WO2023013008A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2023013008A1
WO2023013008A1 PCT/JP2021/029231 JP2021029231W WO2023013008A1 WO 2023013008 A1 WO2023013008 A1 WO 2023013008A1 JP 2021029231 W JP2021029231 W JP 2021029231W WO 2023013008 A1 WO2023013008 A1 WO 2023013008A1
Authority
WO
WIPO (PCT)
Prior art keywords
common
base station
parameters
terminal
ntn
Prior art date
Application number
PCT/JP2021/029231
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
大輔 栗田
聡 永田
ウェンジャ リュー
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/029231 priority Critical patent/WO2023013008A1/ja
Priority to JP2023539521A priority patent/JPWO2023013008A1/ja
Priority to CN202180101010.2A priority patent/CN117716745A/zh
Publication of WO2023013008A1 publication Critical patent/WO2023013008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a terminal and communication method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • NTN Non-Terrestrial Network
  • NTN uses non-terrestrial networks such as satellites to provide services to areas that cannot be covered by terrestrial 5G networks mainly due to cost (for example, Non-Patent Document 2 and Non-Patent Document 3).
  • 3GPP TS 38.300 V16.6.0 (2021-06)
  • 3GPP TR 38.821 V16.0.0 (2019-12) Konishi et al., “Study on Downlink Frequency Sharing in HAPS Mobile Communication Systems", The Institute of Electronics, Information and Communication Engineers General Conference, B-17-1, 2020
  • NTN Network-to-Network
  • TN Terrestrial Network
  • TA Timing Advance
  • the present invention has been made in view of the above points, and an object of the present invention is to appropriately set TA (Timing Advance) in a wireless communication system.
  • a parameter related to TA (Timing Advance) common to all users in a base station constituting a NTN (Non-Terrestrial Network), a receiving unit for receiving a TA command from the base station, the parameter and calculating a common TA based on the TA command, the calculated common TA, a device-specific TA, and a control unit that performs uplink synchronization based on the offset;
  • the unit transmits the parameters through at least one of SIB (System Information Block), RRC (Radio Resource Control) signaling, MAC-CE (Medium Access Control - Control Element) and DCI (Downlink Control Information) at a certain period
  • SIB System Information Block
  • RRC Radio Resource Control
  • MAC-CE Medium Access Control - Control Element
  • DCI Downlink Control Information
  • TA Triming Advance
  • FIG. 4 is a diagram showing an example (1) of a synchronization procedure
  • FIG. 10 is a diagram showing an example (2) of a synchronization procedure
  • FIG. 10 is a diagram showing an example of timing advance
  • FIG. 4 is a diagram for explaining an example of timing advance in NTN
  • FIG. 4 is a sequence diagram showing an example of synchronization according to the embodiment of the invention
  • FIG. 4 is a sequence diagram showing an example of updating TA in the embodiment of the present invention
  • FIG. 4 is a diagram showing the relationship between TA reporting cycles and TA errors;
  • FIG. 4 is a sequence diagram showing an example (1) of setting a TA according to the embodiment of the present invention;
  • FIG. 10 is a sequence diagram showing an example (2) of setting TAs according to the embodiment of the present invention;
  • FIG. 10 is a sequence diagram showing an example (3) of setting TAs according to the embodiment of the present invention;
  • FIG. 10 is a sequence diagram showing an example (4) of setting TAs according to the embodiment of the present invention;
  • FIG. 11 is a sequence diagram showing an example (5) of setting TAs according to the embodiment of the present invention;
  • FIG. 10 is a sequence diagram showing an example (6) of setting TAs according to the embodiment of the present invention;
  • FIG. 12 is a sequence diagram showing an example (7) of setting TA in the embodiment of the present invention
  • FIG. 12 is a sequence diagram showing an example (8) of setting TA in the embodiment of the present invention
  • FIG. 4 is a diagram showing an example (1) of a TA notification cycle in the embodiment of the present invention
  • FIG. 10 is a diagram showing an example (2) of a TA notification cycle in the embodiment of the present invention
  • FIG. 10 is a diagram showing an example (3) of a TA notification cycle in the embodiment of the present invention
  • FIG. 10 is a diagram showing an example (4) of a TA notification cycle in the embodiment of the present invention
  • FIG. 4 is a diagram showing relationship (1) between granularity for setting TAs and TA errors;
  • FIG. 10 is a diagram showing relationship (2) between granularity for setting TAs and TA errors; It is a figure which shows the example which changes the granularity which sets TA in embodiment of this invention. It is a figure showing an example of functional composition of base station 10 in an embodiment of the invention.
  • 2 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention;
  • FIG. 2 is a diagram showing an example of hardware configuration of base station 10 or terminal 20 according to an embodiment of the present invention;
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and subsequent systems (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, NR-PDCCH, NR-PDSCH, NR-PUCCH, NR-PUSCH, and the like.
  • NR- even a signal used for NR is not necessarily specified as "NR-".
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex etc.) method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • "configuring" wireless parameters and the like may mean that predetermined values are preset (Pre-configure), and the base station 10 or A wireless parameter notified from the terminal 20 may be set.
  • FIG. 1 is a diagram showing an example (1) of NTN.
  • NTN Non-Terrestrial Network
  • uses non-terrestrial devices such as satellites to provide services to areas that cannot be covered by terrestrial 5G networks mainly due to cost.
  • NTN can provide more reliable services. For example, it is assumed to be applied to IoT (Inter of things), ships, buses, trains, and critical communications. NTN also has scalability through efficient multicast or broadcast.
  • a satellite 10A retransmits a signal transmitted from a terrestrial base station 10B to provide service to an area where no terrestrial base station is deployed, such as mountainous areas. can be done.
  • a terrestrial 5G network includes one or more base stations 10 and terminals 20 .
  • the base station 10 is a communication device that provides one or more cells and wirelessly communicates with the terminal 20 .
  • a physical resource of a radio signal is defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks.
  • the base station 10 transmits synchronization signals and system information to the terminal 20 . Synchronization signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also called broadcast information.
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink), and receives control signals or data from the terminal 20 on UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Also, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Also, both the base station 10 and the terminal 20 may communicate via SCell (Secondary Cell) and PCell (Primary Cell) by CA (Carrier Aggregation).
  • SCell Secondary Cell
  • PCell Primary Cell
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module.
  • the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby using various communication services provided by the wireless communication system.
  • FIG. 2 is a diagram showing an example (2) of NTN.
  • the area per cell or beam in NTN is very large compared to terrestrial networks (Terrestrial Network, TN).
  • FIG. 2 shows an example of an NTN composed of retransmissions by satellite.
  • the connection between satellite 10A and NTN gateway 10B is called a feeder link, and the connection between satellite 10A and UE 20 is called a service link.
  • the difference in delay between the near side UE 20A and the far side UE 20B is, for example, 10.3 ms for Geosynchronous orbit (GEO). , 3.2 ms in the case of LEO (Low Earth orbit).
  • the beam size in NTN is, for example, 3500 km for GEO and 1000 km for LEO.
  • FIG. 3 is a diagram showing an example (3) of NTN.
  • NTN is implemented by satellites in space or air vehicles in the air.
  • a GEO satellite may be a satellite located at an altitude of 35,786 km and having a geostationary orbit.
  • a LEO satellite may be a satellite located at an altitude of 500-2000 km and orbiting with a period of 88-127 minutes.
  • HAPS High Altitude Platform Station
  • HAPS High Altitude Platform Station
  • GEO satellites, LEO satellites and HAPS air vehicles may be connected to ground stations gNB via gateways. Also, the service area may increase in order of HAPS, LEO, and GEO.
  • NTN can extend the coverage of 5G networks to unserviced or serviced areas. Also, for example, NTN can improve service continuity, availability and reliability on ships, buses, trains or other critical communications. Note that the NTN may be notified by transmitting a dedicated parameter to the terminal 20, and the dedicated parameter is, for example, based on information related to the satellite or the aircraft. Related to TA (Timing Advance) determination It may be a parameter.
  • FIG. 4 is a diagram showing an example (4) of NTN.
  • FIG. 4 shows an example of the NTN network architecture assumed for transparent payloads.
  • CN Core Network
  • gNB 10C Gateway 10B
  • Gateway 10B is connected to satellite 10A via a feeder link.
  • Satellite 10A is connected to terminal 20A or VSAT (Very small aperture terminal) 20B via a service link.
  • NR Uu is established between gNB 10C and terminal 20A or VSAT 20B.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • terrestrial cells may be fixed or mobile.
  • Terminal 20 may also have GNSS (Global Navigation Satellite System) capability.
  • FR1 may assume a power class 3 handheld device.
  • a VSAT device may also be assumed, at least in FR2.
  • NTN's network architecture may assume a regenerative payload.
  • gNB functionality may be onboard a satellite or air vehicle.
  • the gNB-DU may be mounted on a satellite or air vehicle, and the gNB-CU may be deployed as a ground station.
  • FIG. 5 is a diagram showing an example (1) of the synchronization procedure.
  • the gNB 10 periodically transmits SS bursts to the UE 20.
  • UE 20 performs beam sweeping and measurements to determine the best beam.
  • the gNB 10 transmits to the UE 20 information indicating CORESET#0 and RACH resources received based on the CORESET#0.
  • the UE 20 transmits the RACH preamble to the gNB 10 as Msg1 on the allocated RACH resource.
  • step S104 the gNB 10 transmits a RAR (Random Access Response) to the UE 20 as Msg2 including the TA command.
  • the TA command is signaled by MAC-CE (Medium Access Control - Control Element) and is used for UL time synchronization.
  • step S105 UE20 transmits RRC Connection Request to gNB10 as MSg3.
  • step S106 the gNB 10 transmits RRC Connection Setup to the UE 20 as Msg4.
  • step S107 UE20 transmits RRC Connection Complete to gNB10 as Msg5.
  • the gNB 10 and the UE 20 establish a connection.
  • FIG. 6 is a diagram showing an example (2) of the synchronization procedure.
  • Step S102 which is the operation of the UE 20, will be described in detail with reference to FIG.
  • the UE 20 estimates and corrects frequency and time offsets.
  • the UE 20 obtains N (2) IDs by decoding the PSS sequence.
  • the UE 20 obtains the N (1) IDs by decoding the SSS sequence.
  • the UE 20 decodes the PBCH. That is, the UE 20 detects DMRS (Demodulation Reference Signal) and decodes MIB (Master Information Block).
  • the UE 20 decodes the SIB.
  • SIB1 contains the RACH resource configuration and UE20 determines the RACH resource and sends a random access preamble to gNB10.
  • FIG. 7 is a diagram showing an example of timing advance. As shown in FIG. 7, TA is calculated as (N TA +N TA,offset ) ⁇ T C . N TA is signaled by the TA command. N TA,offset is a fixed value defined in the specification, for example, in NR, it may be 25600 for FDD or TDD without coexisting with LTE in FR1, or 0 for FDD coexisting with LTE in FR1. However, 39936 may be used for TDD coexisting with LTE in FR1, and 13792 may be used for FR2.
  • the TA command is notified by RAR.
  • the TA command is signaled by MAC-CE.
  • the TA command indication by MAC-CE may consist of 6 bits and may indicate -32 to +32, for example. Note that the UE 20 needs to apply the TA value to UL transmission after 6 slots from the time the TA value is received.
  • FIG. 8 is a diagram for explaining an example of timing advance in NTN.
  • the TA in NTN is the sum of feeder link TA and service link TA.
  • the value corresponding to T2 is a value that is compensated on the network side and is transparent to the user.
  • the value corresponding to T0 is the TA common to all users. Note that the reference point can also be set to a service link, in which case the value corresponding to T0 will be a negative value.
  • the value corresponding to T1 is a user-specific TA (TA) and varies depending on the location of the UE20.
  • NTA (N TA +N TA, UE-specific +N TA, common +N TA, offset ) ⁇ T C .
  • N TA,common is the TA common to all the above users.
  • N TA,common is also referred to as common TA.
  • N TA, UE-specific is a UE-specific TA.
  • N TA is signaled by the TA command.
  • N TA,offset is a fixed value defined in the specification.
  • the RRC_IDLE or RRC_INACTIVE state (that is, for example, during operation toward RRC connection establishment), it is necessary to determine what parameters related to the common TA received by the UE 20 are broadcast. Also, it is necessary to determine how the parameters related to the common TA received by the UE 20 are notified. For example, it is necessary to determine the signaling type and signaling granularity with which the notification is made.
  • the RRC_CONNECTED state it is necessary to determine what parameters related to the common TA received by the UE 20 are broadcast. Also, it is necessary to determine how the parameters related to the common TA received by the UE 20 are notified. For example, it is necessary to determine the signaling type, signaling granularity, and signaling period for which the notification is made.
  • signaling for notifying parameters related to common TA may be SIB, RRC signaling, MAC-CE or DCI (Downlink Control Information).
  • the parameters related to the common TA may be the common TA value, the common TA value and the first derivative, or the common TA value, the first derivative and the second derivative.
  • it may be a common TA value, a first derivative, a second derivative, and a third derivative.
  • the differential coefficient may be a differential coefficient with respect to the TA value, or a differential coefficient with respect to changes in the TA value.
  • a validity timer that determines the timing of re-obtaining the parameters of the common TA, or a parameter that indicates how long the parameters of the common TA are valid, starting from the time when the parameters of the common TA are newly acquired.
  • a validity timer that determines the timing of re-obtaining the parameters of the common TA, or a parameter that indicates how long the parameters of the common TA are valid, starting from the time when the parameters of the common TA are newly acquired.
  • the granularity of signaling of common TAs may be determined as described below.
  • FIG. 9 is a sequence diagram showing an example of synchronization in the embodiment of the present invention.
  • FIG. 9 is an example of establishing synchronization between gNB 10 and UE 20 in RRC_IDLE or RRC_INACTIVE state.
  • step S201 the gNB 10 transmits the SSB to the UE 20.
  • the UE 20 performs DL time-frequency synchronization and detects the MIB.
  • step S202 the gNB 10 transmits CORESET#0 to the UE 20.
  • the UE 20 detects the SIB based on CORESET#0, and acquires parameters related to the PRACH resource and common TA included in the SIB.
  • the RACH preamble of Msg1 or MsgA is transmitted to the gNB10.
  • the gNB 10 sends to the UE 20 a RAR containing a TA command of Msg2 or MsgB.
  • the UE 20 performs UL synchronization with common TA, UE specific TA and TA commands.
  • the parameters related to the common TA may be notified from the gNB 10 to the UE 20 via SIB.
  • the SIB may be SIB1 or SIBX other than SIB1.
  • SIBX other than SIB1 includes parameters related to common TA
  • UE 20 may transmit PRACH after receiving SIBX.
  • SSB or SIB1 may notify UE20 of information indicating that PRACH is not transmitted before receiving SIBX or that it is an NTN network.
  • SIBX other than SIB1 includes parameters related to common TA
  • UE 20 may assume a default common TA value to be applied to PRACH transmission before acquiring SIBX.
  • FIG. 10 is a sequence diagram showing an example of updating TA according to the embodiment of the present invention.
  • gNB10 transmits SSB to UE20.
  • the UE 20 performs DL time-frequency synchronization and detects the MIB.
  • the gNB 10 transmits CORESET#0 to the UE 20.
  • the UE 20 detects the SIB based on CORESET#0, and acquires parameters related to the PRACH resource and common TA included in the SIB.
  • a RACH preamble of Msg1 or MsgA is transmitted to the gNB10.
  • the gNB 10 sends to the UE 20 a RAR containing a TA command of Msg2 or MsgB.
  • the UE 20 performs UL synchronization with common TA, UE specific TA and TA commands and transitions to RRC_CONNECTED state.
  • the gNB 10 transmits the updated common TA-related parameters to the UE 20 via RRC signaling, MAC-CE, DCI or SIB.
  • the UE 20 may use the parameters related to the common TA obtained from the SIB during the initial access without updating the TA.
  • the UE 20 may acquire parameters related to the common TA via the SIB and update the TA.
  • the UE 20 may acquire parameters related to a common TA via RRC signaling, MAC-CE and DCI, and update the TA.
  • Parameters related to common TA via RRC signaling, MAC-CE and DCI may be differential values to common TA parameters.
  • the gNB 10 may transmit to the PDSCH/PDCCH UE 20.
  • a TA command may be included in the PDSCH/PDCCH.
  • UE 20 performs UL synchronization with common TA obtained from SIB or common TA updated by RRC signaling/MAC-CE/DCI/SIB, TA command, fixed TA offset and self-estimated UE-specific TA, PUSCH /PUCCH may be transmitted to the gNB 10.
  • common TA value As parameters related to common TA, common TA value, 1st order derivative of common TA (i.e. drift ratio), 2nd order derivative of common TA Common TA
  • drift ratio 1st order derivative of common TA
  • 2nd order derivative of common TA Common TA
  • 3rd order derivative of common TA etc.
  • the n-order differential coefficient of the common TA value is also referred to as the n-order differential coefficient.
  • FIG. 11 is a diagram showing the relationship between the TA notification period and the TA error.
  • ⁇ common TA value ⁇ ⁇ common TA value, primary differential coefficient ⁇
  • ⁇ common TA value primary differential coefficient, secondary differential coefficient ⁇
  • It shows the maximum TA error rate when updating with four types of ⁇ common TA value, primary differential coefficient, secondary differential coefficient, and tertiary differential coefficient ⁇ .
  • the maximum TA error decreases when the notification period is shortened. Also, the maximum TA error decreases as more parameters are reported. Longer periods are available when more parameters are reported.
  • Table 1 shows examples of notified parameters, notified periods, and maximum TA error values.
  • the maximum TA error is 0.45 ⁇ s, which satisfies the requirements for the upper limit of the TA error. Also, when the common TA value and the first order differential coefficient are reported in a 1s period, the maximum TA error is 0.29 ⁇ s, which satisfies the upper limit requirement for the TA error. Also, when the common TA value, the first order differential coefficient and the second order differential coefficient are reported in a 5-s period, the maximum TA error is 0.14 ⁇ s, which satisfies the upper limit of the TA error. Also, when the common TA value, the first order differential coefficient and the second order differential coefficient are reported in a period of 10 seconds, the maximum TA error is 1.022 ⁇ s, which satisfies the upper limit of the TA error.
  • Option 1 If one or more parameters related to common TA are broadcasted by SIB, the parameters broadcasted by SIB at a predetermined cycle are shown below Option 1) - Option 4) even if at least one is supported good.
  • the option may be notified to the UE 20 in RRC_IDLE or RRC_INACTIVE state, or may be notified to UE 20 in RRC_CONNECTED state. Note that either option may be defined as the default option.
  • FIG. 12 is a diagram showing an example (1) of setting TAs according to the embodiment of the present invention.
  • FIG. 12 corresponds to option 1 above.
  • the gNB 10 transmits common TAx to the UE 20 via SIB.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • FIG. 13 is a diagram showing an example (2) of setting TA in the embodiment of the present invention.
  • FIG. 13 corresponds to option 2 above.
  • the gNB 10 sends the common TAx and the first derivative x' to the UE 20 via SIB.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • FIG. 14 is a diagram showing an example (3) of setting TAs according to the embodiment of the present invention.
  • FIG. 14 corresponds to Option 1 and Option 2 above.
  • the gNB 10 sends common TAx as option 1, common TAx and first derivative x' as option 2 to UE 20 via SIB.
  • UE 20 obtains common TAx and first derivative x' from SIB.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • FIG. 15 is a diagram showing an example (4) of setting TA in the embodiment of the present invention.
  • FIG. 15 corresponds to option 3 above.
  • the gNB 10 sends the parameters set after the common TAx, the first derivative x′, the second derivative x′′ and the third derivative to the UE 20 via the SIB.
  • the UE 20 obtains all parameters from the SIB.
  • a plurality of the above options regarding parameters related to common TAs notified at predetermined intervals may be supported.
  • the UE 20 may decide which option to select based on the UE capabilities.
  • all candidates for parameters related to the common TA may be broadcast at a predetermined cycle.
  • the UE 20 may decide which parameters to use based on the UE capabilities.
  • the parameters signaled by RRC signaling, MAC-CE or DCI are optional At least one of 1)-option 4) may be supported. Note that if multiple options are supported, new signaling indicating which option to use may be sent to the UE 20 via RRC signaling, MAC-CE or DCI. Note that either option may be defined as the default option.
  • FIG. 16 is a diagram showing an example (5) of setting TA in the embodiment of the present invention.
  • FIG. 12 corresponds to option 1 above.
  • the gNB 10 sends common TAx to the UE 20 via RRC signaling, MAC-CE or DCI.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • FIG. 17 is a diagram showing an example (6) of setting TA in the embodiment of the present invention.
  • FIG. 17 corresponds to option 2 above.
  • gNB 10 sends common TAx and first derivative x' to UE 20 via RRC signaling, MAC-CE or DCI.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • FIG. 18 is a diagram showing an example (7) of setting TA in the embodiment of the present invention.
  • FIG. 18 corresponds to option 3 above.
  • gNB 10 sends common TAx, first derivative x′ and second derivative x′′ to UE 20 via RRC signaling, MAC-CE or DCI.
  • UE 20 receives common TAx from RRC signaling, MAC-CE or DCI. , the first derivative x' and the second derivative x''.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • FIG. 19 is a diagram showing an example (8) of setting TA in the embodiment of the present invention.
  • the gNB 10 transmits information to the UE 20 via RRC signaling, MAC-CE or DCI indicating that the common TA is signaled in option 1.
  • the gNB 10 then sends the common TAx to the UE 20 via RRC signaling, MAC-CE or DCI.
  • the UE 20 applies the calculated TA to perform uplink transmission.
  • a plurality of different cycles may be assumed when the parameters related to the common TA are broadcast via the SIB.
  • the period may be 20 ms, 40 ms, 80 ms, 160 ms, 0.5 s, 1 s, 2 s, 5 s, 10 s, and so on.
  • the UE 20 in RRC_IDLE or RRC_INACTIVE state in the NTN environment may assume one default cycle for notification of parameters related to common TA.
  • the default period may be defined by the specification, and may be, for example, 20 ms, or may be the same as the default period of SSB. Also, the default period may be determined depending on the SSB period. Also, the cycle for announcing the parameters related to the common TA via the SIB may be set in the SIB and notified. Table 2 is an example of setting a default cycle for announcing parameters related to common TA for each SSB cycle.
  • the SSB cycle may be associated with the default cycle for announcing parameters related to common TA.
  • the default cycle of parameter reporting related to common TA may be 20 ms.
  • the default cycle of parameter reporting related to the common TA may be 40 ms.
  • the default cycle of parameter reporting related to the common TA may be 0.5 s.
  • the default cycle of parameter reporting related to the common TA may be 1 s.
  • FIG. 20 is a diagram showing an example (1) of the TA notification cycle in the embodiment of the present invention.
  • FIG. 20 shows an example in which parameters related to common TA by SIB are notified in one default period T.
  • the SIB broadcasts the parameters related to the common TA.
  • parameters related to common TA are notified via RRC signaling, MAC-CE or DCI
  • multiple different cycles may be supported.
  • Information indicating which cycle to use may be notified to the UE 20 via RRC signaling, MAC-CE or DCI as new signaling.
  • the new signaling may be the same as the signaling for notifying parameters related to common TAs. For example, it may be assumed that the information indicating the parameter related to the common TA and the information indicating the cycle are combined and notified.
  • one default cycle for notifying parameters related to common TA may be defined. For example, the default period may be defined by a specification.
  • parameters related to common TA may be notified in one default period T by RRC signaling, MAC-CE or DCI. That is, at time 0, time T, time 2T, and time 3T, parameters related to the common TA are notified by RRC signaling, MAC-CE, or DCI.
  • FIG. 21 is a diagram showing an example (2) of the TA notification cycle in the embodiment of the present invention.
  • FIG. 22 shows an example in which parameters related to a common TA are notified by RRC signaling, MAC-CE or DCI with one default period T and one period T1 . At time T, it is signaled to switch to period T1 . That is, at time 0, time T, time T+T 1 , and time T+2T 1 , the parameters related to the common TA are notified by RRC signaling, MAC-CE or DCI.
  • FIG. 22 is a diagram showing an example (3) of the TA notification cycle in the embodiment of the present invention.
  • default ⁇ x ⁇ , ⁇ x, x′ ⁇ , ⁇ x, x′, x′′ ⁇ , information indicating a combination of information indicating a parameter related to a common TA and information indicating the cycle is notified.
  • T1 is T or more
  • T2 is T. It may be 1 or more.
  • the default common TA parameter ⁇ x ⁇ is signaled.
  • combination 1 is signaled to UE 20 .
  • Combination 1 corresponds to setting the period T1 and ⁇ x, x' ⁇ as parameters for the common TA.
  • ⁇ x, x' ⁇ is reported.
  • T+ T1 ⁇ x, x' ⁇ is reported.
  • T+ 2T1 ⁇ x, x' ⁇ is reported.
  • combination 2 is signaled to UE 20 .
  • Combination 2 corresponds to setting the period T2 and ⁇ x, x', x'' ⁇ as parameters for the common TA.
  • T+ 3T1 ⁇ x, x', x'' ⁇ is notified.
  • T+3T 1 +T 2 ⁇ x, x', x'' ⁇ are reported.
  • the parameters related to the common TA are different, different cycles may be set. For example, when a certain period is set, the UE 20 may assume that parameters related to a pre-associated common TA are set.
  • a conventional time alignment timer is a timer that defines the maximum time that UL synchronization can be maintained without receiving a TA command from the gNB 10.
  • the UE 20 that has received the TA command by MAC updates the N TA and restarts the time alignment timer. If the time alignment timer expires, the UE 20 assumes UL synchronization is lost.
  • FIG. 23 is a diagram showing an example (4) of the TA notification period according to the embodiment of the present invention.
  • a validity timer may be defined that is started when the parameters for a common TA are acquired and determines the timing at which the parameters for the common TA should be acquired again.
  • a time parameter may be defined that indicates the time during which the parameters related to the common TA are valid.
  • the validity timer or the time parameter is based on the obtained parameters of the common TA, and is capable of calculating a period or a common TA capable of UL synchronization that satisfies the requirements of acceptable errors. corresponds to the period.
  • the validity timer is started from the timing of receiving the parameters for the common TA.
  • the UE 20 may obtain the parameters for the new common TA via SIB, RRC signaling, MAC-CE or DCI. Alternatively, the UE 20 assumes that the parameters related to the common TA are valid during the time parameter from the timing at which the parameters related to the common TA are received. The UE 20 may obtain parameters for the new common TA via SIB, RRC signaling, MAC-CE or DCI when at least the time parameter has elapsed.
  • the value at which the validity timer expires or the time parameter concerned may be explicitly signaled by new signaling via SIB, RRC signaling, MAC-CE or DCI. Also, the value at which the validity timer expires may be notified by being included in the signaling of the period for notifying the parameters related to the common TA. Also, the value at which the validity timer expires may be notified by being included in the signaling that notifies the parameter options related to the common TA.
  • the value at which the validity timer expires or the time parameter may be implicitly determined on the UE 20 side according to the option of the parameters related to the common TA. For example, the UE 20 sets the value at which the validity timer expires to T1 in the case of option 1 , sets the value at which the validity timer expires to T2 in the case of option 2 , and sets the validity timer to the value in which the validity timer expires in option 3.
  • T3 may be the value at which .
  • the value at which the validity timer expires or the time parameter may be implicitly determined on the UE 20 side based on the period in which the parameters related to the common TA are broadcast.
  • the UE 20 may set the value at which the validity timer expires to be the same as the period T in which the parameters related to the common TA are notified, or may be an integral multiple of the period T.
  • the TA granularity is 16 ⁇ 64/2 ⁇ ⁇ TC , where TC is 0.509 ns and ⁇ is a value dependent on SCS.
  • TA granularity needs to be determined in consideration of the quantization performance of parameters related to common TA.
  • FIG. 24 is a diagram showing the relationship (1) between granularity for setting TAs and TA errors.
  • Option 1 shown in FIG. 24, has the same granularity as NTA , namely 16 ⁇ 64/2 ⁇ ⁇ TC .
  • Option 2 is with a granularity of 4 ⁇ 64/2 ⁇ ⁇ T C.
  • Option 3 is with a granularity of 64/2 ⁇ ⁇ T C.
  • Option 4 is for granularity T C .
  • all parameters have the same granularity.
  • FIG. 25 is a diagram showing the relationship (2) between granularity for setting TA and TA error.
  • the granularity is changed by parameters.
  • ⁇ TA, first derivative, second derivative ⁇ is a combination of ⁇ option 1, option 3, option 4 ⁇ , a combination of ⁇ option 2, option 3, option 4 ⁇ , ⁇ option 1, option 4, option 4 ⁇ , four combinations of ⁇ option 4, option 4, option 4 ⁇ , and TA without quantization.
  • ⁇ TA, first derivative, second derivative ⁇ is a combination of ⁇ option 1, option 4, option 4 ⁇
  • ⁇ option 4, option 4, option 4 ⁇ is a combination of TA Satisfy the requirements for the upper limit of errors.
  • the combination of ⁇ option 1, option 4, option 4 ⁇ can reduce the payload for transmitting parameters related to common TA more than the combination of ⁇ option 4, option 4, option 4 ⁇ .
  • one or more granularities may be applied to the parameters related to the common TA.
  • the granularity of the common TA, first derivative, second derivative, etc. may be coarse or fine.
  • a coarser granularity may be applied to the common TA
  • a finer granularity may be applied to the first derivative
  • a finer granularity may be applied to the second derivative.
  • the granularity of the common TA may be 16 64/2 ⁇ TC , which is the same as 5GNR, or may be coarser 32 64/2 ⁇ TC , or further 32 64/2 ⁇ TC.
  • the grain size may be coarser than T C .
  • the granularity of the first derivative may be 64/2 ⁇ ⁇ T C or 1/2 ⁇ ⁇ T C.
  • the granularity of the second derivative may be 1/2 ⁇ ⁇ T C .
  • the granularity applied to the parameters related to the common TA may be associated with the period of notifying the parameters related to the common TA. For example, the longer the period, the finer the granularity. Note that if the requirements for the upper limit of the TA error are different, the combination of granularities applied to the parameters for the common TA may be different.
  • FIG. 26 is a diagram showing an example of changing granularity for setting TAs according to the embodiment of the present invention.
  • granularity 0 is applied to the parameters associated with the common TA.
  • period T 1 and granularity 1 are signaled.
  • the granularity applied to the parameters related to the common TA is changed from granularity 0 to granularity 1.
  • the granularity applied to the parameters related to the common TA is granularity 1.
  • the granularity applied to the parameters related to the common TA is granularity 1.
  • the period of notifying the parameters related to the common TA, the options applied to the parameters related to the common TA, and the granularity applied to the parameters related to the common TA are jointly coded, SIB, RRC signaling, MAC-CE or DCI. may be signaled to the UE 20 via Table 3 shows an example of joint coding.
  • Period corresponds to the period of notifying the parameters related to the common TA
  • parameter corresponds to the options applied to the parameters related to the common TA
  • granularity is applied to the parameters related to the common TA. corresponds to the granularity
  • a UE capability may be defined that indicates whether to support common TA parameters being updated by RRC signaling, MAC-CE or DCI.
  • a UE capability may be defined that indicates whether to support multiple options of parameters for common TA.
  • a UE capability may be defined that indicates whether to support applying different periods for different options of parameters for common TA.
  • a UE capability may be defined that indicates whether to support a validity timer for obtaining parameters for the new common TA.
  • a UE capability may be defined that indicates whether to support applying different quantization granularities to parameters associated with different common TAs.
  • the terminal 20 can set a common TA and perform UL synchronization in an NTN environment so as to meet the requirements related to the upper limit of TA errors.
  • TA Triming Advance
  • the base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and terminal 20 may have only part of the functions in the embodiment.
  • FIG. 27 is a diagram showing an example of the functional configuration of base station 10 according to the embodiment of the present invention.
  • the base station 10 has a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 27 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the transmitter 110 also transmits inter-network-node messages to other network nodes.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals. Also, the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the terminal 20 .
  • the receiving unit 120 also receives inter-network node messages from other network nodes.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 .
  • the content of the setting information is, for example, information related to communication in NTN.
  • the control unit 140 controls communication in NTN as described in the embodiment. Also, the control unit 140 controls communication with the terminal 20 based on the UE capability report regarding radio parameters received from the terminal 20 .
  • a functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110
  • a functional unit related to signal reception in control unit 140 may be included in receiving unit 120 .
  • FIG. 28 is a diagram showing an example of the functional configuration of terminal 20 according to the embodiment of the present invention.
  • the terminal 20 has a transmitter 210 , a receiver 220 , a setter 230 and a controller 240 .
  • the functional configuration shown in FIG. 28 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals and the like transmitted from the base station 10 .
  • the transmission unit 210 as D2D communication, to the other terminal 20, PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 .
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, information related to communication in NTN.
  • the control unit 240 controls communication in NTN as described in the embodiment.
  • a functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210
  • a functional unit related to signal reception in control unit 240 may be included in receiving unit 220 .
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 29 is a diagram illustrating an example of a hardware configuration of base station 10 and terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 27 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • the control unit 240 of the terminal 20 shown in FIG. 28 may be implemented by a control program stored in the storage device 1002 and operated by the processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • parameters related to TA (Timing Advance) common to all users in a base station constituting a NTN (Non-Terrestrial Network) and a TA command are transmitted to the base station. calculating a common TA based on said parameters; and performing uplink synchronization based on said TA command, said calculated common TA, a device-specific TA, and an offset. and the receiving unit, the parameters, SIB (System Information Block), RRC (Radio Resource Control) signaling, MAC-CE (Medium Access Control - Control Element) and DCI (Downlink Control Information)
  • SIB System Information Block
  • RRC Radio Resource Control
  • MAC-CE Medium Access Control - Control Element
  • DCI Downlink Control Information
  • the terminal 20 can set a common TA so as to meet the requirements for the upper limit of TA errors and perform UL synchronization in the NTN environment. That is, TA (Timing Advance) can be appropriately set in a wireless communication system.
  • the parameters may include TA values and derivatives of TA values up to a certain order.
  • the terminal 20 can set a common TA and perform UL synchronization in an NTN environment so as to satisfy the requirements related to the upper limit of TA errors.
  • the receiving unit may receive the certain period associated with the parameter from the base station.
  • the terminal 20 can set a common TA and perform UL synchronization in an NTN environment so as to satisfy the requirements related to the upper limit of TA errors.
  • the control unit may start a timer that expires at an integral multiple of the certain cycle upon receipt of the parameter, and may acquire the parameter again when the timer expires.
  • the terminal 20 can set a common TA and perform UL synchronization in an NTN environment so as to satisfy the requirements related to the upper limit of TA errors.
  • At least two different granularities may be applied to the TA value and the derivative.
  • the terminal 20 can reduce the payload related to the notification of the common TA, set the common TA so as to satisfy the requirements related to the TA error upper limit, and execute UL synchronization in the NTN environment.
  • a reception for receiving parameters related to TA (Timing Advance) common to all users in a base station constituting a NTN (Non-Terrestrial Network) and a TA command from the base station a control procedure for calculating a common TA based on the parameters and performing uplink synchronization based on the TA command, the calculated common TA, a device-specific TA, and an offset;
  • the parameters are received periodically through at least one of SIB (System Information Block), RRC (Radio Resource Control) signaling, MAC-CE (Medium Access Control - Control Element) and DCI (Downlink Control Information).
  • SIB System Information Block
  • RRC Radio Resource Control
  • MAC-CE Medium Access Control - Control Element
  • DCI Downlink Control Information
  • the terminal 20 can set a common TA so as to meet the requirements for the upper limit of TA errors and perform UL synchronization in the NTN environment. That is, TA (Timing Advance) can be appropriately set in a wireless communication system.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are stored in random access memory (RAM), flash memory, read-only memory, respectively. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark) )), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems and extended It may be applied to at least one of the next generation systems. Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G, etc.).
  • a specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with terminal 20 may be performed by base station 10 and other network nodes other than base station 10 (eg, but not limited to MME or S-GW).
  • base station 10 e.g, but not limited to MME or S-GW
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology on a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • base station 110 transmitting unit 120 receiving unit 130 setting unit 140 control unit 20 terminal 210 transmitting unit 220 receiving unit 230 setting unit 240 control unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、NTN(Non-Terrestrial Network)を構成する基地局において全ユーザに共通するTA(Timing Advance)に係るパラメータと、TAコマンドを前記基地局から受信する受信部と、前記パラメータに基づいて共通するTAを算出し、前記TAコマンドと、前記算出した共通するTAと、装置固有のTAと、オフセットに基づいて、アップリンクの同期を実行する制御部とを有し、前記受信部は、前記パラメータを、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、MAC-CE(Medium Access Control - Control Element)及びDCI(Downlink Control Information)のうち少なくとも一つを介してある周期で受信する。

Description

端末及び通信方法
 本発明は、無線通信システムにおける端末及び通信方法に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 また現在、NTN(Non-Terrestrial Network)が検討されている。NTNとは、衛星等の非地上型ネットワークを使用して、地上型5Gネットワークでは主にコスト面でカバーできないエリアにサービスを提供するものである(例えば非特許文献2及び非特許文献3)。
3GPP TS 38.300 V16.6.0(2021-06) 3GPP TR 38.821 V16.0.0 (2019-12) 小西 他,"HAPS移動通信システムにおける下りリンク周波数共用に関する一検討",電子情報通信学会総合大会,B-17-1,2020年
 NTNでは、上空の基地局と端末間の距離が非常に大きいため、伝搬遅延が地上型ネットワーク(Terrestrial Network, TN)と比較して大きくなる。また、NTNではフィーダリンク及びサービスリンクを介して通信が実行されるため、従来の地上型ネットワークと比較してTA(Timing Advance)は非常に大きくなり、当該伝搬遅延を考慮した設定が必要となる。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、TA(Timing Advance)を適切に設定ことを目的とする。
 開示の技術によれば、NTN(Non-Terrestrial Network)を構成する基地局において全ユーザに共通するTA(Timing Advance)に係るパラメータと、TAコマンドを前記基地局から受信する受信部と、前記パラメータに基づいて共通するTAを算出し、前記TAコマンドと、前記算出した共通するTAと、装置固有のTAと、オフセットに基づいて、アップリンクの同期を実行する制御部とを有し、前記受信部は、前記パラメータを、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、MAC-CE(Medium Access Control - Control Element)及びDCI(Downlink Control Information)のうち少なくとも一つを介してある周期で受信する端末が提供される。
 開示の技術によれば、無線通信システムにおいて、TA(Timing Advance)を適切に設定ことができる。
NTNの例(1)を示す図である。 NTNの例(2)を示す図である。 NTNの例(3)を示す図である。 NTNの例(4)を示す図である。 同期手順の例(1)を示す図である。 同期手順の例(2)を示す図である。 タイミングアドバンスの例を示す図である。 NTNにおけるタイミングアドバンスの例を説明するための図である。 本発明の実施の形態における同期する例を示すシーケンス図である。 本発明の実施の形態におけるTAを更新する例を示すシーケンス図である。 TAの報知周期とTAエラーの関係を示す図である。 本発明の実施の形態におけるTAを設定する例(1)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(2)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(3)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(4)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(5)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(6)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(7)を示すシーケンス図である。 本発明の実施の形態におけるTAを設定する例(8)を示すシーケンス図である。 本発明の実施の形態におけるTAの報知周期の例(1)を示す図である。 本発明の実施の形態におけるTAの報知周期の例(2)を示す図である。 本発明の実施の形態におけるTAの報知周期の例(3)を示す図である。 本発明の実施の形態におけるTAの報知周期の例(4)を示す図である。 TAを設定する粒度とTAエラーの関係(1)を示す図である。 TAを設定する粒度とTAエラーの関係(2)を示す図である。 本発明の実施の形態におけるTAを設定する粒度を変更する例を示す図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH、NR-PDCCH、NR-PDSCH、NR-PUCCH、NR-PUSCH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
 図1は、NTNの例(1)を示す図である。NTN(Non-Terrestrial Network)とは、衛星等の非地上に存在する装置を使用して、地上型5Gネットワークでは主にコスト面でカバーできないエリアにサービスを提供するものである。また、NTNによって、より信頼性の高いサービスを供給することができる。例えば、IoT(Inter of things)、船舶、バス、列車、クリティカルな通信に適用することが想定される。また、NTNは、効率的なマルチキャスト又はブロードキャストによるスケーラビリティを有する。
 NTNの例として、図1に示されるように、衛星10Aは、地上基地局10Bから送信される信号を再送信して、例えば山岳地帯等の地上基地局が配置されないエリアにサービスを提供することができる。
 なお、地上型5Gネットワークは、以下に記載するような構成であってもよい。地上型5Gネットワークは、1又は複数の基地局10及び端末20を含む。基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。
 基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。
 図2は、NTNの例(2)を示す図である。NTNにおけるセル又はビームごとのエリアは地上型ネットワーク(Terrestrial Network, TN)と比較して非常に広い。図2は、衛星による再送信により構成されるNTNの例を示す。衛星10AとNTNゲートウェイ10B間の接続を、フィーダリンクといい、また衛星10AとUE20間の接続を、サービスリンクという。
 図2に示されるように、近端(near side)のUE20Aと遠端(far side)のUE20B間の遅延の差分は、例えば、GEO(Geosynchronous orbit, 静止軌道)の場合、10.3msとなる、LEO(Low Earth orbit,地球低軌道)の場合、3.2msとなる。また、NTNにおけるビームサイズは、例えば、GEOの場合3500km、LEOの場合1000kmとなる。
 図3は、NTNの例(3)を示す図である。図3に示されるように、NTNは、宇宙における衛星又は空中における飛行体によって実現される。例えばGEOの衛星は、高度35,786kmに位置し、静止軌道を有する衛星であってもよい。例えばLEOの衛星は、高度500-2000kmに位置し、周期88-127分で周回する衛星であってもよい。例えば、HAPS(High Altitude Platform Station)は、高度8-50kmに位置し、旋回飛行を行う飛行体であってもよい。
 図3に示されるように、GEO衛星、LEOの衛星及びHAPSの飛行体は、ゲートウェイを介し、地上局gNBと接続されてもよい。また、サービスエリアは、HAPS、LEO、GEOの順に大きくなってもよい。
 例えば、NTNにより、5Gネットワークのカバレッジを、サービスされていない領域又はサービスされている領域に対して拡張することができる。また、例えば、NTNにより、船、バス、列車又は他の重要通信におけるサービスの継続性、可用性及び信頼性を向上させることができる。なお、NTNであることは、専用のパラメータが端末20に送信されることで通知されてもよく、専用のパラメータは、例えば衛星又は飛行体に係る情報に基づくTA(Timing Advance)の決定に係るパラメータであってもよい。
 図4は、NTNの例(4)を示す図である。図4は、トランペアレントペイロードの場合に想定されるNTNのネットワークアーキテクチャの例を示す。図4に示されるように、CN(Core Network)10D、gNB10C及びゲートウェイ10Bが接続される。ゲートウェイ10Bは、フィーダリンクを介し衛星10Aと接続される。衛星10Aは、サービスリンクを介し端末20A又はVSAT(Very small aperture terminal)20Bと接続される。NR Uuは、gNB10Cと、端末20A又はVSAT20Bとの間に確立される。
 また、NTNのネットワークアーキテクチャの想定として、FDDが採用されてもよいし、TDDが可能であってもよい。また、地上のセルは固定されていてもよいし移動してもよい。また、端末20はGNSS(Global Navigation Satellite System)能力を有してもよい。例えば、FR1ではパワークラス3のハンドヘルドデバイスが想定されてもよい。また、少なくともFR2ではVSATデバイスが想定されてもよい。
 また、NTNのネットワークアーキテクチャは、リジェネレイティブペイロードを想定してもよい。例えば、gNB機能が、衛星又は飛行体に搭載されてもよい。また、gNB-DUが衛星又は飛行体に搭載され、gNB-CUは地上局として配置されてもよい。
 図5は、同期手順の例(1)を示す図である。図5を用いて、従来の同期手順の例を説明する。ステップS101において、gNB10は、SSバーストを周期的にUE20に送信する。UE20は、ビームスイーピング及び測定を実行し、最良ビームを決定する。ステップS102において、gNB10は、CORESET#0及びCORESET#0に基づいて受信されるRACHリソースを示す情報をUE20に送信する。ステップS103において、UE20は、割り当てられたRACHリソースでMsg1としてRACHプリアンブルをgNB10に送信する。
 ステップS104において、gNB10は、TAコマンドを含むMsg2としてRAR(Random Access Response)をUE20に送信する。TAコマンドは、MAC-CE(Medium Access Control - Control Element)により通知され、ULの時間同期に使用される。ステップS105において、UE20は、MSg3としてRRC Connection RequestをgNB10に送信する。ステップS106において、gNB10は、Msg4としてRRC Connection SetupをUE20に送信する。ステップS107において、UE20は、Msg5としてRRC Connection CompleteをgNB10に送信する。ステップS108において、gNB10とUE20は、接続を確立する。
 図6は、同期手順の例(2)を示す図である。図6を用いて、UE20の動作であるステップS102を詳細に説明する。ステップS1021において、UE20は、周波数及び時間オフセットの見積もりと補正を行う。続くステップS1022において、UE20は、PSSシーケンスをデコーディングしてN(2) IDを取得する。続くステップS1023において、UE20は、SSSシーケンスをデコーディングしてN(1) IDを取得する。続くステップS1024において、UE20は、セルIDNCell ID=3N(2) ID+N(1) IDを検出する。続くステップS1025において、UE20は、PBCHをデコーディングする。すなわち、UE20は、DMRS(Demodulation Reference Signal)を検出しMIB(Master Information Block)をデコーディングする。続くステップS1026において、UE20は、SIBをデコーディングする。SIB1にRACHリソース設定が含まれており、UE20は、RACHリソースを決定し、ランダムアクセスプリアンブルをgNB10に送信する。
 図7は、タイミングアドバンスの例を示す図である。図7に示されるように、TAは、(NTA+NTA,offset)×Tで算出される。NTAは、TAコマンドにより通知される。NTA,offsetは、仕様で規定される固定値であり、例えば、NRにおいて、FR1でLTEと共存せずFDD又はTDDの場合25600でもよいし、FR1でLTEと共存するFDDの場合0でもよいし、FR1でLTEと共存するTDDの場合39936でもよいし、FR2の場合13792でもよい。
 RRC_IDLE又はRRC_INACTIVEモードの場合、TAコマンドはRARにより通知される。RRC_CONNECTEDモードの場合、TAコマンドはMAC-CEにより通知される。MAC-CEによるTAコマンドの通知は6ビットから構成されてもよく、例えば-32から+32を示してもよい。なお、UE20は、TA値を受信した時点から6スロット後のUL送信に当該TA値を適用する必要がある。
 図8は、NTNにおけるタイミングアドバンスの例を説明するための図である。図8に示されるように、NTNにおけるTAは、フィーダリンクのTAとサービスリンクのTAの和となる。フィーダリンクのTAは、RTD(Round trip delay)=2(T+T)に対応する値となる。Tに対応する値は、ネットワーク側で補償され、ユーザにはトランスペアレントな値である。Tに対応する値は、すべてのユーザに共通のTAである。なお、参照ポイントはサービスリンクに設定することも可能であり、その場合、Tに対応する値は負の値となる。
 サービスリンクのTAは、RTD=2Tに対応する値となる。Tに対応する値は、ユーザ固有のTA(User-specific TA)であり、UE20の位置によって異なる。
 NTNにおけるTAは、例えば、NTA=(NTA+NTA,UE-specific+NTA,common+NTA,offset)×Tで算出されてもよい。NTA,commonは、上記のすべてのユーザに共通のTAである。以下、NTA,commonを、共通TAともいう。NTA,UE-specificは、UE固有のTAである。NTAは、TAコマンドにより通知される。NTA,offsetは、仕様で規定される固定値である。
 ここで、RRC_IDLE又はRRC_INACTIVE状態(すなわち、例えばRRC接続確立に向けた動作時)において、UE20が受信する、共通TAに係るどのようなパラメータが報知されるか決定する必要がある。また、UE20が受信する、共通TAに係るパラメータがどのように通知されるか決定する必要がある。例えば、当該通知が行われるシグナリング種別、シグナリングの粒度を決定する必要がある。
 また、RRC_CONNECTED状態において、UE20が受信する、共通TAに係るどのようなパラメータ報知されるか決定する必要がある。また、UE20が受信する、共通TAに係るパラメータがどのように通知されるか決定する必要がある。例えば、当該通知が行われるシグナリング種別、シグナリングの粒度、シグナリングの周期を決定する必要がある。
 例えば、共通TAに係るパラメータを通知するシグナリングは、SIB、RRCシグナリング、MAC-CE又はDCI(Downlink Control Information)であってもよい。例えば、共通TAに係るパラメータは、共通TA値であってもよいし、共通TA値及び1次微分係数であってもよいし、共通TA値、1次微分係数及び2次微分係数であってもよいし、共通TA値、1次微分係数、2次微分係数及び3次微分係数であってもよい。なお、微分係数はTA値に対する微分係数でもよく、TA値の変化に対する微分係数であってもよい。例えば、新たに共通TAに係るパラメータを取得した時点から開始される、当該共通TAに係るパラメータを再度取得すべきタイミングを定める有効性タイマ又は当該共通TAに係るパラメータが有効である時間を示すパラメータが設定されてもよい。例えば、共通TAのシグナリングの粒度が後述するように決定されてもよい。
 図9は、本発明の実施の形態における同期する例を示すシーケンス図である。図9はRRC_IDLE又はRRC_INACTIVE状態において、gNB10とUE20間で同期を確立する例である。
 ステップS201において、gNB10は、SSBをUE20に送信する。UE20は、DL時間周波数同期を行いMIBを検出する。続くステップS202において、gNB10は、CORESET#0をUE20に送信する。UE20は、CORESET#0に基づいて、SIBを検出し、当該SIBに含まれるPRACHリソース及び共通TAに係るパラメータを取得する。
 続くステップS203において、SIBから取得した共通TAと自己見積もりしたUE固有TA(Self-estimated UE-specific TA)に基づいて、Msg1又はMsgAであるRACHプリアンブルをgNB10に送信する。続くステップS204において、gNB10は、Msg2又はMsgBであるTAコマンドを含むRARをUE20に送信する。UE20は、共通TA、UE固有TA及びTAコマンドでUL同期を実行する。
 RRC_IDLE又はRRC_INACTIVE状態において、TA=共通TA+UE固有TA+MSg2又はMsgBのRARに含まれるTAコマンド+周波数帯等に依存して規定されるTAオフセット、のようにTAは算出されてもよい。
 図9に示されるように、共通TAに係るパラメータは、SIBを介してgNB10からUE20に通知されてもよい。当該SIBは、SIB1であってもよいし、SIB1以外のSIBXであってもよい。SIB1以外のSIBXが、共通TAに係るパラメータを含む場合、UE20は、SIBXを受信した後、PRACHを送信してもよい。SSB又はSIB1は、SIBXを受信する前にPRACHを送信しないこと又はNTNネットワークであることを示す情報をUE20に通知してもよい。また、SIB1以外のSIBXが、共通TAに係るパラメータを含む場合、UE20は、SIBXを取得していない段階では、PRACH送信に適用するデフォルトの共通TA値を想定してもよい。
 図10は、本発明の実施の形態におけるTAを更新する例を示すシーケンス図である。ステップS301において、gNB10は、SSBをUE20に送信する。UE20は、DL時間周波数同期を行いMIBを検出する。続くステップS302において、gNB10は、CORESET#0をUE20に送信する。UE20は、CORESET#0に基づいて、SIBを検出し、当該SIBに含まれるPRACHリソース及び共通TAに係るパラメータを取得する。
 続くステップS303において、SIBから取得した共通TAと自己見積もりしたUE固有TAに基づいて、Msg1又はMsgAであるRACHプリアンブルをgNB10に送信する。続くステップS204において、gNB10は、Msg2又はMsgBであるTAコマンドを含むRARをUE20に送信する。UE20は、共通TA、UE固有TA及びTAコマンドでUL同期を実行し、RRC_CONNECTED状態に遷移する。
 ステップS305において、gNB10は、RRCシグナリング、MAC-CE、DCI又はSIBを介して、更新された共通TAに係るパラメータをUE20に送信する。ここで、UE20はTAを更新せず、初期アクセス中にSIBから取得した共通TAに係るパラメータを使用してもよい。また、例えば、UE20は、SIBを介して共通TAに係るパラメータを取得し、TAを更新してもよい。また、例えば、UE20は、RRCシグナリング、MAC-CE及びDCIを介して共通TAに係るパラメータを取得し、TAを更新してもよい。RRCシグナリング、MAC-CE及びDCIを介する共通TAに係るパラメータは、共通TAパラメータに対する差分値であってもよい。
 ステップS306において、gNB10は、PDSCH/PDCCHUE20に送信してもよい。PDSCH/PDCCHにTAコマンドが含まれていてもよい。ステップS307において、UE20は、SIBから取得した共通TA又はRRCシグナリング/MAC-CE/DCI/SIBにより更新された共通TA、TAコマンド、固定TAオフセット及び自己見積もりUE固有TAでUL同期を行い、PUSCH/PUCCHをgNB10に送信してもよい。
 共通TAに係るパラメータとして、共通TA値、共通TA値の1次微分係数(1st order derivative of common TA, すなわちドリフト比)、共通TA値の2次微分係数(2nd order derivative of common TA)共通TA値の3次微分係数(3rd order derivative of common TA)等が使用されてもよい。以下、共通TA値のn次微分係数を、n次微分係数とも記載する。
 図11は、TAの報知周期とTAエラーの関係を示す図である。図11では、20ms、1s、4s、5s、10sの周期で、{共通TA値}、{共通TA値,1次微分係数}、{共通TA値,1次微分係数,2次微分係数}、{共通TA値,1次微分係数,2次微分係数,3次微分係数}の4通りで更新した場合の最大TAエラー率を示す。なお、TAエラーの上限は、例えばSCS15kHzの場合、CP長/4=1.17μsであり、図11では上限TAエラー10μs付近の破線で示している。
 図11に示されるように、報知する周期を短くすると最大TAエラーは減少する。また、報知するパラメータを多くすると最大TAエラーは減少する。報知するパラメータをさらに多くすると、長い周期が利用可能となる。
 表1は、報知するパラメータ、報知する周期及び最大TAエラー値の例を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、共通TA値のみを20ms周期で報知した場合、最大TAエラーは0.45μsとなり、TAエラーの上限に係る要件を満たす。また、共通TA値及び1次微分係数を1s周期で報知した場合、最大TAエラーは0.29μsとなり、TAエラーの上限に係る要件を満たす。また、共通TA値、1次微分係数及び2次微分係数を5s周期で報知した場合、最大TAエラーは0.14μsとなり、TAエラーの上限に係る要件を満たす。また、共通TA値、1次微分係数及び2次微分係数を10s周期で報知した場合、最大TAエラーは1.022μsとなり、TAエラーの上限に係る要件を満たす。
 共通TAに係る1又は複数のパラメータが、SIBにより報知される場合、SIBにより所定の周期で報知される当該パラメータは、以下に示されるオプション1)-オプション4)の少なくとも一つがサポートされてもよい。なお、当該オプションは、RRC_IDLE又はRRC_INACTIVE状態のUE20に報知されてもよいし、RRC_CONNECTED状態のUE20に報知されてもよい。なお、いずれかのオプションが、デフォルトオプションとして規定されてもよい。
オプション1)共通TA値
オプション2)共通TA値及び1次微分係数(又は共通TAドリフト比)
オプション3)共通TA値、1次微分係数及び2次微分係数(又は共通TAドリフト変化比)
オプション4)共通TA値、1次微分係数、2次微分係数及び3次微分係数
 図12は、本発明の実施の形態におけるTAを設定する例(1)を示す図である。図12は、上記オプション1に対応する。gNB10は、共通TAxをSIBを介してUE20に送信する。UE20は、SIBから共通TAxを取得し、共通TAを、TA=xとして算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 図13は、本発明の実施の形態におけるTAを設定する例(2)を示す図である。図13は、上記オプション2に対応する。gNB10は、共通TAx及び1次微分係数x′をSIBを介してUE20に送信する。UE20は、SIBから共通TAx及び1次微分係数x′を取得し、共通TAを、TA=x+x′×Δtとして算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 図14は、本発明の実施の形態におけるTAを設定する例(3)を示す図である。図14は、上記オプション1及び上記オプション2に対応する。gNB10は、オプション1として共通TAx、オプション2として共通TAx及び1次微分係数x′をSIBを介してUE20に送信する。UE20は、SIBから共通TAx及び1次微分係数x′を取得する。UE20は、いずれかのオプションを選択する。UE20がオプション2を選択した場合、共通TAを、TA=x+x′×Δtとして算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 図15は、本発明の実施の形態におけるTAを設定する例(4)を示す図である。図15は、上記オプション3に対応する。gNB10は、共通TAx、1次微分係数x′、2次微分係数x″及び3次微分係数以降設定されたパラメータをSIBを介してUE20に送信する。UE20は、SIBからすべてのパラメータを取得する。UE20は、例えば、共通TAx、1次微分係数x′及び2次微分係数x″を選択し、共通TAを、TA=x+x′×Δt+x″×Δt/2として算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 また、所定の周期で通知される共通TAに係るパラメータに関する複数の上記オプションがサポートされてもよい。例えば、UE20は、UE能力に基づいて、いずれのオプションを選択するか決定してもよい。
 また、共通TAに係るパラメータのすべての候補(例えばオプション3の3パラメータ)が、所定の周期で報知されてもよい。UE20は、UE能力に基づいて、いずれのパラメータを使用するか決定してもよい。
 RRC_CONNECTED状態時、共通TAに係る1又は複数のパラメータが、RRCシグナリング、MAC-CE又はDCIにより通知される場合、RRCシグナリング、MAC-CE又はDCIにより通知される当該パラメータは、以下に示されるオプション1)-オプション4)の少なくとも一つがサポートされてもよい。なお、複数のオプションがサポートされる場合、いずれのオプションを使用するかを示す新たなシグナリングが、RRCシグナリング、MAC-CE又はDCIを介してUE20に送信されてもよい。なお、いずれかのオプションが、デフォルトオプションとして規定されてもよい。
オプション1)共通TA値
オプション2)共通TA値及び1次微分係数(又は共通TAドリフト比)
オプション3)共通TA値、1次微分係数及び2次微分係数(又は共通TAドリフト変化比)
オプション4)共通TA値、1次微分係数、2次微分係数及び3次微分係数
 図16は、本発明の実施の形態におけるTAを設定する例(5)を示す図である。図12は、上記オプション1に対応する。gNB10は、共通TAxをRRCシグナリング、MAC-CE又はDCIを介してUE20に送信する。UE20は、RRCシグナリング、MAC-CE又はDCIから共通TAxを取得し、共通TAを、TA=xとして算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 図17は、本発明の実施の形態におけるTAを設定する例(6)を示す図である。図17は、上記オプション2に対応する。gNB10は、共通TAx及び1次微分係数x′をRRCシグナリング、MAC-CE又はDCIを介してUE20に送信する。UE20は、RRCシグナリング、MAC-CE又はDCIから共通TAx及び1次微分係数x′を取得し、共通TAを、TA=x+x′×Δtとして算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 図18は、本発明の実施の形態におけるTAを設定する例(7)を示す図である。図18は、上記オプション3に対応する。gNB10は、共通TAx、1次微分係数x′及び2次微分係数x″をRRCシグナリング、MAC-CE又はDCIを介してUE20に送信する。UE20は、RRCシグナリング、MAC-CE又はDCIから共通TAx、1次微分係数x′及び2次微分係数x″を取得する。UE20は、共通TAを、TA=x+x′×Δt+x″×Δt/2として算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 図19は、本発明の実施の形態におけるTAを設定する例(8)を示す図である。図19では、gNB10は、共通TAがオプション1で通知されることを示す情報をRRCシグナリング、MAC-CE又はDCIを介してUE20に送信する。続いて、gNB10は、共通TAxをRRCシグナリング、MAC-CE又はDCIを介してUE20に送信する。UE20はオプション1を想定して共通TAに係るパラメータを取得し、共通TAを、TA=xとして算出する。UE20は、算出したTAを適用してアップリンク送信を実行する。
 SIBを介して共通TAに係るパラメータが報知されるとき、複数の異なる周期が想定されてもよい。例えば、当該周期は、20ms、40ms、80ms、160ms、0.5s、1s、2s、5s、10s等であってもよい。NTN環境でRRC_IDLE又はRRC_INACTIVE状態にあるUE20は、共通TAに係るパラメータの通知に、一つのデフォルト周期を想定してもよい。
 当該デフォルト周期は仕様により規定されてもよく、例えば、20msであってもよいし、SSBのデフォルト周期と同一であってもよい。また、当該デフォルト周期は、SSB周期に依存して決定されてもよい。また、SIBを介して共通TAに係るパラメータを報知する周期が、SIBに設定されて通知されてもよい。表2は、SSB周期ごとに共通TAに係るパラメータを報知するデフォルト周期を設定する例である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、SSB周期と共通TAに係るパラメータを報知するデフォルト周期が対応付けられていてもよい。SSB周期が20msのとき共通TAに係るパラメータ報知のデフォルト周期は20msであってもよい。また、SSB周期が40msのとき共通TAに係るパラメータ報知のデフォルト周期は40msであってもよい。また、SSB周期が80msのとき共通TAに係るパラメータ報知のデフォルト周期は0.5sであってもよい。また、SSB周期が160msのとき共通TAに係るパラメータ報知のデフォルト周期は1sであってもよい。
 図20は、本発明の実施の形態におけるTAの報知周期の例(1)を示す図である。図20では、SIBによる共通TAに係るパラメータが、1つのデフォルト周期Tで通知される例を示す。すなわち、時刻0、時刻T、時刻2T、時刻3Tにおいて、SIBにより共通TAに係るパラメータが報知される。
 また、RRCシグナリング、MAC-CE又はDCIを介して共通TAに係るパラメータが通知されるとき、複数の異なる周期がサポートされてもよい。いずれの周期を使用するかを示す情報が、新たなシグナリングとしてRRCシグナリング、MAC-CE又はDCIを介してUE20に通知されてもよい。当該新たなシグナリングは、共通TAに係るパラメータを通知するシグナリングと同様であってもよい。例えば、共通TAに係るパラメータを示す情報と、当該周期を示す情報とが組み合わされて通知される想定であってもよい。なお、共通TAに係るパラメータを通知する一つのデフォルト周期が定義されてもよい。例えば、当該デフォルト周期は仕様により規定されてもよい。
 図20において、RRCシグナリング、MAC-CE又はDCIにより、一つのデフォルト周期Tで、共通TAに係るパラメータが通知されてもよい。すなわち、時刻0、時刻T、時刻2T、時刻3Tにおいて、RRCシグナリング、MAC-CE又はDCIにより共通TAに係るパラメータが通知される。
 図21は、本発明の実施の形態におけるTAの報知周期の例(2)を示す図である。図22では、RRCシグナリング、MAC-CE又はDCIにより、一つのデフォルト周期T及び周期Tで、共通TAに係るパラメータが通知される例を示す。時刻Tにおいて、周期Tに切り替えることがシグナリングされる。すなわち、時刻0、時刻T、時刻T+T、時刻T+2Tにおいて、RRCシグナリング、MAC-CE又はDCIにより共通TAに係るパラメータが通知される。
 図22は、本発明の実施の形態におけるTAの報知周期の例(3)を示す図である。図23では、RRCシグナリング、MAC-CE又はDCIにより、一つのデフォルト周期T、周期T及び周期Tで、共通TAに係るパラメータのデフォルト{x}、{x,x′}、{x,x′,x″}、共通TAに係るパラメータを示す情報及び当該周期を示す情報との組み合わせを示す情報が通知される例を示す。例えば、TはT以上であって、TはT以上であってもよい。
 図23に示されるように、時刻0においてデフォルトである共通TAパラメータ{x}が通知される。続く時刻Tにおいて、コンビネーション1がUE20にシグナリングされる。コンビネーション1とは、周期T及び{x,x′}を共通TAに係るパラメータとすることに対応する。時刻Tでは、{x,x′}が通知される。続く時刻T+Tにおいて、{x,x′}が通知される。続く時刻T+2Tにおいて、{x,x′}が通知される。
 続く時刻T+3Tにおいて、コンビネーション2がUE20にシグナリングされる。コンビネーション2とは、周期T及び{x,x′,x″}を共通TAに係るパラメータとすることに対応する。時刻T+3Tでは、{x,x′,x″}が通知される。続くT+3T+Tにおいて、{x,x′,x″}が通知される。
 なお、共通TAに係るパラメータが異なる場合、異なる周期を設定してもよい。例えば、ある周期が設定された場合、UE20は、予め関連付けられた共通TAに係るパラメータが設定されたものと想定してもよい。
 従来のタイムアライメントタイマは、gNB10からTAコマンドを受信せずにUL同期を維持することができる最大時間を定義するタイマである。MACによりTAコマンドを受信したUE20は、NTAを更新し、タイムアライメントタイマをリスタートする。タイムアライメントタイマが満了した場合、UE20はUL同期が失われたと想定する。
 図23は、本発明の実施の形態におけるTAの報知周期の例(4)を示す図である。図23に示されるように、共通TAに係るパラメータを取得したときに開始される、当該共通TAに係るパラメータを再度取得すべきタイミングを定める有効性タイマが定義されてもよい。又は、当該共通TAに係るパラメータが有効である時間を示す時間パラメータが定義されてもよい。当該有効性タイマ又は当該時間パラメータは、取得した共通TAに係るパラメータに基づいて、許容可能なエラーに係る要件を満足する共通TAを算出可能な期間又はUL同期が可能な共通TAを算出可能な期間に対応する。当該有効性タイマは、当該共通TAに係るパラメータを受信したタイミングから開始される。当該有効性タイマが満了した場合、UE20は、SIB、RRCシグナリング、MAC-CE又はDCIを介して新たな共通TAに係るパラメータを取得してもよい。または、当該共通TAに係るパラメータを受信したタイミングから、当該時間パラメータの間は当該共通TAに係るパラメータが有効であるとUE20は想定する。UE20は、少なくとも当該時間パラメータの時間が経過した場合、SIB、RRCシグナリング、MAC-CE又はDCIを介して新たな共通TAに係るパラメータを取得してもよい。
 例えば、有効性タイマが満了する値又は当該時間パラメータは、SIB、RRCシグナリング、MAC-CE又はDCIを介して新たなシグナリングにより明示的に通知されてもよい。また、有効性タイマが満了する値は、共通TAに係るパラメータを通知する周期のシグナリングに含められて通知されてもよい。また、有効性タイマが満了する値は、共通TAに係るパラメータのオプションを通知するシグナリングに含められて通知されてもよい。
 また、有効性タイマが満了する値又は当該時間パラメータは、共通TAに係るパラメータのオプションにより、暗黙的にUE20側で決定してもよい。例えば、UE20は、上記オプション1である場合有効性タイマが満了する値をTとし、上記オプション2である場合有効性タイマが満了する値をTとし、上記オプション3である場合有効性タイマが満了する値をTとしてもよい。
 また、有効性タイマが満了する値又は当該時間パラメータは、共通TAに係るパラメータが報知される周期に基づいて暗黙的にUE20側で決定してもよい。例えば、UE20は、有効性タイマが満了する値を共通TAに係るパラメータが報知される周期Tと同一としてもよいし、当該周期Tの整数倍としてもよい。
 ここで、5GNRにおいて、TAの粒度は、16・64/2μ・Tであって、TCは0.509ns、μはSCSに依存する値である。NTNにおいて、TAの粒度は、共通TAに係るパラメータの量子化パフォーマンスを考慮して決定される必要がある。
 図24は、TAを設定する粒度とTAエラーの関係(1)を示す図である。図24に示されるオプション1は、粒度をNTAと同様の粒度すなわち16・64/2μ・Tとしたものである。オプション2は、粒度を4・64/2μ・Tとしたものである。オプション3は、粒度を64/2μ・Tとしたものである。オプション4は粒度をTとしたものである。図24では、すべてのパラメータを同一の粒度としている。
 図24に示されるように、オプション4かつ、TA、1次微分係数及び2次微分係数が通知される場合、TAエラーの上限に係る要件を満たす。
 図25は、TAを設定する粒度とTAエラーの関係(2)を示す図である。図25では、パラメータによって粒度を変更している。{TA,1次微分係数,2次微分係数}が{オプション1,オプション3,オプション4}の組み合わせ、{オプション2,オプション3,オプション4}の組み合わせ、{オプション1,オプション4,オプション4}の組み合わせ、{オプション4,オプション4,オプション4}の組み合わせの4通りと、量子化しない場合のTAを図示している。
 図25に示されるように、{TA,1次微分係数,2次微分係数}が{オプション1,オプション4,オプション4}の組み合わせ、{オプション4,オプション4,オプション4}の組み合わせが、TAエラーの上限に係る要件を満たす。{オプション1,オプション4,オプション4}の組み合わせは、{オプション4,オプション4,オプション4}の組み合わせよりも共通TAに係るパラメータを送信するペイロードを減少させることができる。
 したがって、共通TAに係る複数のパラメータ間で一様でない量子化を行うことで、TAエラーの上限に係る要件を満たしかつ当該パラメータのペイロードを減少させることができる。
 そこで、共通TAに係るパラメータに、1又は複数の粒度が適用されてもよい。共通TA、1次微分係数、2次微分係数等の粒度を、粗くしてもよいし、細かくしてもよい。例えば、共通TAに粗い粒度を適用し、1次微分係数にはより細かい粒度を適用し、2次微分係数にはより細かい粒度を適用してもよい。
 例えば、共通TAの粒度を、5GNRと同様の16・64/2μ・Tとしてもよいし、さらに粗い32・64/2μ・Tとしてもよいし、さらに32・64/2μ・Tよりも粗い粒度としてもよい。例えば、1次微分係数の粒度を、64/2μ・Tとしてもよいし、1/2μ・Tとしてもよい。例えば、2次微分係数の粒度を、1/2μ・Tとしてもよい。
 なお、共通TAに係るパラメータを通知する周期に、共通TAに係るパラメータに適用する粒度が関連付けられてもよい。例えば、当該周期が長いほど、当該粒度を細かくしてもよい。なお、TAエラーの上限に係る要件が異なる場合、共通TAに係るパラメータに適用される粒度の組み合わせが異なってもよい。
 図26は、本発明の実施の形態におけるTAを設定する粒度を変更する例を示す図である。図26に示されるように、時刻0では粒度0が共通TAに係るパラメータに適用される。続く時刻Tにおいて、周期T及び粒度1がシグナリングされる。共通TAに係るパラメータに適用される粒度は、粒度0から粒度1に変更される。続く時刻T+Tにおいて、共通TAに係るパラメータに適用される粒度は、粒度1である。続く時刻T+2Tにおいて、共通TAに係るパラメータに適用される粒度は、粒度1である。
 また、共通TAに係るパラメータを通知する周期、共通TAに係るパラメータに適用されるオプション、共通TAに係るパラメータに適用される粒度は、ジョイントコーディングされて、SIB、RRCシグナリング、MAC-CE又はDCIを介してUE20にシグナリングされてもよい。表3は、ジョイントコーディングの例を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、設定インデックスごとに、「周期」、「パラメータ」及び「粒度」が関連付けられてもよい。「周期」は、共通TAに係るパラメータを通知する周期に対応し、「パラメータ」は、共通TAに係るパラメータに適用されるオプションに対応し、「粒度」は、共通TAに係るパラメータに適用される粒度に対応する。
 なお、共通TAパラメータがRRCシグナリング、MAC-CE又はDCIにより更新されることをサポートするか否かを示すUE能力が定義されてもよい。共通TAに係るパラメータの複数のオプションをサポートするか否かを示すUE能力が定義されてもよい。共通TAに係るパラメータの異なるオプションに対して異なる周期を適用することをサポートするか否かを示すUE能力が定義されてもよい。新たな共通TAに係るパラメータを取得するための有効性タイマをサポートするか否かを示すUE能力が定義されてもよい。異なる共通TAに係るパラメータに異なる量子化粒度を適用することをサポートするか否かを示すUE能力が定義されてもよい。
 上述の実施例により、端末20は、NTN環境において、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。
 すなわち、無線通信システムにおいて、TA(Timing Advance)を適切に設定することができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局10>
 図27は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図27に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図27に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、NTNにおける通信に係る情報等である。
 制御部140は、実施例において説明したように、NTNにおける通信に係る制御を行う。また、制御部140は、端末20から受信した無線パラメータに関するUE能力報告に基づいて、端末20との通信を制御する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <端末20>
 図28は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図28に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図28に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、NTNにおける通信に係る情報等である。
 制御部240は、実施例において説明したように、NTNにおける通信に係る制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図27及び図28)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図29は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図27に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図28に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、NTN(Non-Terrestrial Network)を構成する基地局において全ユーザに共通するTA(Timing Advance)に係るパラメータと、TAコマンドを前記基地局から受信する受信部と、前記パラメータに基づいて共通するTAを算出し、前記TAコマンドと、前記算出した共通するTAと、装置固有のTAと、オフセットに基づいて、アップリンクの同期を実行する制御部とを有し、前記受信部は、前記パラメータを、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、MAC-CE(Medium Access Control - Control Element)及びDCI(Downlink Control Information)のうち少なくとも一つを介してある周期で受信する端末が提供される。
 上記の構成により、端末20は、NTN環境において、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。すなわち、無線通信システムにおいて、TA(Timing Advance)を適切に設定することができる。
 前記パラメータは、TA値及びある次数までのTA値の微分係数を含んでもよい。当該構成により、端末20は、NTN環境において、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。
 前記受信部は、前記パラメータと関連付けられる前記ある周期を前記基地局から受信してもよい。当該構成により、端末20は、NTN環境において、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。
 前記制御部は、前記ある周期の整数倍で満了するタイマを前記パラメータを受信した時点で開始し、前記タイマが満了したとき前記パラメータを再度取得してもよい。当該構成により、端末20は、NTN環境において、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。
 前記TA値及び前記微分係数に、異なる少なくとも2つの粒度が適用されてもよい。当該構成により、端末20は、NTN環境において、共通TAの通知に係るペイロードを削減し、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。
 また、本発明の実施の形態によれば、NTN(Non-Terrestrial Network)を構成する基地局において全ユーザに共通するTA(Timing Advance)に係るパラメータと、TAコマンドを前記基地局から受信する受信手順と、前記パラメータに基づいて共通するTAを算出し、前記TAコマンドと、前記算出した共通するTAと、装置固有のTAと、オフセットに基づいて、アップリンクの同期を実行する制御手順と、前記パラメータを、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、MAC-CE(Medium Access Control - Control Element)及びDCI(Downlink Control Information)のうち少なくとも一つを介してある周期で受信する手順とを端末が実行する通信方法が提供される。
 上記の構成により、端末20は、NTN環境において、TAエラーの上限に係る要件を満たすように共通TAを設定し、UL同期を実行することができる。すなわち、無線通信システムにおいて、TA(Timing Advance)を適切に設定することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  NTN(Non-Terrestrial Network)を構成する基地局において全ユーザに共通するTA(Timing Advance)に係るパラメータと、TAコマンドを前記基地局から受信する受信部と、
     前記パラメータに基づいて共通するTAを算出し、前記TAコマンドと、前記算出した共通するTAと、装置固有のTAと、オフセットに基づいて、アップリンクの同期を実行する制御部とを有し、
     前記受信部は、前記パラメータを、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、MAC-CE(Medium Access Control - Control Element)及びDCI(Downlink Control Information)のうち少なくとも一つを介してある周期で受信する端末。
  2.  前記パラメータは、TA値及びある次数までのTA値に係る微分係数を含む請求項1記載の端末。
  3.  前記受信部は、前記パラメータと関連付けられる前記ある周期を前記基地局から受信する請求項1記載の端末。
  4.  前記制御部は、前記ある周期の整数倍で満了するタイマを前記パラメータを受信した時点で開始し、前記タイマが満了したとき前記パラメータを再度取得する請求項1記載の端末。
  5.  前記TA値及び前記微分係数に、異なる少なくとも2つの粒度が適用される請求項2記載の端末。
  6.  NTN(Non-Terrestrial Network)を構成する基地局において全ユーザに共通するTA(Timing Advance)に係るパラメータと、TAコマンドを前記基地局から受信する受信手順と、
     前記パラメータに基づいて共通するTAを算出し、前記TAコマンドと、前記算出した共通するTAと、装置固有のTAと、オフセットに基づいて、アップリンクの同期を実行する制御手順と、
     前記パラメータを、SIB(System Information Block)、RRC(Radio Resource Control)シグナリング、MAC-CE(Medium Access Control - Control Element)及びDCI(Downlink Control Information)のうち少なくとも一つを介してある周期で受信する手順とを端末が実行する通信方法。
PCT/JP2021/029231 2021-08-05 2021-08-05 端末及び通信方法 WO2023013008A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/029231 WO2023013008A1 (ja) 2021-08-05 2021-08-05 端末及び通信方法
JP2023539521A JPWO2023013008A1 (ja) 2021-08-05 2021-08-05
CN202180101010.2A CN117716745A (zh) 2021-08-05 2021-08-05 终端及通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029231 WO2023013008A1 (ja) 2021-08-05 2021-08-05 端末及び通信方法

Publications (1)

Publication Number Publication Date
WO2023013008A1 true WO2023013008A1 (ja) 2023-02-09

Family

ID=85155425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029231 WO2023013008A1 (ja) 2021-08-05 2021-08-05 端末及び通信方法

Country Status (3)

Country Link
JP (1) JPWO2023013008A1 (ja)
CN (1) CN117716745A (ja)
WO (1) WO2023013008A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196534A1 (ja) * 2019-03-28 2020-10-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、送信方法及び受信方法
US20200351957A1 (en) * 2019-05-03 2020-11-05 Electronics And Telecommunications Research Institute Timing synchronization method and apparatus therefor
US20210119861A1 (en) * 2019-10-21 2021-04-22 Samsung Electronics Co., Ltd. Transmission of ntn type and ntn type based configuration of operational parameters
CN112788774A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 卫星通信方法和相关通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196534A1 (ja) * 2019-03-28 2020-10-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、送信方法及び受信方法
US20200351957A1 (en) * 2019-05-03 2020-11-05 Electronics And Telecommunications Research Institute Timing synchronization method and apparatus therefor
US20210119861A1 (en) * 2019-10-21 2021-04-22 Samsung Electronics Co., Ltd. Transmission of ntn type and ntn type based configuration of operational parameters
CN112788774A (zh) * 2019-11-08 2021-05-11 华为技术有限公司 卫星通信方法和相关通信设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TR 38.821, December 2019 (2019-12-01)
3GPP TS 38.300, June 2021 (2021-06-01)
KONISHI ET AL.: "A Study of Downlink Spectrum Sharing in HAPS Mobile Communication System", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS (IEICE) GENERAL CONFERENCE, B-17-1, 2020

Also Published As

Publication number Publication date
JPWO2023013008A1 (ja) 2023-02-09
CN117716745A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
JP7321176B2 (ja) 端末、通信方法、及び通信システム
CN113261334A (zh) 用户装置以及通信装置
JP7307746B2 (ja) 端末、基地局、通信システム、及び、通信方法
WO2020065891A1 (ja) ユーザ装置
CN113170436A (zh) 用户装置
JP7148622B2 (ja) 端末及び通信方法
WO2022091557A1 (ja) 端末、基地局及び通信方法
JP2022105227A (ja) ユーザ装置
WO2023013008A1 (ja) 端末及び通信方法
JP7274566B2 (ja) 端末、通信方法及び無線通信システム
EP4102921A1 (en) Terminal, base station, and communication method
JP2023156536A (ja) 端末、無線通信方法、及び基地局
EP4383847A1 (en) Terminal and communication method
WO2023013007A1 (ja) 端末及び通信方法
WO2023007682A1 (ja) 無線ノードおよび無線通信方法
WO2023012886A1 (ja) 端末及び通信方法
CN114375588A (zh) 终端和通信方法
WO2022091552A1 (ja) 端末、基地局及び通信方法
WO2022244155A1 (ja) 端末及び通信方法
WO2023007683A1 (ja) 無線通信ノード及び無線通信方法
WO2023073968A1 (ja) 端末及び通信方法
WO2023105807A1 (ja) 端末、及び報告方法
WO2023135825A1 (ja) 端末、基地局及び通信方法
WO2023053298A1 (ja) 端末及び通信方法
WO2023053430A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539521

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180101010.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952832

Country of ref document: EP

Effective date: 20240305