WO2020159295A1 - 전극 적층 장치 및 이를 구비한 전극 적층 시스템 - Google Patents

전극 적층 장치 및 이를 구비한 전극 적층 시스템 Download PDF

Info

Publication number
WO2020159295A1
WO2020159295A1 PCT/KR2020/001507 KR2020001507W WO2020159295A1 WO 2020159295 A1 WO2020159295 A1 WO 2020159295A1 KR 2020001507 W KR2020001507 W KR 2020001507W WO 2020159295 A1 WO2020159295 A1 WO 2020159295A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
unit
stacking
separator
alignment
Prior art date
Application number
PCT/KR2020/001507
Other languages
English (en)
French (fr)
Inventor
이강석
석쌍열
윤재호
Original Assignee
(주)호명이엔지
이강석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)호명이엔지, 이강석 filed Critical (주)호명이엔지
Publication of WO2020159295A1 publication Critical patent/WO2020159295A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode stacking device and an electrode stacking system having the same. More specifically, according to the present invention, by sequentially stacking the first electrode and the second electrode on the separator using one electrode stacking loader device, the size of the conventional electrode stacking device can be reduced as much as possible, and the overall process time is maximized. It relates to an electrode stacking device that can be reduced and an electrode stacking system having the same.
  • a secondary battery such as a lithium ion polymer battery or a lithium battery is used.
  • a plurality of cathode electrodes coated with a negative electrode active material and cathode electrodes coated with a positive electrode active material are usually manufactured.
  • an electrode assembly (hereinafter referred to as an “electrode body”) in which the plurality of anode electrodes and the plurality of cathode electrodes are laminated through a thin film called a separator is manufactured.
  • the electrode body is embedded in an aluminum pouch and sealed, and then the aluminum pouch having the electrode body is embedded in a case or the like, and the electrolyte is injected and finally sealed to complete production of the secondary battery.
  • FIG. 1A is a view schematically illustrating a method of manufacturing an electrode body according to the prior art
  • FIG. 1B is a cross-sectional view schematically showing an electrode body manufactured according to the method of manufacturing the electrode body according to the prior art.
  • a method of manufacturing the electrode body 101 first prepares a plurality of cathode electrodes 110 and a plurality of anode electrodes 120. Thereafter, one end of the separator 130 wound on the rotation roll 160 is mounted to be fixed to the clamp 140. Then, for example, by using a finger (finger) 150 to move in the right direction (X direction) along the surface of the separator 130a to form the first space 112a, and then the first cathode electrode 110a ) Is placed in the first space 112a.
  • a finger finger
  • the finger 150 is moved in the forward or reverse direction (Y direction) to be spaced apart from the separator 130a in a non-contact state, then raised in the vertical direction (Z direction), and left along the surface of the separator 130b.
  • the first anode electrode 120a is positioned in the second space 122a.
  • a plurality of cathode electrodes 110 and a plurality of anode electrodes 120 are stacked on the separator 130 in a sequential and alternating manner in the first space 112a, 112b and the second space 122a, 122b, respectively.
  • the electrode body 101 as shown in FIG. 1B is completed.
  • the electrode body 101 in which the electrodes are stacked is embedded in a storage member (not shown), such as a case, and sealed by a separate transfer device (not shown), and then injected with an electrolyte solution to inject a secondary battery.
  • a storage member such as a case
  • a separate transfer device not shown
  • an electrode supply member for supplying electrodes in a mechanical manner is provided. Is used.
  • FIG. 2 is a view schematically showing an apparatus for manufacturing an electrode assembly having an electrode supply member providing an electrode for manufacturing an electrode assembly according to the prior art.
  • the manufacturing apparatus of the electrode assembly having the electrode supply member of the prior art is, for example, by the name of the invention, "Manufacturing apparatus and method of manufacturing the secondary battery electrode assembly on May 8, 2009” by Min-Ho Kim Patent application No. 10-2009-0040495, and is described in detail in Korean Patent No. 10-1023700 (hereinafter referred to as "700 patent”) registered on March 14, 2011. The disclosure of these 700 patents It is incorporated herein by reference and forms part of the present invention.
  • the manufacturing apparatus 200 of the electrode assembly having the electrode supply member of the prior art is a separator 230 is wound, a rotating roll 260 for continuously supplying the separator 230;
  • a clamp 240 provided at a lower portion in the vertical direction from the rotating roll 260, and fixedly mounting one end of the separator 230;
  • a plurality of agents for detachably supporting the separator 230 One manifolder (270a, 270b, 270c);
  • a plurality of first manifolds 270a, 270b, 270c on the other side (right along the X-axis direction) with respect to the separator 230 between the rotating roll 260 and the clamp 240 ), a plurality of second manifolds 272a, 272b, and 272c for detachably supporting the separator 230;
  • a vacuum pumping device (not shown) connected
  • a plurality of cathode electrodes 210a, 210b, and 210c are supplied into the plurality of first spaces 212a, 212b, 212c, and a plurality of anode electrodes 220a in the plurality of second spaces 222a, 222b, 222c, A pair of first and second electrode supply members 214 and 224 for supplying 220b and 220c); And a stage 202 in which the completed electrode assembly (not shown) is located.
  • the first electrode supply member 214 includes a plurality of first support plates 216a, 216b, 216c for supporting the plurality of cathode electrodes 210a, 210b, 210c, and a second electrode supply member 224 ) Includes a plurality of second supporting plates 226a, 226b, 226c for supporting the plurality of anode electrodes 220a, 220b, 220c.
  • the manufacturing apparatus 200 of the electrode assembly having the electrode supply member of the prior art described above since the plurality of cathode electrodes 210 and the plurality of anode electrodes 220 are simultaneously supplied, the manufacturing time of the electrode assembly is considerably It is reduced, and the productivity of the secondary battery is increased, so that mass production is possible.
  • a plurality of first and second manifolds (270a, 270b, 270c; 272a, 272b, 272c), a vacuum pumping device, a plurality of first and second for detachably supporting the separator 230 to supply electrodes Since the use of a number of components such as a control device for controlling the vacuum state/vacuum release state of the second manifolds 270a, 270b, 270c; 272a, 272b, 272c is required, the electrode assembly manufacturing apparatus 200 The structure is quite complex and the manufacturing cost increases due to the increase in the number of component parts.
  • the plurality of cathode and anode electrodes 210a, 210b, 210c; 220a, 220b, and 220c are supplied onto a pair of first and second electrode supply members 214 and 224 by separate transfer devices (not shown) , Then supplied onto the separator 230 in a plurality of first and second spaces 212a, 212b, 212c; 222a, 222b, 222c again by a pair of first and second electrode supply members 214,224 do.
  • a plurality of cathode and anode electrodes 210a, 210b, 210c; 220a, 220b, 220c are provided on the separator 230 in a plurality of first and second spaces 212a, 212b, 212c; 222a, 222b, 222c. After being supplied to, it must be aligned separately by a mechanical device, for example, a centering unit (not shown). Therefore, the total process time according to the separate alignment operation is additionally increased.
  • the centering unit must physically contact the plurality of cathode and anode electrodes 210a, 210b, 210c; 220a, 220b, 220c. Such physical contact may cause damage to the electrode, and thus, defective electrode assembly may occur.
  • a separate transfer device (not shown) is required for the transfer of the plurality of cathode and anode electrodes 210a, 210b, 210c; 220a, 220b, 220c, and a pair of first and second electrode supply members (214,224) should be provided on both sides of the separator 230. Therefore, a large space is required to install the manufacturing apparatus 200 of the electrode assembly, which ultimately increases the manufacturing cost of the electrode assembly.
  • the present invention has been devised to solve the conventional problems as described above, and the object of the present invention is to sequentially stack the first electrode and the second electrode on the separator using one electrode stacking loader device, thereby providing
  • the present invention is to provide an electrode stacking apparatus and an electrode stacking system having the same, which can reduce the size as much as possible and reduce the overall process time as much as possible.
  • the electrode stacking apparatus while continuously supplying the separator by the reciprocating rotation, the first electrode and the second electrode having a different polarity from the first electrode are the separator.
  • An electrode stacked loader device stacked on the top;
  • An electrode delivery device for delivering the first electrode and the second electrode to the electrode stack loader device;
  • an electrode alignment device for aligning the first electrode and the second electrode delivered from the electrode delivery device and taking over the aligned first electrode and the second electrode to the electrode stack loader device.
  • the electrode stacking system is a body frame; An electrode stacking stage device disposed in an inner space of the main frame and provided to sequentially stack a first electrode and a second electrode of a different polarity from the first electrode on a separator that is continuously supplied; An electrode supply device disposed on both sides of the electrode stacking stage device and supplying the first electrode and the second electrode; A separator unwinding device that supplies the separator to the electrode stacking stage device; And the electrode stacking device according to any one of claims 1 to 12, which supplies the first electrode and the second electrode supplied by the electrode supplying device onto the electrode stacking stage device.
  • the size of the entire device can be reduced as much as possible, and the total It has the effect of reducing the process time as much as possible.
  • each electrode supply time and the overall process time accordingly may be minimized.
  • 1A is a view schematically illustrating a method of manufacturing an electrode body according to the prior art.
  • 1B is a cross-sectional view schematically showing an electrode body manufactured according to a method of manufacturing an electrode body according to the prior art.
  • FIG. 2 is a view schematically showing an apparatus for manufacturing an electrode assembly having an electrode supply member providing an electrode for manufacturing an electrode assembly according to the prior art.
  • FIG. 3 is a perspective view showing the structure of an electrode stacking device according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing the structure of an electrode stack loader device according to an embodiment of the present invention.
  • 5A is a diagram schematically showing a process in which a first electrode and a separator are stacked by an electrode stack loader device according to an embodiment of the present invention.
  • 5B is a view schematically showing a process in which a second electrode and a separator are stacked by an electrode stack loader device according to an embodiment of the present invention.
  • FIG. 6 is a perspective view schematically showing a structure of an electrode delivery device according to an embodiment of the present invention.
  • FIG. 7 is a view schematically showing the structure of an electrode alignment device according to an embodiment of the present invention.
  • FIG. 8 is a perspective view showing the structure of an electrode stacking system according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining the configuration of an electrode stacking system according to an embodiment of the present invention.
  • FIG. 10 is a perspective view schematically showing a structure of an electrode stacking stage device in an electrode stacking system according to an embodiment of the present invention.
  • FIG. 11 is a perspective view schematically showing a structure of an electrode supply device in an electrode stacking system according to an embodiment of the present invention.
  • FIG. 12 is a perspective view schematically showing the structure of an electrode stacking system according to another embodiment of the present invention.
  • FIG. 13 is a perspective view schematically showing a structure of an electrode stacking system according to another embodiment of the present invention.
  • FIG. 14 is a view for explaining the configuration of an electrode stacking system according to another embodiment of the present invention.
  • FIG. 3 is a view schematically showing the structure of an electrode stacking apparatus according to an embodiment of the present invention.
  • an electrode stacking device includes an electrode stacking loader device 100, an electrode delivery device 500, and an electrode alignment device 600.
  • FIG. 4 is a perspective view showing the structure of an electrode stacked loader device according to an embodiment of the present invention
  • FIG. 5A schematically illustrates a process in which a first electrode and a separator are stacked by an electrode stacked loader device according to an embodiment of the present invention
  • 5B is a diagram schematically showing a process in which a second electrode and a separator are stacked by an electrode stack loader device according to an embodiment of the present invention.
  • the electrode stack loader apparatus 100 includes a separator guide unit 110; Electrode stack loader unit 120; It includes a horizontal drive unit 150, and a conversion drive unit 160.
  • the electrode stacked loader device 100 continuously supplies the separator S by the rotational reciprocating movement while simultaneously supplying the first electrode E1 and the second electrode E2 of a different polarity from the first electrode E1. S).
  • the separator guide unit 110 guides the separator S supplied from the separator unwinding device 700 (refer to FIG. 7), which will be described later, to be rotated while maintaining tension.
  • the separator guide unit 110 may have a predetermined length, and may include a guide portion 111 composed of a first guide shaft 111a and a second guide shaft 111b spaced apart from each other and arranged in a horizontal direction. . Accordingly, the separator S may be guided and supplied so as to be rotatable after passing between the first guide shaft 111a and the second guide shaft 111b in a state in which tension is maintained.
  • the separator S guided and rotated by the guide unit 111 may be supplied to the electrode stacking stage device 300.
  • the separator guide unit 110 may further include a guide part fixing member 112 for fixing the guide part 111 so as to be rotatable to the body frame 200 shown in FIGS. 8 and 9 to be described later. .
  • the electrode stack loader unit 120 is provided to be spaced apart from each other on the lower side of the side frame 121, and the side frame 121, to which the separator guide unit 110 is fixedly mounted. It includes a pair of first and second stacked loader units 130 and 140. Specifically, the guide portion 111 and the guide portion fixing member 112 constituting the separator guide unit 110 are fixedly coupled to the upper inner and outer sides of the side frame 121, respectively, and the lower portion of the side frame 121. The first and second stacked loader units 130 and 140 are mounted on each.
  • the separator guide unit 110 of the electrode stacked loader unit 120 rotates while supplying the separator S onto the electrode stacked stage device 300, and at the same time, a pair of agents While the first and second stacked loader units 130 and 140 are rotated, the first electrode E1 and the second electrode E2 are alternately picked up and stacked on the upper surface of the separator S supplied on the electrode stacking stage device 300. .
  • the side frame 121 is provided opposite to the first side frame 121a and the first side frame 121a where the upper inner side is fixedly coupled to one side of the guide portion 111, and the upper inner side of the guide portion 111 is provided. And a second side frame 121b fixedly coupled to the other side, and a connection frame 121c for connecting the first side frame 121a and the second side frame 121b.
  • first side frame 121a and the second side frame 121b are illustrated in a trapezoidal shape, the shapes of the first side frame 121a and the second side frame 121b are It should be noted that it may be formed in various shapes.
  • the first stacked loader unit 130 is disposed under the side frame 121 and is rotated from the first position P1 to the second position P2 together with the side frame 121 to turn the first electrode E1. After picking up, it is rotated to the first position P1 again and is stacked on the upper surface of the separator S supplied on the electrode stacking stage device 300.
  • the second stacked loader unit 140 is disposed at a predetermined interval from the first stacked loader unit 130 under the side frame 121, and the second position in the first position P1 together with the side frame 121. After the second electrode E2 is picked up by being rotated to a third position P3 opposite to (P2), it is rotated back to the first position P1 and supplied to the separator stacked stage device 300 ( It is laminated on the top surface of S).
  • the first position P1 is a position where the first and second electrodes E1 and E2 are sequentially stacked on the separator S
  • the second position P2 is the first stacked loader unit 130.
  • a position where the first electrode E1 is picked up, and the third position P3 may be defined as a position where the second stacked loader unit 140 picks up the second electrode E2.
  • the first stacked loader unit 130 has a constant angle with respect to the ground when the side frame 121 is positioned above the electrode stacked stage device 300 (ie, when the rotation angle of the side frame 121 is 0 degrees). It is preferably arranged obliquely. This is to allow the first electrode E1 transferred from the first electrode alignment device 610 to be easily picked up and rotated.
  • the second stacked loader unit 140 is provided with respect to the ground when the side frame 121 is positioned above the electrode stacked stage device 300 (ie, when the rotation angle of the side frame 121 is 0 degrees). 1 It is preferable to be disposed to be inclined at a certain angle in a position facing the stacked loader unit 130. This is to allow the second electrode E2 transferred from the second electrode alignment device 620 to be described later to be easily picked up and rotated.
  • the first stacked loader unit 130 is rotated from the first position P1 to the second position P2 (in the first direction) by rotation of the side frame 121 to be While picking up the first electrode E1 from the one electrode alignment device 610, the second stacked loader unit 140 is guided by the separator guide unit 110 and supplied to the second surface of the separator S (others) The side is pushed in the direction of the second position P2, folded, and then released from the pickup state of the second electrode E2 picked up by the second stacked loader unit 140, so that the product provided in advance to the electrode stacked stage device 300 is released.
  • the second electrode E2 is stacked in the second surface (outer surface) of the separator S (see FIG. 5A ).
  • the second stacked loader unit 140 rotates from the first position P1 to the third position P3 (in the second direction opposite to the first direction) by the rotation of the side frame 121.
  • the first stacked loader unit 130 is guided by the separator guide unit 110 and supplied to the separator S.
  • the electrode stacking stage device 300 is released by pushing the first surface (inner surface) in the third position P3 to fold and then releasing the pickup state of the first electrode E1 picked up by the first stacked loader unit 120.
  • the stacked second electrode E2 is enclosed in the second surface (outer surface) of the separator S and at the same time, the first electrode E1 in the first surface (inner surface) of the separator S. Are stacked (see FIG. 5B). In this way, the first and second electrodes E1 and E2 are sequentially stacked on the first side (inner side) and the second side (outer side) of the separator S on the electrode stacking stage device 300. .
  • the first stacked loader unit 130 picks up the first electrode E1.
  • the first stacked loader unit 130 includes, for example, a first loader plate 131 and a first loader plate 131 in which a plurality of vacuum ports P for suction by vacuum are installed. ) May be included in the first support frame 132 for fixing the side frame 121, but it is not limited thereto.
  • one side of the first loader plate 131 in contact with the first surface (inner side) of the separator S may be formed to have a round portion R.
  • the separator S can be damaged. Therefore, there is an advantage that damage to the separator S can be prevented as much as possible by the round portion R formed on one side of the first loader plate 131 described above.
  • a first gripper receiving groove 131a accommodating the first gripper 320 (see FIG. 10) provided in the electrode stacking stage device 300 may be formed at a lower side of the first loader plate 131.
  • the first gripper 320 is inserted into the first gripper accommodation groove 131a in the state where each electrode E1 is stacked, and is stacked. The upper side of the electrode E1 is gripped. Accordingly, the first gripper 320 can grip the top of the stacked first electrode E1 without interference with the first loader plate 131.
  • the first stacked loader unit 130 is disposed on the upper side of the first loader plate 131, and moves the first loader plate 131 up and down to adjust the position of the first loader plate 131.
  • 1 may further include a position adjusting means (133).
  • a plurality of first electrodes E1 provided on the first electrode alignment device 610 illustrated in FIG. 5A is picked up by the first stacking loader unit 130 and supplied to the electrode stacking stage device 300. As it is stacked, the height of the first electrode E1 remaining on the first electrode alignment device 610 is changed. Accordingly, when the first stacked loader unit 130 is moved to the second position P2 in order to pick up the first electrode E1, the lower surface of the first loader plate 131 is the first electrode alignment device 610. ) Needs to be positioned close to the uppermost first electrode E1. At this time, the first loader plate 131 is moved downward so that the lower surface of the first loader plate 131 approaches the first electrode E1 using the first position adjusting means 133 to adjust the position. .
  • the first position adjusting means 133 may be implemented in a cylinder manner, but is not limited thereto.
  • the first position adjusting means 133 includes a first cylinder portion 133a and a first support frame for moving the first support frame 132 supporting the first loader plate 131 in the vertical direction. 132) and the side frame 121, and may include a first guide portion 133b for guiding the vertical movement of the first support frame 132.
  • the second stacked loader unit 140 may include a second loader plate 141, a second support frame 142, and a second position adjusting means 143.
  • the second stacked loader unit 140 has substantially the same configuration and operation of the first stacked loader unit 130 described above, a detailed description of the structure is performed except for the following different configurations and operations. Omitted.
  • the second gripper receiving groove portion 141a formed in the second loader plate 141 is provided in the electrode stacking stage device 300 so that the first gripper 320 and the second electrode ( A second gripper 330 (see FIG. 10) for gripping E2) is accommodated.
  • the horizontal drive unit 150 is a configuration for horizontally moving the stacked loader unit 120, the horizontal drive unit 150 is stacked loader unit 120 ) May include a horizontal driving unit 151 disposed on at least one of both sides.
  • the horizontal driving unit 151 may be applied to a linear module method or a linear motion guide (LM Guide) method, it should be noted that it is not limited thereto.
  • the horizontal driving unit 151 may include a horizontal moving member 151a for horizontally reciprocating the stacked loader unit 120; A guide block 151b coupled to the horizontal moving member 151a to guide the movement of the horizontal moving member 151a; And a driving motor 151c disposed on one side of the guide block 151b and driving the horizontal moving member 151a.
  • the conversion drive unit 160 has one side connected to the stacked loader unit 120 and the other side connected to the horizontal drive unit 150. Accordingly, the conversion drive unit 160 may be converted to move the stacked loader unit 120 in a reciprocating rotation by vertically moving on the stacked loader unit 120 in conjunction with the horizontal reciprocating motion of the horizontal drive unit 150. .
  • the conversion driving unit 160 may be disposed on at least one of both sides of the stacked loader unit 120, and may include a conversion driving unit 161. In an embodiment of the present invention, for stable rotation of the stacked loader unit 120, it is shown that the conversion drive unit 161 is disposed on both sides of the stacked loader unit 120 in the same manner as the horizontal drive unit 151.
  • the conversion driving unit 161 is formed on one side of the side frame 121, the guide rail 161a formed along the height direction of the side frame 121, and one side is coupled to the guide rail 161a and other
  • the side may include a vertical moving member 161b coupled with the horizontal moving member 151a.
  • the vertical moving member 161b moves vertically and reciprocally along the guide rail 161a by the horizontal reciprocating movement of the horizontal moving member 151a to move the side frame 121 in a reciprocating rotation.
  • the electrode stack loader device 100 is moved by rotating and rotating the stack loader unit 120 by the interlocking operation between the horizontal driving unit 151 and the conversion driving unit 161 having a relatively simple structure. It has the advantage of reducing the overall size and weight of the product as much as possible.
  • the first electrode E1 and the second electrode (at the same time as the separator S is guided and supplied in a rotational manner using one electrode stacked loader device 100) Since E2) can be stacked on the stacked stage device 300, there is an advantage of simplifying the size and structure of the entire device and reducing the processing time as much as possible.
  • FIG. 6 is a perspective view schematically showing the structure of an electrode delivery device in an electrode stacking system according to an embodiment of the present invention.
  • the electrode delivery device 500 includes the first electrode E1 and the second electrode (supplied from the electrode supply device 400 (see FIG. 8) described below) E2) is transferred to the electrode stacking stage device 300 through the electrode alignment device 600.
  • the electrode delivery device 500 is the second electrode E2 from the first electrode delivery device 510 and the second electrode supply device 420 receiving the first electrode E1 from the first electrode supply device 410. It includes a second electrode delivery device 520 is supplied.
  • the first electrode delivery device 510 includes a first side frame 511, a first electrode adsorption unit 512, a first side frame support unit 513, a pair of horizontal drive units 514, and It includes a pair of conversion drive unit 515.
  • the first side frame 511 may include a pair of side frames 511a and 511b and a connection bar 511c connecting the pair of side frames 511a and 511b.
  • the first electrode adsorption unit 512 is disposed between the pair of side frames 511a and 511b on the lower side of the first side frame 511, and the first electrode supplied from the first electrode supply device 410 ( After E1) is adsorbed (for example, by vacuum), it is transferred to the first electrode alignment device 610, which will be described later, by rotational reciprocation.
  • the first electrode adsorption unit 512 may be provided with a vacuum port P for adsorbing the first electrode E1, and the first electrode transferred by the first electrode transfer plate 413a ( E1) is vacuum adsorbed, and then rotated to the first electrode alignment device 610 constituting the electrode alignment device 600 and transferred to the first electrode alignment device 610.
  • the first electrode adsorption unit 512 is substantially the same in structure and operation as the first stacked loader unit 130 described above with reference to FIG. 4, and thus detailed description thereof will be omitted.
  • the first side frame support unit 513 is installed on the main frame 200 to support the first electrode adsorption unit 512 so as to be rotatable.
  • the first side frame support unit 513 is a first rotation support member 513a installed on the first body frame 201 shown in FIG. 5, and a second rotation installed on the second body frame 202 It may include a support member (513b).
  • each of the pair of side frames 511a and 511b are rotatably installed on the first and second support members 513a and 513b.
  • the pair of horizontal driving units 514 horizontally move the first electrode adsorption unit 512.
  • Each of the pair of conversion driving units 515 is connected to the first electrode adsorption unit 512 and the other side is connected to the pair of horizontal driving units 514. Accordingly, the pair of conversion driving units 515 converts the first electrode adsorption unit 512 to rotate and reciprocate while vertically moving in association with the horizontal reciprocating movement of the pair of horizontal driving units 514.
  • the pair of horizontal drive units 514 and the pair of conversion drive units 515 are the horizontal drive unit 150 and the conversion drive unit 160 described above with reference to FIG. Since the configuration and operation are substantially the same, detailed description is omitted.
  • the first electrode delivery device 510 is disposed on the upper side of the first electrode adsorption unit 512, and moves the first electrode adsorption unit 512 in the vertical direction to form the first adsorption unit ( 512) may further include a third position adjusting means 516 for adjusting the position.
  • the third position adjusting means 516 has substantially the same configuration and operation as the first position adjusting means 133 described above with reference to FIG. 4, and a detailed description thereof will be omitted.
  • FIG. 7 is a view schematically showing the structure of an electrode alignment device according to an embodiment of the present invention.
  • the electrode alignment device 600 aligns the first electrode E1 and the second electrode E2 delivered from the electrode delivery device 500.
  • the electrode alignment device 600 is delivered from the first electrode alignment device 610 and the second electrode transmission device 520 to align the first electrode E1 delivered from the first electrode transmission device 510.
  • a second electrode alignment device 620 that aligns the second electrode E2.
  • the first electrode alignment device 610 includes a first electrode alignment device main body 611, a first rotary drive unit 612, a first electrode alignment stage 613, a first electrode alignment camera 614, and a first electrode alignment device 610. It includes a one-electrode three-axis driving unit 615.
  • the first electrode alignment device main body 611 may be disposed in a state supported by the inner space of the main frame 200 by the first rotary driving unit 612.
  • the first rotation driving unit 612 is installed on both sides of the first electrode alignment device main body 611 to rotate the first electrode alignment device main body 611 in the forward and reverse directions.
  • the first electrode alignment stage 613 is disposed above the first electrode alignment device main body 611 and may be rotated together with the first electrode alignment device main body 611. Accordingly, the first electrode E1 may be supplied from the first electrode delivery device 510 on the first electrode alignment stage 613. Although not shown in detail, a vacuum port (not shown) for adsorbing the first electrode E1 by vacuum may be provided below the first electrode alignment stage 613.
  • the first electrode alignment camera 614 is disposed on the upper side of the first electrode alignment stage 613 to photograph an edge of the first electrode E1 to confirm the alignment state of the first electrode E1.
  • the first electrode alignment camera 614 is installed below the first electrode alignment stage 613, and may be installed on the first electrode alignment body 611. At this time, a plurality of first electrode alignment cameras 614 may be installed according to the size and shape of the first electrode E1.
  • the first electrode three-axis direction driving unit 615 is disposed below the first electrode alignment stage 613, and the first electrode alignment stage 613 is aligned in the three-axis direction (before and after, to align the first electrode E1). Left and right and up and down).
  • the first electrode alignment device 610 receives the first electrode E1 from the first electrode delivery device 510 and the first stacked loader unit of the electrode stacked loader device 100 described above.
  • the first electrode E1 is aligned while being rotated for delivery to 130.
  • the first electrode E1 in the first electrode alignment device 610 is processed.
  • This alignment has the advantage of further reducing the overall process time for stacking the electrodes.
  • the second electrode alignment device 620 has the same configuration and operation as the first electrode alignment device 610 described above, and thus detailed description thereof will be omitted.
  • the electrode stacking device uses the one electrode stacking loader device 100 to continuously supply the separator S by the rotational reciprocating movement while simultaneously providing the first electrode E1. And stacking the first electrode E1 and the second electrode E2 on the separator S, thereby simplifying the structure of the entire device and reducing process time as much as possible.
  • FIG. 8 is a perspective view showing the structure of an electrode stacking system according to an embodiment of the present invention
  • FIG. 9 is a view for explaining the configuration of an electrode stacking system according to an embodiment of the present invention.
  • the electrode stacking system 1000 includes a body frame 200; Electrode stacking stage device 300; An electrode supply device 400; An electrode delivery device 500; Electrode alignment device 600; Separator unwinding device 700; And an electrode stack loader device 100.
  • the body frame 200 is disposed at a predetermined interval from the first body frame 201 and the first body frame 201 which are installed on the upper surface of the bottom frame 210 which can be height-adjusted.
  • a second body frame 202 installed on the bottom frame 210.
  • a separator unwinding device 700 which will be described later, may be disposed on an upper side of the body frame 200, and an electrode stacking stage device 300 may be disposed in a space between the body frame 200 and the separator unwinding device 700.
  • An electrode delivery device 500, an electrode alignment device 600, and an electrode stack loader device 100 may be disposed, and an electrode supply device 400 may be disposed on the front side.
  • FIG. 10 is a perspective view schematically showing a structure of an electrode stacking stage device in an electrode stacking system according to an embodiment of the present invention.
  • the electrode stacking stay device 300 according to an embodiment of the present invention is disposed in the inner space of the main frame 200, as described above, and the electrode stacking loader device 100 By the separator (S) is supplied while being guided in a rotating manner on the electrode stacked stay device 300, the first electrode (E1) and the second electrode (E2) are sequentially stacked on the separator (S).
  • a stacking stage 310 may be provided on the electrode stacking stage device 300, and a first gripper 320 and a second gripper 330 may be movable on both sides of the stacking stage 310. .
  • the first electrode E1 and the second electrode E2 are sequentially on the first surface and the second surface of the separator S supplied on the stacking stage 310, respectively. Stacked.
  • the first gripper 320 grips the stacked first electrode E1 so as not to move on the stacking stage 310
  • the second gripper 330 grips the stacked second electrode E2 to stack. Do not move on the stage 310.
  • the stacked first and second electrodes E1 and 2 while moving along the supply directions of the first and second electrodes E1 and E2 using only one of the first and second grippers 320 and 330 are used. It is also possible to alternately hold the electrode E2.
  • the stacked stage device 300 may further include a height adjustment unit 340 for adjusting the height of the stacked stage 310 (see FIG. 10 ).
  • the height adjustment unit 340 is connected to the height adjustment shaft member 341 that can adjust the height of the stacking stage 310 up and down, and the height adjustment shaft member 341,
  • a height adjustment shaft member driving unit 342 for driving the height adjustment shaft member 341 may be included.
  • the stacking stage 310 when any one of the first electrode E1 and the second electrode E2 is stacked on the stacking stage 310, the next electrode to be stacked is stacked to avoid interference with the pre-stacked electrode. It is preferable to move the stacking stage 310 in the downward direction as much as the thickness of the electrode.
  • the height adjustment unit 340 by adjusting the height of the stacking stage 310 by the height adjustment unit 340 at the same time that one electrode is stacked on the stacking stage 310, the interference between the next stacked electrode and the pre-stacked electrode is avoided. It becomes possible.
  • FIG. 11 is a perspective view schematically showing a structure of an electrode supply device in an electrode stacking system according to an embodiment of the present invention.
  • the electrode supply device 400 is disposed on both front sides of the main frame 200, respectively, the first electrode (E1) and the second electrode (E2) Is supplied to the electrode stacking stage device 300. At this time, the electrode supply device 400 is disposed at a predetermined interval from the first electrode supply device 410 and the first electrode supply device 410 for supplying the first electrode E1, and the second electrode E2 It includes a second electrode supply device 420 for supplying.
  • the first electrode supply devices 410 are provided spaced apart from each other, and the first and second magazine units 411 and 412 for the first electrode E1 respectively receiving the first electrode E1 and the first electrode transfer unit 413 ), and the first electrode pickup unit 414.
  • the first electrode transfer unit 413 is disposed between the first magazine unit 411 for the first electrode E1 and the second magazine unit 412 for the first electrode E1, for the first electrode E1
  • the first electrode E1 supplied from the first magazine unit 411 or the second magazine unit 412 for the first electrode E1 is moved to the first electrode delivery device 510 to be described later.
  • the first electrode transfer unit 413 is equipped with a first transfer plate 413a to which the first electrode E1 is seated and transferred, and the first transfer plate 413a, and the first transfer plate 413a. It may include a first transfer rail module (413b) for transferring.
  • the first electrode pickup unit 414 includes the first electrode E1 accommodated in the first magazine unit 411 for the first electrode E1 and the second magazine unit 412 for the first electrode E1, respectively. Picked up alternately and transferred to the first electrode transfer unit 413.
  • the first electrode pickup unit 414 includes a first pickup plate 414a, a second pickup plate 414b, a pickup plate first transfer unit 414c, a first connecting member 414d, and a pickup plate second transfer unit 414e.
  • the first pickup plate 414a picks up the first electrode E1 accommodated in the first magazine unit 411 for the first electrode E1 by vacuum adsorption
  • the second pickup plate 414b is the first electrode E1
  • the first and second pick-up plates 414a and 414b are described as picking up by vacuum adsorption, respectively, but other pick-up methods are available to those skilled in the art (for example, pick-up using a robot arm). It will be fully understood that this can be used.
  • the pickup plate first transfer part 414c moves the first pickup plate 414a and the second pickup plate 414b in the vertical direction (vertical direction). At this time, the first pickup plate 414a and the second pickup plate 414b are connected to the first transfer part 414c by the first connecting member 414d.
  • the pickup plate second transfer portion 414e is connected to the pickup plate first transfer portion 414c to move the first pickup plate 414a and the second pickup plate 414b in the left-right direction (horizontal direction).
  • pick-up plate first transfer unit 414c and the pick-up plate second transfer unit 414e may have a linear module method or a linear motion guide method, but are not limited thereto.
  • the second pickup plate 414b is the first electrode in the second magazine unit 412 for the first electrode E1.
  • the first pickup plate 414a is configured to supply the first electrode E1 picked up from the first magazine unit 411 for the first electrode E1 to the first electrode transfer plate 413a. do.
  • the first pickup plate 414a and the second pickup plate 414b are moved upward by the pickup plate first transfer portion 414c and the pickup plate second transfer portion 414e of the first electrode pickup unit 414, When moving in the left direction (direction from the second magazine unit 412 for the first electrode E1 to the first magazine unit 411 for the first electrode E1 in FIG.
  • the first electrode is supplied. While the device 410 picks up the first electrode E1 from the first magazine unit 411 for the first electrode E1, the second pickup plate 414b has a first electrode ( The first electrode E1 picked up from the second magazine unit 412 for E1) is supplied to the first electrode transfer plate 413a. Thereafter, the first pickup plate 414a and the second pickup plate 414b are moved upward by the pickup plate first transfer portion 414c and the pickup plate second transfer portion 414e of the first electrode pickup unit 414, When moving in the right direction (direction from the first magazine unit 411 for the first electrode E1 to the second magazine unit 412 for the first electrode E1 in FIG.
  • the first electrode is supplied While the device 410 picks up the first electrode E1 from the second magazine unit 412 for the first electrode E1, the first pickup plate 414a is the first electrode ( The first electrode E1 picked up from the first magazine unit 411 for E1) is supplied to the first electrode transfer plate 413a.
  • E1 is alternately supplied, there is an advantage that the process time for supplying the first electrode E1 can be reduced as much as possible.
  • the second electrode supply device 420 has the same configuration and operation as the first electrode supply device 410 described above, and thus a detailed description thereof will be omitted.
  • the electrode delivery device 500 of the electrode stacking system 1000 receives the first electrode E1 from the first electrode supply device 410 and supplies the second electrode.
  • the second electrode E2 is supplied from the device 420.
  • the electrode alignment device 600 of the electrode stacking system 1000 is delivered from the first electrode delivery device 510 and the second electrode delivery device 520, respectively, as described above.
  • the first electrode E1 and the second electrode E2 are aligned and turned over to the electrode stack loader device 100.
  • the separator unwinding apparatus 700 is disposed on the upper side of the main body frame 200 to transfer the separator S to the lamination stage 310 of the electrode lamination stage apparatus 300. to provide.
  • the electrode stack loader device 100 includes the first electrodes E1 and the second electrodes aligned in the first electrode alignment device 610 and the second electrode alignment device 620 as described above.
  • the electrode E2 and the separator S provided from the separator unwinding device 700 are sequentially stacked on the electrode stacking stage device 300.
  • the first and second electrode supply devices 410 and 420 are sequentially operated to sequentially supply the first electrode E1 and the second electrode E2 to the electrode stacking stage 310.
  • the first pickup plate 414a of the first electrode pickup unit 414 of the first electrode supply device 410 is the first electrode accommodated in the first magazine unit 411 for the first electrode E1. While picking up (E1), the second pickup plate 414b transfers the first electrode E1 previously picked up from the second magazine unit 412 for the first electrode E1 to the first electrode transfer plate 413a. Order. At the same time, on the opposite side, the pickup and transfer process of the second electrode E2 is performed in the same manner as the operation of the first electrode supply device 410 through the second electrode supply device 420.
  • the first electrode E1 transferred to the first electrode transfer plate 413a is moved to the side of the first electrode transfer device 510, and then the first electrode adsorption unit of the first electrode transfer device 510 ( 512).
  • the first electrode E1 adsorbed to the first electrode adsorption unit 512 is rotated toward the first electrode alignment device 610 by a pair of horizontal driving units 514 and a pair of conversion driving units 515. It is transferred to the first electrode alignment stage 613.
  • the second electrode E2 is the second electrode alignment device 620 (specifically, the second electrode) in the same manner as the operation of the first electrode delivery device 510 through the second electrode delivery device 520. Alignment stage (not shown).
  • the first electrode E1 continuously transferred to the first electrode alignment stage 613 includes the first electrode alignment camera 614 while the first electrode alignment device body 611 rotates to the electrode stack loader device 100.
  • the first electrode is aligned through the 3-axis driving unit 615.
  • the second electrode E2 transferred to the second electrode alignment device 620 is aligned with the second electrode E2 by the same operation as the first electrode alignment device 610.
  • the first electrode alignment device 610 is rotated toward the first stacked loader unit 130, and the first electrode E1 aligned in the first electrode alignment device 610 has a first loader plate 131. It is rotated from the first position (P1) to the second position (P2) and is vacuum adsorbed by the first loader plate (131). Thereafter, after the first loader plate 131 is rotated from the second position P2 to the first position P1, the vacuum is released so that the first electrode E1 is stacked stage 310 of the stacked stage device 300 ) Are stacked on the first side (inner side) of the separator S previously supplied.
  • one side of the second loader plate 141 is rotated from the third position (P3) to the first position (P1), so that the separator (S) is pushed and folded to wrap the first electrode (E1) so that the first electrode (E1) is wrapped. ) Is stacked on the first side (inner side) of the separator S, and at the same time, the vacuum of the second loader plate 141 is released so that the second electrode E2 is the second side (outer side) of the separator S. ).
  • the first electrode E1 and the second electrode E2 on the electrode stacking stage 310 are on the first side (inner side) and second side (outer side) of the separator S. Stacked sequentially.
  • FIG. 12 is a view schematically showing the structure of an electrode stacking apparatus according to another embodiment of the present invention.
  • an electrode stacking device includes an electrode stacking loader device 100, an electrode delivery device 900, and an electrode alignment device 600.
  • the electrode stacking loader device 100 and the electrode alignment device 600 of the electrode stacking device according to another embodiment of the present invention are described in detail with reference to FIGS. 3 to 9 as described above.
  • the configuration and operation of the electrode stacking loader device 100 and the electrode sorting device 600 of the electrode stacking device 1000 are the same, and detailed descriptions thereof will be omitted.
  • FIG. 13 is a perspective view schematically showing the structure of an electrode stacking system according to another embodiment of the present invention
  • FIG. 14 is a view for explaining the configuration of an electrode stacking system according to another embodiment of the present invention.
  • the electrode stacking system 2000 includes a body frame (not shown), an electrode stacking stage device 300, an electrode supply device 800, and an electrode It includes a transfer device 900, an electrode alignment device 600, a separator unwinding device 700, and an electrode stack loader device 100.
  • the main body frame (not shown), the electrode stacking stage device 300, the separator unwinding device 700, and the electrode stacking loader device 100 of the electrode stacking system 2000 according to another embodiment of the present invention are illustrated. 3 to 11, the body frame 200 of the electrode stacking system 1000, the electrode stacking stage device 300, the separator unwinding device 700 and the electrode stacking according to the embodiment of the present invention described above Since the loader device 100 and its configuration and operation are substantially the same, detailed description is omitted.
  • the electrode supply device 800 according to another embodiment of the present invention is disposed on both sides of the main frame (not shown), and the first electrode E1 and the second electrode E2 Is supplied to the electrode stacking stage device 300. At this time, the electrode supply device 800 is disposed at a predetermined interval from the first electrode supply device 810, and the first electrode supply device 810 for supplying the first electrode (E1), the second electrode (E2) It includes a second electrode supply device 820 for supplying.
  • the first electrode supply device 810 includes a first magazine unit 811 for the first electrode E1, a second magazine unit 812 for the first electrode E1, and a first electrode for the first electrode E1. It includes a magazine transfer unit 813 for transferring the magazine unit 811 and the second magazine unit 812 for the first electrode (E1).
  • a plurality of first electrodes E1 are accommodated in the first magazine unit 811 for the first electrode E1 and supplied to the electrode stacking stage device 300 by the first electrode transfer unit 813.
  • first electrodes E1 are accommodated in the second magazine unit 812 for the first electrode E1, and supplied to the electrode stacking stage device 300 by the magazine transfer unit 813, It is installed on the opposite side of the first magazine unit 811 for the electrode E1. Accordingly, the magazine transfer unit 813 is a first electrode (E1), which will alternately describe the first magazine unit (811) for the first electrode (E1) and the second magazine unit (812) for the first electrode (E1). It is transferred to the loading device 910 side.
  • the first electrode supply device 410 supplies the first electrode E1 to the lower portion of the first electrode delivery device 510 through the first electrode transfer plate 413a.
  • the first electrode supply device 810 according to another embodiment of the present invention carries magazines as described below.
  • the first magazine unit 811 for the first electrode E1 and the second magazine unit 812 for the first electrode E1 are sequentially transferred to the side surface of the first electrode delivery device 910 through the unit 813.
  • a structure for picking up one electrode E1 is presented.
  • the second electrode supply device 820 has the same configuration and operation as the first electrode supply device 810 described above, and thus detailed description thereof will be omitted.
  • the electrode delivery device 900 stacks the first electrode E1 and the second electrode E2 supplied from the electrode supply device 800 as an electrode stack. Transfer to the stage device 300. At this time, the electrode delivery device 900 is the first electrode delivery device 910 receiving the first electrode E1 from the first electrode supply device 810, and the second electrode from the second electrode supply device 820 ( E2) is supplied to the second electrode delivery device 920.
  • the first electrode transfer device 910 includes a first electrode transfer plate 911, a first electrode buffer portion 912, and a first driver 913 for driving the first electrode transfer plate 911 to move in the vertical direction. ), and a second driving unit 914 for driving the first electrode transfer plate 911 to move in the horizontal direction.
  • the first magazine unit 811 for the first electrode E1 or the second magazine unit 812 for the first electrode E1 is sequentially the first electrode delivery device 910.
  • a first electrode alignment device that moves to the first magazine unit 811 for the first electrode E1 or the second magazine unit 812 for the first electrode E1 to be described later. 610).
  • a vacuum adsorption method may be used as for the pickup of the first electrode E1.
  • the first electrode transfer plate 911 includes a first pickup portion 911a and a second pickup portion 911b.
  • the first pickup unit 911a may be provided with a plurality of vacuum ports for vacuum adsorbing the first electrode E1, and adsorbs the first electrode E1 by vacuum to be described later. 1 It moves to the electrode buffer part 912.
  • the second pickup unit 911b may be provided with a plurality of vacuum ports for vacuum adsorbing the first electrode E1, and the first electrode E1 positioned in the first electrode buffer unit 912 by vacuum. It adsorbs and moves to the first electrode alignment device 610 side.
  • the first electrode buffer unit 912 waits before the first electrode E1 supplied by the first pickup unit 911a is delivered to the first electrode alignment device 610 by the second pickup unit 911b. Make it possible.
  • the first driving unit 913 is disposed on the first electrode transfer plate 911, and the first pickup unit 911a of the first electrode transfer plate 911 is the first magazine for the first electrode E1.
  • the first electrode transfer plate 911 is moved up and down to pick up the first electrode E1 on the unit 811 or the second magazine unit 812 for the first electrode E1.
  • the first driving unit 913 suggests that the cylinder method is applied, but is not limited thereto.
  • the second driving unit 914 moves the first electrode transfer plate 911 in the left-right direction, thereby moving the first electrode E1 to the first magazine unit 811 for the first electrode E1 or The second magazine unit 812 for the first electrode E1 can be transferred to the first electrode alignment device 610 via the first electrode buffer unit 912.
  • the second driver 914 may be a linear module method, but is not limited thereto.
  • the first electrode E1 picked up by the first pick-up unit 911a is moved to the first electrode buffer unit 912 to stand by. Thereafter, when the first electrode E1 previously transferred to the first electrode alignment device 610 is stacked on the stacking stage device 300 by the electrode stack loader device 100, the first electrode E1 is transferred to the first electrode buffer unit 912. The waiting first electrode E1 is picked up by the second pickup unit 911b and transferred to the first electrode alignment device 610.
  • the first electrode E1 can be continuously supplied through the first electrode buffer unit 912, there is an advantage of shortening the supply time of the first electrode E1.
  • the second electrode delivery device 920 according to another embodiment of the present invention has the same configuration and operation as the first electrode delivery device 910 described above, and thus detailed description thereof will be omitted.

Abstract

제1가공 방법에 의해 형성되고 일단에 피검사체의 단자에 접촉하는 제1팁이 형성된 상부 플런저, 제2가공 방법에 의해 형성되고, 일측에 판상으로 형성되어 테스트 보드의 패드와 전기적으로 연결되는 제2팁과 상기 제2팁보다 넓게 형성되어 상기 테스트 보드 상에 지지될 수 있도록 구현된 제1플랜지부가 형성된 보드 접촉부, 일단이 상기 보드 접촉부와 단일체를 이루고, 상부 플런저 또는 보드 접촉부에 가해지는 외력에 의해 탄성적으로 변형 및 복귀되는 중간 탄성연결부 및 상기 중간 탄성연결부의 타단에 형성되고 상기 상부 플런저와 접촉하는 플런저 접촉부를 포함하는 것을 특징으로 하는 컨택트 프로브가 소개된다. 이밖에 다른 실시예가 가능하다.

Description

전극 적층 장치 및 이를 구비한 전극 적층 시스템
본 발명은 전극 적층 장치 및 이를 구비한 전극 적층 시스템에 관한 것이다. 좀 더 구체적으로, 본 발명은 하나의 전극 적층 로더장치를 사용하여 제1 전극 및 제2 전극을 세퍼레이터 상에 순차적으로 적층시킴으로써, 종래 전극 적층 장치의 크기를 최대한 줄일 수 있고, 전체 공정 시간을 최대한 줄일 수 있는 전극 적층 장치 및 이를 구비한 전극 적층 시스템에 관한 것이다.
최근에 휴대형 전화, 텔레비전 카메라, 노트북 컴퓨터, 전기 자동차(예를 들어, 하이브리드 자동차)용 배터리 등의 전원은 소형경량화, 대용량, 대전압의 전원이 요구되고 있다. 이러한 전원으로 예를 들어, 리튬이온 폴리머전지 또는 리튬전지 등의 2차전지가 사용되고 있다.
2차 전지를 제조하기 위해서는 통상적으로 음극 활물질이 코팅된 음극 전극과 양극 활물질이 코팅된 양극 전극을 복수개 제조한다. 그 후, 상기 복수의 양극 전극과 복수의 음극 전극을 세퍼레이터(separator)라 지칭되는 박막필름을 개재하여 적층한 전극 조립체(이하 "전극체"라 합니다)를 제조한다. 그 후, 전극체를 알루미늄 파우치 내에 내장시킨 후 실링하고, 다시 전극체가 내장된 알루미늄 파우치를 케이스 등에 내장한 후, 전해액을 주입하여 최종 밀봉하면 2차 전지의 제조가 완료된다.
도 1a는 종래 기술에 따른 전극체의 제조방법을 개략적으로 설명하기 위한 도면이고, 도 1b는 종래 기술에 따른 전극체의 제조방법에 따라 제조된 전극체를 개략적으로 도시한 단면도이다.
도 1a 및 도 1b를 참조하면, 종래 기술에 따른 전극체(101)의 제조방법은 먼저 복수의 음극 전극(110) 및 복수의 양극 전극(120)을 준비한다. 그 후, 회동롤(160)에 감겨 있는 세퍼레이터(130)의 한 쪽 끝단을 클램프(140)에 고정되도록 장착시킨다. 그 후, 예를 들어 핑거(finger)(150)를 이용하여 세퍼레이터(130a)의 면을 따라 우측 방향(X 방향)으로 이동하여 제 1 공간(112a)을 형성한 후, 제 1 음극 전극(110a)을 제 1 공간(112a) 내에 위치시킨다. 그 후, 핑거(150)를 전진 또는 후진 방향(Y방향)으로 이동하여 세퍼레이터(130a)로부터 비접촉 상태로 이격시킨 후, 수직방향(Z 방향)으로 상승시키고, 세퍼레이터(130b)의 면을 따라 좌측 방향(X 방향)으로 이동하여 제 2 공간(122a)을 형성한 다음 제 1 양극 전극(120a)을 제 2 공간(122a) 내에 위치시킨다. 이러한 방식으로 세퍼레이터(130) 상에 복수의 음극 전극(110)과 복수의 양극 전극(120)을 각각 제 1 공간(112a,112b) 및 제2 공간(122a,122b) 내에 순차 및 교대 방식으로 적층하여 도 1b에 도시된 바와 같은 전극체(101)가 완성된다.
도 1b에서는 설명의 편의상 2개의 제 1 및 제 2 공간(112a,112b;122a,122b)에 대한 참조부호만 표시되어 있다는 점에 유의하여야 한다.
도 1b에 도시된 바와 같이, 전극들이 적층된 전극체(101)는 별도의 이송장치(미도시)에 의해 케이스와 같은 수납 부재(미도시)에 내장하여 밀봉한 후 전해액을 주입하여 2차 전지의 제조가 완료된다.
상술한 종래 기술에 따른 전극체를 제조하기 위해서는 예를 들어 복수의 양극 전극 및 음극 전극을 세퍼레이터(130) 상으로 공급하여야 한다 .이를 위해 종래 기술에서는 기계적인 방식으로 전극을 공급하는 전극 공급 부재가 사용된다.
좀 더 구체적으로, 도 2는 종래 기술에 따른 전극 조립체를 제조하기 위해 전극을 제공하는 전극 공급 부재를 구비한 전극 조립체의 제조장치를 개략적으로 도시한 도면이다. 이러한 종래 기술의 전극 공급 부재를 구비한전극 조립체의 제조장치는 예를 들어, 김민호에 의해 2009년 5월 8일자에 "2차 전지용 전극 조립체의 제조장치 및 그 제조방법”이라는 발명의 명칭으로 대한민국 특허출원 제10-2009-0040495호로 출원되어, 2011년 3월 14일자에 등록된 대한민국 특허 제10-1023700호(이하 "700 특허"라 합니다)에 상세히 기술되어 있다. 이러한 700 특허의 개시 내용은 본 명세서에 참조되어 본 발명의 일부를 이룬다.
다시 도 2를 참조하면, 종래 기술의 전극 공급 부재를 구비한 전극 조립체의 제조장치(200)는 세퍼레이터(230)가 감겨있으며, 상기 세퍼레이터(230)를 연속적으로 공급하는 회동롤(260); 상기 회동롤(260)로부터 상하 방향으로 하부에 제공되며, 상기 세퍼레이터(230)의 한쪽 끝단을 고정 장착하는 클램프(240); 상기 회동롤(260)과 상기 클램프(240) 사이에서 상기 세퍼레이터(230)를 기준으로 일측(X축 방향을 따라 좌측)에 제공되며, 상기 세퍼레이터(230)를 착탈 가능하게 지지하기 위한 복수의 제 1 매니폴더(manifolder)(270a,270b,270c); 상기 회동롤(260)과 상기 클램프(240) 사이에서 상기 세퍼레이터(230)를 기준으로 타측(X축 방향을 따라 우측)에 상기 복수의 제 1 매니폴더(270a,270b,270c)와 엇갈리게 (alternatively) 제공되며, 상기 세퍼레이터(230)를 착탈 가능하게 지지하기 위한 복수의 제 2 매니폴더(272a,272b,272c); 상기 복수의 제 1 매니폴더(270a,270b,270c) 및 상기 복수의 제 2 매니폴더(272a,272b,272c)에 연결되며, 진공 상태를 제공하는 진공 펌핑 장치(미도시); 상기 복수의 제 1 매니폴더(270a,270b,270c) 및 상기 복수의 제 2 매니폴더(272a,272b,272c)의 진공 상태 및 진공 해제 상태를 제어하는 제어 장치(미도시); 상기 세퍼레이터(230)를 복수의 제 1 공간(212a,212b,212c) 및 복수 제 2 공간(222a,222b,222c)을 형성하면서 상기 복수의 제 2 매니폴더(272a,272b,272c) 및 상기 복수의 제 1 매니폴더(270a,270b,270c)에 각각 접근하도록 이동시키는 복수의 핑거(150)(도 1a 참조); 상기 복수의 제 1 공간(212a,212b,212c) 내에 복수의 음극 전극(210a,210b,210c)을 공급하며, 상기 복수의 제 2 공간(222a,222b,222c) 내에 복수의 양극 전극(220a,220b,220c)을 공급하는 한 쌍의 제 1 및 제 2 전극 공급 부재(214,224); 및 완성된 전극 조립체(미도시)가 위치되는 스테이지(202)를 포함한다.
또한, 제 1 전극 공급 부재(214)는 복수의 음극 전극(210a,210b,210c)을 지지하기 위한 복수의 제 1 받침 플레이트(216a,216b,216c)를 구비하며, 제 2 전극 공급 부재(224)는 복수의 양극 전극(220a,220b,220c)을 지지하기 위한 복수의 제 2 받침 플레이트(226a,226b,226c)를 구비한다.
상술한 종래 기술의 전극 공급 부재를 구비한 전극 조립체의 제조장치(200)를 사용하면, 복수개의 음극 전극(210) 및 복수개의 양극 전극(220)이 동시에 공급되므로, 전극 조립체의 제조 시간이 상당히 감소되고, 2차 전지의 생산성이 높아져서 대량 생산이 가능하다.
그러나, 종래 기술의 전극 공급 부재를 구비한 전극 조립체의 제조장치(200)의 경우 다음과 같은 문제가 발생한다.
1. 전극을 공급하기 위해 세퍼레이터(230)를 착탈 가능하게 지지하기 위한 복수의 제 1 및 제 2 매니폴더(270a,270b,270c;272a,272b,272c), 진공 펌핑 장치, 복수의 제 1 및 제 2 매니폴더(270a,270b,270c;272a,272b,272c)의 진공 상태/진공 해제 상태를 제어하는 제어장치 등의 다수의 구성 부품의 사용이 요구되므로, 전극 조립체의 제조장치(200)는 그 구조가 상당히 복잡하고 구성 부품 수의 증가로 인하여 제조 비용이 증가한다.
2. 복수의 음극 및 양극 전극(210a,210b,210c;220a,220b,220c)은 별도의 이송장치(미도시)에 의해 한 쌍의 제1 및 제 2 전극 공급 부재(214,224) 상으로 공급되고, 그 후 한 쌍의 제 1 및 제 2 전극 공급 부재(214,224)에 의해 다시 복수의 제 1 및 제 2 공간(212a,212b,212c;222a,222b,222c) 내에서 세퍼레이터(230) 상에 공급된다.
따라서, 전극 공급이 세퍼레이터(230) 상에 직접 공급되지 않으므로 전체 공정 시간이 증가한다.
3. 복수의 음극 및 양극 전극(210a,210b,210c;220a,220b,220c)이 복수의 제 1 및 제 2 공간(212a,212b,212c;222a,222b,222c) 내에서 세퍼레이터(230) 상에 공급된 후, 예를 들어 센터링 유닛(미도시)과 같은 기계적인 장치에 의해 별도로 얼라인이 이루어져야 한다. 따라서, 별도의 얼라인 동작에 따른 전체 공정시간이 추가로 증가한다.
또한, 별도의 얼라인 동작을 위해 센터링 유닛은 복수의 음극 및 양극 전극(210a,210b,210c;220a,220b,220c)과 물리적으로 접촉하여야 한다. 이러한 물리적 접촉은 전극에 손상을 발생시킬 수 있으며, 그에 따라 전극 조립체의 불량이 발생할 수 있다.
4. 복수의 음극 및 양극 전극(210a,210b,210c;220a,220b,220c)의 이송을 위해 별도의 이송장치(미도시)의 사용이 요구되고 또한 한 쌍의 제 1 및 제 2 전극 공급 부재(214,224)가 세퍼레이터(230)의 양쪽 측면에 제공되어야 한다. 따라서, 전극 조립체의 제조장치(200)를 설치하기 위해서는 넓은 공간이 요구되므로 궁극적으로 전극 조립체의 제조 비용이 증가한다.
따라서, 상술한 종래 기술의 문제점을 해결하기 위한 새로운 방안이 요구된다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 하나의 전극 적층 로더장치를 사용하여 제1 전극 및 제2 전극을 세퍼레이터 상에 순차적으로 적층시킴으로써, 전체 장치의 크기를 최대한 줄일 수 있고, 전체 공정 시간을 최대한 줄일 수 있는 전극 적층 장치 및 이를 구비한 전극 적층 시스템을 제공하기 위한 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 전극 적층 장치는 회동왕복 이동에 의해 세퍼레이터를 연속적으로 공급하면서 제1 전극 및 상기 제1 전극과 상이한 극성의 제2 전극을 상기 세퍼레이터 상에 적층시키는 전극 적층 로더장치; 상기 전극 적층 로더장치로 상기 제1 전극 및 상기 제2 전극을 전달하기 위한 전극 전달장치; 및 상기 전극 전달장치로부터 전달된 상기 제1 전극 및 상기 제2 전극을 정렬시키며, 정렬된 상기 제1 전극 및 상기 제2 전극을 상기 전극 적층 로더장치로 인계하기 위한 전극 정렬장치를 포함한다.
또한, 본 발명의 일 실시예에 따른 전극 적층 시스템은 본체프레임; 상기 본체프레임의 내부공간에 배치되며, 연속적으로 공급되는 세퍼레이터 상에 제1 전극, 및 상기 제1 전극과 상이한 극성의 제2 전극이 순차적으로 적층되도록 제공되는 전극 적층 스테이지장치; 상기 전극 적층 스테이지장치의 양측에 각각 배치되며, 상기 제1 전극 및 상기 제2 전극을 공급하기 위한 전극 공급장치; 상기 세퍼레이터를 상기 전극 적층 스테이지장치로 공급하는 세퍼레이터 언와인딩장치; 및 상기 전극 공급장치에 의해 공급된 상기 제1 전극 및 상기 제2 전극을 상기 전극 적층 스테이지장치 상으로 공급하는 제1항 내지 제12항 중 어느 한 항의 전극 적층 장치를 포함한다.
본 발명에 따른 전극 적층 장치 및 이를 구비한 전극 적층 시스템을 사용하면 다음과 같은 효과가 달성된다.
1. 하나의 전극 적층 로더장치를 통해 제1 전극 및 제2 전극과, 제1 전극과 상기 제2 전극 사이에 세퍼레이터를 순차적으로 적층시킬 수 있도록 함으로써, 전체 장치의 크기를 최대한 줄일 수 있고, 전체 공정 시간을 최대한 줄일 수 있는 효과가 있다.
2. 복수의 매거진유닛을 통하여 제1 전극 및 제2 전극이 연속적으로 공급됨에 따라 각각의 전극 공급 시간 및 그에 따른 전체 공정 시간이 최소화될 수 있다.
3. 전극 정렬장치가 양극 전극 및 음극 전극을 교대로 이동시키기 위해 회동되는 동안, 각각의 전극의 정렬이 이루어짐에 따라 전체 공정시간이 추가적으로 최소화될 수 있다.
4. 각각의 로더 플레이트에 라운드부가 형성됨에 따라 세퍼레이터의 손상이 최대한 방지될 수 있다.
5. 각각의 로더 플레이트에 그리퍼 수용홈부가 형성됨에 따라 각각의 그리퍼와 각각의 로더 플레이트 간의 간섭이 최대한 방지될 수 있다.
도 1a는 종래 기술에 따른 전극체의 제조방법을 개략적으로 설명하기 위한 도면이다.
도 1b는 종래 기술에 따른 전극체의 제조방법에 따라 제조된 전극체를 개략적으로 도시한 단면도이다.
도 2는 종래 기술에 따른 전극 조립체를 제조하기 위해 전극을 제공하는 전극 공급 부재를 구비한 전극 조립체의 제조장치를 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 전극 적층 장치의 구조를 나타낸 사시도이다.
도 4는 본 발명의 일 실시예에 따른 전극 적층 로더장치의 구조를 나타낸 사시도이다.
도 5a는 본 발명의 일 실시예에 따른 전극 적층 로더장치에 의해 제1 전극 및 세퍼레이터가 적층되는 과정을 개략적으로 나타낸 도면이다.
도 5b는 본 발명의 일 실시예에 따른 전극 적층 로더장치에 의해 제2 전극 및 세퍼레이터가 적층되는 과정을 개략적으로 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 전극 전달장치의 구조를 개략적으로 나타낸 사시도이다.
도 7은 본 발명의 일 실시예에 따른 전극 정렬장치의 구조를 개략적으로 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 전극 적층 시스템의 구조를 나타낸 사시도이다.
도 9는 본 발명의 일 실시예에 따른 전극 적층 시스템의 구성을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 전극 적층 시스템에서 전극 적층 스테이지장치의 구조를 개략적으로 나타낸 사시도이다.
도 11은 본 발명의 일 실시예에 따른 전극 적층 시스템에서 전극 공급장치의 구조를 개략적으로 나타낸 사시도이다.
도 12는 본 발명의 다른 실시예에 따른 전극 적층 시스템의 구조를 개략적으로 나타낸 사시도이다.
도 13은 본 발명의 다른 실시예에 따른 전극 적층 시스템의 구조를 개략적으로 나타낸 사시도이다.
도 14는 본 발명의 다른 실시예에 따른 전극 적층 시스템의 구성을 설명하기 위한 도면이다.
이하, 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 이 때 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 그리고 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략될 것이다.
이하에서는, 첨부된 도 3 내지 도 14를 참조하여 본 발명의 다양한 실시예들이 설명된다.
도 3은 본 발명의 일 실시예에 따른 전극 적층 장치의 구조를 개략적으로 나타낸 도면이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 전극 적층 장치는 전극 적층 로더장치(100)와, 전극 전달장치(500), 및 전극 정렬장치(600)를 포함한다.
도 4는 본 발명의 일 실시예에 따른 전극 적층 로더장치의 구조를 나타낸 사시도이고, 도 5a는 본 발명의 일 실시예에 따른 전극 적층 로더장치에 의해 제1 전극 및 세퍼레이터가 적층되는 과정을 개략적으로 나타낸 도면이며, 도 5b는 본 발명의 일 실시예에 따른 전극 적층 로더장치에 의해 제2 전극 및 세퍼레이터가 적층되는 과정을 개략적으로 나타낸 도면이다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 전극 적층 로더장치(100)는 세퍼레이터 가이드유닛(110); 전극 적층 로더유닛(120); 수평 구동유닛(150), 및 변환 구동유닛(160)을 포함한다. 이러한 전극 적층 로더장치(100)는 회동왕복 이동에 의해 세퍼레이터(S)를 연속적으로 공급하면서 동시에 제1 전극(E1) 및 제1 전극(E1)과 상이한 극성의 제2 전극(E2)을 세퍼레이터(S) 상에 적층시킨다.
세퍼레이터 가이드유닛(110)은 후술하는 세퍼레이터 언와인딩장치(700, 도 7 참조)로부터 공급되는 세퍼레이터(S)를 장력을 유지한 상태로 회동 가능하게 공급하도록 안내한다. 이러한 세퍼레이터 가이드유닛(110)은 일정 길이를 가지며, 서로 이격되어 수평방향으로 나란히 배치되는 제1 가이드 축(111a) 및 제2 가이드 축(111b)으로 구성되는 가이드부(111)를 포함할 수 있다. 그에 따라, 세퍼레이터(S)는 장력이 유지된 상태로 제1 가이드 축(111a)과 상기 제2 가이드 축(111b) 사이를 통과한 후 회동 가능하게 안내되어 공급될 수 있다. 가이드부(111)에 의해 회동 가능하게 안내되어 공급된 세퍼레이터(S)는 전극 적층 스테이지장치(300)로 공급될 수 있다.
이때, 세퍼레이터 가이드유닛(110)은 가이드부(111)를 후술하는 도 8 및 도 9에 도시된 본체프레임(200)에 회동 가능하게 고정시키기 위한 가이드부 고정부재(112)를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 전극 적층 로더유닛(120)은 세퍼레이터 가이드유닛(110)이 고정 장착되는 측면 프레임(121), 및 상기 측면 프레임(121)의 하부에 서로 이격되어 제공되는 한 쌍의 제1 및 제2 적층 로더부(130,140)를 포함한다. 구체적으로는, 세퍼레이터 가이드유닛(110)을 구성하는 가이드부(111) 및 가이드부 고정부재(112)가 측면 프레임(121)의 상부 내측 및 외측에 각각 고정 결합되고, 측면 프레임(121)의 하부에는 제1 및 제 2 적층 로더부(130,140)가 각각 장착된다. 그에 따라, 본 발명의 일 실시예에 따른 전극 적층 로더유닛(120)의 세퍼레이터 가이드유닛(110)이 회동하면서 세퍼레이터(S)를 전극 적층 스테이지장치(300) 상으로 공급함과 동시에, 한 쌍의 제1 및 제2 적층 로더부(130,140)도 회동하면서 제1 전극(E1) 및 제2 전극(E2)을 교대로 픽업하여 전극 적층 스테이지장치(300) 상에 공급된 세퍼레이터(S) 상면에 적층시킨다.
측면 프레임(121)은 상단 내측이 가이드부(111)의 일측에 고정 결합되는 제1 측면 프레임(121a), 제1 측면 프레임(121a)과 대향하여 제공되며, 상단 내측이 가이드부(111)의 타측에 고정 결합되는 제2 측면 프레임(121b), 및 제1 측면 프레임(121a)과 상기 제2 측면 프레임(121b)을 연결시키기 위한 연결 프레임(121c)을 포함한다.
본 발명의 일 실시예에서는 제1 측면 프레임(121a) 및 제2 측면 프레임(121b)이 사다리꼴 형상으로 형성된 것을 도시하고 있으나, 제1 측면 프레임(121a) 및 제2 측면 프레임(121b)의 형상은 다양한 형상으로 형성될 수 있다는 것을 유의해야 할 것이다.
제1 적층 로더부(130)는 측면 프레임(121)의 하측에 배치되고, 측면 프레임(121)과 함께 제1 위치(P1)에서 제2 위치(P2)로 회동되어 제1 전극(E1)을 픽업한 후, 다시 제1 위치(P1)로 회동되어 전극 적층 스테이지장치(300) 상에 공급된 세퍼레이터(S)의 상면에 적층시킨다.
제2 적층 로더부(140)는 측면 프레임(121)의 하측에 제1 적층 로더부(130)로부터 일정간격 이격되게 배치되고, 측면 프레임(121)과 함께 제1 위치(P1)에서 제2 위치(P2)와 반대방향의 제3 위치(P3)로 회동되어 제2 전극(E2)을 픽업한 후, 다시 제1 위치(P1)로 회동되어 전극 적층 스테이지장치(300) 상에 공급된 세퍼레이터(S)의 상면에 적층시킨다.
여기서, 제1 위치(P1)는 제1 및 제2 전극(E1,E2)이 세퍼레이터(S) 상에 순차적으로 적층되는 위치이고, 제2 위치(P2)는 제1 적층 로더부(130)가 제1 전극(E1)을 픽업하는 위치이며, 제3 위치(P3)는 제2 적층 로더부(140)가 제2 전극(E2)을 픽업하는 위치인 것으로 정의될 수 있다.
제1 적층 로더부(130)는 측면 프레임(121)이 전극 적층 스테이지장치(300)의 상부에 위치할 때(즉, 측면 프레임(121)의 회동 각도가 0도일 때) 지면에 대해 일정한 각도로 경사지게 배치되는 것이 바람직하다. 이는 제1 전극 정렬장치(610)로부터 전달되는 제1 전극(E1)을 용이하게 픽업하여 회동시킬 수 있도록 하기 위함이다.
또한, 제2 적층 로더부(140)는 측면 프레임(121)이 전극 적층 스테이지장치(300)의 상부에 위치할 때(즉, 측면 프레임(121)의 회동 각도가 0도일 때) 지면에 대해 제1 적층 로더부(130)과 대향하는 위치에서 일정각도 경사지게 배치되는 것이 바람직하다. 이는 후술하는 제2 전극 정렬장치(620)로부터 전달되는 제2 전극(E2)을 용이하게 픽업하여 회동시킬 수 있도록 하기 위함이다.
도 5a 및 도 5b를 참조하면, 측면 프레임(121)의 회동에 의해 제1 적층 로더부(130)가 제1 위치(P1)에서 제2 위치(P2)로(제1 방향으로) 회동되어 제1 전극 정렬장치(610)로부터 제1 전극(E1)을 픽업하는 동안, 제2 적층 로더부(140)는 세퍼레이터 가이드유닛(110)에 의해 가이드되어 공급되는 세퍼레이터(S)의 제2 면(외측면)을 제2 위치(P2)방향으로 밀어서 접은 후 제2 적층 로더부(140)에 의해 픽업된 제2 전극(E2)의 픽업 상태를 해제함으로써, 전극 적층 스테이지장치(300)에 미리 제공된 제1 전극(E1)이 세퍼레이터(S)의 제1 면(내측면) 내에 감싸짐과 동시에 세퍼레이터(S)의 제2 면(외측면) 내에 제2 전극(E2)을 적층시킨다(도 5a 참조). 그 후, 측면 프레임(121)의 회동에 의해 제2 적층 로더부(140)가 제1 위치(P1)에서 제3 위치(P3)로(상기 제1 방향과 반대 방향인 제2 방향으로) 회동되어 후술하는 제2 전극 정렬장치(620)로부터 제2 전극(E2)을 픽업하는 동안, 제1 적층 로더부(130)는 세퍼레이터 가이드유닛(110)에 의해 가이드되어 공급되는 세퍼레이터(S)의 제1 면(내측면)을 제3 위치(P3)방향으로 밀어서 접은 후 제1 적층 로더부(120)에 의해 픽업된 제1 전극(E1)의 픽업 상태를 해제함으로써, 전극 적층 스테이지장치(300) 상에서 상술한 바와 같이 적층된 제2 전극(E2)이 세퍼레이터(S)의 제2 면(외측면) 내에 감싸짐과 동시에 세퍼레이터(S)의 제1 면(내측면) 내에 제1 전극(E1)을 적층시킨다(도 5b 참조). 이러한 방식으로, 제1 및 제2 전극(E1,E2)은 전극 적층 스테이지장치(300) 상에서 세퍼레이터(S)의 제1 면(내측면) 및 제2 면(외측면) 상에 순차적으로 적층된다.
다시 도 4를 참조하면, 본 발명의 일 실시예에 따른 제1 적층 로더부(130)는 제1 전극(E1)을 픽업한다. 이러한 픽업 동작을 위해, 제1 적층 로더부(130)는, 예를 들어, 진공에 의해 흡착시키기 위한 복수의 진공포트(P)가 설치되는 제1 로더 플레이트(131) 및 제1 로더 플레이트(131)를 측면 프레임(121)에 고정시키기 위한 제1 지지 프레임(132)을 포함할 수 있지만, 이에 제한되는 것은 아니라는 점에 유의하여야 한다.
한편, 세퍼레이터(S)의 제1 면(내측면)과 접촉되는 제1 로더 플레이트(131)의 일측은 라운드부(R)를 갖도록 형성될 수 있다. 예를 들어, 라운드부(R)가 없는 상태에서 제1 로더 플레이트(131)가 가이드된 상태로 공급되는 세퍼레이터(S)를 접촉하여 제1 면(내측면)을 회동시키는 경우, 세퍼레이터(S)가 손상될 수 있다. 따라서, 상술한 제1 로더 플레이트(131)의 일측에 형성된 라운드부(R)에 의해 세퍼레이터(S)의 손상이 최대한 방지될 수 있다는 장점이 있다.
또한, 제1 로더 플레이트(131)의 하부 일측에는 전극 적층 스테이지장치(300)에 구비된 제1 그리퍼(320, 도 10 참조)를 수용하는 제1 그리퍼 수용홈부(131a)가 형성될 수 있다. 구체적으로, 각각의 제1 전극(E1)을 적층하는 과정에서 제1 그리퍼(320)는 각각의 전극(E1)이 적층된 상태에서 제1 그리퍼 수용홈부(131a) 내로 삽입 수용되어 적층된 제1 전극(E1)의 상부 일측을 파지한다. 그에 따라, 제1 그리퍼(320)가 제1 로더 플레이트(131)와 간섭 없이 적층된 제1 전극(E1)의 상부를 파지할 수 있게 된다.
한편, 제1 적층 로더부(130)는 제1 로더 플레이트(131)의 상측에 배치되며, 제1 로더 플레이트(131)를 상하로 이동시켜 제1 로더 플레이트(131)의 위치를 조절하기 위한 제1 위치조절수단(133)을 더 포함할 수 있다.
예를 들어, 도 5a에 도시된 제1 전극 정렬장치(610) 상에 제공된 복수의 제1 전극(E1)이 제1 적층 로더부(130)에 의해 픽업되어 전극 적층 스테이지장치(300)로 공급되어 적층됨에 따라, 제1 전극 정렬장치(610) 상에 남아 있는 제1 전극(E1)의 높이가 변경된다. 그에 따라, 제1 전극(E1)을 픽업하기 위해 제1 적층 로더부(130)가 제2 위치(P2)로 이동될 경우, 제1 로더 플레이트(131)의 하면을 제1 전극 정렬장치(610) 상에 남아 있는 최상부의 제1 전극(E1)에 근접하게 위치시킬 필요가 있다. 이때, 제1 위치조절수단(133)을 이용하여 제1 로더 플레이트(131)의 하면이 제1 전극(E1)에 근접하도록 제1 로더 플레이트(131)를 하측방향으로 이동시켜 위치를 조절하게 된다.
이러한 제1 위치조절수단(133)은 실린더 방식으로 구현될 수 있으나, 이에 한정되는 것은 아니라는 점에 유의하여야 한다. 일 예로, 제1 위치조절수단(133)은 제1 로더 플레이트(131)를 지지하고 있는 제1 지지 프레임(132)을 상하방향으로 이동시키기 위한 제1 실린더부(133a) 및 제1 지지 프레임(132)과 측면 프레임(121) 사이에 배치되며, 제1 지지 프레임(132)의 상하 이동을 안내하기 위한 제1 가이드부(133b)를 포함할 수 있다.
본 발명의 일 실시예에 따른 제2 적층 로더부(140)는 제2 로더 플레이트(141)와, 제2 지지 프레임(142) 및 제2 위치조절수단(143)을 포함할 수 있다.
본 발명의 일 실시예에 따른 제2 적층 로더부(140)는 상술한 제1 적층 로더부(130)의 구성 및 동작이 실질적으로 동일하므로, 이하의 상이한 구성 및 동작을 제외하고 그 상세한 설명은 생략한다.
도 5b 및 후술하는 도 10을 참조하면, 제2 로더 플레이트(141)에 형성된 제2 그리퍼 수용홈부(141a)는 전극 적층 스테이지장치(300)에 구비되어 제1 그리퍼(320)와 제2 전극(E2)을 파지하는 제2 그리퍼(330, 도 10 참조)가 수용된다.
한편, 도 4에 도시된 본 발명의 일 실시예에 따른 수평 구동유닛(150)은 적층 로더유닛(120)을 수평왕복 이동시키기 위한 구성으로, 이러한 수평 구동유닛(150)은 적층 로더유닛(120)의 양측 중 적어도 어느 한 곳에 배치되는 수평 구동부(151)를 포함할 수 있다. 본 발명의 일 실시예에서는 적층 로더유닛(120)의 안정적인 회동을 위하여, 수평 구동부(151)가 적층 로더유닛(120)의 양측에 배치된 것을 도시하고 있다. 이때, 수평 구동부(151)는 리니어모듈 방식 또는 리니어모션 가이드(LM Guide) 방식이 적용될 수 있으나, 이에 제한되는 것은 아니라는 점에 유의하여야 한다.
일 예로, 수평 구동부(151)는 적층 로더유닛(120)을 수평 왕복시키기 위한 수평 이동부재(151a); 상기 수평 이동부재(151a)에 결합되어 상기 수평 이동부재(151a)의 이동을 안내하는 가이드블록(151b); 및 상기 가이드블록(151b)의 일측에 배치되며, 상기 수평 이동부재(151a)를 구동시키는 구동모터(151c)를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 변환 구동유닛(160)은 일측이 적층 로더유닛(120)과 연결되고 타측이 수평 구동유닛(150)과 연결되어 있다. 그에 따라, 변환 구동유닛(160)은 수평 구동유닛(150)의 수평왕복 이동과 연동하여 적층 로더유닛(120) 상에서 수직왕복 이동함으로써, 적층 로더유닛(120)이 회동왕복 이동하도록 변환시킬 수 있다. 이러한 변환 구동유닛(160)은 적층 로더유닛(120)의 양측 중 적어도 어느 한 곳에 배치될 수 있으며, 변환 구동부(161)를 포함할 수 있다. 본 발명의 일 실시예에서는 적층 로더유닛(120)의 안정적인 회동을 위하여, 변환 구동부(161)가 수평 구동부(151)와 동일하게 적층 로더유닛(120)의 양측에 배치된 것을 도시하고 있다.
일 예로, 변환 구동부(161)는 측면 프레임(121)의 일측에 형성되되, 측면 프레임(121)의 높이 방향을 따라 형성된 가이드 레일(161a), 및 일측은 상기 가이드 레일(161a)에 결합되고 타측은 상기 수평 이동부재(151a)와 결합되는 수직 이동부재(161b)를 포함할 수 있다. 이 경우, 수직 이동부재(161b)는 상기 수평 이동부재(151a)의 수평왕복 이동에 의해 가이드 레일(161a)을 따라 수직왕복 이동하여 측면 프레임(121)을 회동왕복 이동시킨다.
즉, 본 발명의 일 실시예에 따르면, 비교적 단순한 구조의 수평 구동부(151)와 변환 구동부(161) 간의 연동동작에 의해 적층 로더유닛(120)을 회동왕복 이동시킴으로써, 전극 적층 로더장치(100)의 전체 크기 및 무게를 최대한 줄일 수 있는 장점이 있다.
이상 상술한 바와 같이, 본 발명의 일 실시예에서는, 하나의 전극 적층 로더장치(100)를 사용하여 세퍼레이터(S)를 회동 방식으로 가이드하여 공급함과 동시에 제1 전극(E1) 및 제2 전극(E2)을 적층 스테이지장치(300) 상에서 적층시킬 수 있다는 점에서 전체 장치의 크기 및 구조를 간소화하고 공정시간을 최대한 줄일 수 있는 장점이 있다.
도 6은 본 발명의 일 실시예에 따른 전극 적층 시스템에서 전극 전달장치의 구조를 개략적으로 나타낸 사시도이다.
도 3 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 전극 전달장치(500)는 후술하는 전극 공급장치(400, 도 8 참조)로부터 공급된 제1 전극(E1) 및 제2 전극(E2)을 전극 정렬장치(600)를 통해 전극 적층 스테이지장치(300)로 전달한다. 이때, 전극 전달장치(500)는 제1 전극 공급장치(410)로부터 제1 전극(E1)을 공급받는 제1 전극 전달장치(510) 및 제2 전극 공급장치(420)로부터 제2 전극(E2)을 공급받는 제2 전극 전달장치(520)를 포함한다.
제1 전극 전달장치(510)는 제1 측면 프레임(511)과, 제1 전극 흡착유닛(512)과, 제1 측면 프레임 지지유닛(513)과, 한 쌍의 수평 구동유닛(514), 및 한 쌍의 변환 구동유닛(515)을 포함한다.
제1측면 프레임(511)은 한 쌍의 측면 프레임(511a,511b)과, 이들 한 쌍의 측면 프레임(511a,511b)을 연결시키는 연결바(511c)를 포함할 수 있다.
제1 전극 흡착유닛(512)은 제1 측면 프레임(511)의 하부측에서 한 쌍의 측면 프레임(511a,511b) 사이에 배치되어, 제1 전극 공급장치(410)로부터 공급되는 제1 전극(E1)을 (예를 들어 진공에 의해) 흡착한 후, 회동왕복 이동에 의해 후술하는 제1 전극 정렬장치(610)로 전달한다.
더욱 구체적으로, 제1 전극 흡착유닛(512)에는 제1 전극(E1)을 흡착하기 위한 진공포트(P)가 마련될 수 있으며, 제1 전극 이송 플레이트(413a)에 의해 이송된 제1 전극(E1)을 진공 흡착한 다음, 전극 정렬장치(600)를 구성하는 제1 전극 정렬장치(610) 측으로 회동하여 제1 전극 정렬장치(610)로 전달한다.
본 발명의 일 실시예에 따른 제1 전극 흡착유닛(512)은 도 4를 참조하여 상술한 제1 적층 로더부(130)와 그 구성 및 동작이 실질적으로 동일, 유사하여 상세한 설명은 생략한다.
상기 제1 측면 프레임 지지유닛(513)은 본체프레임(200)에 설치되어 제1 전극 흡착유닛(512)을 회동 가능하게 지지한다. 이때, 제1 측면 프레임 지지유닛(513)은 도 5에 도시된 제1 본체 프레임(201)에 설치되는 제1 회전 지지부재(513a), 및 제2 본체 프레임(202)에 설치되는 제2 회전 지지부재(513b)를 포함할 수 있다.
이때, 한 쌍의 측면 프레임(511a,511b)의 각각의 상단부는 제1 및 제2 지지부재(513a,513b)에 회동 가능하게 설치된다.
또한, 한 쌍의 수평 구동유닛(514)은 상기 제1 전극 흡착유닛(512)을 수평왕복 이동시킨다.
한 쌍의 변환 구동유닛(515)은 각각 그 일측이 제1 전극 흡착유닛(512)과 연결되고, 타측이 한 쌍의 수평 구동유닛(514)과 연결되어 있다. 그에 따라, 한 쌍의 변환 구동유닛(515)은 한 쌍의 수평 구동유닛(514)의 수평왕복 이동과 연동하여 수직왕복 이동하면서, 제1 전극 흡착유닛(512)을 회동왕복 이동하도록 변환시킨다.
본 발명의 일 실시예에 따른 한 쌍의 수평 구동유닛(514) 및 한 쌍의 변환 구동유닛(515)은 도 3을 참조하여 상술한 수평 구동유닛(150) 및 변환 구동유닛(160)과 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
본 발명의 일 실시예에 따른 제1 전극 전달장치(510)는 제1 전극 흡착유닛(512)의 상측에 배치되며, 제1 전극 흡착유닛(512)을 상하방향으로 이동시켜 제1 흡착유닛(512)의 위치를 조절하기 위한 제3 위치조절수단(516)을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 제3 위치조절수단(516)은 도 4를 참조하여 상술한 제1 위치조절수단(133)과 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
또한, 제2 전극 전달장치(520)는 상술한 제1 전극 전달장치(510)와 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
도 7은 본 발명의 일 실시예에 따른 전극 정렬장치의 구조를 개략적으로 나타낸 도면이다.
도 3 및 도 7을 참조하면, 본 발명의 일 실시예에 따른 전극 정렬장치(600)는 전극 전달장치(500)로부터 전달되는 제1 전극(E1) 및 제2 전극(E2)을 정렬시킨다. 이때, 전극 정렬장치(600)는 제1 전극 전달장치(510)로부터 전달되는 제1 전극(E1)을 정렬시키는 제1 전극 정렬장치(610), 및 제2 전극 전달장치(520)로부터 전달되는 제2 전극(E2)을 정렬시키는 제2 전극 정렬장치(620)를 포함한다.
제1 전극 정렬장치(610)는 제1 전극 정렬장치 본체(611)와, 제1 회전구동부(612)와, 제1 전극 정렬 스테이지(613)와, 제1 전극 정렬 카메라(614), 및 제1 전극 3축방향 구동부(615)를 포함한다.
제1 전극 정렬장치 본체(611)는 제1 회전구동부(612)에 의해 본체프레임(200)의 내부공간에 지지된 상태로 배치될 수 있다.
제1 회전구동부(612)는 제1 전극 정렬장치 본체(611)의 양측에 설치되어 제1 전극 정렬장치 본체(611)를 정방향 및 역방향으로 회전시킨다.
제1 전극 정렬 스테이지(613)는 제1 전극 정렬장치 본체(611)의 상측에 배치되며, 제1 전극 정렬장치 본체(611)와 함께 회전될 수 있다. 그에 따라, 제1 전극 정렬 스테이지(613) 상에 제1 전극 전달장치(510)로부터 제1 전극(E1)이 공급될 수 있다. 자세히 도시되지는 않았지만, 제1 전극 정렬 스테이지(613)의 하측에는 진공에 의해 제1 전극(E1)을 흡착시키기 위한 진공포트(미도시)가 마련될 수 있다.
제1 전극 정렬 카메라(614)는 제1 전극 정렬 스테이지(613)의 상측에 배치되어 제1 전극(E1)의 정렬 상태를 확인하기 위해 제1 전극(E1)의 모서리를 촬영한다. 물론 제1 전극 정렬 카메라(614)는 제1 전극 정렬 스테이지(613)의 하측에 설치되되, 제1 전극 정렬 본체(611) 상에 설치될 수도 있다. 이때, 제1 전극 정렬 카메라(614)는 제1 전극(E1)의 크기 및 형상에 따라 제1 전극 정렬 스테이지(613)의 복수개가 설치될 수도 있다.
제1 전극 3축방향 구동부(615)는 제1 전극 정렬 스테이지(613)의 하측에 배치되고, 제1 전극(E1)을 정렬시키기 위해 제1 전극 정렬 스테이지(613)를 3축방향(전후, 좌우, 및 상하 방향)으로 이동시킨다.
본 발명의 일 실시예에 따른 제1 전극 정렬장치(610)는 제1 전극 전달장치(510)로부터 제1 전극(E1)을 전달받아 상술한 전극 적층 로더장치(100)의 제1 적층 로더부(130)로 전달하기 위해 회전되는 동안 제1 전극(E1)을 정렬한다.
즉, 제1 전극 정렬장치(610)에서 제1 적층 로더부(130)로 제1 전극(E1)을 전달하는 과정이 진행되는 것과 동시에 제1 전극 정렬장치(610)에서 제1 전극(E1)이 정렬됨에 따라 전극을 적층시키기 위한 전체 공정시간을 더욱 줄일 수 있는 이점이 있다.
본 발명의 일 실시예에 따른 제2 전극 정렬장치(620)는 상술한 제1 전극 정렬장치(610)와 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 전극 적층 장치는 하나의 전극 적층 로더장치(100)를 사용하여 회동왕복 이동에 의해 세퍼레이터(S)를 연속적으로 공급하면서 동시에 제1 전극(E1) 및 제1 전극(E1)과 제2 전극(E2)을 세퍼레이터(S) 상에 적층시켜, 전체장치의 구조를 간소화하고 공정시간을 최대한 줄일 수 있는 장점이 있다.
이하에서는 본 발명의 일 실시예에 따른 전극 적층 시스템에 대하여 설명하기로 한다.
도 8은 본 발명의 일 실시예에 따른 전극 적층 시스템의 구조를 나타낸 사시도이고, 도 9는 본 발명의 일 실시예에 따른 전극 적층 시스템의 구성을 설명하기 위한 도면이다.
도 8 및 도 9를 참조하면, 본 발명의 일 실시예에 따른 전극 적층 시스템(1000)은 본체프레임(200); 전극 적층 스테이지장치(300); 전극 공급장치(400); 전극 전달장치(500); 전극 정렬장치(600); 세퍼레이터 언와인딩장치(700); 및 전극 적층 로더장치(100)를 포함한다.
도 8에 도시된 바와 같이, 본체프레임(200)은 높이 조절이 가능한 바닥프레임(210) 상면에 설치되는 제1 본체 프레임(201)과, 제1 본체 프레임(201)과 일정간격 이격되어 배치되며, 바닥프레임(210) 위에 설치되는 제2 본체 프레임(202)을 포함한다.
본체프레임(200)의 상측에는 후술하는 세퍼레이터 언와이딩장치(700)가 배치될 수 있고, 본체프레임(200)과 세퍼레이터 언와이딩장치(700) 사이의 공간에는 전극 적층 스테이지장치(300)와, 전극 전달장치(500)와, 전극 정렬장치(600), 및 전극 적층 로더장치(100)가 배치될 수 있으며, 전방측에는 전극 공급장치(400)가 배치될 수 있다.
도 10은 본 발명의 일 실시예에 따른 전극 적층 시스템에서 전극 적층 스테이지장치의 구조를 개략적으로 나타낸 사시도이다.
도 8 내지 도 10을 참조하면, 본 발명의 일 실시예에 따른 전극 적층 스테이장치(300)는, 상술한 바와 같이, 본체프레임(200)의 내부공간에 배치되며, 전극 적층 로더장치(100)에 의해 전극 적층 스테이장치(300) 상에 세퍼레이터(S)가 회동 방식으로 가이드되면서 공급되면서, 제1 전극(E1) 및 제2 전극(E2)이 세퍼레이터(S) 상에 순차적으로 적층된다.
한편, 전극 적층 스테이지장치(300)에는 적층 스테이지(310)가 마련될 수 있으며, 적층 스테이지(310)의 양측에는 제1 그리퍼(320) 및 제2 그리퍼(330)가 이동 가능하게 설치될 수 있다.
좀 더 구체적으로, 상술한 바와 같이, 적층 스테이지(310) 상에 공급되는 세퍼레이터(S)의 제1 면 및 제2 면 상에 각각 제1 전극(E1) 및 제2 전극(E2)이 순차적으로 적층된다. 이때, 제1 그리퍼(320)는 적층된 제1 전극(E1)을 파지하여 적층 스테이지(310) 상에서 이동되지 않도록 하고, 제2 그리퍼(330)는 적층된 제2 전극(E2)을 파지하여 적층 스테이지(310) 상에서 이동되지 않도록 한다. 이 경우, 제1 및 제2 그리퍼(320,330) 중 하나의 그리퍼만을 사용하여 제1 전극(E1) 및 제2 전극(E2)의 공급 방향을 따라 이동하면서 적층된 제1 전극(E1) 및 제2 전극(E2)을 교대로 파지하는 것도 가능하다.
한편, 적층 스테이지장치(300)는 적층 스테이지(310)의 높이를 조절하기 위한 높이 조절유닛(340)을 더 포함할 수 있다(도 10 참조).
도 9 및 도 10을 참조하면, 높이 조절유닛(340)은 적층 스테이지(310)의 높이를 상하로 조절할 수 있는 높이조절 축 부재(341), 및 상기 높이조절 축 부재(341)와 연결되어 상기 높이조절 축 부재(341)를 구동시키기 위한 높이조절 축 부재 구동부(342)를 포함할 수 있다.
구체적인 일 예로, 제1 전극(E1) 및 제2 전극(E2) 중 어느 하나의 전극이 적층 스테이지(310) 상에서 적층되면, 다음에 적층될 전극이 미리 적층된 전극과의 간섭을 피하기 위해 적층된 전극의 두께에 해당하는 만큼 적층 스테이지(310)를 하측방향으로 이동시키는 것이 바람직하다.
즉, 하나의 전극이 적층 스테이지(310) 상에 적층되는 것과 동시에 높이조절유닛(340)에 의해 적층 스테이지(310)의 높이를 조절함으로써, 다음에 적층될 전극과 미리 적층된 전극 간의 간섭을 피할 수 있게 된다.
도 11은 본 발명의 일 실시예에 따른 전극 적층 시스템에서 전극 공급장치의 구조를 개략적으로 나타낸 사시도이다.
도 8 및 도 11을 참조하면, 본 발명의 일 실시예에 따른 전극 공급장치(400)는 본체프레임(200)의 전방 양측에 각각 배치되어, 제1 전극(E1) 및 제2 전극(E2)을 전극 적층 스테이지장치(300)로 공급한다. 이때, 전극 공급장치(400)는 제1 전극(E1)을 공급하는 제1 전극 공급장치(410), 및 제1 전극 공급장치(410)로부터 일정간격 이격되어 배치되며, 제2 전극(E2)을 공급하는 제2 전극 공급장치(420)를 포함한다.
제1 전극 공급장치(410)는 서로 이격되어 제공되며, 제1 전극(E1)을 각각 수용하는 제1 전극(E1)용 제1 및 제 2 매거진유닛(411,412), 제1 전극 이송유닛(413), 및 제1 전극 픽업유닛(414)을 포함한다.
제1 전극 이송유닛(413)은 제1 전극(E1)용 제1 매거진유닛(411)과 제1 전극(E1)용 제2 매거진유닛(412) 사이에 배치되어, 제1 전극(E1)용 제1 매거진유닛(411) 또는 제1 전극(E1)용 제2 매거진유닛(412)으로부터 공급되는 제1 전극(E1)을 후술하는 제1 전극 전달장치(510) 측으로 이동시킨다. 이러한 제1 전극 이송유닛(413)은 제1 전극(E1)이 안착되어 이송되는 제1 이송플레이트(413a), 및 상기 제1 이송 플레이트(413a)가 장착되며, 상기 제1 이송 플레이트(413a)를 이송시키는 제1 이송레일모듈(413b)을 포함할 수 있다.
또한, 제1 전극 픽업유닛(414)은 제1 전극(E1)용 제1 매거진유닛(411) 및 제1 전극(E1)용 제2 매거진유닛(412)에 각각 수용된 제1 전극(E1)을 교대로 픽업하여 제1 전극 이송유닛(413)으로 이송시킨다.
이러한 제1 전극 픽업유닛(414)은 제1 픽업플레이트(414a), 제2 픽업플레이트(414b), 픽업플레이트 제1 이송부(414c)와, 제1 연결부재(414d), 및 픽업플레이트 제2 이송부(414e)를 포함할 수 있다.
제1 픽업플레이트(414a)는 제1 전극(E1)용 제1 매거진유닛(411)에 수용된 제1 전극(E1)을 진공 흡착하여 픽업하고, 제2 픽업플레이트(414b)는 제1 전극(E1)용 제2 매거진유닛(412)에 수용된 제1 전극(E1)을 진공 흡착하여 픽업한다. 본 발명의 실시예에서는, 제1 및 제2 픽업플레이트(414a,414b)가 각각 진공 흡착 방식으로 픽업하는 것으로 기술하고 있지만, 당업자라면 기타 다른 픽업 방식(예를 들어, 로봇암을 이용한 픽업 방식)이 사용될 수 있다는 것을 충분히 이해할 수 있을 것이다.
픽업플레이트 제1 이송부(414c)는 제1 픽업플레이트(414a) 및 제2 픽업플레이트(414b)를 상하방향(수직 방향)으로 이동시킨다. 이때, 제1 연결부재(414d)에 의해 제1 픽업플레이트(414a) 및 제2 픽업플레이트(414b)가 픽업플레이트 제1 이송부(414c)에 연결된다.
또한, 픽업플레이트 제2 이송부(414e)는 픽업플레이트 제1 이송부(414c)와 연결되어 제1 픽업플레이트(414a) 및 제2 픽업플레이트(414b)를 좌우방향(수평방향)으로 이동시킨다.
상술한 픽업플레이트 제1 이송부(414c) 및 픽업플레이트 제2 이송부(414e)는 리니어모듈 방식 또는 리니어모션 가이드 방식이 적용될 수 있으나, 이에 한정되는 것이 아니라는 점에 유의하여야 한다.
본 발명의 일 실시예에 따른 제1 전극 공급장치(410)는 도 11에 도시된 상태에서 제2 픽업플레이트(414b)가 제1 전극(E1)용 제2 매거진유닛(412)에서 제1 전극(E1)을 픽업하는 동안 제1 픽업플레이트(414a)는 제1 전극(E1)용 제1 매거진유닛(411)에서 픽업된 제1 전극(E1)을 제1 전극 이송 플레이트(413a)로 공급하게 된다. 그 후, 제1 전극 픽업유닛(414)의 픽업플레이트 제1 이송부(414c) 및 픽업플레이트 제2 이송부(414e)에 의해 제1 픽업플레이트(414a) 및 제2 픽업플레이트(414b)가 상승 이동, 좌측 방향(도 11에서 제1 전극(E1)용 제2 매거진유닛(412)에서 제1 전극(E1)용 제1 매거진유닛(411) 쪽으로의 방향) 이동, 및 하강 이동하면, 제1 전극 공급장치(410)는 제1 픽업플레이트(414a)가 제1 전극(E1)용 제1 매거진유닛(411)에서 제1 전극(E1)을 픽업하는 동안 제2 픽업플레이트(414b)는 제1 전극(E1)용 제2 매거진유닛(412)에서 픽업된 제1 전극(E1)을 제1 전극 이송 플레이트(413a)로 공급하게 된다. 그 후, 제1 전극 픽업유닛(414)의 픽업플레이트 제1 이송부(414c) 및 픽업플레이트 제2 이송부(414e)에 의해 제1 픽업플레이트(414a) 및 제2 픽업플레이트(414b)가 상승 이동, 우측 방향(도 11에서 제1 전극(E1)용 제1 매거진유닛(411)에서 제1 전극(E1)용 제2 매거진유닛(412) 쪽으로의 방향) 이동, 및 하강 이동하면, 제1 전극 공급장치(410)는 제2 픽업플레이트(414b)가 제1 전극(E1)용 제2 매거진유닛(412)에서 제1 전극(E1)을 픽업하는 동안 제1 픽업플레이트(414a)는 제1 전극(E1)용 제1 매거진유닛(411)에서 픽업된 제1 전극(E1)을 제1 전극 이송 플레이트(413a)로 공급하게 된다.
따라서, 상술한 방식으로 제1 전극 픽업유닛(414)에 의해 제1 전극(E1)용 제1 매거진유닛(411) 및 제1 전극(E1)용 제2 매거진유닛(412)으로부터 제1 전극(E1)이 교대로 공급됨에 따라, 제1 전극(E1)을 공급하기 위한 공정시간을 최대한 줄일 수 있는 장점이 있다.
본 발명의 일 실시예에 따른 제2 전극 공급장치(420)는 상술한 제1 전극 공급장치(410)와 구성 및 동작이 동일하여 상세한 설명은 생략한다.
본 발명의 일 실시예에 따른 전극 적층 시스템(1000)의 전극 전달장치(500)는 상술한 바와 같이, 제1 전극 공급장치(410)로부터 제1 전극(E1)을 공급받고, 제2 전극 공급장치(420)로부터 제2 전극(E2)을 공급받는다.
또한, 본 발명의 일 실시예에 따른 전극 적층 시스템(1000)의 전극 정렬장치(600)는 상술한 바와 같이, 제1 전극 전달장치(510) 및 제2 전극 전달장치(520)로부터 각각 전달되는 제1 전극(E1) 및 제2 전극(E2)을 정렬시켜 전극 적층 로더장치(100)로 인계한다.
본 발명의 일 실시예에 따른 세퍼레이터 언와인딩장치(700)는 상술한 바와 같이, 본체프레임(200)의 상측에 배치되어 세퍼레이터(S)를 전극 적층 스테이지장치(300)의 적층 스테이지(310)로 제공한다.
본 발명의 일 실시예에 따른 전극 적층 로더장치(100)는 상술한 바와 같이, 제1 전극 정렬장치(610) 및 제2 전극 정렬장치(620)에서 정렬된 제1 전극(E1) 및 제2 전극(E2)과, 세퍼레이터 언와인딩장치(700)로부터 제공되는 세퍼레이터(S)를 전극 적층 스테이지장치(300)에 순차적으로 적층시킨다.
이하에서는 도 3 내지 도 11을 다시 참조하여 상술한 바와 같은 본 발명의 일 실시예에 따른 전극 적층 시스템(1000)의 동작과정을 간략히 설명하기로 한다.
먼저, 제1 및 제2 전극 공급장치(410,420)를 각각 순차적으로 동작시켜 제1 전극(E1) 및 제2 전극(E2)을 전극 적층 스테이지(310)로 순차적으로 공급한다.
좀 더 구체적으로, 제1 전극 공급장치(410)의 제1 전극 픽업유닛(414)의 제1 픽업플레이트(414a)는 제1 전극(E1)용 제1 매거진유닛(411)에 수용된 제1 전극(E1)을 픽업하는 동안 제2 픽업플레이트(414b)는 제1 전극(E1)용 제2 매거진유닛(412)에서 미리 픽업한 제1 전극(E1)을 제1 전극 이송 플레이트(413a)로 이송시킨다. 이와 동시에, 반대쪽에서는 제2 전극 공급장치(420)를 통해 제1 전극 공급장치(410)의 동작과 동일하게 제2 전극(E2)의 픽업 및 이송 과정이 진행된다.
그 후, 제1 전극 이송 플레이트(413a)로 이송된 제1 전극(E1)은 제1 전극 전달장치(510)로 측으로 이동된 후, 제1 전극 전달장치(510)의 제1 전극 흡착유닛(512)에 의해 흡착된다.
제1 전극 흡착유닛(512)에 흡착된 제1 전극(E1)은 한 쌍의 수평 구동유닛(514) 및 한 쌍의 변환 구동유닛(515)에 의해 제1 전극 정렬장치(610) 측으로 회동되어 제1 전극 정렬 스테이지(613)로 전달된다.
이와 동시에, 반대쪽에서는 제2 전극 전달장치(520)를 통해 제1 전극 전달장치(510)의 동작과 동일하게 제2 전극(E2)이 제2 전극 정열장치(620)(구체적으로는 제2 전극 정렬 스테이지(미도시))로 전달된다.
계속해서 제1 전극 정렬 스테이지(613)로 전달된 제1 전극(E1)은 제1 전극 정렬장치 본체(611)가 전극 적층 로더장치(100)로 회동하는 동안 제1 전극 정렬 카메라(614) 및 제1 전극 3축방향 구동부(615)를 통해 정렬된다. 이와 동시에 제2 전극 정렬장치(620)로 전달된 제2 전극(E2)은 제1 전극 정렬장치(610)와 동일한 동작에 의해 제2 전극(E2)이 정렬된다.
그 후, 제1 전극 정렬장치(610)는 제1 적층 로더부(130) 측으로 회동되고, 제1 전극 정렬장치(610)에서 정렬된 제1 전극(E1)은 제1 로더 플레이트(131)가 제1 위치(P1)에서 제2 위치(P2)로 회동되어 제1 로더 플레이트(131)에 의해 진공 흡착된다. 그 후, 제1 로더 플레이트(131)가 제2 위치(P2)에서 제1 위치(P1)로 회동된 후 진공이 해제되어 제1 전극(E1)이 적층 스테이지장치(300)의 적층 스테이지(310) 상에 미리 공급된 세퍼레이터(S)의 제1 면(내측면) 상에 적층된다. 이와 동시에 제2 로더 플레이트(141)의 일측이 제3 위치(P3)에서 제1 위치(P1)로 회동되면서 세퍼레이터(S)를 밀어서 접히도록 하여 제1 전극(E1)을 감싸서 제1 전극(E1)이 세퍼레이터(S)의 제1 면(내측면) 상에 적층되는 것과 동시에 제2 로더 플레이트(141)의 진공이 해제되어 제2 전극(E2)이 세퍼레이터(S)의 제2 면(외측면) 상에 적층된다.
상술한 과정을 반복하게 되면 전극 적층 스테이지(310) 상에 제1 전극(E1)과 제2 전극(E2)이 세퍼레이터(S)의 제1면(내측면) 및 제2 면(외측면) 상에 순차적으로 적층된다.
이하에서는 본 발명의 다른 실시예에 따른 전극 적층 장치에 대해 설명하기로 한다.
도 12는 본 발명의 다른 실시예에 따른 전극 적층 장치의 구조를 개략적으로 나타낸 도면이다.
도 12를 참조하면, 본 발명의 다른 실시예에 따른 전극 적층 장치는 전극 적층 로더장치(100), 전극 전달장치(900), 및 전극 정렬장치(600)를 포함한다.
본 발명의 다른 실시예에 따른 전극 적층 장치의 전극 적층 로더장치(100) 및 전극 정렬장치(600)는 상술한 바와 같이 도 3 내지 도 9를 참조하여 상세히 기술한 본 발명의 일 실시예에 따른 전극 적층 장치(1000)의 전극 적층 로더장치(100) 및 전극 정렬장치(600)와 그 구성 및 동작이 동일하여 상세한 설명은 생략한다.
이하에서는 본 발명의 다른 실시예에 따른 전극 적층 시스템에 대해 설명한다.
도 13은 본 발명의 다른 실시예에 따른 전극 적층 시스템의 구조를 개략적으로 나타낸 사시도이고, 도 14는 본 발명의 다른 실시예에 따른 전극 적층 시스템의 구성을 설명하기 위한 도면이다.
도 12 내지 도 14를 참조하면, 본 발명의 다른 실시예에 따른 전극 적층 시스템(2000)은 본체프레임(미도시)과, 전극 적층 스테이지장치(300)와, 전극 공급장치(800)와, 전극 전달장치(900)와 전극 정렬장치(600)와 세퍼레이터 언와인딩장치(700) 및 전극 적층 로더장치(100)를 포함한다.
상기 본 발명의 다른 실시예에 따른 전극 적층 시스템(2000)의 본체프레임(미도시)과, 전극 적층 스테이지장치(300)와, 세퍼레이터 언와인딩장치(700) 및 전극 적층 로더장치(100)는 도 3 내지 도 11을 참조하여 상술한 본 발명의 일 실시예에 따른 전극 적층 시스템(1000)의 본체프레임(200)과, 전극 적층 스테이지장치(300)와, 세퍼레이터 언와인딩장치(700) 및 전극 적층 로더장치(100)와 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
다시 도 12 내지 도 14를 참조하면, 본 발명의 다른 실시예에 따른 전극 공급장치(800)는 본체프레임(미도시)의 양측에 배치되어, 제1 전극(E1) 및 제2 전극(E2)을 전극 적층 스테이지장치(300)로 공급한다. 이때, 전극 공급장치(800)는 제1 전극(E1)을 공급하는 제1 전극 공급장치(810), 및 상기 제1 전극 공급장치(810)로부터 일정간격 이격되어 배치되며, 제2 전극(E2)을 공급하는 제2 전극 공급장치(820)를 포함한다.
제1 전극 공급장치(810)는 제1 전극(E1)용 제1 매거진유닛(811)과, 제1 전극(E1)용 제2 매거진유닛(812), 및 제1 전극(E1)용 제1 매거진유닛(811)과 제1 전극(E1)용 제2 매거진유닛(812)을 이송하는 매거진 이송유닛(813)을 포함한다.
제1 전극(E1)용 제1 매거진유닛(811)에는 복수의 제1 전극(E1)이 수용되고, 제1 전극 이송유닛(813)에 의해 전극 적층 스테이지장치(300)로 공급된다.
또한, 제1 전극(E1)용 제2 매거진유닛(812)에는 복수의 제1 전극(E1)이 수용되고, 매거진 이송유닛(813)에 의해 전극 적층 스테이지장치(300)로 공급되되, 제1 전극(E1)용 제1 매거진유닛(811)의 반대쪽에 설치된다. 그에 따라, 매거진 이송유닛(813)은 제1 전극(E1)용 제1 매거진유닛(811) 및 제1 전극(E1)용 제2 매거진유닛(812)을 교대로 후술하는 제1 전극(E1) 로딩장치(910) 측으로 이송시킨다.
즉, 본 발명의 일 실시예에 따른 제1 전극 공급장치(410)는 제1 전극 이송 플레이트(413a)를 통해 제1 전극(E1)을 제1 전극 전달장치(510)의 하부로 공급하여 제1 전극(E1)이 제1 전극 전달장치(510)에 의해 직접 픽업될 수 있도록 이송시키는 구조인 반면, 본 발명의 다른 실시예에 따른 제1 전극 공급장치(810)는 후술하는 바와 같이 매거진 이송유닛(813)을 통해 제1 전극(E1)용 제1 매거진유닛(811) 및 제1 전극(E1)용 제2 매거진유닛(812)을 제1 전극 전달장치(910)의 측면으로 순차적으로 이송하고, 제1 전극 전달장치(910)가 수평 왕복 이동하여 순차적으로 이송된 제1 전극(E1)용 제1 매거진유닛(811) 및 제1 전극(E1)용 제2 매거진유닛(812) 상의 제1 전극(E1)을 픽업하는 구조를 제시한다.
본 발명의 다른 실시예에 따른 제2 전극 공급장치(820)은 상술한 제1 전극 공급장치(810)와 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
다시 도 12 내지 도 14를 참조하면, 본 발명의 다른 실시예에 따른 전극 전달장치(900)는 전극 공급장치(800)로부터 공급된 제1 전극(E1) 및 제2 전극(E2)을 전극 적층 스테이지장치(300)로 전달한다. 이때, 전극 전달장치(900)는 제1 전극 공급장치(810)로부터 제1 전극(E1)을 공급받는 제1 전극 전달장치(910), 및 제2 전극 공급장치(820)로부터 제2 전극(E2)을 공급받는 제2 전극 전달장치(920)를 포함한다.
제1 전극 전달장치(910)는 제1 전극 전달플레이트(911)와, 제1 전극 버퍼부(912)와, 제1 전극 전달플레이트(911)를 상하방향으로 이동하도록 구동하는 제1 구동부(913), 및 제1 전극 전달플레이트(911)를 수평방향으로 이동하도록 구동하는 제2 구동부(914)를 포함한다.
제1 전극 전달플레이트(911)는 제1 전극(E1)용 제1 매거진유닛(811) 또는 제1 전극(E1)용 제2 매거진유닛(812)이 제1 전극 전달장치(910)가 순차적으로 이송되면 제1 전극(E1)용 제1 매거진유닛(811) 또는 제1 전극(E1)용 제2 매거진유닛(812) 상으로 이동하여 제1 전극(E1)을 후술하는 제1 전극 정렬장치(610)로 전달하기 위해 픽업한다. 제1 전극(E1)의 픽업은 상술한 바와 같이 진공 흡착 방식이 사용될 수 있다.
이러한 제1 전극 전달플레이트(911)는 제1 픽업부(911a) 및 제2 픽업부(911b)를 포함한다.
자세히 도시되지는 않았지만, 제1 픽업부(911a)는 제1 전극(E1)을 진공 흡착하기 위한 복수의 진공포트가 마련될 수 있고, 진공에 의해 제1 전극(E1)을 흡착하여 후술하는 제1 전극 버퍼부(912)로 이동시킨다.
제2 픽업부(911b)는 제1 전극(E1)을 진공 흡착하기 위한 복수의 진공포트가 마련될 수 있고, 진공에 의해 제1 전극 버퍼부(912)에 위치된 제1 전극(E1)을 흡착하여 제1 전극 정렬장치(610)측으로 이동시킨다.
제1 전극 버퍼부(912)는 제1 픽업부(911a)에 의해 공급된 제1 전극(E1)이 제2 픽업부(911b)에 의해 제1 전극 정렬장치(610)로 전달되기 전에 대기할 수 있도록 한다.
또한, 제1 구동부(913)는 제1 전극 전달 플레이트(911)의 상부에 배치되며, 제1 전극 전달플레이트(911)의 제1 픽업부(911a)가 제1 전극(E1)용 제1 매거진유닛(811) 또는 제1 전극(E1)용 제2 매거진유닛(812) 상의 제1 전극(E1)을 픽업하도록 제1 전극 전달플레이트(911)를 상하방향으로 이동시킨다. 제1 구동부(913)는 실린더 방식이 적용된 것을 제시하고 있으나, 이에 한정하지는 않는다.
자세히 도시되지는 않았지만, 제2 구동부(914)는 제1 전극 전달플레이트(911)를 좌우방향으로 이동시킴으로써, 제1 전극(E1)을 제1 전극(E1)용 제1 매거진유닛(811) 또는 제1 전극(E1)용 제2 매거진유닛(812)에서 제1 전극 버퍼부(912)를 경유하여 제1 전극 정렬장치(610)로 전달할 수 있도록 한다. 제2 구동부(914)는 리니어모듈 방식이 적용될 수 있지만, 이에 한정하지는 않는다.
즉, 본 발명의 다른 실시예에 따른 제1 전극 전달장치(910)는 제1 픽업부(911a)에 의해 픽업된 제1 전극(E1)이 제1 전극 버퍼부(912)로 이동되어 대기하고 있다가, 미리 제1 전극 정렬장치(610)로 전달된 제1 전극(E1)이 전극 적층 로더장치(100)에 의해 적층 스테이지장치(300)에 적층되면, 제1 전극 버퍼부(912)에 대기중인 제1 전극(E1)이 제2 픽업부(911b)에 의해 픽업되어 제1 전극 정렬장치(610)로 전달된다. 그 결과, 제1 전극 버퍼부(912)를 통해 제1 전극(E1)이 연속적으로 공급될 수 있어서 제1 전극(E1)의 공급 시간을 단축시킬 수 있는 장점이 있다.
본 발명의 다른 실시예에 따른 제2 전극 전달장치(920)는 상술한 제1 전극 전달장치(910)와 그 구성 및 동작이 실질적으로 동일하여 상세한 설명은 생략한다.
다양한 변형예가 본 발명의 범위를 벗어남이 없이 본 명세서에 기술되고 예시된 구성 및 방법으로 만들어질 수 있으므로, 상기 상세한 설명에 포함되거나 첨부 도면에 도시된 모든 사항은 예시적인 것으로 본 발명을 제한하기 위한 것이 아니다. 따라서, 본 발명의 범위는 상술한 예시적인 실시예에 의해 제한되지 않으며, 이하의 청구범위 및 그 균등물에 따라서만 정해져야 한다.

Claims (16)

  1. 전극 적층 장치에 있어서,
    회동왕복 이동에 의해 세퍼레이터를 연속적으로 공급하면서 제1 전극 및 상기 제1 전극과 상이한 극성의 제2 전극을 상기 세퍼레이터 상에 적층시키는 전극 적층 로더장치;
    상기 전극 적층 로더장치로 상기 제1 전극 및 상기 제2 전극을 전달하기 위한 전극 전달장치; 및
    상기 전극 전달장치로부터 전달된 상기 제1 전극 및 상기 제2 전극을 정렬시키며, 정렬된 상기 제1 전극 및 상기 제2 전극을 상기 전극 적층 로더장치로 인계하기 위한 전극 정렬장치
    를 포함하는 전극 적층 장치.
  2. 제1항에 있어서,
    상기 전극 적층 로더장치는
    상기 회동왕복 이동에 의해 상기 세퍼레이터를 연속적으로 공급하면서 상기 제1 전극 및 상기 제2 전극을 상기 세퍼레이터 상에 적층시키는 적층 로더유닛;
    상기 적층 로더유닛을 수평왕복 이동시키는 수평 구동유닛; 및
    일측이 상기 적층 로더유닛과 연결되고, 타측이 상기 수평 구동유닛과 연결되어, 상기 수평 구동유닛의 수평왕복 이동과 연동하여 상기 적층 로더유닛 상에서 수직왕복 이동하면서, 상기 적층 로더유닛이 회동왕복 이동하도록 변환시키는 변환 구동유닛
    을 포함하는 전극 적층 장치.
  3. 제2항에 있어서,
    상기 전극 적층 로더장치는 세퍼레이터 가이드유닛을 포함하고,
    상기 세퍼레이터 가이드유닛은
    일정 길이를 가지며, 서로 이격되어 수평방향으로 나란히 배치되는 제1 가이드 축 및 제2 가이드 축으로 구성되는 가이드부를 포함하며,
    상기 세퍼레이터는 상기 제1 가이드 축과 상기 제2 가이드 축 사이를 통과한 후 회동 가능하게 공급되는
    전극 적층 장치.
  4. 제3항에 있어서,
    상기 적층 로더유닛은,
    상기 세퍼레이터 가이드유닛이 고정 장착되는 측면 프레임; 및
    상기 측면 프레임의 하부에 서로 이격되어 제공되는 한 쌍의 제1 및 제2 적층 로더부
    를 포함하는 전극 적층 장치.
  5. 제1항에 있어서,
    상기 전극 전달장치는
    전극 공급장치로부터 공급받은 상기 제1 전극을 상기 전극 적층 로더장치로 전달하는 제1 전극 전달장치; 및
    상기 전극 공급장치로부터 공급받은 상기 제2 전극을 상기 전극 적층 로더장치로 전달하는 제2 전극 전달장치
    를 포함하는 전극 적층 장치.
  6. 제5항에 있어서,
    상기 제1 전극 전달장치 및 제2 전극 전달장치는 각각
    한 쌍의 측면 프레임;
    상기 한 쌍의 측면 프레임의 사이에서 상기 한 쌍의 측면 프레임의 하부측에 배치되며, 상기 제1 전극 또는 상기 제2 전극을 회동왕복 이동에 의해 상기 제1 전극 정렬장치 또는 상기 제2 전극 정렬장치로 전달하는 전극 흡착유닛;
    상기 한 쌍의 측면 프레임을 지지하는 지지유닛;
    상기 전극 흡착유닛을 수평왕복 이동시키는 한 쌍의 수평 구동유닛; 및
    일측이 상기 전극 흡착유닛과 연결되고, 타측이 상기 한 쌍의 수평 구동유닛과 연결되며, 상기 한 쌍의 수평 구동유닛의 수평왕복 이동과 연동하여 수직왕복 이동하면서, 상기 전극 흡착유닛을 회동왕복 이동하도록 변환시시키는 한 쌍의 변환 구동유닛
    을 포함하는 전극 적층 장치.
  7. 제6항에 있어서,
    상기 제1 전극 전달장치 및 제2 전극 전달장치는 각각
    상기 전극 흡착유닛의 상측에 배치되어, 상기 전극 흡착유닛을 이동시켜 상기 전극 흡착유닛의 위치를 조절하기 위한 위치조절수단을 더 포함하는 전극 적층 장치.
  8. 제5항에 있어서,
    제1 전극 전달장치 및 제2 전극 전달장치는 각각
    상기 제1 전극 또는 상기 제2 전극을 픽업하여 상기 전극 정렬장치로 전달하는 전극 전달플레이트;
    상기 전극 전달플레이트를 상하방향으로 이동하도록 구동하는 제1 구동부;
    상기 전극 전달플레이트를 수평방향으로 이동하도록 구동하는 제2 구동부; 및
    상기 전극 전달플레이트에 의해 공급된 상기 제1 전극 또는 상기 제2 전극을 상기 제1 전극 정렬장치 또는 상기 제2 전극 정렬장치로 전달하기 전에 대기시키는 전극 버퍼부
    를 더 포함하는 전극 적층 장치.
  9. 제8항에 있어서,
    상기 전극 전달플레이트는
    상기 전극 전달플레이트의 일측 하부에 제공되며, 상기 제1 전극 또는 상기 제2 전극을 픽업하여 상기 전극 버퍼부로 이동시키는 제1 픽업부; 및
    상기 전극 전달플레이트의 타측 하부에 제공되며, 상기 전극 버퍼부에서 대기 중인 상기 제1 전극 또는 상기 제2 전극을 픽업하여 상기 제1 전극 정렬장치 또는 상기 제2 전극 정렬장치로 이동시키는 제2 픽업부
    를 포함하는 전극 적층 장치.
  10. 제5항에 있어서,
    상기 전극 정렬장치는
    상기 제1 전극 전달장치로부터 전달되는 상기 제1 전극을 정렬시키는 제1 전극 정렬장치; 및
    상기 제2 전극 전달장치로부터 전달되는 상기 제2 전극을 정렬시키는 제2 전극 정렬장치
    를 포함하는 전극 적층 장치.
  11. 제10항에 있어서,
    상기 제1 전극 정렬장치 및 상기 제2 전극 정렬장치는 각각
    상기 제1 전극 또는 상기 제2 전극이 정렬되는 정렬장치 본체;
    상기 정렬장치 본체의 일측에 설치되며, 상기 전극 정렬장치 본체를 정방향 및 역역방향으로 회전시키기 위한 회전구동부;
    상기 전극 정렬장치 본체의 상측에 배치되며, 상기 전극 정렬장치 본체와 함께 회전되어 상기 전극 전달장치로부터 전달되는 상기 제1 전극 또는 상기 제2 전극이 공급되는 전극 정렬 스테이지;
    상기 제1 전극 또는 상기 제2 전극의 정렬 상태를 확인하기 위한 적어도 하나의 정렬 카메라; 및
    상기 전극 정렬 스테이지의 하측에 배치되며, 상기 제1 전극 또는 상기 제2 전극을 정렬시키기 위해 상기 전극 정렬 스테이지를 3축방향으로 이동시키는 3축방향 구동부
    를 포함하는 전극 적층 장치.
  12. 전극 적층 시스템에 있어서,
    본체프레임;
    상기 본체프레임의 내부공간에 배치되며, 연속적으로 공급되는 세퍼레이터 상에 제1 전극, 및 상기 제1 전극과 상이한 극성의 제2 전극이 순차적으로 적층되도록 제공되는 전극 적층 스테이지장치;
    상기 전극 적층 스테이지장치의 양측에 각각 배치되며, 상기 제1 전극 및 상기 제2 전극을 공급하기 위한 전극 공급장치;
    상기 세퍼레이터를 상기 전극 적층 스테이지장치로 공급하는 세퍼레이터 언와인딩장치; 및
    상기 전극 공급장치에 의해 공급된 상기 제1 전극 및 상기 제2 전극을 상기 전극 적층 스테이지장치 상으로 공급하는 제1항 내지 제12항 중 어느 한 항의 전극 적층 장치
    를 포함하는 전극 적층 시스템.
  13. 제12항에 있어서,
    상기 전극 공급장치는,
    상기 제1 전극을 공급하는 제1 전극 공급장치; 및
    상기 제1 전극 공급장치로부터 일정간격 이격되어 배치되며, 상기 제2 전극을 공급하는 제2 전극 공급장치
    를 포함하는 전극 적층 시스템.
  14. 제13항에 있어서,
    상기 제1 전극 공급장치 및 상기 제2 전극 공급장치는 각각
    상기 제1 전극 또는 상기 제2 전극을 수용하는 제1 매거진유닛;
    상기 제1 매거진유닛으로부터 일정간격 이격되어 제공되며, 상기 제1 전극 또는 상기 제2 전극을 수용하는 제2 매거진유닛;
    상기 제1 매거진유닛과 상기 제2 매거진유닛 사이에 배치되며, 상기 제1 매거진유닛 또는 상기 매거진유닛으로부터 공급되는 상기 제1 전극 또는 상기 제2 전극을 상기 전극 전달장치 측으로 이동시키는 전극 이송유닛; 및
    상기 제1 매거진유닛 및 상기 제2 매거진유닛에 수용된 상기 제1 전극 또는 상기 제2 전극을 교대로 픽업하여 상기 전극 이송유닛으로 이송시키는 전극 픽업유닛
    을 포함하는 전극 적층 시스템.
  15. 제14항에 있어서,
    상기 전극 픽업유닛은
    상기 제1 매거진유닛에 수용된 상기 제1 전극 또는 상기 제2 전극을 픽업하는 제1 픽업플레이트;
    상기 제2 매거진유닛에 수용된 상기 제1 전극 또는 상기 제2 전극을 픽업하는 제2 픽업플레이트;
    상기 제1 픽업플레이트 및 상기 제2 픽업플레이트를 상하방향으로 이동시키기 위한 픽업플레이트 제1 이송부;
    상기 제1 픽업플레이트 및 상기 제2 픽업플레이트를 상기 픽업플레이트 제1 이송부와 연결시키기 위한 연결부재; 및
    상기 픽업플레이트 제1 이송부와 연결되며, 상기 제1 픽업플레이트 및 상기 제2 픽업플레이트를 좌우방향으로 이동시키기 위한 픽업플레이트 제2 이송부
    를 포함하는 전극 적층 시스템.
  16. 제13항에 있어서,
    상기 제1 전극 공급장치 및 상기 제2 전극 공급장치는 각각
    상기 제1 전극 또는 상기 제2 전극을 수용하는 제1 매거진유닛;
    상기 제1 매거진유닛의 반대측에 설치되며, 상기 제1 전극 또는 상기 제2 전극을 수용하는 제2 매거진유닛; 및
    상기 제1 매거진유닛 및 상기 제2 매거진유닛이 배치되며, 상기 제1 매거진유닛 및 상기 제2 매거진유닛을 교대로 상기 전극 전달장치 측으로 이동시키기 위한 매거진 이송유닛
    을 포함하는 전극 적층 시스템.
PCT/KR2020/001507 2019-02-01 2020-01-31 전극 적층 장치 및 이를 구비한 전극 적층 시스템 WO2020159295A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0014048 2019-02-01
KR20190014048 2019-02-01
KR1020190024252A KR102044367B1 (ko) 2019-02-01 2019-02-28 전극 적층 장치 및 이를 구비한 전극 적층 시스템
KR10-2019-0024252 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020159295A1 true WO2020159295A1 (ko) 2020-08-06

Family

ID=68534827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001507 WO2020159295A1 (ko) 2019-02-01 2020-01-31 전극 적층 장치 및 이를 구비한 전극 적층 시스템

Country Status (2)

Country Link
KR (1) KR102044367B1 (ko)
WO (1) WO2020159295A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044367B1 (ko) * 2019-02-01 2019-11-13 (주)호명이엔지 전극 적층 장치 및 이를 구비한 전극 적층 시스템
KR102574569B1 (ko) * 2020-08-26 2023-09-06 인왕산기 주식회사 구동기 및 이를 포함하는 이차전지의 극판 적층 장치
KR102303834B1 (ko) 2021-01-07 2021-09-17 조기봉 이차전지의 고속 셀 스택 제조장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020186B1 (ko) * 2009-06-30 2011-03-07 주식회사 코캄 리튬 이차 전지 제조장치
KR101380133B1 (ko) * 2007-05-02 2014-04-01 에낙스 가부시키가이샤 연속 세퍼레이터 및 시트형상 전극의 적층장치
KR101410036B1 (ko) * 2012-09-28 2014-06-20 (주)엔에스 이차전지용 전극 어셈블리의 제조를 위한 자동화 폴딩 시스템
CN104603989A (zh) * 2012-07-16 2015-05-06 艾姆普罗斯株式会社 二次电池用极板堆栈装置
KR101730469B1 (ko) * 2015-12-21 2017-04-27 주식회사 디에이테크놀로지 이차전지의 고속 셀 스택 제조장치
KR101933550B1 (ko) * 2017-09-28 2018-12-31 주식회사 디에이테크놀로지 이차전지의 셀 스택 제조 시스템
KR102044367B1 (ko) * 2019-02-01 2019-11-13 (주)호명이엔지 전극 적층 장치 및 이를 구비한 전극 적층 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023700B1 (ko) 2009-05-08 2011-03-25 주식회사 나래나노텍 2차 전지용 전극 조립체의 제조장치 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380133B1 (ko) * 2007-05-02 2014-04-01 에낙스 가부시키가이샤 연속 세퍼레이터 및 시트형상 전극의 적층장치
KR101020186B1 (ko) * 2009-06-30 2011-03-07 주식회사 코캄 리튬 이차 전지 제조장치
CN104603989A (zh) * 2012-07-16 2015-05-06 艾姆普罗斯株式会社 二次电池用极板堆栈装置
KR101410036B1 (ko) * 2012-09-28 2014-06-20 (주)엔에스 이차전지용 전극 어셈블리의 제조를 위한 자동화 폴딩 시스템
KR101730469B1 (ko) * 2015-12-21 2017-04-27 주식회사 디에이테크놀로지 이차전지의 고속 셀 스택 제조장치
KR101933550B1 (ko) * 2017-09-28 2018-12-31 주식회사 디에이테크놀로지 이차전지의 셀 스택 제조 시스템
KR102044367B1 (ko) * 2019-02-01 2019-11-13 (주)호명이엔지 전극 적층 장치 및 이를 구비한 전극 적층 시스템

Also Published As

Publication number Publication date
KR102044367B1 (ko) 2019-11-13

Similar Documents

Publication Publication Date Title
WO2020159293A1 (ko) 전극 적층 로더장치 및 이를 구비한 전극 적층 시스템
WO2020159295A1 (ko) 전극 적층 장치 및 이를 구비한 전극 적층 시스템
KR101956758B1 (ko) 이차전지의 셀 스택 제조장치
WO2019172567A1 (ko) 단위셀 정렬장치 및 이를 이용한 전극조립체 제조 방법
KR101280069B1 (ko) 전극 적층 시스템
WO2018021590A1 (ko) 셀적층 및 열압착 장치, 및 셀적층 및 열압착 방법
WO2020130184A1 (ko) 이차전지의 셀 스택 제조장치
WO2022039411A1 (ko) 이차 전지용 셀 스택 제조 장치
WO2021071043A1 (ko) 배터리 운반 장치
WO2022039412A1 (ko) 이차 전지용 셀 스택 제조 장치
WO2022014753A1 (ko) 이차전지 스텍킹 장비
WO2022039413A1 (ko) 노칭 기능이 구비된 이차 전지용 셀 스택 제조 장치
WO2016204513A1 (ko) 인라인 핸들러 및 이를 이용한 검사방법
WO2023106773A1 (ko) 배터리 모듈 조립체의 조립 시스템 및 조립 방법
WO2018021589A1 (ko) 2차 전지 제조 방법
WO2022039414A1 (ko) 노칭 기능이 구비된 이차 전지용 셀 스택 제조 장치
WO2023277327A1 (ko) 이차전지 전극조립체의 단면 전극 스택용 분리막 핸들링장치 및 이를 이용한 이차전지 전극조립체 제조 방법
WO2023038208A1 (ko) 지그재그형 이차전지의 극판 고속 적층 장치
WO2021194147A1 (ko) 배터리 팩의 적재장치 및 이를 이용한 배터리 팩 적재방법
WO2021182656A1 (ko) 이차전지의 전극판 제조장치 및 제조방법
WO2023075330A1 (ko) 전극 조립체 폴딩 장치 및 이에 의한 폴딩 방법
WO2021112551A1 (ko) 전극 조립체 제조장치와, 이를 통해 제조된 전극 조립체 및 이차전지
WO2023075328A1 (ko) 전극 조립체 폴딩 장치 및 이에 의한 폴딩 방법
WO2023106760A1 (ko) 얼라인 장치 및 이를 포함하는 배터리 모듈 조립체의 조립 시스템
WO2023033472A1 (ko) 리드 공급 시스템 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748590

Country of ref document: EP

Kind code of ref document: A1