WO2023013167A1 - クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム - Google Patents

クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム Download PDF

Info

Publication number
WO2023013167A1
WO2023013167A1 PCT/JP2022/015104 JP2022015104W WO2023013167A1 WO 2023013167 A1 WO2023013167 A1 WO 2023013167A1 JP 2022015104 W JP2022015104 W JP 2022015104W WO 2023013167 A1 WO2023013167 A1 WO 2023013167A1
Authority
WO
WIPO (PCT)
Prior art keywords
creatinine
risk
risk estimation
information
biological information
Prior art date
Application number
PCT/JP2022/015104
Other languages
English (en)
French (fr)
Inventor
徳隆 安藤
尚久 正箱
Original Assignee
日清食品ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022040639A external-priority patent/JP2023024259A/ja
Application filed by 日清食品ホールディングス株式会社 filed Critical 日清食品ホールディングス株式会社
Priority to EP22852596.0A priority Critical patent/EP4383275A1/en
Priority to CN202280006128.1A priority patent/CN117677849A/zh
Publication of WO2023013167A1 publication Critical patent/WO2023013167A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/70Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving creatine or creatinine

Definitions

  • the present invention relates to a creatinine risk estimation device, a creatinine risk estimation method, and a program.
  • Creatinine is a metabolite of creatinine phosphate, which is the source of energy for muscles. It is normally released into the blood from muscle tissue, filtered by the glomeruli of the kidney, and then excreted into the urine. For this reason, the amount of creatinine in blood is utilized as an index for evaluating renal function.
  • measuring creatinine required collecting the subject's blood and conducting a biochemical analysis.
  • Patent Document 1 discloses a technique for non-invasively measuring the creatinine concentration level in blood using a laser-based sensor system-on-chip.
  • Patent Document 1 does not disclose a specific method for measuring creatinine.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to determine the health risk of creatinine from non-invasive biological information with extremely high accuracy and without collecting blood or urine.
  • An object of the present invention is to provide a creatinine risk estimating device, a creatinine risk estimating method, and a program that enable rapid estimation.
  • a creatinine risk estimation device includes an information acquisition unit that acquires predetermined user attribute information and noninvasive biological information, an estimation model storage unit that stores a creatinine risk estimation model, and a creatinine risk estimation model. and an estimation processing unit that calculates an estimated creatinine risk value for a given user based on the given user's attribute information and/or non-invasive biometric information.
  • the creatinine risk estimation device further comprises a training data storage unit that stores a training data set, and a learning processing unit that generates a creatinine risk estimation model by machine learning based on the training data set.
  • the attribute information includes age and sex, or a combination thereof
  • the non-invasive biometric information includes BMI, blood pressure, pulse wave data, electrocardiogram data, bioimpedance, or a combination thereof.
  • the training dataset is characterized by including subject attribute information, non-invasive biological information, and creatinine measurement values measured from blood.
  • the noninvasive biological information is characterized by further including oxygen saturation (SpO2).
  • the estimating accuracy of the creatinine risk estimate is characterized by being able to classify the presence or absence of risk with an ROC_AUC of 0.7 or higher.
  • the learning processing unit adds a label indicating the presence or absence of creatinine risk based on the creatinine measurement value measured from blood, and in the label, the difference between the number with creatinine risk and the number without creatinine risk is greater than or equal to a predetermined value, the sample data in the training data set is increased so as to reduce the difference.
  • the learning processing unit generates a first creatinine risk estimation model and a second creatinine risk estimation model by machine learning, respectively, based on different types of training data sets, and the estimation processing unit generates the first creatinine risk estimation model and the second A creatinine risk estimation model is used to calculate a creatinine risk estimate for a given user.
  • a biological information estimator for estimating at least one biological information selected from BMI, blood pressure, pulse wave data, electrocardiogram data, biological impedance, and oxygen saturation included in the biological information;
  • the biometric information estimated by the estimation unit is obtained as the biometric information of the predetermined user.
  • the creatinine risk estimating device In addition to the creatinine risk estimating device, it is characterized by further comprising a biological information measuring device that measures non-invasive biological information to constitute a non-invasive creatinine risk estimating system.
  • the creatinine risk estimation method of the present invention includes the step of storing a training data set containing subject attribute information, non-invasive biological information, and creatinine measured values measured from blood, and machine learning based on the training data set. and using the creatinine risk estimation model to calculate a creatinine risk estimate for a given user based on demographic information and/or non-invasive biometric information of the given user. characterized by comprising
  • the program in the present invention comprises steps of storing a training data set including subject attribute information, noninvasive biological information, and creatinine measurement values measured from blood; generating an estimation model; and using the creatinine risk estimation model to calculate a creatinine risk estimate for a given user based on the given user's attribute information and/or non-invasive biometric information. It is characterized by executing
  • a creatinine risk estimation device capable of extremely accurately estimating the health risk of creatinine by machine learning using non-invasive biological information. Is possible.
  • FIG. 10 is a flow chart showing an execution procedure of creatinine risk estimation processing;
  • FIG. 4 is an ROC_AUC curve of estimation results in Example 1.
  • FIG. 10 is an ROC_AUC curve of estimation results in Example 2.
  • FIG. 4 is an ROC_AUC curve of estimation results in Example 1.
  • FIG. 1 is a block diagram showing a schematic configuration of a creatinine risk estimation system 1 according to this embodiment.
  • the creatinine risk estimation system 1 includes a terminal device 10 , a biological information measurement device 20 , a creatinine risk estimation device 30 and a display device 39 .
  • "user” refers to a person who uses the creatinine risk estimation system to non-invasively obtain an estimate of creatinine risk.
  • "subjects” are used in the creatinine risk estimation system with attribute information such as age and gender, non-invasive biological information, and creatinine measured values measured from blood after obtaining prescribed procedures and consent.
  • the terminal device 10 is an information terminal capable of inputting user attribute information (name, ID, age, gender, etc.) and outputting the input information to the creatinine risk estimation device 30 via a wired or wireless communication network.
  • Any information terminal may be used as long as it is. Examples include tablet terminals, smart phones, mobile terminals including wearable terminals, and PCs (Personal Computers).
  • the height, weight, and the like may be measured by the biological information measuring device 20, which will be described later.
  • the biological information measuring device 20 measures the user's non-invasive biological information.
  • non-invasive biometric information is biometric information obtained by a method that does not require the insertion of instruments into the skin or into body orifices.
  • Non-invasive biological information can be measured using commercially available stature scales, weight scales, sphygmomanometers, pulse oximeters, pulse wave meters, electrocardiographs, impedance measuring devices, galvanic skin measuring devices, and the like.
  • ESTEC BC-3 which can simultaneously measure pulse wave data, electrocardiogram data, bioimpedance, and oxygen saturation (SpO2), can also be used. These devices can noninvasively measure biometric data without imposing a psychological or physical burden on the user.
  • the non-invasive biological information includes BMI (body mass index), blood pressure, pulse wave data, electrocardiogram data, and bioimpedance, or a combination thereof, and oxygen saturation (SpO2 ) may be included.
  • Pulse wave data is obtained by irradiating red light ( ⁇ 660 nm) from a Red LED and near-infrared light ( ⁇ 905 nm) from an IR LED to a protruding part of the body, such as a finger, using a pulse wave meter or pulse oximeter. is measured by measuring the phototransistor.
  • Pulse wave data include pulse, elastic index, peripheral vascular resistance, accelerogram, b/a, e/a, -d/a, Takazawa accelerometer aging index, ejection fraction, LVET, DEI elastic index), or a combination thereof.
  • the elastic index is a numerical value obtained by dividing the height by the time from the systolic peak to the diastolic peak detected in the finger plethysmogram.
  • Peripheral vascular resistance is determined by mean arterial pressure/cardiac output ⁇ 80.
  • DEI depleted elastic index
  • 0.3 to 0.7 is normal, 0.3 or less suggests hypertension or arteriosclerosis, and 0.7 or more suggests acute anxiety.
  • the acceleration pulse wave is a second derivative of photoplethysmogram (SDPTG) of finger plethysmogram (photoplethysmogram: PTG).
  • Acceleration pulse wave includes early positive wave (a-wave), early negative wave (b-wave), mid-systolic re-rising wave (c-wave), late-systolic re-descending wave (d-wave), and diastolic early positive wave (e-wave).
  • the above b/a, e/a, and -d/a are calculated from the ratio of each wave height.
  • vascular aging is evaluated using the Takazawa acceleration pulse wave aging index (bcde)/a. be able to.
  • Ejection fraction is the fraction of blood ejected from the ventricle with each heartbeat and is proportional to the Accelerometer Plethysmographic Aging Index.
  • LVET is Left Ventricular Ejection Time, the time for blood in the left ventricle to be ejected into the aorta after the aortic valve opens.
  • Electrocardiogram data can be measured by electrode electrocardiography (ECG) or photoplethysmography (PPG).
  • ECG data includes respiratory rate, heart rate, RR interval, standard deviation of RR interval, MxDMn ratio, power spectrum of low frequency band, power spectrum of high frequency band, heart rate variability index LF/HF, total power, or combinations thereof.
  • the RR interval is the interval from one QRS wave to the next QRS wave in an electrocardiogram.
  • the MxDMn ratio is the ratio of the longest RR interval to the shortest RR interval in time and is an index of irregular heartbeats.
  • the total power is the calculated value of the total power of the power spectrum of frequencies 0 to 0.4 Hz (VLF, LF, HF) measured for 2 minutes.
  • This value reflects the total autonomic nervous system activity dominated by sympathetic activity.
  • the high frequency power spectral ratio (0.1875 to 0.50 Hz: HF)
  • the low frequency power spectral ratio (0.05 to 0.1875 Hz: LF)
  • the LF/HF ratio the power spectrum ratio of the very low frequency band (0-0.05 Hz: VLF)
  • the impedance (conductance) of a living body can be measured, for example, by passing weak electricity between two of the six electrodes on both legs, both hands, and left and right forehead.
  • ⁇ S anode/cathode conductance
  • ⁇ S cathode/anode conductance
  • ⁇ S/m electrical conductivity
  • muscle mass, body fat mass, total water content, phase angle, and resistance value can be measured at the same time.
  • the dielectric constant ( ⁇ Si) when the current is applied between the right hand and the left hand and between the right forehead and the left forehead is also possible. It is preferable to measure the impedance (conductance) of the living body using 22 patterns of conductivity from six electrodes.
  • Bioimpedance includes body fat mass (kg), body fat mass (%), lean mass, lean mass, muscle mass, total water content (kg), total water content (%), intracellular water content (% ), cardiac output, 1 left forehead-2 left hand/SCR A, 1 left left-2 left hand/delta SCR C-SCR A, 5 left hand-6 left foot/SCR C, 5 left hand-6 left foot/delta SCR C- SCR A, 7 right hand-8 right foot/SCR C, 7 right hand-8 right foot/SCR A, 13 left foot-14 right foot/SCR C, 13 left foot-14 right foot/SCR A, 15 right hand-16 left forehead/delta SCR C- SCR A, 15 right hand-16 forehead left SCR C, 15 right hand-16 forehead left SCR A, 19 right foot-20 left hand/delta SCR C-SCR A, ESG2+4+15+17 ( ⁇ S/m), ESG6+13+19 (%), ESG 6+8+19+21 (%) ), ESG 6 + 8 + 19 + 21 ( ⁇
  • ESG is an abbreviation for electroscangram.
  • the "+" in ESG2+4+15+17 means which electrode attached to the body was used to measure.
  • ESG 2 + 4 + 15 + 17, as shown in Fig. 2 is the left hand when electricity is applied from the left hand to the left forehead, the right hand when electricity is applied from the right hand to the right forehead, the right hand when electricity is applied from the right hand to the left forehead, and the left hand to the right forehead. It means the average value of the conductance measured with the left hand when the current is applied.
  • Non-Patent Document 1 has a detailed description of these conductances.
  • Non-Patent Documents 2 and 3 The details of the ESG (electroscangram) measurement method are described in Non-Patent Documents 2 and 3.
  • “1 left side -2 left hand/SCR A” is the conductance (or conductivity) of the path measured when electricity flows so that "1 left side” is the cathode and "2 left hand” is the anode direction.
  • “5 left hand - 6 left foot / delta SCR C-SCR A” is the difference in conductance measured when current is applied between "5 left hand” and "6 left foot” so that anode-cathode, cathode-anode. be.
  • BMI and blood pressure can be measured using a height weight scale and a blood pressure monitor.
  • the non-invasive biological information may also include oxygen delivery calculated from SpO2 and cardiac output.
  • the measured noninvasive biological information is output to the creatinine risk estimation device 30 through a wired or wireless communication network.
  • the biological information measuring device 20 may be a built-in measuring device or a portable measuring device such as a wearable terminal.
  • the creatinine risk estimation device 30 includes a first acquisition unit 31, a second acquisition unit 32, a user data storage unit 33, a training data storage unit 34, a learning processing unit 35, an estimation model storage unit 36, and an estimation process.
  • a section 37 and an estimated data storage section 38 are provided.
  • the first acquisition unit 31 acquires user attribute information from the terminal device 10 .
  • the second acquisition unit 32 acquires non-invasive biological information of the user from the biological information measuring device 20 .
  • the user data storage unit 33 stores user attribute information and non-invasive biological information acquired from the first acquisition unit 31 and the second acquisition unit 32 .
  • the training data storage unit 34 stores, as a training data set for machine learning, attribute information of a plurality of subjects acquired in advance, non-invasive biological information, and sample test information such as creatinine creatinine obtained from blood tests.
  • sample test information such as creatinine creatinine obtained from blood tests.
  • a plurality of configured training datasets are stored.
  • the specimen test information may further include test information obtained from blood, urine, stool, and the like.
  • the learning processing unit 35 acquires the training data set stored in the training data storage unit 34 and creates a creatinine risk estimation model using the training data set. Specifically, when estimating the creatinine risk, the obtained training data set is processed by neural network and logistic regression, or machine learning by ensemble learning of these learning results, attribute information and non-invasive biological information, and creatinine risk learn relationships.
  • the estimation model storage unit 36 stores the creatinine risk estimation model generated by the learning processing unit 35 .
  • the non-invasive biometric information includes BMI, blood pressure, pulse wave data, electrocardiogram data, bioimpedance, or a combination thereof. Additionally, oxygen saturation (SpO2) is included as needed.
  • the estimation processing unit 37 uses the estimation model generated by the learning processing unit 35 to estimate the user's creatinine risk based on predetermined user attribute information and/or non-invasive biological information.
  • the creatinine risk estimated value is then stored in the estimated data storage unit 38 .
  • the display device 39 can display the creatinine risk estimate value together with the user's attribute information and non-invasive biological information. These data may be displayed on the terminal device 10 owned by the user.
  • FIG. 3 is a hardware configuration diagram of the creatinine risk estimation device 30.
  • the creatinine risk estimation device 30 is configured by a computer 300 having one or more processors 301 , memory 302 , storage 303 , input/output port 304 and communication port 305 .
  • the processor 301 performs processing related to creatinine estimation according to this embodiment by executing a program.
  • the memory 302 temporarily stores programs and computation results of the programs.
  • Storage 303 stores a program for executing processing by creatinine risk estimation device 30 .
  • the storage 303 may be of any kind as long as it is readable by a computer, for example, various recording media such as a recording medium (magnetic disk, optical disk, etc.), random access memory, flash type memory, read-only memory, etc. can be used.
  • the input/output port 304 inputs information from the terminal device 10 and the biological information measuring device 20 and outputs the creatinine estimated value to the display device 39 .
  • a communication port 305 transmits and receives data to and from an information terminal such as another computer (not shown). As a communication method, wireless communication or wired communication can be used.
  • the creatinine risk estimation device 30 can be implemented by a commercially available desktop PC or notebook PC, and the time required to calculate the estimated value of the creatinine risk using the estimation model is several seconds.
  • the processor 301 of the creatinine risk estimation device 30 the first acquisition unit 31, the second acquisition unit 32, the learning processing unit 35, the estimation processing unit 37, etc. function when operating.
  • creatinine By generating a creatinine estimation model through machine learning based on non-invasive biometric data including BMI (body mass index), blood pressure, pulse wave data, electrocardiogram data, bioimpedance, etc., creatinine can be estimated without a blood test. becomes possible. Further, as shown below, it is possible to determine whether or not creatinine is normal even when the number of each data included in the noninvasive biological data is limited.
  • BMI body mass index
  • blood pressure blood pressure
  • pulse wave data electrocardiogram data
  • bioimpedance bioimpedance
  • FIG. 4 is a flowchart showing a procedure for generating and executing a creatinine risk estimation model by machine learning.
  • the learning processing section 35 preprocesses the input data. Specifically, the learning processing unit 35 converts creatinine of 1.00 mg/dL or less to 0 (no risk) and 1.01 mg/dL or more to 1 (with risk) for male creatinine obtained by blood test. For women, 0.70 mg/dL or less creatinine is converted to 0 (no risk), and 0.71 mg/dL or more is converted to 1 (risk).
  • the learning processing unit 35 applies SMOTE (Chawla, NV. et al. 2002) to the learning data, Training samples may be generated artificially.
  • step ST102 the learning processing unit 35 performs machine learning using logistic regression and neural networks (NN).
  • NN_1 in FIG. 4 is a neural network used as a male creatinine risk estimation model
  • NN_2 is a neural network used as a female creatinine risk estimation model. Use one neural network depending on gender.
  • Figure 5 shows the structure of a neural network (NN_1) used as a male creatinine risk estimation model.
  • D is the number of inspection items.
  • the NN structure converts data in the order of D dimension, 64 dimension, 64 dimension, 64 dimension, and 1 dimension via four layer groups (Compile A1, Compile A2, Compile A3, Compile B1).
  • Compile A1, A2, and A3 include a fully connected layer “Linear” that performs fully connected processing, a "Kernel Regularizer” that performs regularization, and a "ReLU” layer that performs ReLU processing. Includes a fully connected layer 'Linear' for processing and an 'Adagrad' layer for optimization processing.
  • the input units of the fully connected layer of the layer group Compile A1 correspond to the input layer
  • the output units of the layer group Compile B1 correspond to the output layer
  • the units between these correspond to the intermediate layers (hidden layers).
  • the hidden layer includes a dropout layer that suppresses some input values to 0 to prevent overfitting.
  • Figure 6 shows the structure of the neural network (NN_2) used as a female creatinine risk estimation model. Rectangles indicate layers for data conversion, and rounded rectangles indicate input/output data. D is the number of inspection items.
  • the NN structure transforms data in the order of D dimension, 64 dimension, 64 dimension and 1 dimension via three layer groups (Compile A1, Compile A2, Compile A3, Compile B1).
  • Compile A1 and A2 include a fully connected layer “Linear” that performs fully connected processing, a "Kernel Regularizer” that performs regularization, and a "ReLU” layer that performs ReLU processing. It includes a fully connected layer 'Linear' that performs the optimization process, and an 'Adagrad' layer that performs the optimization process.
  • the input units of the fully connected layer of the layer group Compile A1 correspond to the input layer
  • the output units of the layer group Compile B1 correspond to the output layer
  • the units between these correspond to the intermediate layers (hidden layers).
  • the hidden layer includes a dropout layer that suppresses some input values to 0 to prevent overfitting.
  • the solver chooses a convergence method (eg L-BFGS method, Newton CG method, liblinear, sag and saga) that minimizes the cross-entropy error.
  • a convergence method eg L-BFGS method, Newton CG method, liblinear, sag and saga
  • the liblinear method was selected in Example 1 below.
  • the learning processing unit 35 stores the creatinine risk estimation model generated by the learning process described above in the estimation model storage unit 36 . It should be noted that the machine learning algorithms described above are merely examples, and the present invention is not limited to these.
  • step ST201 the first acquisition unit 31 of the creatinine risk estimation device 30 acquires user attribute information from the terminal device 10.
  • step ST202 the second acquiring unit 32 of the creatinine risk estimating device 30 acquires non-invasive biological information of the user. Then, the user's attribute information and non-invasive biological information are stored in the user data storage unit 33 .
  • step ST203 using the creatinine risk estimation model stored in the estimation model storage unit 36, the estimation processing unit 37 determines the probability of belonging to class 0 (no risk) or class 1 (with risk), that is, the creatinine risk probability.
  • step ST204 the calculated creatinine risk estimated value is stored in the estimated data storage unit 38, and in step ST205, the creatinine risk estimated value is output to an external terminal such as the display device 39 for display.
  • Attribute information includes ID, name, age, gender, or a combination thereof
  • non-invasive biometric information includes BMI, blood pressure, pulse wave data, electrocardiogram data, bioimpedance, and oxygen saturation. (SpO2), or combinations thereof.
  • Height and weight which are the criteria for calculating BMI, were measured using a height scale and weight scale, respectively, and blood pressure was measured using a sphygmomanometer.
  • Pulse wave data, electrocardiogram data, bioimpedance, and oxygen saturation (SpO2) were measured with Estech BC-3 (Ryobi Systems).
  • the non-invasive biometric information may be acquired using a predetermined wearable terminal.
  • Bioimpedance (conductance) was measured by passing a weak electric current between two of six electrodes on both feet, both hands, and left and right forehead. The voltage and current were 1.28 V, 200 ⁇ A and the conductance was measured for 32 milliseconds per second. Current was applied to two of the six electrodes, and (1) anode/cathode conductance ( ⁇ S), (2) cathode/anode conductance ( ⁇ S), (3) conductance measured in (1) above.
  • Estec BC-3 measured pulse wave data, electrocardiogram data, bioimpedance, and oxygen saturation (SpO2) for 2 minutes for each subject.
  • a device equipped with electrocardiogram, pulse wave monitor, and pulse oximeter functions was attached to the subject's left index finger, and two electrodes were attached to the forehead. placed on top.
  • ⁇ Learning model 1> In learning model 1, as shown in Fig. 4, a creatinine risk estimation model was created by performing machine learning using logistic regression and a neural network (NN_1 or NN_2) and performing ensemble learning by stacking these learning results. . At this time, the following data were selected and used as attribute information and non-invasive biological data.
  • Non-invasive biometric data/BMI/Blood pressure Pulse pressure/Pulse wave data: d/a/Electrocardiogram data: Respiratory rate/Bioimpedance: 1 amount Left-2 left hand/delta SCR C-SCR A, 5 left hand-6 left foot/SCR C, 7 right hand-8 right foot/SCR A, 15 right hand-16 forehead left SCRA, ESG2+4+15+17 ( ⁇ S/m), ESG6+8 +19+21 ( ⁇ S/m), ESG9+10 (%), R ( ⁇ ) where ESG9+10 is the average value of impedance measured at the site shown in FIG.
  • the non-invasive biometric data further includes cardiac output included in bioimpedance and oxygen delivery estimated from oxygen saturation (SpO2).
  • ⁇ Learning model 2> machine learning was performed using only the neural network (NN_1 or NN_2) in FIG. Since only neural networks are used, ensemble learning is not performed. At this time, the data shown below were selected and used as non-invasive biological data. Although gender is not included in attribute information in learning model 2, information about gender was used to select neural network NN_1 or NN_2.
  • Non-invasive biological data Blood pressure: systolic blood pressure, pulse pressure/pulse wave data: elastic index, e/a/electrocardiogram data: respiration rate, heart rate ⁇ Bioimpedance: body fat mass (%), lean body mass (kg), lean body mass (%), total water content (%), cardiac output, impedance of both hands and feet (5 left hand - 6 left leg/SCR C and 7 right hand-8 right foot/SCR C), ESG9+10 (%)
  • noninvasive biometric data include stroke volume obtained by dividing cardiac output by heart rate, Further included is the amount of transport.
  • Example 1 a total of 468 male subjects (1) attribute information, (2) height and weight scale, sphygmomanometer, and noninvasive biological information measured by Estec BC-3, and (3) noninvasive biological A creatinine risk estimation model was generated through the above learning model 1 machine learning using a creatinine training data set obtained from a blood test performed on the same day as the information measurement. Then, the estimated accuracy of the creatinine risk estimation model was evaluated by the ROC_AUC curve. As a result, ROC_AUC showed 0.75, exceeding 0.7 indicating that good classification was achieved.
  • FIG. 8 shows the ROC_AUC curve of the estimation result of Example 1. As shown in FIG.
  • Example 2 a total of 244 female subjects (1) attribute information, (2) height and weight scale, sphygmomanometer, and noninvasive biological information measured by Estech BC-3, and (3) noninvasive biological A creatinine risk estimation model was generated through the above learning model 2 machine learning using a creatinine training data set obtained from a blood test performed on the same day as the information measurement. Then, the estimated accuracy of the creatinine risk estimation model was evaluated by the ROC_AUC curve. As a result, ROC_AUC showed 0.83, which exceeded 0.8 indicating that very good classification was achieved.
  • FIG. 9 shows the ROC_AUC curve of the estimation result of Example 2. As shown in FIG.
  • BMI is generally not obtained by wearable devices, etc., but is obtained from the height and weight entered by the user.
  • the above-mentioned creatinine risk is obtained by obtaining only biological information. Therefore, convenience for the user is improved.
  • the method of estimating BMI is not particularly limited, for example, BMI is known to be correlated with the inclination of the user's abdomen (at a predetermined position).
  • a predetermined acceleration sensor is provided on the abdomen of the user (or a wristband-type wearable terminal equipped with an acceleration sensor is applied to the abdomen), and the inclination of the abdomen is calculated based on the data output from the acceleration sensor. may be obtained and estimated BMI.
  • pulse wave data and oxygen saturation may also be estimated using a wristband-type wearable terminal equipped with a pulse wave sensor or medium oxygen concentration sensor, as described above.
  • blood pressure may also be estimated using a wristband-type wearable terminal or the like in the same manner as described above. Since it is known that there is a correlation between the speed of the pulse wave sent through the artery by the heartbeat and the blood pressure, using a predetermined sensor that measures the speed of the pulse wave sent through the artery by the heartbeat, Blood pressure may be estimated.
  • electrocardiogram data may also be estimated using a wristband-type wearable terminal or the like in the same manner as described above.
  • the electrocardiogram data can be estimated based on the data obtained from the electrodes provided on the surface opposite to the display surface of the wristband wearable terminal and the electrodes provided on the display surface side.
  • the wrist of a hand for example, left hand wearing a wristband-type wearable terminal is in contact with the electrode provided on the opposite side, and the hand attached to the electrode provided on the display surface side
  • Electrocardiogram data may be estimated from data obtained by contacting the fingertips of the opposite hand (eg, right hand).
  • bioimpedance may also be estimated using a wristband-type wearable terminal or the like equipped with various electrodes.
  • bioimpedance may be estimated based on biometric information obtained from the chest and wrist using a wristband-type wearable terminal or the like.
  • biometric information that can be acquired by the wearable terminal and the biometric information to be estimated (BMI, blood pressure, pulse wave data, electrocardiogram data, and biometric information of at least one or more of bioimpedance and oxygen saturation)
  • BMI blood pressure
  • pulse wave data pulse wave data
  • electrocardiogram data electrocardiogram data
  • biometric information of at least one or more of bioimpedance and oxygen saturation As teacher data, classifiers generated using various machine learning algorithms may be used to estimate the biometric information of the estimation target described above.
  • the above-described second acquisition unit may acquire the estimated biological information.
  • the series of processes described above can be executed by hardware or by software.
  • the functional configuration described above is merely an example and is not particularly limited. In other words, it is sufficient for the information processing system to have a function capable of executing the series of processes described above as a whole, and what kind of functional block is used to realize this function is not particularly limited to the example described above.
  • the locations of the functional blocks are not particularly limited to those shown in FIG. 1, and may be arbitrary.
  • the functional blocks of the server may be transferred to another terminal, device, or the like.
  • functional blocks of other terminals or devices may be transferred to a server or the like.
  • one functional block may be composed of hardware alone, software alone, or a combination thereof.
  • the computer may be a computer built into dedicated hardware. Also, the computer may be a computer capable of executing various functions by installing various programs, such as a server, a general-purpose smart phone, or a personal computer.
  • a recording medium containing such a program not only consists of a removable medium (not shown) that is distributed separately from the device main body in order to provide the program to the user, etc., but is also preinstalled in the device main body and stored in the user's memory. It is composed of a recording medium etc. provided for Since the program can be distributed via a network, the recording medium may be installed in or accessible to a computer connected or connectable to the network.
  • the steps of writing a program recorded on a recording medium are not necessarily processed chronologically according to the order, but may be executed in parallel or individually. It also includes the processing to be performed.
  • the term "system” means an overall device composed of a plurality of devices, a plurality of means, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】従来、クレアチニンの測定には、被験者の血液を採取し、生化学的に分析を行う必要があった。しかしながら、この方法では、侵襲的に被験者の皮膚に針等を刺す必要があり、被験者にとって心理的または肉体的な負担を伴うという課題があった。 【解決手段】本発明によれば、事前に取得した複数の被験者の属性情報、非侵襲な生体情報、および血液検査の検査データに基づき機械学習によりクレアチニンリスク推定モデルを生成することで、所定のユーザの属性情報および非侵襲な生体情報から非侵襲にクレアチニンリスクを推定することが可能となる。

Description

クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム
 本発明は、クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラムに関する。
 クレアチニンは筋肉へのエネルギーの供給源であるクレアチニンリン酸の代謝産物である。通常は筋肉組織から血中へ放出され、腎臓の糸球体でろ過された後、尿中へと排出される。このことから、血中のクレアチニン量は腎機能を評価する指標として活用されている。
 従来、クレアチニンの測定には、被験者の血液を採取し、生化学的に分析を行う必要があった。しかしながら、この方法では、侵襲的に被験者の皮膚に針等を刺す必要があり、被験者にとって心理的または肉体的な負担を伴うという課題があった。
 一方、特許文献1には、レーザ系センサシステムオンチップにより非侵襲に血液中のクレアチニン濃度レベルを測定する技術が開示されている。
特表2020-520768
Psychology Research and Behavior Management 2011:4 81-86、Summary of the clinical investigations E.S.Teck Complex March, 20, 2010要旨 R. N. Chua, Y. W. Hau, C. M. Tiew and W. L. Hau, "Investigation of Attention Deficit/Hyperactivity Disorder Assessment Using Electro Interstitial Scan Based on Chronoamperometry Technique," in IEEE Access, vol. 7, pp. 144679-144690, 2019, doi: 10.1109/ACCESS.2019.2938095. Maarek A. Electro interstitial scan system: assessment of 10 years of research and development. Med Devices (Auckl). 2012;5:23-30. doi:10.2147/MDER.S29319
 しかしながら、特許文献1にはクレアチニンの具体的な測定方法については開示されていない。
 本発明は上記のような事情に鑑みてなされたものであって、本発明の目的は、採血や採尿を行わずに、非侵襲な生体情報からクレアチニンの健康へのリスクを極めて精度良く、かつ迅速に推定することが可能なクレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラムを提供することにある。
 本発明に係るクレアチニンリスク推定装置は、所定のユーザの属性情報および非侵襲な生体情報を取得する情報取得部と、クレアチニンリスク推定モデルを記憶する推定モデル記憶部と、クレアチニンリスク推定モデルを用いて、所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、所定のユーザのクレアチニンリスク推定値を計算する推定処理部と、を備えることを特徴とする。
 本発明に係るクレアチニンリスク推定装置は、訓練データセットを記憶する訓練データ記憶部と、訓練データセットに基づいて、機械学習によりクレアチニンリスク推定モデルを生成する学習処理部と、をさらに備えることを特徴とする。
 属性情報は、年齢、および性別のいずれか、またはこれらの組み合わせを含み、非侵襲な生体情報はBMI、血圧、脈波データ、心電図データ、生体インピーダンス、またはこれらの組み合わせを含むことを特徴とする。
 訓練データセットは、被験者の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニン測定値を含むことを特徴とする。
 非侵襲な生体情報は、酸素飽和度(SpO2)をさらに含むことを特徴とする。
 クレアチニンリスク推定値の推定精度は、リスクの有無をROC_AUCが0.7以上で分類可能な精度であることを特徴とする。
 学習処理部は、訓練データセットにおいて、血液から測定されたクレアチニン測定値に基づいてクレアチニンリスクの有無を示すラベルを付加し、ラベルにおいて、クレアチニンリスク有りの数と、クレアチニンリスク無しの数との差が所定の値以上の場合は、差を小さくするように訓練データセットにおけるサンプルデータを増加させる、ことを特徴とする。
 学習処理部は、異なる種類の訓練データセットに基づいて、それぞれ機械学習により第1クレアチニンリスク推定モデルおよび第2クレアチニンリスク推定モデルを生成し、推定処理部は、第1クレアチニンリスク推定モデルおよび第2クレアチニンリスク推定モデルを用いて、所定のユーザのクレアチニンリスク推定値を計算する、ことを特徴とする。
 生体情報に含まれるBMI、血圧、脈波データ、心電図データ、および生体インピーダンス、酸素飽和度のうち少なくとも1つ以上の生体情報を推定する生体情報推定部をさらに備え、情報取得部は、生体情報推定部によって推定された生体情報を所定のユーザの生体情報として取得する、ことを特徴とする。
 クレアチニンリスク推定装置に加えて、非侵襲な生体情報を測定する生体情報測定装置をさらに備え、非侵襲クレアチニンリスク推定システムを構成することを特徴とする。
 本発明におけるクレアチニンリスク推定方法は、被験者の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニンの測定値を含む訓練データセットを記憶するステップと、訓練データセットに基づいて、機械学習によりクレアチニンリスク推定モデルを生成するステップと、クレアチニンリスク推定モデルを用いて、所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、所定のユーザのクレアチニンリスク推定値を計算するステップを含むことを特徴とする。
 本発明におけるプログラムは、被験者の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニンの測定値を含む訓練データセットを記憶するステップと、訓練データセットに基づいて、機械学習によりクレアチニンリスク推定モデルを生成するステップと、クレアチニンリスク推定モデルを用いて、所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、所定のユーザのクレアチニンリスク推定値を計算するステップと、をコンピュータに実行させることを特徴とする。
 本発明によれば、非侵襲な生体情報を用いて機械学習により極めて精度良くクレアチニンの健康へのリスクを極めて精度良く推定することが可能なクレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラムを提供することが可能である。
クレアチニンリスク推定システムの概略構成を示すブロック図である。 ESG(エレクトロスキャングラム)を説明するための図である。 クレアチニンリスク推定装置のハードウェア構成図である。 機械学習によるクレアチニンリスク推定モデルの生成実行手順を示すフローチャートである。 男性のクレアチニンリスク推定時に使用するニューラルネットワーク(NN)の階層構造である。 女性のクレアチニンリスク推定時に使用するニューラルネットワーク(NN)の階層構造である。 クレアチニンリスク推定処理の実行手順を示すフローチャートである。 実施例1における推定結果のROC_AUC曲線である。 実施例2における推定結果のROC_AUC曲線である。
 以下、実施形態について図面を参照しつつ説明する。なお、実施形態は例示であり、本発明は下記の構成に限定されるものではない。
<装置の機能>
 図1~図7を参照して、本実施形態に係るクレアチニンリスク推定システム1およびクレアチニンリスク推定装置30を説明する。図1は、本実施形態に係るクレアチニンリスク推定システム1の概略構成を示すブロック図である。クレアチニンリスク推定システム1は、端末装置10と、生体情報測定装置20と、クレアチニンリスク推定装置30と、表示装置39とを備える。
 ここで、「ユーザ」とは、非侵襲にクレアチニンリスクの推定値を得るために、クレアチニンリスク推定システムを利用する人をいう。また、「被験者」とは、所定の手続きと同意を得た上で、年齢や性別等の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニン測定値を、クレアチニンリスク推定システムにおいて利用される訓練データセットとして提供する人をいう。
 端末装置10は、ユーザの属性情報(氏名、ID、年齢、性別等)が入力可能であり、かつ、入力された情報を有線または無線の通信ネットワークを通じてクレアチニンリスク推定装置30へ出力可能な情報端末であれば、いかなる情報端末であっても構わない。例えば、タブレット端末、スマートフォン、ウェアラブル端末等を含む携帯端末等、またはPC(Personal Computer)が挙げられる。なお、身長や体重等は、後述する生体情報測定装置20により測定してもよい。
 生体情報測定装置20は、ユーザの非侵襲な生体情報を測定する。ここで、非侵襲な生体情報とは、皮膚内への、または体の開口部への器具の挿入を必要としない方法で取得した生体情報である。非侵襲な生体情報は、市販の身長計、体重計、血圧計、パルスオキシメーター、脈波計、心電図計、インピーダンス測定機、ガルバニック皮膚測定機等を利用して測定することが可能である。また、脈波データ、心電図データ、生体インピーダンス、酸素飽和度(SpO2)を同時に測定可能な、エステックBC-3(両備システムズ)を利用することもできる。これらの装置は、ユーザに心理的、または肉体的な負担を与えることなく、非侵襲な生体データを測定することが可能である。
 本発明の実施形態において、非侵襲な生体情報は、BMI(ボディマス指数)、血圧、脈波データ、心電図データ、および生体インピーダンスのいずれか、またはこれらの組み合わせを含み、さらに、酸素飽和度(SpO2)を含んでもよい。
 BMIは身長h[m]及び体重w[kg]より、下記の計算式により算出される。
 BMI=w/ h2 [kg/m2]
 血圧には、収縮期血圧、拡張期血圧、脈圧、および平均動脈圧のいずれか、またはその組み合わせが含まれる。
 脈圧は下記の式により計算される。
 脈圧=収縮期血圧―拡張期血圧
 平均動脈圧は下記の式により計算される。
 平均動脈圧=拡張期血圧+脈圧×1/3
 脈波データは、脈波計やパルスオキシメーターにより、指など体の突出した部位にRed LEDから赤色光(~660nm)、IR LEDから近赤外光(~905nm) を照射し、その透過光をフォトトランジスタ測定することで測定される。
 脈波データには、脈拍、弾性指数、末梢血管抵抗、加速度脈波、b/a、e/a、-d/a、高沢式加速度脈波加齢指数、駆出率、LVET、DEI(重拍弾性指数)のいずれか、またはこれらの組み合わせが含まれる。
 ここで弾性指数とは、身長を、指尖容積脈波において収縮期のピークから拡張期のピークが検出されるまでの時間で割って得られる数値である。末梢血管抵抗は、平均動脈圧/心拍出量×80によって求められる。DEI(重拍弾性指数)は、拡張期血管の弾性を示す指標であり、PWV測定装置により測定可能である。0.3~0.7が正常、0.3以下で高血圧または動脈硬化の可能性があり、0.7以上では急性不安神経症の可能性が示唆される。
 加速度脈波は、指尖容積脈波(photoplethysmogram:PTG)の二次微分波(second derivative of photoplethysmogram:SDPTG)である。加速度脈波は、初期陽性波(a波)、初期陰性波(b波)、収縮中期再上昇波(c波)、収縮後期再降下波(d波)、および拡張初期陽性波(e波)より構成され、上記b/a、e/a、-d/aは、各波高の割合より計算される。加齢に伴ってb/aの上昇およびc/a、d/a、e/aの低下が認められるため、高沢式加速度脈波加齢指数(b-c-d-e)/aにより血管の加齢を評価することができる。駆出率は、各心拍で心室から送られる血液の割合であり、加速度脈波加齢指数に比例する。LVETは左心室駆出時間であり、大動脈弁解放後、左室内の血液が大動脈へ駆出される時間である。
 心電図データは、電極による心電図法(ECG)または光電脈波法(PPG)により測定可能である。
 心電図データには、呼吸数、心拍数、RR間隔、RR間隔の標準偏差、MxDMn比率、低周波帯のパワースペクトル、高周波帯のパワースペクトル、心拍数変動指標LF/HF、トータルパワーのいずれか、またはその組み合わせが含まれる。ここで、RR間隔とは、心電図のQRS波から次のQRS波までの間隔である。MxDMn比率とは、時間内の最も長いRR間隔と最も短いRR間隔の比であり、不規則な心拍の指数である。トータルパワーとは、2分間の分間測定における周波数0~0.4Hz(VLF,LF,HF)のパワースペクトルのトータルパワーの計算値である。この値は交感神経活動が主に占める自律神経系活動全体を反映する。
 心電図よりパワースペクトル密度を計算することで、高周波のパワースペクトル割合(0.1875~0.50Hz:HF)、低周波のパワースペクトル割合(0.05~0.1875Hz:LF)、LF/HF比、超低周波帯のパワースペクトル割合(0~0.05Hz:VLF)を計算することができる。
 生体のインピーダンス(コンダクタンス)は、例えば、両脚、両手、左右額の計6か所の電極のうち、2か所の間に微弱な電気を流すことで測定することができる。6か所の電極中で2か所に電流を流すと、(1)アノード/カソードコンダクタンス(μS)、(2)カソード/アノードのコンダクタンス(μS)、(3)上記(1)で測定されたコンダクタンスと上記(2)で測定されたコンダクタンスの差分(デルタSCRA-SCRC)、(4)電気伝導度(μS/m)を測定することが可能である。また、筋量、体脂肪量、総水分量、位相角、抵抗値も同時に測定可能である。また、右手⇔左手間、右額⇔左額間で通電している際の誘電率(μSi)も可能である。6か所の電極から22パターンの通電性を利用し、生体のインピーダンス(コンダクタンス)を測定することが好ましい。
 生体インピーダンスには、体脂肪量(kg)、体脂肪量(%)、除脂肪体重、除脂肪率、筋量、総水分量(kg)、総水分量(%)、細胞内水分量(%)、心拍出量、1額左側-2左手/SCR A、1額左側-2左手/デルタSCR C-SCR A、5左手-6左足/SCR C、5左手-6左足/デルタSCR C-SCR A、7右手-8右足/SCR C、7右手-8右足/SCR A、13左足-14右足/SCR C、13左足-14右足/SCR A、15右手-16額左側/デルタSCR C-SCR A、15右手-16額左側SCR C、15右手-16額左側SCR A 、19右足-20左手/デルタSCR C-SCR A 、ESG2+4+15+17(μS/m)、ESG6+13+19(%)、ESG 6+8+19+21 (%)、ESG6+8+19+21(μS/m)、ESG 9+10(μS/m)、ESG9+10(%)、左足のコンダクタンス、R(Ω)、位相角、額経路の誘電率、額経路への電気伝導度(9)、片手-片手経路の誘電率手から手への電気伝導度(11,12)、1回拍出量(心拍出量÷心拍数)両手足インピーダンス(5 左手-6 左足 / SCR C と7 右手-8 右足 / SCR の合計値)のいずれか一つまたはこれらの組み合わせを含む。
 ここで、SCRとは皮膚コンダクタンス反応(skin conductance response)の略称であり、ESGとはエレクトロスキャングラムの略称である。ESG2+4+15+17の「+」は、身体に添付されたどの電極で測定されたかを意味する。例えば、ESG2+4+15+17とは、図2に示すように左手から左額へ通電した際の左手、右手から右額へ通電した際の右手、右手から左額へ通電した際の右手、左手から右額へ通電した際の左手で測定されたコンダクタンスの平均値を意味する。これらコンダクタンスに関しては非特許文献1に詳細な記載がある。なお、ESG(エレクトロスキャングラム)の測定方法については、非特許文献2、3に詳細が記載されている。
 「1額左側-2左手/SCR A」は、「1額左側」がカソード、「2左手」がアノード方向となるように電気が流れた際に測定された経路のコンダクタンス(または伝導性)であり、「5左手-6左足/デルタSCR C-SCR A」は、「5左手」、「6左足」間でアノード-カソード、カソード-アノードとなるよう通電した際に測定されたコンダクタンスの差分である。
 BMIおよび血圧については、身長体重計、血圧計によって測定可能である。また、非侵襲な生体情報には、SpO2および心拍出量より計算される酸素運搬量が含まれてもよい。
 測定された非侵襲な生体情報は、有線または無線の通信ネットワークを通じてクレアチニンリスク推定装置30へ出力される。生体情報測定装置20は、備え付けの測定装置であっても、ウェアラブル端末のように可搬可能な測定装置であってもよい。
 クレアチニンリスク推定装置30は、第1取得部31と、第2取得部32と、ユーザデータ記憶部33と、訓練データ記憶部34と、学習処理部35と、推定モデル記憶部36と、推定処理部37と、推定データ記憶部38とを備える。第1取得部31は、端末装置10よりユーザの属性情報を取得する。また、第2取得部32は、生体情報測定装置20より、ユーザの非侵襲な生体情報を取得する。
 ユーザデータ記憶部33は、第1取得部31及び第2取得部32より取得したユーザの属性情報と非侵襲な生体情報を記憶する。
 訓練データ記憶部34は、機械学習のための訓練データセットとして、事前に取得した複数の被験者の属性情報と、非侵襲な生体情報と、血液検査により得られたクレアチニンクレアチニン等の検体検査情報より構成される訓練データセットが複数記憶されている。なお、検体検査情報には、血液、尿、便等から得られた検査情報をさらに含めても良い。
 学習処理部35は、訓練データ記憶部34に記憶されている訓練データセットを取得し、訓練データセットを用いてクレアチニンリスクの推定モデルを作成する。具体的には、クレアチニンリスクを推定する場合、取得した訓練データセットをニューラルネットワークおよびロジスティック回帰、またはこれらの学習結果のアンサンブル学習による機械学習により、属性情報および非侵襲な生体情報と、クレアチニンリスクの関係を学習する。
 推定モデル記憶部36は、学習処理部35により生成したクレアチニンリスクの推定モデルを記憶する。
 非侵襲な生体情報には、BMI、血圧、脈波データ、心電図データおよび生体インピーダンスのいずれか、またはその組み合わせが含まれる。さらに、必要に応じて酸素飽和度(SpO2)が含まれる。
 推定処理部37は、学習処理部35により生成した推定モデルを用いて、所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、ユーザのクレアチニンリスクを推定する。そして、クレアチニンリスク推定値は推定データ記憶部38に記憶される。
 表示装置39は、ユーザの属性情報や非侵襲な生体情報と共に、クレアチニンリスク推定値を表示することが可能である。なお、これらのデータは、ユーザが保有する端末装置10に表示されてもよい。
<装置のハードウェア構成>
 図3は、クレアチニンリスク推定装置30のハードウェア構成図である。図3に示すように、クレアチニンリスク推定装置30は、一つまたは複数のプロセッサ301と、メモリ302と、ストレージ303と、入出力ポート304と、通信ポート305とを有するコンピュータ300により構成される。プロセッサ301は、プログラムを実行することにより本実施形態に係るクレアチニン推定に関する処理を行う。メモリ302は、プログラム及びプログラムの演算結果を一時的に記憶する。ストレージ303は、クレアチニンリスク推定装置30による処理を実行するプログラムを格納している。ストレージ303は、コンピュータにより読み取り可能であればどのようなものであっても良く、例えば、記録媒体(磁気ディスク、光ディスク等)、ランダムアクセスメモリー、フラシュタイプメモリー、リードオンリーメモリー等の種々の記録媒体を利用することができる。入出力ポート304は、端末装置10および生体情報測定装置20より情報を入力したり、表示装置39へクレアチニン推定値の出力を行う。通信ポート305は、図示しない他のコンピュータ等の情報端末との間でデータの送受信を行う。通信の方法は、無線通信、有線通信を利用することができる。なお、クレアチニンリスク推定装置30は、市販のデスクトップPCまたはノートPCにより実装することが可能であり、推定モデルを用いたクレアチニンリスクの推定値の算出に要する時間は数秒である。
 なお、クレアチニンリスク推定装置30のプロセッサ301においては、動作する際に、上述の第1取得部31、第2取得部32、学習処理部35、推定処理部37等が機能する。
 BMI(ボディマス指数)、血圧、脈波データ、心電図データ、および生体インピーダンス等を含む非侵襲生体データに基づき機械学習によりクレアチニン推定モデルを生成することで、血液検査を行うことなくクレアチニンの推定を行うことが可能となる。
 また、下記に示すように、非侵襲生体データに含まれる各データの数を限定した場合であっても、クレアチニンが正常か否かの判定を行うことも可能である。
<機械学習によるクレアチニンリスク推定モデルの生成>
 図4は、機械学習によるクレアチニンリスク推定モデルの生成実行手順を示すフローチャートである。
 ステップST101では、学習処理部35は、入力データの前処理を行う。具体的には、学習処理部35は、血液検査により得られたクレアチニンについて、男性の場合クレアチニン1.00 mg/dL以下を0(リスク無し)、1.01 mg/dL以上を1(リスク有り)に変換し、女性の場合はクレアチニン0.70 mg/dL以下を0 (リスク無し)、0.71 mg/dL以上を1(リスク有り)に変換する。また、学習処理部35は、0と分類された人数と1と分類された人数が乖離し不均衡な場合は、学習データに対してSMOTE (Chawla, NV. et al. 2002)を適用し、人工的にトレーニングサンプルを生成してもよい。
 ステップST102では、学習処理部35は、ロジスティック回帰およびニューラルネットワーク(NN)による機械学習を行う。ここで、図4におけるNN_1は男性のクレアチニンリスク推定モデルとして使用するニューラルネットワークであり、NN_2は女性のクレアチニンリスク推定モデルとして使用するニューラルネットワークである。性別に応じて、いずれかのニューラルネットワークを使用する。
 図5は、男性のクレアチニンリスク推定モデルとして使用するニューラルネットワーク(NN_1)の構造である。Dは検査項目の数である。NNの構造は、4つの層群(Compile A1、Compile A2、CompileA3、Compile B1)を介し、D次元、64次元、64次元、64次元、1次元の順にデータを変換している。
 また、Compile A1、A2、A3は、全結合処理を行う全結合層「Linear」、正則化を行う「Kernel Regularizer」、ReLU処理を行う「ReLU 」層を含み、層群Compile B1は、全結合処理を行う全結合層「Linear」、および最適化処理を行う「Adagrad」層を含む。層群Compile A1の全結合層の入力ユニットが入力層、層群Compile B1の出力ユニットが出力層、これらの間にあるユニットが中間層(隠れ層)に相当する。中間層には一部の入力値を0に抑え過学習を防止するDropout層が含まれる。
 図6は、女性のクレアチニンリスク推定モデルとして使用するニューラルネットワーク(NN_2)の構造である。長方形はデータの変換を行う層群を示し、角丸長方形は入出力データを示している。Dは検査項目の数である。NNの構造は、3つの層群(Compile A1、Compile A2、Compile A3、Compile B1)を介し、D次元、64次元、64次元、1次元の順にデータを変換している。
 また、Compile A1、A2は、全結合処理を行う全結合層「Linear」、正則化を行う「Kernel Regularizer」、ReLU処理を行う「ReLU 」層を含み、層群Compile B1は、全結合処理を行う全結合層「Linear」、および最適化処理を行う「Adagrad」層を含む。層群Compile A1の全結合層の入力ユニットが入力層、層群Compile B1の出力ユニットが出力層、これらの間にあるユニットが中間層(隠れ層)に相当する。中間層には一部の入力値を0に抑え過学習を防止するDropout層が含まれる。
 ロジスティック回帰による機械学習では、例えばPythonのオープンソース機械学習ライブラリであるScikit-learnにて提供されているLogistic Regressionを用いることができる。また、必要に応じて、主成分分析により次元数を圧縮してもよい。血液検査により得られたクレアチニンのリスクを機械学習により推定されたクレアチニンリスクの推定値と比較し、f1スコアが最大となるようにLogistic Regressionの各パラメーター(C、正則化方法、max_iter、solber)を調整した。ここで、Cとは正則化の強度を決定するトレードオフパラメータであり、値が大きいほど正則化強度は弱くなる。正則化方法とは、L1正則化またはL2正則化を意味し、これを選択する。max_iterは、学習を反復する最大回数である。solberでは交差エントロピー誤差を最小化する収束方法(例えば、L-BFGS法、ニュートンCG法、liblinear、sagおよびsaga)を選択する。なお、下記の実施例1ではliblinear法を選択した。
 学習処理部35は、上述の学習処理によって生成されたクレアチニンリスク推定モデルを、推定モデル記憶部36に記憶する。
 なお、上述の機械学習アルゴリズムは一例であって、これらに限定されるものではない。
<クレアチニンリスク推定モデルを用いたクレアチニンリスクの推定>
 図7に示すように、ステップST201では、クレアチニンリスク推定装置30の第1取得部31は、端末装置10よりユーザの属性情報を取得する。ステップST202では、クレアチニンリスク推定装置30の第2取得部32は、ユーザの非侵襲な生体情報を取得する。そして、ユーザの属性情報と非侵襲な生体情報をユーザデータ記憶部33に記憶する。そして、ステップST203では、推定モデル記憶部36に格納されているクレアチニンリスク推定モデルを用いて、推定処理部37によりクラス0(リスク無し)またはクラス1(リスク有り)に属する確率、すなわちクレアチニンリスク確率を算出する。ステップST204では、算出されたクレアチニンリスク推定値は推定データ記憶部38に記憶され、ステップST205では、クレアチニンリスク推定値を表示装置39等の外部端末へ出力し、表示させる。
<実施例(クレアチニンリスク推定)>
 以下にクレアチニンリスク推定の実施例を記載する。但し、本発明におけるクレアチニンリスク推定の態様は、以下の実施例に限定されるものではない。
 属性情報には、ID、氏名、年齢、性別のいずれか、またはこれらの組み合わせが含まれ、非侵襲な生体情報には、BMI、血圧、脈波データ、心電図データ、生体インピーダンス、および酸素飽和度(SpO2)のいずれか、またはこれらの組み合わせが含まれる。BMIの算出基準となる身長、体重については、それぞれ身長計および体重計により計測し、血圧については血圧計により測定した。また、脈波データ、心電図データ、生体インピーダンス、酸素飽和度(SpO2)については、エステックBC-3(両備システムズ)により測定した。なお、エステックBC-3に替えて、市販の脈波計、心電図計、インピーダンス測定装置、パルオキシメーターを組み合わせて使用してもよい。また、所定のウェアラブル端末を用いて、上述の非侵襲な生体情報を取得してもよい。
 生体インピーダンス(コンダクタンス)の測定は、両足、両手、左右額の計6か所の電極のうち、2か所の間に微弱な電気を流すことで測定した。電圧と電流は1.28V, 200 μAとし、コンダクタンスは1秒につき32ミリ秒間測定した。6か所の電極中で2か所に電流を流し、(1)アノード/カソードコンダクタンス(μS)、(2)カソード/アノードのコンダクタンス(μS)、(3)上記(1)で測定されたコンダクタンスと上記(2)で測定されたコンダクタンスの差分(デルタSCRA-SCRC)、(4)電気伝導度(μS/m)を測定した。
 また、筋量、体脂肪量、総水分量、位相角、および抵抗値を測定し、右手⇔左手間、右額⇔左額間で通電している際の誘電率(μSi)も測定した。
 エステックBC-3により、各被験者について、脈波データ、心電図データ、生体インピーダンス、および酸素飽和度(SpO2)の測定を2分間行った。測定に際しては、被験者の左手人差し指には心電図、脈波計、およびパルオキシメーターの機能を備えたデバイスを、額には電極を2個装着し、椅子に座った状態で両手両足を電極板の上に置かせた。
<学習モデル1>
 学習モデル1では、図4に示すように、ロジスティック回帰およびニューラルネットワーク(NN_1またはNN_2)による機械学習を行わせ、これらの学習結果についてスタッキングによるアンサンブル学習を行うことで、クレアチニンリスク推定モデルを作成した。
 この際、属性情報、および非侵襲な生体データとして下記に示すデータを選択し、使用した。(A)属性情報・性別(B)非侵襲な生体データ・BMI・血圧・・・脈圧・脈波データ・・・d/a・心電図データ・・・呼吸数・生体インピーダンス・・・1額左側-2左手/デルタSCR C-SCR A、5左手-6左足/SCR C、7右手-8右足/SCR A、15右手-16額左側SCRA、ESG2+4+15+17(μS/m)、ESG6+8+19+21(μS/m)、ESG9+10(%)、R(Ω)ここで、ESG9+10は図2に示す部位で測定されたインピーダンスの平均値である。[μS/m]は実測平均値の単位であり、[%]は通常計測され得る範囲内に実測平均値をスケール変換した値である。 
 また、非侵襲な生体データには、生体インピーダンスに含まれる心拍出量、および酸素飽和度(SpO2)より推定される酸素運搬量がさらに含まれる。
<学習モデル2>
 学習モデル2では、図4におけるニューラルネットワーク(NN_1またはNN_2)のみを用いて機械学習を行わせた。なお、ニューラルネットワークのみを用いるためアンサンブル学習は行わない。この際、非侵襲な生体データとして下記に示すデータを選択し、使用した。なお、学習モデル2では属性情報に性別は含まれないが、ニューラルネットワークNN_1またはNN_2の選択に性別に関する情報を使用した。(A)属性情報・年齢(B)非侵襲な生体データ・血圧・・・収縮期血圧、脈圧・脈波データ・・・弾性指数、e/a・心電図データ・・・呼吸数、心拍数・生体インピーダンス・・・体脂肪量(%)、除脂肪体重(kg)、除脂肪率(%)、総水分(%)、心拍出量、両手足インピーダンス(5左手-6左足/SCR Cと7右手-8右足/SCR Cの合計値)、ESG9+10(%)
 また、非侵襲な生体データには、心拍出量を心拍数で割って得られる1回拍出量、そして生体インピーダンスに含まれる心拍出量と酸素飽和度(SpO2)により推定される酸素運搬量がさらに含まれる。
<実施例1>
 実施例1では、男性被験者のべ468名の(1)属性情報、(2)身長体重計、血圧計、およびエステックBC-3により測定した非侵襲な生体情報、および(3)非侵襲な生体情報測定と同日に行われた血液検査により得られたクレアチニンの訓練データセットを用いて、上記学習モデル1の機械学習を通じて、クレアチニンリスク推定モデルを生成した。
 そして、クレアチニンリスク推定モデルの推定精度について、推定結果をROC_AUC曲線により評価した。その結果、ROC_AUCは0.75を示し、良好な分類ができていることを示す0.7を超えた。実施例1の推定結果のROC_AUC曲線を図8に示す。
<実施例2>
 実施例2では、女性被験者のべ244名の(1)属性情報、(2)身長体重計、血圧計、およびエステックBC-3により測定した非侵襲な生体情報、および(3)非侵襲な生体情報測定と同日に行われた血液検査により得られたクレアチニンの訓練データセットを用いて、上記学習モデル2の機械学習を通じて、クレアチニンリスク推定モデルを生成した。
 そして、クレアチニンリスク推定モデルの推定精度について、推定結果をROC_AUC曲線によって評価した。その結果、ROC_AUCは0.83を示し、極めて良好な分類ができていることを示す0.8を超えた。実施例2の推定結果のROC_AUC曲線を図9に示す。
(変形例)
 上述の実施形態では、学習モデル1または学習モデル2を用いてクレアチニンリスクを推定する例について説明したが、複数の学習モデルを用いて、クレアチニンリスクを推定してもよい。
 これにより、1つの学習モデルを用いてクレアチニンリスクを推定するよりも、高精度に推定できる。
 また、上述の実施形態および実施例において、学習モデルのデータセットとして、BMIを用いると推定精度が向上する事例が見られたことから、当該BMIを推定する機能部がクレアチニンリスク推定装置に設けられてもよい。
 BMIは、一般に、ウェアラブル端末等で取得されず、ユーザの入力した身長や体重から求めているが、当該BMIを推定することで、生体情報のみを取得することにより、上述のクレアチニンリスクを取得することができるため、ユーザにとって利便性が向上する。
 BMIの推定方法は特に限定されないが、例えば、BMIは、ユーザの腹部の(所定の位置の)傾きと相関があることが知られている。そこで、例えば、ユーザの腹部に所定の加速度センサを設け(または加速度センサを備えるリストバンド型のウェアラブル端末等を腹部に当てて)、当該加速度センサから出力されるデータに基づいて、腹部の傾きを求め、BMIを推定してもよい。
 また、上述と同様に脈波データ、酸素飽和度についても、脈波センサまたは中酸素濃度センサを備えるリストバンド型のウェアラブル端末等を用いて推定してもよい。
 また、上述と同様に血圧についても、リストバンド型のウェアラブル端末等を用いて推定してもよい。これは、心拍によって動脈を通じて送られる脈波の速度と血圧との相関があることが知られていることから、当該心拍によって動脈を通じて送られる脈波の速度を測定する所定のセンサを用いて、血圧を推定してもよい。
 また、上述と同様に心電図データについても、リストバンド型のウェアラブル端末等を用いて推定してもよい。例えば、リストバンド型のウェアラブル端末の表示面と反対側の面に設けられた電極と、表示面側に設けられた電極から得られるデータに基づいて心電図データを推定することができる。具体的には、上記反対側面に設けられた電極にリストバンド型のウェアラブル端末を装着した手(例えば、左手)の手首が接し、上記表示面側に設けられた電極に当該装着した手とは反対側の手(例えば、右手)の指先が接することで得られるデータから心電図データを推定するとよい。
 また、上述と同様に生体インピーダンスについても、各種電極を備えるリストバンド型のウェアラブル端末等を用いて、生体インピーダンスを推定してもよい。例えば、リストバンド型のウェアラブル端末等を用いて、胸部と手首から得られた生体情報に基づいて、生体インピーダンスを推定するとよい。
 なお、ウェアラブル端末で取得可能な生体情報と、上述の推定対象の生体情報(BMI、血圧、脈波データ、心電図データ、および生体インピーダンス、酸素飽和度のうち少なくとも1つ以上の生体情報)とを教師データとして、種々の機械学習アルゴリズムを用いて生成した分類器を用いて、上述の推定対象の生体情報を推定してもよい。
 なお、この場合、上述の第2取得部は、推定された生体情報を取得してもよい。
(その他)
 また例えば、上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。換言すると、上述の機能的構成は例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行できる機能が情報処理システムに備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは特に上述の例に限定されない。また、機能ブロックの存在場所も、図1に特に限定されず、任意でよい。例えば、サーバの機能ブロックを他の端末や装置等に移譲させてもよい。逆に他の端末や装置の機能ブロックをサーバ等に移譲させてもよい。また、一つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体で構成してもよいし、それらの組み合わせで構成してもよい。
 一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。
 このようなプログラムを含む記録媒体は、ユーザ等にプログラムを提供するために装置本体とは別に配布される図示せぬリムーバブルメディアにより構成されるだけでなく、装置本体に予め組み込まれた状態でユーザ等に提供される記録媒体等で構成される。プログラムはネットワークを介して配信可能であることから、記録媒体は、ネットワークに接続された、或いは接続可能なコンピュータに搭載、或いはアクセス可能なものであってもよい。
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。また、本明細書において、システムの用語は、複数の装置や複数の手段等より構成される全体的な装置を意味するものとする。
1   クレアチニンリスク推定システム
10  端末装置
20  生体情報測定装置
30  クレアチニンリスク推定装置
31  第1取得部
32  第2取得部
33  ユーザデータ記憶部
34  訓練データ記憶部
35  学習処理部
36  推定モデル記憶部
37  推定処理部
38  推定データ記憶部
39  表示装置
300 コンピュータ
301 プロセッサ
302 メモリ
303 ストレージ
304 入出力ポート
305 通信ポート
 

 

Claims (12)

  1.  所定のユーザの属性情報および非侵襲な生体情報を取得する情報取得部と、
     クレアチニンリスク推定モデルを記憶する推定モデル記憶部と、
     前記クレアチニンリスク推定モデルを用いて、前記所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、前記所定のユーザのクレアチニンリスク推定値を計算する推定処理部と、を備えることを特徴とするクレアチニンリスク推定装置。
  2.  前記属性情報は、年齢、および性別のいずれか、またはこれらの組み合わせを含み、
     前記非侵襲な生体情報は、BMI、血圧、脈波データ、心電図データ、および生体インピーダンスのいずれか、またはこれらの組み合わせを含む、ことを特徴とする請求項1に記載のクレアチニンリスク推定装置。
  3.  前記クレアチニンリスク推定値の推定精度は、リスクの有無をROC_AUCが0.7以上で分類可能な精度である、ことを特徴とする請求項1または2に記載のクレアチニンリスク推定装置。
  4.  訓練データセットを記憶する訓練データ記憶部と、
     前記訓練データセットに基づいて、機械学習により前記クレアチニンリスク推定モデルを生成する学習処理部と、をさらに備えることを特徴とする請求項1から3のいずれか一項に記載のクレアチニンリスク推定装置。
  5.  前記訓練データセットは、被験者の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニン測定値を含む、ことを特徴とする請求項4に記載のクレアチニンリスク推定装置。
  6.  前記非侵襲な生体情報は、酸素飽和度(SpO2)をさらに含む、ことを特徴とする請求項5に記載のクレアチニンリスク推定装置。
  7.  前記学習処理部は、
      前記訓練データセットにおいて、血液から測定されたクレアチニン測定値に基づいて前記クレアチニンリスクの有無を示すラベルを付加し、
      前記ラベルにおいて、前記クレアチニンリスク有りの数と、前記クレアチニンリスク無しの数との差が所定の値以上の場合は、前記差を小さくするように前記訓練データセットにおけるサンプルデータを増加させる、ことを特徴とする請求項4から6のいずれか一項に記載のクレアチニンリスク推定装置。
  8.  前記学習処理部は、異なる種類の訓練データセットに基づいて、それぞれ機械学習により第1クレアチニンリスク推定モデルおよび第2クレアチニンリスク推定モデルを生成し、
     前記推定処理部は、前記第1クレアチニンリスク推定モデルおよび前記第2クレアチニンリスク推定モデルを用いて、前記所定のユーザのクレアチニンリスク推定値を計算する、
    ことを特徴とする請求項4から7のいずれか一項に記載のクレアチニンリスク推定装置。
  9.  前記生体情報に含まれるBMI、血圧、脈波データ、心電図データ、および生体インピーダンス、酸素飽和度のうち少なくとも1つ以上の生体情報を推定する生体情報推定部をさらに備え、
     前記情報取得部は、前記生体情報推定部によって推定された生体情報を前記所定のユーザの生体情報として取得する、ことを特徴とする請求項1から8のいずれか一項に記載のクレアチニンリスク推定装置。
  10.  請求項1から9のいずれか一項に記載の前記クレアチニンリスク推定装置と、
     非侵襲な生体情報を測定する生体情報測定装置と、を備えることを特徴とする非侵襲クレアチニンリスク推定システム。
  11.  被験者の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニン測定値を含む訓練データセットを記憶するステップと、
     前記訓練データセットに基づいて、機械学習によりクレアチニンリスク推定モデルを生成するステップと、
     前記クレアチニンリスク推定モデルを用いて、所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、前記所定のユーザのクレアチニンリスク推定値を計算するステップと、を含む、クレアチニンリスク推定方法。
  12.  被験者の属性情報、非侵襲な生体情報、および血液から測定されたクレアチニンの測定値を含む訓練データセットを記憶するステップと、
     前記訓練データセットに基づいて、機械学習によりクレアチニンリスク推定モデルを生成するステップと、
     前記クレアチニンリスク推定モデルを用いて、所定のユーザの属性情報および/または非侵襲な生体情報に基づいて、前記所定のユーザのクレアチニンリスク推定値を計算するステップと、をコンピュータに実行させるプログラム。
PCT/JP2022/015104 2021-08-06 2022-03-28 クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム WO2023013167A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22852596.0A EP4383275A1 (en) 2021-08-06 2022-03-28 Creatinine risk estimation device, creatinine risk estimation method, and program
CN202280006128.1A CN117677849A (zh) 2021-08-06 2022-03-28 肌酐风险推定装置、肌酐风险推定方法以及程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-130216 2021-08-06
JP2021130216 2021-08-06
JP2022040639A JP2023024259A (ja) 2021-08-06 2022-03-15 クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム
JP2022-040639 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023013167A1 true WO2023013167A1 (ja) 2023-02-09

Family

ID=85154180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015104 WO2023013167A1 (ja) 2021-08-06 2022-03-28 クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム

Country Status (3)

Country Link
EP (1) EP4383275A1 (ja)
TW (1) TW202306536A (ja)
WO (1) WO2023013167A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508687A (ja) * 2009-10-15 2013-03-07 クレッシェンド バイオサイエンス インコーポレイテッド 炎症性疾患活動性を測定およびモニタリングするためのバイオマーカーおよび方法
WO2020183609A1 (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 移動体制御装置および移動体制御方法
WO2020203728A1 (ja) * 2019-03-29 2020-10-08 株式会社タニタ 健康情報提供システム及び健康情報提供プログラム
JP2021072100A (ja) * 2019-10-28 2021-05-06 株式会社デンソー 情報処理装置、統合モデル生成方法、及び統合モデル生成プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508687A (ja) * 2009-10-15 2013-03-07 クレッシェンド バイオサイエンス インコーポレイテッド 炎症性疾患活動性を測定およびモニタリングするためのバイオマーカーおよび方法
WO2020183609A1 (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 移動体制御装置および移動体制御方法
WO2020203728A1 (ja) * 2019-03-29 2020-10-08 株式会社タニタ 健康情報提供システム及び健康情報提供プログラム
JP2021072100A (ja) * 2019-10-28 2021-05-06 株式会社デンソー 情報処理装置、統合モデル生成方法、及び統合モデル生成プログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAAREK A.: "Electro interstitial scan system: assessment of 10 years of research and development", MED DEVICES (AUCKL)., vol. 5, 2012, pages 23 - 30
R. N. CHUAY. W. HAUC. M. TIEWW. L. HAU: "Investigation of Attention Deficit Hyperactivity Disorder Assessment Using Electro Interstitial Scan Based on Chronoamperometry Technique", IEEE ACCESS, vol. 7, 2019, pages 144679 - 144690, XP011750230, DOI: 10.1109/ACCESS.2019.2938095
SUMMARY OF THE CLINICAL INVESTIGATIONS E. S. TECK COMPLEX, 20 March 2010 (2010-03-20)
SYCHOLOGY RESEARCH AND BEHAVIOR MANAGEMENT, vol. 4, 2011, pages 81 - 86

Also Published As

Publication number Publication date
EP4383275A1 (en) 2024-06-12
TW202306536A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
JP2022153288A (ja) 血糖値推定装置、血糖値推定方法及びプログラム
Vakulenkoa et al. New application of blood pressure monitor with software environment Oranta-AO based on arterial oscillography methods
WO2022210570A1 (ja) 血糖値推定装置、血糖値推定方法及びプログラム
WO2023013167A1 (ja) クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム
WO2023013166A1 (ja) 尿酸値推定装置、尿酸値推定方法及びプログラム
WO2023013164A1 (ja) HbA1cリスク推定装置、HbA1cリスク推定方法及びプログラム
WO2023013165A1 (ja) γGT推定装置、γGT推定方法及びプログラム
WO2022270099A1 (ja) コレステロールリスク推定装置、コレステロールリスク推定方法及びプログラム
WO2022270098A1 (ja) 血中中性脂肪推定装置、血中中性脂肪推定方法及びプログラム
JP2023024259A (ja) クレアチニンリスク推定装置、クレアチニンリスク推定方法及びプログラム
JP2023024256A (ja) HbA1cリスク推定装置、HbA1cリスク推定方法及びプログラム
JP2023024258A (ja) 尿酸値推定装置、尿酸値推定方法及びプログラム
JP2023002453A (ja) コレステロールリスク推定装置、コレステロールリスク推定方法及びプログラム
JP2023024257A (ja) γGT推定装置、γGT推定方法及びプログラム
JP2023002452A (ja) 血中中性脂肪推定装置、血中中性脂肪推定方法及びプログラム
CN117677849A (zh) 肌酐风险推定装置、肌酐风险推定方法以及程序
Manamperi et al. A robust neural network-based method to estimate arterial blood pressure using photoplethysmography
CN117678032A (zh) γGT推定装置、γGT推定方法以及程序
CN117678033A (zh) 尿酸值推定装置、尿酸值推定方法以及程序
CN117693313A (zh) HbA1c风险推定装置、HbA1c风险推定方法以及程序
Tsai et al. Analysis of the Accuracy of Resting Heart Rate with the Standing Electronic Weight Scale by Ballistocardiogram
Wiede et al. A Calibration-free Blood Pressure Measurement on a Scale: Concept and Challenges.
Centonze A Novel Approach For Blood Pressure Prediction Using Machine Learning Techniques
Vakulenko et al. New Application of Arterial Pulsations Registered during Blood Pressure Measurement with the Oranta-AO Information System
우종혁 Evaluation of the cardiac function by artificial neural networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006128.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852596

Country of ref document: EP

Effective date: 20240306