제2로봇(80)이 음극 얼라인 테이블(42)에 있었던 음극전극을 적층 테이블(40) 위 적층부(4b)에 올리는 동안, 음극 매거진(44)에 들어올렸던 새로운 음극전극을 음극 얼라인 테이블(42)로 올릴 수 있다.
즉, 제2로봇(80)은 음극전극(3)을 적층 테이블(40) 위의 적층부(4b)에 올리는 동작과, 새로운 음극전극을 음극 얼라인 테이블(42)에 올리는 동작을 병행할 수 있고, 스텍 셀(1)의 전체 제조시간은 단축될 수 있다.
이차전지 스텍킹 장비(10)는 분리막(4)의 이동 경로 중 가이드 롤러(30)와 분리막 피더(90) 사이에 배치되어 분리막(4)의 텐션을 유지시키는 댄서 롤러(100)를 더 포함할 수 있다.
댄서 롤러(100)는 중심축을 중심으로 호형 궤적을 따라 이동되는 롤러를 포함할 수 있고, 분리막(4) 중 도입부(4a)는 이러한 롤러를 따라 안내되면서 텐션이 유지될 수 있다.
이차전지 스텍킹 장비(10)는 분리막(4)의 이동 경로 중 분리막 피더(90)와 버퍼 롤러(50) 사이에 배치되어 분리막(4)의 텐션을 유지시키는 댄서 롤러(110)를 더 포함할 수 있다.
댄서 롤러(110)는 중심축을 중심으로 호형 궤적을 따라 이동되는 롤러를 포함할 수 있고, 분리막(4) 중 피딩부(4c)는 이러한 롤러를 따라 안내되면서 텐션이 유지될 수 있다.
댄서 롤러(100)(110)는 한 쌍 제공될 수 있고, 한 쌍의 댄서 롤러(100)(100)는 분리막(4)의 이동 경로 중 분리막 피더(90)의 이전에 배치된 프론트 댄서 롤러(100)와, 분리막(4)의 이동 경로 중 분리막 피더(90)의 이후에 배치된 리어 댄서 롤러(1100을 포함할 수 있다.
댄서 롤러(100)(110)는 분리막(4)의 텐션을 유지시켜 주어 분리막(4)이 정 주행경로에서 비스듬하게 주행하는 것을 최소화할 수 있다.
도 12은 본 발명의 실시 예에 따른 분리막이 사행 주행할 때의 평면도이고,도 13는 도 12에 도시된 분리막의 사행 주행을 보정하였을 때의 평면도이다.
이차전지 스텍킹 장비(10)는 분리막(4)를 감지하는 센서(120)을 더 포함할 수 있다.
센서(120)는 분리막(4)의 위치를 센싱할 수 있는 센서로서, 예를 들면, 적외선 거리 센서나 초음파 거리 센서 등의 거리센서 등을 포함할 수 있다.
센서(120)는 분리막(4)의 사행을 감지하는 사행 감지 센서일 수 있고, 사행 감지 센서는 분리막(4)의 사행 정도를 측정할 수 있고, 측정된 결과를 컨트롤러(미도시)로 전송할 수 있다.
분리막(4)이 정 주행경로를 따라 주행할 경우, 센서(120)에 의해 센싱되는 분리막(4)은 설정범위에서 주행할 수 있다.
분리막(4)에 가해진 충격 등이 클 경우, 분리막(4)의 일부는 정 주행경로(즉, 설정범위)에서 비스듬하게 미끄러질 수 있고, 센서(120)는 이러한 분리막(4)을 센싱할 수 있다.
이차전지 스텍킹 장비(10)는 센서(120)에 의해 감지된 분리막(4)의 위치가 설정범위를 벗어나면, 분리막 피더(90)를 구성하는 롤러(91)를 롤러(91)의 길이 방향(Y)으로 이동시키는 롤러 이동기구(130)를 더 포함할 수 있다.
롤러 이동기구(130)는 컨트롤러에서 전송된 보정 데이터에 의해 구동될 수 있다.
롤러 이동기구(130)는 설정범위를 벗어난 분리막(4)이 설정범위 내로 재진입되도록 롤러(91)를 이동시킬 수 있다.
롤러 이동기구(130)는 롤러(91)가 회전 가능하게 장착된 프레임(94)에 연결되어 프레임(94)을 직선 이동시킬 수 있다.
롤러 이동기구(130)는 분리막 피더(90)의 롤러(91)를 이동시킬 수 있는 구성이면, 그 종류에 한정되지 않고, 스크류와, 스크류를 회전시키는 모터를 포함하는 거이 가능하고, 리니어 모터 등으로 구성될 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 양극전극과 음극전극이 분리막을 사이에 두고 교대로 배치되는 스텍 셀을 제조하는 이차전지 스텍킹 장비에 있어서,
    분리막이 감기고, 분리막을 공급하는 언와인더와,
    상기 분리막을 안내하는 적어도 하나의 가이드 롤러와,
    양극전극과 음극전극이 상기 분리막을 사이에 두고 교대로 배치되는 적층 테이블과,
    상기 분리막을 안내하는 버퍼 롤러와,
    상기 버퍼 롤러를 제1위치에서 제2위치로 이동시키는 제1동작과 상기 버퍼 롤러를 제2위치에서 제1위치로 이동시키는 제2동작을 교대로 실시하는 롤러 이동기구와,
    상기 적층 테이블 위로 이동된 후 양극전극을 상기 적층 테이블 위의 분리막 에 올리는 제1로봇과,
    상기 적층 테이블 위로 이동된 후 음극전극을 상기 적층 테이블 위의 분리막 에 올리는 제2로봇과,
    상기 분리막의 이동 경로 중 상기 가이드 롤러와 버퍼 롤러 사이에 배치된 분리막 피더를 포함하는
    이차전지 스텍킹 장비.
  2. 제 1 항에 있어서,
    상기 분리막 피더는 상기 버퍼 롤러가 상기 제1위치에서 제2위치로 이동되는 동안 상기 분리막을 피딩하는 이차전지 스텍킹 장비.
  3. 제 1 항에 있어서,
    상기 분리막 피더는 상기 버퍼 롤러가 상기 제2위치에서 제1위치로 이동되는 동안 상기 분리막을 피딩하는 이차전지 스텍킹 장비.
  4. 제 1 항에 있어서,
    상기 롤러 이동기구는
    상기 버퍼 롤러가 장착된 캐리어와,
    상기 캐리어가 직선 이동 안내되는 스크류와,
    상기 스크류를 회전시키는 구동원을 포함하는 이차전지 스텍킹 장비.
  5. 제 1 항에 있어서,
    상기 제1위치와 제2위치 각각은 상기 적층 테이블의 상측 주변인 이차전지 스텍킹 장비.
  6. 제 1 항에 있어서,
    상기 제1위치와 제2위치 사이의 거리는 상기 적층 테이블의 폭 보다 긴 이차전지 스텍킹 장비.
  7. 제 1 항에 있어서,
    상기 제1로봇은
    상기 버퍼 롤러가 제1위치에서 제2위치로 이동되는 동안 상기 적층 테이블 위에 이동되는 이차전지 스텍킹 장비.
  8. 제 7 항에 있어서,
    상기 제1로봇은 상기 버퍼 롤러가 제2위치로 이동 완료되면, 양극전극을 상기 분리막 위에 안착시키는 이차전지 스텍킹 장비.
  9. 제 1 항에 있어서,
    상기 제2로봇은 상기 버퍼 롤러가 제2위치에서 제1위치로 이동되는 동안 상기 적층 테이블 위에 이동되는 이차전지 스텍킹 장비.
  10. 제 9 항에 있어서,
    상기 제2로봇은 상기 버퍼 롤러가 제1위치로 이동 완료되면, 음극전극을 상기 분리막 위에 안착시키는 이차전지 스텍킹 장비.
  11. 제 1 항에 있어서,
    상기 분리막의 이동 경로 중 상기 가이드 롤러와 분리막 피더 사이에 배치되어 상기 분리막의 텐션을 유지시키는 댄서 롤러를 더 포함하는 이차전지 스텍킹 장비.
  12. 제 1 항에 있어서,
    상기 분리막의 이동 경로 중 상기 분리막 피더와 버퍼 롤러 사이에 배치되어 상기 분리막의 텐션을 유지시키는 댄서 롤러를 더 포함하는 이차전지 스텍킹 장비.
  13. 제 1 항에 있어서,
    상기 분리막를 감지하는 센서와,
    상기 센서에 의해 감지된 분리막의 위치가 설정범위를 벗어나면, 상기 분리막 피더를 구성하는 롤러를 상기 롤러의 길이 방향으로 이동시키는 롤러 이동기구를 더 포함하는 이차전지 스텍킹 장비.
PCT/KR2020/009407 2020-07-16 2020-07-16 이차전지 스텍킹 장비 WO2022014753A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2020/009407 WO2022014753A1 (ko) 2020-07-16 2020-07-16 이차전지 스텍킹 장비
KR1020237000968A KR20230027154A (ko) 2020-07-16 2020-07-16 이차전지 스텍킹 장비

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/009407 WO2022014753A1 (ko) 2020-07-16 2020-07-16 이차전지 스텍킹 장비

Publications (1)

Publication Number Publication Date
WO2022014753A1 true WO2022014753A1 (ko) 2022-01-20

Family

ID=79554331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009407 WO2022014753A1 (ko) 2020-07-16 2020-07-16 이차전지 스텍킹 장비

Country Status (2)

Country Link
KR (1) KR20230027154A (ko)
WO (1) WO2022014753A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080529A (zh) * 2023-10-16 2023-11-17 广东东博智能装备股份有限公司 一种叠片电芯双平台叠片机构
WO2024053977A1 (ko) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 전극 조립체 제조 장치 및 이를 사용한 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275073A (ja) * 1992-03-25 1993-10-22 Matsushita Electric Ind Co Ltd セパレータの供給、袋化装置
KR20100016619A (ko) * 2007-05-02 2010-02-12 에낙스 가부시키가이샤 연속 세퍼레이터 및 시트형상 전극의 적층장치
KR101220981B1 (ko) * 2010-09-03 2013-01-10 (주)열린기술 이차전지용 전극판 적층장치
KR102049468B1 (ko) * 2019-05-10 2019-11-27 주식회사 이노메트리 현수식 스택 베이스 어셈블리를 구비한 각형 이차전지의 셀 스택 제조 장치
JP2019215967A (ja) * 2018-06-11 2019-12-19 キヤノンマシナリー株式会社 電極積層体の製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275073A (ja) * 1992-03-25 1993-10-22 Matsushita Electric Ind Co Ltd セパレータの供給、袋化装置
KR20100016619A (ko) * 2007-05-02 2010-02-12 에낙스 가부시키가이샤 연속 세퍼레이터 및 시트형상 전극의 적층장치
KR101220981B1 (ko) * 2010-09-03 2013-01-10 (주)열린기술 이차전지용 전극판 적층장치
JP2019215967A (ja) * 2018-06-11 2019-12-19 キヤノンマシナリー株式会社 電極積層体の製造装置
KR102049468B1 (ko) * 2019-05-10 2019-11-27 주식회사 이노메트리 현수식 스택 베이스 어셈블리를 구비한 각형 이차전지의 셀 스택 제조 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053977A1 (ko) * 2022-09-05 2024-03-14 주식회사 엘지에너지솔루션 전극 조립체 제조 장치 및 이를 사용한 제조 방법
CN117080529A (zh) * 2023-10-16 2023-11-17 广东东博智能装备股份有限公司 一种叠片电芯双平台叠片机构
CN117080529B (zh) * 2023-10-16 2023-12-26 广东东博智能装备股份有限公司 一种叠片电芯双平台叠片机构

Also Published As

Publication number Publication date
KR20230027154A (ko) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2020045772A1 (ko) 2차 전지용 전극 생산 시스템
WO2020213846A1 (ko) 와전류를 이용한 전지셀 내부의 균열 검사 방법 및 검사 장치
WO2022014753A1 (ko) 이차전지 스텍킹 장비
WO2020159293A1 (ko) 전극 적층 로더장치 및 이를 구비한 전극 적층 시스템
WO2021241960A1 (ko) 이차전지 제조방법 및 이차전지 제조장치
WO2015065082A1 (ko) 전지 셀 적층 지그
WO2020105834A1 (ko) 전극조립체
WO2020159295A1 (ko) 전극 적층 장치 및 이를 구비한 전극 적층 시스템
WO2021118160A1 (ko) 이차전지 제조방법 및 이차전지 제조용 프리 디개스 장치
WO2022039412A1 (ko) 이차 전지용 셀 스택 제조 장치
WO2023101279A1 (ko) 지그재그 스태킹 장치
WO2021096068A1 (ko) 이차 전지 제조용 전극 자동공급 장치 및 이를 이용한 전극 자동공급 방법
WO2023132495A1 (ko) 전극판 소재 공급 릴의 자동 교체를 위한 전극판 끝단 이음 장치 및 이를 이용한 전극판 끝단 이음 방법
WO2023106773A1 (ko) 배터리 모듈 조립체의 조립 시스템 및 조립 방법
WO2021182656A1 (ko) 이차전지의 전극판 제조장치 및 제조방법
WO2018004185A1 (ko) 이차 전지용 스택 장치, 이를 이용한 스택 방법 및 이에 따른 이차 전지
WO2022220663A1 (ko) 이차전지 제조장비
WO2023038208A1 (ko) 지그재그형 이차전지의 극판 고속 적층 장치
WO2023195680A1 (ko) 배터리 셀의 필름 부착 장치
WO2023022293A1 (ko) 이차전지 스텍킹 장비
WO2023075328A1 (ko) 전극 조립체 폴딩 장치 및 이에 의한 폴딩 방법
WO2023075330A1 (ko) 전극 조립체 폴딩 장치 및 이에 의한 폴딩 방법
WO2020231186A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 조립체 및 이차전지
WO2022014933A1 (ko) 테이프 제거 장치
WO2022164257A1 (ko) 분리막 접착장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944849

Country of ref document: EP

Kind code of ref document: A1