WO2023011398A1 - 场射流织物染色方法和场射流织物染色系统 - Google Patents

场射流织物染色方法和场射流织物染色系统 Download PDF

Info

Publication number
WO2023011398A1
WO2023011398A1 PCT/CN2022/109382 CN2022109382W WO2023011398A1 WO 2023011398 A1 WO2023011398 A1 WO 2023011398A1 CN 2022109382 W CN2022109382 W CN 2022109382W WO 2023011398 A1 WO2023011398 A1 WO 2023011398A1
Authority
WO
WIPO (PCT)
Prior art keywords
dyeing
dye
fabric
field jet
field
Prior art date
Application number
PCT/CN2022/109382
Other languages
English (en)
French (fr)
Inventor
钟博文
田龙
刘新刚
Original Assignee
长胜纺织科技发展(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长胜纺织科技发展(上海)有限公司 filed Critical 长胜纺织科技发展(上海)有限公司
Publication of WO2023011398A1 publication Critical patent/WO2023011398A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/16General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dispersed, e.g. acetate, dyestuffs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/38General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/39General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/58Material containing hydroxyl groups
    • D06P3/60Natural or regenerated cellulose
    • D06P3/66Natural or regenerated cellulose using reactive dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form

Definitions

  • the present disclosure relates to the field of fabric printing and dyeing, and more specifically, to a field jet fabric dyeing method and a field jet fabric dyeing system.
  • Textile dyeing is a technique in which dyes are used to dye and process dyed objects.
  • the most common dyeing technology is pad dyeing, that is, the process of pad dyeing solution-drying-fixation-washing.
  • the greatest pressure on dyeing processing is environmental pressure, such as the substitution of banned dyes, the treatment of three wastes, water and energy saving, monitoring and control of ecological standards of products, etc. If these problems are not solved, the industry bottleneck of dyeing processing cannot be solved.
  • the purpose of the present disclosure is to propose a field jet fabric dyeing method and a field jet fabric dyeing system, which can overcome at least one defect in the prior art.
  • the first aspect of the present disclosure relates to a field jet fabric dyeing method, which is used for dyeing fabrics by field jet, characterized in that the field jet fabric dyeing method includes the following steps:
  • the dyeing mechanism is separated from the fabric, and the dyeing mechanism includes a dye storage mechanism configured as an elongated knife beam for storing dyes and is used for ejecting the dyes in the form of jets and making them into liquids.
  • a droplet dye injection mechanism the dye injection mechanism includes a needle tube part, an air flow supply part for supplying an air flow, and a dye supply part for supplying dye to the needle tube part through a knife beam, and the needle tube part has an air flow channel and is provided by the needle tube A dye channel is formed, the air flow channel is in fluid communication with the air flow supply part, and the dye channel is in fluid communication with the dye storage mechanism,
  • said voltage source applies a voltage to the dyeing mechanism such that an electrostatic field is generated between the dyeing mechanism and the fabric and a voltage is generated on the tip of the needle part
  • the dye is output from the dye channel under the action of the dye supply pressure of the dye supply part and/or the negative pressure of the airflow and forms droplets which are charged by the voltage on the tip of the needle tube part,
  • the charged droplets form a group of charged droplets under the action of the electric field force after spalling, move towards the fabric and adsorb on the fabric, so that the fabric is dyed.
  • the field jet fabric dyeing method according to the present disclosure can improve dyeing efficiency on the one hand, and save dye consumption, water consumption and electricity consumption on the other hand, thereby saving cost and reducing pollution.
  • the dye is a water-soluble reactive dye ink, and its formula includes: 5-15% reactive dye, 3-8% urea, 1-5% color fixing agent, 0-10% inorganic Salt, 0.5-2% surface tension regulator adjusted to 100% with water; or
  • the dye is a water-soluble acid dye ink, and its formula includes: 5-15% of acid dye, 2-5% of color fixing agent, 0-0.8% of pH regulator, 0-10% of inorganic salt, 0.5- 2% surface tension regulator adjusted to 100% with water; or
  • the dye is a water-dispersible disperse dye ink, and its formula includes: 5-15% of disperse dye, 3%-5% of dispersant, 0-10% of inorganic salt, 0.5-2% of surface tension regulator, The deionized water used therein was adjusted to 100%.
  • the surface tension modifier is polyvinylpyrrolidone, or polyoxyethylene alkylamine, or fatty alcohol polyoxyethylene ether, or polysiloxane.
  • the color-fixing agent in the water-soluble reactive dye ink is sodium carbonate, or sodium bicarbonate, or sodium hydroxide, or potassium carbonate, or potassium bicarbonate, or potassium hydroxide, or a substitute alkali.
  • the color fixing agent in the water-soluble acid dye ink is urea or dicyandiamide.
  • the pH regulator is citric acid, or acetic acid, or ammonium sulfate; or triethanolamine.
  • the dispersant is a sulfonate dispersant or a naphthalenesulfonic acid formaldehyde condensate dispersant.
  • the inorganic salt is sodium chloride or potassium chloride.
  • the fabric is cellulose fiber fabric, or nylon fabric, or silk fabric, or polyester fabric, or blended fabric.
  • the needle tube is made of conductive metal.
  • Another aspect of the present disclosure relates to a field jet fabric dyeing system
  • the field jet fabric dyeing system is used for dyeing fabrics by means of field jet, characterized in that the field jet fabric dyeing system includes a dyeing component, the dyeing Components include:
  • the dyeing mechanism comprising a dye storage mechanism for storing dye and a dye injection mechanism for ejecting said dye in a jet and forming droplets ;as well as
  • the voltage source is configured to form a voltage field between the dyeing mechanism and the fabric, the voltage field generates an electric field force, so that the droplets form charged droplets under the action of the electric field force flock and move towards the fabric,
  • the dye storage mechanism is configured as a long knife beam
  • the dye injection mechanism includes a needle tube part, an air supply part for supplying air flow, and a dye supply part for supplying dye to the needle tube part through the knife beam
  • the needle tube part has an airflow passage and a dye passage formed by the needle tube, the airflow passage is in fluid communication with the airflow supply part, the dye passage is in fluid communication with the knife beam, and the dye is in the dye supply pressure of the dye supply part and/or
  • the droplets are formed under the action of the negative pressure of the gas flow.
  • the field jet fabric dyeing system further includes a manipulation mechanism configured to move the dyeing mechanism to adjust the relative position of the outlet of the dye injection mechanism to the fabric or the position of the outlet of the dye injection mechanism. The distance from the outlet of the pointing or dye jet mechanism to the fabric.
  • the field jet fabric dyeing system further includes a voltage adjusting component configured to adjust the output voltage of the voltage source.
  • At least one dyeing mechanism is arranged on only one side of the fabric; or at least one dyeing mechanism is respectively arranged on both sides of the fabric, and the dyeing mechanisms on both sides of the fabric are arranged opposite to each other or staggered.
  • the needle tube parts are arranged on the knife beam at the same distance from each other.
  • the needle part includes a central dye channel
  • the needle part includes an airflow channel annularly arranged around the central dye channel or a plurality of air holes or slits distributed around the central dye channel. Slits, the air holes or slits constitute air flow channels.
  • the airflow supply means is configured as an air pump for generating compressed air.
  • the dye supply part is configured as a metering pump for quantitatively supplying the dye.
  • one pole of the voltage source is connected to the dyeing mechanism, and the other pole of the voltage source is connected to the fabric or the fabric is grounded.
  • the voltage of the voltage source is 10-60 kV.
  • the field jet fabric dyeing system has at least one of the following operating parameters:
  • the distance between the tip of the needle tube of the needle tube part and the fabric is 0.4-20cm;
  • the pressure of the airflow is 0.1-1.0MPa
  • the diameter of the dye channel is 0.1-2.5mm
  • the excess of the dye channel beyond the air flow channel is ⁇ 5mm.
  • a single knife beam or multiple knife beams are configured in a dyeing unit.
  • the longitudinal direction of the dyeing mechanism is transverse to the advancing direction of the fabric.
  • the dyeing mechanism is equipped with a reciprocating device for realizing the reciprocating movement of the dyeing mechanism in its longitudinal direction.
  • the reciprocating device includes a driving motor, the driving motor has a motor gear, and the motor gear meshes with an eccentric gear, and the eccentric rotation of the eccentric gear is transmitted to the dyeing mechanism through a link mechanism, so that The eccentric rotational movement of the eccentric gear is converted into a reciprocating movement of the dyeing mechanism in its longitudinal direction.
  • the reciprocating device is designed such that the moving distance of the dyeing mechanism is ⁇ 50 mm and/or the reciprocating frequency of the dyeing mechanism is ⁇ 80 times/minute.
  • the field jet fabric dyeing system includes multiple or more pairs of dyeing mechanisms, at least two or at least two pairs of dyeing mechanisms among the multiple or more pairs of dyeing mechanisms can pass through a common reciprocating device Or it can be reciprocated in its longitudinal direction with a predetermined phase difference by respective reciprocating means.
  • the field jet fabric dyeing system includes a guide assembly configured to guide fabric through the dyeing assembly.
  • the field jet fabric dyeing system is configured to perform the field jet fabric dyeing methods of the present disclosure.
  • the present disclosure innovatively utilizes the characteristics of atomized jets of dyestuffs in an airflow field and/or an electrostatic field, and realizes a system and method for dyeing fabrics through field jets.
  • the dyeing method of field jet textile dyeing is adopted instead of the traditional dip-dyeing or tie-dyeing method, so that only the surface layer of the fabric is dyed, and the inside and non-visible parts of the fabric do not need to be filled with dye, so the fabric can be greatly improved.
  • the amount of dye and water consumption is saved; dyeing is done on demand, the amount of dyeing is appropriate, and the fixation rate is high, so the water consumption of washing is less and the waste water generated is less; the present disclosure can realize single-side plain dyeing and double-side same-color dyeing, Double-sided heterochromatic dyeing, gradient dyeing; multi-color dyeing, etc., meet the market's demand for differentiated dyed fabrics.
  • FIG. 1 is a schematic diagram of a vertical field jet fabric dyeing system according to a first embodiment of the present disclosure, wherein the dyeing mechanisms are arranged opposite to each other on both sides of the fabric,
  • FIG. 2 is a schematic diagram of a horizontal field jet fabric dyeing system according to a second embodiment of the present disclosure
  • Fig. 3 is a layout structure diagram of one of the dyeing mechanisms of the dyeing assembly of Fig. 1 and Fig. 2,
  • Figure 4A is a schematic perspective view of a needle cannula assembly according to one embodiment
  • Figure 4B is a schematic perspective view of a needle cannula component according to another embodiment
  • Figure 4C is a cross-sectional view of the needle cannula part according to Figures 4A and 4B,
  • 5A to 5F are cross-sectional views of needle cannula components according to other embodiments.
  • Figure 6 and Figure 7 are schematic top and side views of the reciprocating device for two adjacent dyeing mechanisms of the dyeing assembly
  • Fig. 8 is the line graph that is formed by the relative color strength % of different OWF (ratio of the consumption of dyestuff and fabric weight) and corresponding fabric front and back in application example 1,
  • Fig. 9 is a schematic diagram of a vertical field jet dyeing system according to a third embodiment of the present disclosure, wherein the dyeing mechanisms are arranged to be staggered on both sides of the fabric.
  • FIG. 1 is a schematic diagram of a vertical field jet fabric dyeing system with a first embodiment according to the present disclosure.
  • the field jet fabric dyeing system includes a guide assembly 10 and a dyeing assembly 100 .
  • the guide assembly 10 is configured for guiding the fabric 1 through the dyeing assembly 100 .
  • the dyeing assembly 100 is provided with a plurality of dyeing mechanisms 110 , and each dyeing mechanism 110 is configured to extend horizontally and overlap each other in the vertical direction.
  • the fabric 1 can be moved past the dyeing assembly 100 in a vertical direction.
  • the dyeing units 110 can be arranged in pairs opposite to each other on both sides of the fabric 1 , for example, FIG. 1 shows four pairs of oppositely arranged dyeing units 110 .
  • the dyeing mechanism 110 can also be arranged on both sides of the fabric 1 in a staggered manner, see the embodiment shown in FIG.
  • the present disclosure is not limited thereto, and any other number of one or more pairs of dyeing mechanisms 110 can be provided, and the dyeing mechanism 110 can also be arranged on only one side of the fabric 1 .
  • the dyeing mechanism 110 can also be arranged on only one side of the fabric 1 .
  • the dyeing mechanism 110 includes a dye storage mechanism 111 for storing dye and a dye spraying mechanism for spraying the dye in a jet and forming it into droplets.
  • the longitudinal direction of the dyeing unit 110 can be transverse, in particular perpendicular, to the advancing direction of the fabric 1 .
  • "transversely to” may mean that the longitudinal direction of the dyeing mechanism 110 forms a certain angle with the advancing direction of the fabric 1, for example, the range of the angle may be ⁇ 45°, preferably ⁇ 30°, particularly preferably ⁇ 20°, It can also mean that the longitudinal direction of the dyeing mechanism 110 is substantially perpendicular to the advancing direction of the fabric 1 .
  • the dye storage mechanism 111 can be configured as a knife beam, and the knife beam can be elongated.
  • the dye storage mechanism 111 configured as a knife beam can be constructed continuously as shown in FIG. 3 , that is, a single dye storage mechanism 111 is configured in a dyeing mechanism 110 .
  • multiple dye storage mechanisms 111 can also be configured in one dyeing mechanism 110 , and these dye storage mechanisms 111 can be arranged side by side, for example. Where multiple dye storage mechanisms are configured, individual control of each dye storage mechanism can be achieved. Thereby, different dyes can be supplied to the respective dye storages.
  • the dye ejection mechanism may include a needle part 113 and an air flow supply part 114 for supplying an air flow.
  • the needle tube part 113 may have an air flow channel 32 and a dye channel 31 formed of a needle tube.
  • the needle tube can be made of conductive metal.
  • the airflow channel 32 may be in fluid communication with an airflow supply component 114 .
  • Dye channel 31 may be in fluid communication with dye storage mechanism 111 .
  • a plurality of needle tube parts 113 can be arranged on one dye storage mechanism 111 at the same distance from each other (for example, side by side). The distance between adjacent needle tube parts 113 may be 5-50 mm, such as 10-40 mm or 20-30 mm.
  • the needle tube parts 113 may be arranged in a single row on the dye storage mechanism 111 .
  • the needle tube parts 113 can also be arranged in multiple rows on the dye storage mechanism 111 .
  • the number of needle tube parts 113 in a single row may be 5-100, for example 8-16.
  • the air flow supply part 114 can be configured, for example, as an air pump for generating compressed air.
  • Each needle tube part 113 can be respectively in fluid communication with different associated gas flow supply parts 114 or collectively be in fluid communication with the same gas flow supply part 114 .
  • the gas flow supply part 114 and/or the needle part 113 can be equipped with an air pressure regulating device, which can adjust the air pressure of the gas flow generated by the gas flow supply part 114 and/or adjust the gas pressure of the gas flow delivered to the needle part 113.
  • the dye injection mechanism may further include a dye supply part 115 for supplying dye to the needle tube part 113 through the knife beam.
  • the dye supply part 115 can be configured, for example, as a metering pump for feeding, in particular metering, the dye.
  • the dye supply part 115 can be arranged on the dye storage mechanism 111, for example.
  • the dye supply part 115 may be configured to supply the dye to the needle tube part 113 by squeezing.
  • the dye can form liquid droplets under the action of the dye supply pressure of the dye supply part 115 or the pump pressure and/or the negative pressure of the airflow.
  • the dyeing assembly 100 also includes a voltage source 120, the voltage source 120 is configured to form a voltage field between the dyeing mechanism 110 and the fabric 1, the voltage field generates an electric field force, so that the droplets are formed under the action of the electric field force
  • the charged droplet group 2 moves towards the fabric 1 .
  • Each dyeing mechanism 110 can be electrically connected with different corresponding voltage sources 120 respectively or be electrically connected with the same voltage source 120 commonly.
  • the inventors of the present application discovered a series of parameters affecting the dyeing effect, and analyzed and optimized them.
  • the applied voltage has a great influence on the charge-to-mass ratio of dye inks during field jet dyeing.
  • the charge-to-mass ratio of the dye ink usually increases first and then decreases as the applied voltage increases.
  • the applied voltage has a significant effect on the dye ink droplet pattern, droplet number and size. Therefore, in this application, the voltage of the voltage source 120 is selected to be 10-60kV, such as 20-50kV or 30-40kV.
  • the dyeing assembly 100 may further include a voltage regulating component configured to regulate the output voltage of the voltage source 120 .
  • the dyeing assembly 100 can also include a manipulation mechanism, the manipulation mechanism is configured to move the dyeing mechanism to adjust the relative position of the spray outlet of the dye spray mechanism, especially the needle tube part 113 of the dye spray mechanism and the fabric 1 or the position of the spray outlet of the dye spray mechanism. The distance from the outlet of the pointing or dye injection mechanism to the fabric 1.
  • the manipulating mechanism may include, for example, a motor for providing a driving force and a manipulating component for making the dyeing mechanism translate and/or rotate.
  • the jet main direction of the jet outlet of the dye injection mechanism especially the needle tube part 113 of the dye injection mechanism
  • the angle to the surface plane of the fabric 1 is, for example, 75°, preferably 60°, particularly preferably 45°. This angle of inclination is suitable especially in the case of the horizontal arrangement described below, in order to prevent the reverse flow of the liquid flow into the ejection opening of the dye ejection mechanism and interfere with the droplet ejection.
  • the dye is output from the dye channel 31 under the action of the dye supply pressure of the dye supply part 115 or the pump pressure and/or the negative pressure of the gas flow and forms droplets, which are passed through the voltage on the tip of the needle part 113 And with charge, the droplet with charge is scattered under the interaction of the secondary airflow formed by the airflow, the electrostatic field and the surface charge of the droplet, and the droplet is broken under the action of the electric field force
  • the charged droplet group 2 is formed and moves toward the fabric 1 and is adsorbed on the fabric 1, so that the fabric 1 is dyed.
  • Each dyeing mechanism 110 can use the same dye or dyes of different colors, can use the same voltage/air pressure or different voltage/air pressure to control the dye flow of the dyeing mechanism 110, and can use the same clamp between the needle tube part 113 and the fabric 1 Angle or the angle between different needle tube parts 113 and the fabric 1, so as to realize single-sided plain color dyeing, double-sided same-color dyeing, double-sided different-color dyeing, gradient dyeing; colorful dyeing and other effects.
  • the guide assembly 10 may include a first spreading roller 11, a first tension roller 13, an edge correcting device 14, a traction device 15, a second tension roller 16 and a second spreading roller arranged sequentially in the traveling direction of the fabric 1. Separating roller 17.
  • a first deflection roll 12 may be arranged downstream of the first spreader roll 11 such that the web 1 is deflected by approximately 90° by the first deflection roll 12 .
  • a second turning roll 18 may be arranged downstream of the second spreading roll 17 such that the fabric 1 travels vertically upwards after passing the second turning roll 18 .
  • the fabric 1 is finally turned away from the dyeing assembly 100 by the third turning roller 19 .
  • Several deflection rollers can be arranged in the travel path of the fabric 1 in order to deflect the fabric 1 appropriately so that the entire device can be designed compactly.
  • the guide assembly 10 can have more or less turning rollers according to actual needs.
  • each dyeing mechanism 110 arranged in the dyeing assembly 100 extends vertically and follows each other successively in the horizontal direction, so that the fabric 11 moves past the dyeing assembly in the horizontal direction 100.
  • FIG. 3 is an arrangement diagram of one dyeing mechanism 110 of the dyeing assembly 100 shown in FIG. 1 and FIG. 2 .
  • the dye storage mechanism 111 configured as a knife beam of the dyeing mechanism 110 is arranged perpendicular to the traveling direction of the fabric 1 .
  • the width of the dye storage mechanism 111 may roughly correspond to the width of the fabric 1 .
  • a row of 10 needle tube parts 113 is arranged on the dye storage mechanism 111 , and they can be evenly distributed over the width of the dye storage mechanism 111 .
  • FIG. 4A is a schematic perspective view of a cannula part 113 according to an exemplary embodiment
  • FIG. 4C is a cross-sectional view of the cannula part 113 according to FIG. 4A
  • the needle tube part 113 includes a central dye channel 31 and an air flow channel 32 arranged annularly around the dye channel 31 .
  • the annular air flow channel 32 can be connected to an associated air flow supply part 114 (see FIG. 1 ), which can generate compressed air which forms the air flow.
  • the pressure of the gas flow may be 0.1-1.0 MPa, such as 0.2-0.8 MPa or 0.3-0.6 MPa.
  • the dye channel 31 or the needle tube can exceed the air flow channel 32, typically, the excess is ⁇ 5 mm, for example, the excess can be about 3 mm.
  • the diameter of the dye channel 31 or the inner diameter of the needle tube part 113 may be 0.1-2.5 mm, such as 0.3-2.0 mm or 0.5-1.5 mm.
  • the distance between the tip of the needle tube of the needle tube part 113 and the fabric 1 may be 0.4-20 cm, such as 1-18 mm or 2-10 mm, such as about 5 mm or 6 mm.
  • FIG. 4B is a schematic perspective view of a cannula component 113 according to another embodiment.
  • the difference between the needle tube part 113 shown in Figure 4B and the needle tube part 113 shown in Figure 4A is mainly that the end faces of the needle tube part 113 are flush, that is, the air flow channel 32 and the dye channel 31 end flush in the same plane .
  • the cross-sectional view shown in FIG. 4C can also be applied to the cannula part 113 shown in FIG. 4B.
  • 5A to 5F are cross-sectional views of needle cannula part 113 according to other embodiments.
  • the cannula member 113 may have a circular cross-section.
  • the needle tube part 113 may have a central dye channel 31 (or a needle tube) and eight air holes evenly distributed around the dye channel 31, and the air holes constitute the air flow channel 32 respectively.
  • the cannula member 113 may have a hexagonal cross-section.
  • the needle tube part 113 may have a central dye channel 31 (or a needle tube) and six air holes evenly distributed around the dye channel 31 , and the air holes respectively constitute the air flow channel 32 .
  • the cannula component 113 may have a square cross-section.
  • the needle tube part 113 may have a central dye channel 31 (or a needle tube) and four air holes evenly distributed around the dye channel 31 , and the air holes respectively constitute the air flow channel 32 .
  • the cannula component 113 may have a circular cross-section.
  • the needle tube part 113 may have a central dye channel 31 (or a needle tube) and three rectangular slits 32 evenly distributed around the dye channel 31 , and the slits 32 respectively constitute the air flow channels 32 .
  • the three rectangular slits 32 may intersect on their extensions to form an equilateral triangle.
  • the cannula component 113 may have a circular cross-section.
  • the needle tube part 113 may have a central dye channel 31 (or a needle tube) and four arc-shaped slits 32 evenly distributed around the dye channel 31 , and the slits 32 respectively constitute the air flow channels 32 .
  • These four arc-shaped slits 32 may intersect on their extensions to form a circle concentric with the central dye channel 31 .
  • the cannula component 113 may have a square cross-section.
  • the needle tube part 113 may have a central dye channel 31 (or a needle tube) and four rectangular slits 32 evenly distributed around the dye channel 31 , and the slits 32 constitute the air flow channels 32 respectively.
  • the four rectangular slits 32 may intersect on their extensions to form a square.
  • FIGS. 6 and 7 are schematic top and side views of the reciprocating means for two adjacent dyeing mechanisms 110 of the dyeing assembly. All the dyeing mechanisms 110 or a part of the dyeing mechanisms 110 of the dyeing assembly can be reciprocated, and they can be equipped with common or individual reciprocating devices. As shown in FIGS. 6 and 7 , two adjacent dyeing mechanisms 110 are provided with common reciprocating means, so that the two adjacent dyeing mechanisms 110 can reciprocate in their longitudinal direction opposite to each other.
  • the reciprocating device may include a driving motor 23, such as a variable frequency motor.
  • the driving motor 23 can have a motor gear 24, and the motor gear 24 can mesh with an eccentric gear 25, and the eccentric rotation of the eccentric gear 25 can be transmitted to two adjacent dyeing mechanisms 110 through a link mechanism, so that the The eccentric rotational movement of the eccentric gear 25 can be converted into a respective reciprocating movement of two adjacent dyeing mechanisms 110 in their longitudinal direction.
  • the link mechanism may include a link 26 fixed to the eccentric gear 25 , the link 26 may be connected to a swing arm 27 , and the swing arm 27 may be connected to a connecting arm 28 of the dyeing mechanism.
  • the movement amount of two adjacent dyeing mechanisms 110 can be selected to be ⁇ 50 mm, for example ⁇ 40 mm.
  • the reciprocating frequency of the movement of two adjacent dyeing mechanisms 110 for example, can be selected as ⁇ 80 times/minute, such as ⁇ 60 times/minute.
  • gsm grams per square meter, ie the abbreviation of gram per square meter
  • OWF means the ratio of dyestuff consumption to fabric weight, ie the abbreviation of on weight of fabric.
  • Application Example 1 It involves the application of the field jet fabric dyeing system shown in Figure 1 or Figure 9 to carry out double-sided heterochromatic dyeing of cotton fabrics through field jet flow, wherein,
  • the fabric is: 220gsm cotton satin;
  • the dye ink used on the front of the fabric is: black ink, its formula includes: KN type reactive black 10%, urea 7%, sodium bicarbonate 3%, fatty alcohol polyoxyethylene ether 1.5%, which is adjusted to 100% with water;
  • the dye ink used on the reverse side of the fabric is: red ink, its formula includes: K-type reactive red 5%, urea 3%, sodium bicarbonate 1%, sodium chloride 3%, fatty alcohol polyoxyethylene ether 0.5%, wherein water is adjusted to 100%;
  • the dyeing parameters include: the voltage of the power supply is 20kV, the air pressure of the compressed air flow is 0.4MPa, the distance between the tip of the needle tube and the fabric is 5cm, and the speed of the vehicle, that is, the fabric feed speed, is 50m/min.
  • the dye supply part 115 constituted as a metering pump is used to control different spraying volumes or liquid spraying volumes, and the field jet fabric dyeing of 220gsm cotton satin under different OWF conditions can be tested.
  • the spray volume is 8ml/surface
  • the OWF is 4%
  • the color strength (color depth) of the front spray is used for 100% relative comparison
  • the Datacolor SF 600X color measuring instrument is used for testing.
  • Application example 2 It relates to the application of the field jet fabric dyeing system shown in Figure 1 or Figure 9 to carry out single-sided dyeing of polyester fabric through field jet flow, wherein,
  • the fabric is: 155gsm raw embryo non-corona polyester fabric
  • the dye ink formula used in the fabric includes: disperse blue 60 15%, sodium lignosulfonate 5%, polyvinylpyrrolidone 1.5%, wherein the deionized water used is adjusted to 100%.
  • the dyeing parameters include: the voltage of the power supply is 60kV, the air pressure of the compressed air flow is 0.4MPa, the distance between the tip of the needle tube and the fabric is 5cm, and the speed of the vehicle, that is, the fabric feed speed, is 50m/min.
  • the dye supply part 115 constituted as a metering pump is used to control different spraying volumes or liquid spraying volumes, and the field jet fabric dyeing of 155gsm raw embryo non-corona polyester fabrics under different OWFs can be tested.
  • the following table exemplarily shows nine groups of spraying amount and OWF and their corresponding permeability on one side of the fabric:
  • Thicknesses of elements in the drawings may be exaggerated for clarity. It will also be understood that if an element is referred to as being on, coupled to, or connected to another element, that element may be directly formed on, coupled to, or connected to the other element. Connected thereto, or there may be one or more intervening elements between them. In contrast, if the expressions “directly on,” “directly coupled to,” and “directly connected to” are used herein, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted similarly, such as “between” and “directly between”, “attached” and “directly attached”, “adjacent” and “ directly adjacent” and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本公开涉及一种场射流织物染色方法,其包括以下步骤:通过引导系统将织物引导经过染色组件;通过染色机构和电压源对织物进行染色,染色机构包括染料储存机构和染料喷射机构,其包括针管部件、气流供应部件以及染料供应部件,针管部件具有气流通道和染料通道,气流通道与气流供应部件流体连通,染料通道与染料储存机构流体连通,电压源施加电压至染色机构,使得在染色机构与织物之间产生静电场并且产生电压,染料在染料供应压力和/或气流的负压的作用下从染料通道输出并且形成液滴,液滴通过电压带有荷电,在散裂之后在电场力作用下形成带电雾滴群并朝向织物运动并吸附到织物上,使得织物被染色。本公开还涉及一种场射流织物染色系统。

Description

场射流织物染色方法和场射流织物染色系统 技术领域
本公开涉及织物印染领域,更具体地,涉及一种场射流织物染色方法和一种场射流织物染色系统。
背景技术
纺织品的染色是使用染料对被染物进行染色加工的一种技术。目前最常见的染色技术采用的是轧染,即轧染液-烘干-固色-水洗的工艺。染色加工受到的最大压力是环境压力,诸如禁用染料的替代,治理三废,节水节能,监测和控制产品的生态标准等。如果这些问题不解决,染色加工的行业瓶颈就无法解决。
发明内容
本公开的目的是提出一种场射流织物染色方法和场射流织物染色系统,其能够克服现有技术中的至少一个缺陷。
本公开的第一方面涉及一种场射流织物染色方法,用于通过场射流对织物进行染色,其特征在于,所述场射流织物染色方法包括以下步骤:
通过引导系统将织物引导经过包括染色机构和电压源的染色组件;并且
通过染色机构和电压源对织物进行染色,
其中,所述染色机构与织物隔开距离,所述染色机构包括用于储存染料的构造为长形的刀梁的染料储存机构和用于将所述染料以射流形式喷出并使其形成液滴的染料喷射机构,所述染料喷射机构包括针管部件、用于供应气流的气流供应部件以及用于将染料经刀梁供应至针管部件的染料供应部件,所述针管部件具有气流通道和由针管构成的染料通道,所述气流通道与气流供应部件流体连通,所述染料通道与染料储存机构流体连通,
其中,所述电压源施加电压至染色机构,使得在染色机构与织物之间产生静电场并且在针管部件的尖端上产生电压,
其中,染料在所述染料供应部件的染料供应压力和/或气流的负压的作用下从染料通道输出并且形成液滴,所述液滴通过针管部件的尖端上的电压而带有荷电,带有荷电的液滴在散裂之后在电场力的作用下形成带电雾滴群并朝向织物运动并吸附到 织物上,使得织物被染色。
与传统的扎染相比,根据本公开的场射流织物染色方法可以一方面提高染色效率,另一方面可以节省染料用量、耗水量及耗电量,从而节省成本并且减小污染。
在一些实施方式中,所述染料为水溶性活性染料墨水,其配方包括:5-15%的活性染料、3-8%的尿素、1-5%的固色剂、0-10%的无机盐、0.5-2%的表面张力调节剂,其中用水调节到100%;或者
所述染料为水溶性酸性染料墨水,其配方包括:5-15%的酸性染料、2-5%的固色剂、0-0.8%的pH调节剂、0-10%的无机盐、0.5-2%的表面张力调节剂,其中用水调节到100%;或者
所述染料为水分散性分散染料墨水,其配方包括:5-15%的分散染料、3%-5%的分散剂、0-10%的无机盐、0.5-2%的表面张力调节剂,其中所使用去离子水调节到100%。
在一些实施方式中,所述表面张力调节剂为聚乙烯吡咯烷酮,或聚氧乙烯烷基胺,或脂肪醇聚氧乙烯醚,或聚硅醚。
在一些实施方式中,所述水溶性活性染料墨水中的固色剂为碳酸钠,或碳酸氢钠,或氢氧化钠,或碳酸钾,或碳酸氢钾,或氢氧化钾,或代用碱。
在一些实施方式中,所述水溶性酸性染料墨水中的固色剂为尿素或双氰胺。
在一些实施方式中,所述pH调节剂为柠檬酸,或醋酸,或硫酸铵;或三乙醇胺。
在一些实施方式中,所述分散剂为磺酸盐类分散剂或萘磺酸甲醛缩合物分散剂。
在一些实施方式中,所述无机盐为氯化钠或氯化钾。
在一些实施方式中,所述织物为纤维素纤维织物,或尼龙织物,或真丝织物,或涤纶织物,或混纺织物。
在一些实施方式中,所述针管为导电金属材质。
本公开的另一方面涉及一种场射流织物染色系统,所述场射流织物染色系统用于借助场射流对织物进行染色,其特征在于,所述场射流织物染色系统包括染色组件,所述染色组件包括:
至少一个染色机构,所述染色机构与织物隔开距离,所述染色机构包括用于储存染料的染料储存机构和用于将所述染料以射流形式喷出并使其形成液滴的染料喷射机构;以及
电压源,所述电压源构造成在所述染色机构和所述织物之间形成电压场,所述电压场产生电场力,以使得所述液滴在所述电场力的作用下形成带电雾滴群并朝向织物 运动,
其中,所述染料储存机构构造为长形的刀梁,所述染料喷射机构包括针管部件、用于供应气流的气流供应部件以及用于将染料经刀梁供应至针管部件的染料供应部件,所述针管部件具有气流通道和由针管构成的染料通道,所述气流通道与气流供应部件流体连通,所述染料通道与刀梁流体连通,所述染料在所述染料供应部件的染料供应压力和/或气流的负压的作用下形成所述液滴。
在一些实施方式中,所述场射流织物染色系统还包括操纵机构,所述操纵机构设置用于使染色机构运动以调整染料喷射机构的喷出口与织物的相对位置或染料喷射机构的喷出口的指向或染料喷射机构的喷出口到织物的距离。
在一些实施方式中,所述场射流织物染色系统还包括电压调节部件,所述电压调节部件设置用于调节电压源的输出电压。
在一些实施方式中,仅在织物一侧布置有至少一个染色机构;或者在织物两侧分别布置有至少一个染色机构,并且在织物两侧的染色机构彼此对置地或者错开地布置。
在一些实施方式中,所述针管部件彼此间隔开相同间距地布置在所述刀梁上。
在一些实施方式中,所述针管部件包括一个中央染料通道,并且所述针管部件包括一个环形地围绕所述中央染料通道设置的气流通道或多个围绕所述中央染料通道分布设置的气孔或狭缝,所述气孔或狭缝构成气流通道。
在一些实施方式中,所述气流供应部件构造为用于产生压缩空气的气泵。
在一些实施方式中,所述染料供应部件构造为用于定量供给染料的计量泵。
在一些实施方式中,所述电压源的一极与染色机构连接,并且电压源的另一极与织物连接或者织物接地。
在一些实施方式中,所述电压源的电压为10-60kV。
在一些实施方式中,所述场射流织物染色系统具有以下工作参数之中的至少一个:
所述针管部件的针管尖端与织物的距离为0.4-20cm;
所述气流的压力为0.1-1.0MPa;
所述染料通道的直径为0.1-2.5mm;
所述染料通道超出气流通道的超出量≤5mm。
在一些实施方式中,在一个染色机构中构造有一个唯一的刀梁或多个刀梁。
在一些实施方式中,所述染色机构的纵向方向横向于织物的前进方向。
在一些实施方式中,所述染色机构配设有用于实现染色机构在其纵向方向上的往 复移动的往复移动装置。
在一些实施方式中,所述往复移动装置包括驱动电机,所述驱动电机具有电机齿轮,所述电机齿轮与偏心齿轮啮合,所述偏心齿轮的偏心旋转运动通过连杆机构传递至染色机构,使得所述偏心齿轮的偏心旋转运动转换成染色机构的在其纵向方向上的往复移动。
在一些实施方式中,所述往复移动装置设计成使得所述染色机构的移动量≤50mm和/或所述染色机构的移动的往复频率≤80次/分钟。
在一些实施方式中,所述场射流织物染色系统包括多个或多对染色机构,所述多个或多对染色机构之中的至少两个或至少两对染色机构能通过共同的往复移动装置或者能通过各自的往复移动装置以预定的相位差在其纵向方向上往复移动。
在一些实施方式中,所述场射流织物染色系统包括引导组件,所述引导组件构造成用于将织物引导经过染色组件。
在一些实施方式中,所述场射流织物染色系统构造用于执行本公开的场射流织物染色方法。
本公开创新性地利用了染料在气流场和/或静电场中雾化射流的特点,实现了通过场射流对织物进行染色的系统和方法。
在本公开中,采用场射流纺织品染色的上染方式,而非传统的浸染或扎染的方式,从而仅在织物表层上染,织物内部、非可见部分均无需染料填充,因此极大程度地节约了染料用量以及耗水量;按需上染,上染量恰当,且固色率高,因此水洗耗水量少,产生的废水少;本公开可以实现单面素色染色,双面同色染色,双面异色染色,渐变染色;多彩染色等,符合市场对染色面料差异化的需求。
上面提及的技术特征和下面将要提及的技术特征以及在附图中显示的技术特征可以任意地相互组合,只要被组合的各技术特征不是相互矛盾的。所有在技术上可行的特征组合都是包含在说明书中的记载的技术内容。
附图说明
下面参照示意性的附图借助示例性的实施方式进一步说明本公开。其中:
图1是根据本公开的第一实施例的立式的场射流织物染色系统的示意图,其中,染色机构在织物两侧彼此对置地设置,
图2是根据本公开的第二实施例的卧式的场射流织物染色系统的示意图,
图3是图1和图2的染色组件的其中一个染色机构的布置结构图,
图4A是按照一种实施例的针管部件的示意的透视图,
图4B是按照另一种实施例的针管部件的示意的透视图,
图4C是按照图4A和图4B的针管部件的横截面图,
图5A至5F是按照其他实施方式的针管部件的横截面图,
图6和图7是用于染色组件的两个相邻染色机构的往复移动装置的示意性的俯视图和侧视图,
图8是应用实施例1中由不同OWF(染料的用量和织物重量的比)与对应的织物正反面的相对色力度%构成的线条图,
图9是根据本公开的第三实施例的立式的场射流染色系统的示意图,其中,染色机构在织物两侧彼此错开地设置。
具体实施方式
图1是根据本公开的具有第一实施例的立式的场射流织物染色系统的示意图。
场射流织物染色系统包括引导组件10和染色组件100。所述引导组件10构造成用于将织物1引导经过染色组件100。在图1所示的实施例中,染色组件100设置有多个染色机构110,各染色机构110被构造成水平地延伸并且在竖直方向上彼此重叠。在该实施例中,织物1可以在竖直方向上运动经过染色组件100。染色机构110可以成对地相对置地设置在织物1两侧,例如,在图1中示出了4对相对置地设置的染色机构110。染色机构110还可以在织物1两侧彼此错开地设置,参见图9所示实施例。当然,本公开不局限于此,可以设置任意其它数量的一对或多对染色机构110,并且染色机构110也可以仅设置在织物1的一侧。通过设置多个或多对染色机构110,一方面可以实现均匀且足够的染料喷射,另一方面可以便于单独地控制各染色机构110。
染色机构110包括用于储存染料的染料储存机构111和用于将所述染料以射流形式喷出并使其形成液滴的染料喷射机构。染色机构110的纵向方向可以横向于、尤其是垂直于织物1的前进方向。在此,“横向于”可以表示染色机构110的纵向方向与织物1的前进方向成一定角度,例如所述角度的范围可以为≤45°,优选地≤30°、特别优选地≤20°,也可以表示染色机构110的纵向方向基本垂直于织物1的前进方向。染料储存机构111可以构造为刀梁,所述刀梁可以为长形的。构造为刀梁的染料储存机构111可以如图3所示连续地构造,即在一个染色机构110中构造有一个唯一的染 料储存机构111。在一些实施例中,也可以在一个染色机构110中构造有多个染料储存机构111,这些染料储存机构111例如可以并排布置。在构造有多个染料储存机构的情况下,可以实现各个染料储存机构的单独控制。由此,能够给各个染料储存机构提供不同的染料。
染料喷射机构可以包括针管部件113和用于供应气流的气流供应部件114。针管部件113可以具有气流通道32和由针管构成的染料通道31。针管可以是导电金属材质。气流通道32可以与气流供应部件114流体连通。染料通道31可以与染料储存机构111流体连通。参见图3,多个针管部件113可以彼此间隔开相同间距地(例如并排)布置在一个染料储存机构111上。相邻针管部件113之间的间距可以为5-50mm,例如10-40mm或者20-30mm。针管部件113可以在染料储存机构111上成单排布置。针管部件113也可以在染料储存机构111上成多排布置。在一个染色机构110中构造有一个唯一的或者多个染料储存机构111的情况下,在单个排中,针管部件113的数量可以为5-100个,例如8-16个。气流供应部件114可以例如构造为用于产生压缩空气的气泵。各个针管部件113可以分别与不同的相配设的气流供应部件114流体连通或共同地与同一个气流供应部件114流体连通。气流供应部件114和/或针管部件113可以配设有气压调节装置,所述气压调节装置可以调节由气流供应部件114产生的气流的气压和/或调节输送给针管部件113的气流的气压。
染料喷射机构可以还包括用于将染料经刀梁供应至针管部件113的染料供应部件115。染料供应部件115可以例如构造为用于供给染料、尤其是定量供给染料的计量泵。染料供应部件115例如可以布置在染料储存机构111上。染料供应部件115可以构造用于通过挤压将染料供应给针管部件113。
染料可以在染料供应部件115的染料供应压力或者说泵压和/或气流的负压的作用下形成液滴。
除了染色机构110以外,染色组件100还包括电压源120,电压源120构造成在染色机构110和织物1之间形成电压场,电压场产生电场力,以使得液滴在电场力的作用下形成带电雾滴群2并朝向织物1运动。具体地,在电压流中,电压场对其中的电荷(或者说带电粒子)会产生作用力,该作用力大小可用公式F=qE给出(q为所带电荷量,E为电场强度)。在染料从染料通道31流出时,若对其施加高电压,则染料液滴在静电力的作用下会分裂成微粒,从而发生喷雾现象而形成带电雾滴群2。
各个染色机构110可以分别与不同的相配设的电压源120电连接或共同地与同一 个电压源120电连接。在研究开发过程中,本申请的发明人发现了一系列影响染色效果的参数,并对其进行了分析和优化。例如,本申请的发明人发现施加电压对场射流染色过程中染料墨水的荷质比有极大影响。对于染料墨水场射流染色,随施加电压上升,染料墨水荷质比通常会呈先增后降的趋势。荷质比增大时,液滴间排斥力上升,单针管射流的染料覆盖更广。另外,施加电压对染料墨水滴液模式、液滴数量与尺寸也会产生重大影响。因此,在本申请中,电压源120的电压被选择为10-60kV,例如20-50kV或者30-40kV。
电压源120的一极(即正极或负极)可以与染色机构110连接,并且电压源120的另一极(即负极或正极)可以与织物1连接或者织物1可以接地,例如通过用于输送织物1的转向辊接地。染色组件100还可以包括电压调节部件,电压调节部件设置用于调节电压源120的输出电压。染色组件100还可以包括操纵机构,操纵机构设置用于使染色机构运动以调整染料喷射机构、尤其是染料喷射机构的针管部件113的喷出口与织物1的相对位置或染料喷射机构的喷出口的指向或染料喷射机构的喷出口到织物1的距离。操纵机构例如可以包括用于提供驱动力的电机和用于使染色机构进行平移和/或旋转运动的操纵部件。在停机状态下,尤其是在操纵机构不起作用的状态下,染料喷射机构、尤其是染料喷射机构的针管部件113的喷出口的射流主方向可以基本上垂直于织物1的表面平面或者也可以与织物1的表面平面成角度,例如成75°、优选成60°、特别优选成45°。该倾斜角度尤其是在下文描述的卧式布置结构的情况下是适宜的,以用于防止液流反向通入染料喷射机构的喷出口而干扰液滴喷出。
在此,染料在染料供应部件115的染料供应压力或者说泵压和/或气流的负压的作用下从染料通道31输出并且形成液滴,所述液滴通过针管部件113的尖端上的电压而带有荷电,带有荷电的液滴在由所述气流形成的二次气流、静电场和液滴表面电荷的相互作用下散裂,经散裂的液滴在电场力的作用下形成带电雾滴群2并朝向织物1运动并吸附到织物1上,使得织物1被染色。
各染色机构110可以使用同样的染料或者使用不同颜色的染料,可以使用相同的电压/气压或不同电压/气压控制染色机构110的染料流量,可以使用相同的针管部件113与织物1之间的夹角或不同的针管部件113与织物1之间的夹角,从而实现单面素色染色,双面同色染色,双面异色染色,渐变染色;多彩染色等效果。
引导组件10可以包括在织物1的行进方向上依次设置的第一展幅分丝辊11、第一张力辊13、纠偏对边装置14、牵引装置15、第二张力辊16和第二展幅分丝辊17。 在第一展幅分丝辊11下游可以设置第一转向辊12,使得织物1通过第一转向辊12偏转大约90°。在第二展幅分丝辊17下游可以设置第二转向辊18,使得织物1在经过第二转向辊18之后竖直向上行进。织物1最后通过第三转向辊19转向,离开染色组件100。在织物1的行进路线中可以设置多个转向辊,以便织物1适宜地偏转,使得整个设备可以紧凑地设计。引导组件10可以根据实际需要具有或多或少的转向辊。
图2是根据本公开的具有第二实施例的卧式的场射流织物染色系统的示意图。第二实施例与第一实施例的主要区别在于,设置在染色组件100中的各染色机构110竖直地延伸并且在水平方向上彼此相继地跟随,使得织物11在水平方向上运动经过染色组件100。在其他方面,可以参考针对图1的第一实施例的说明。
图3是图1和图2的染色组件100的其中一个染色机构110的布置结构图。所述染色机构110的构造为刀梁的染料储存机构111与织物1的行进方向垂直地布置。所述染料储存机构111的宽度可以大致对应于织物1的宽度。在所述染料储存机构111上示例性地布置有一排10个针管部件113,它们可以在染料储存机构111的宽度上均匀分布。
图4A是按一种实施例的针管部件113的示意的透视图,并且图4C是按图4A的针管部件113的横截面图。针管部件113包括一个中央的染料通道31和一个环形地围绕染料通道31设置的气流通道32。环形的气流通道32可以与相配的气流供应部件114(见图1)连接,该气流供应部件114可以产生压缩空气,该压缩空气构成所述气流。所述气流的压力可以为0.1-1.0MPa,例如0.2-0.8MPa或者0.3-0.6MPa。所述染料通道31或者说针管可以超出气流通道32,典型地,超出量≤5mm,例如超出量可以大约为3mm。所述染料通道31的直径或者说针管部件113的内径可以为0.1-2.5mm,例如0.3-2.0mm或者0.5-1.5mm。针管部件113的针管尖端与织物1的距离可以为0.4-20cm,例如1-18mm或者2-10mm,例如大约5mm或6mm。
图4B是按另一种实施例的针管部件113的示意的透视图。如图4B所示的针管部件113与如图4A所示的针管部件113的区别主要在于,针管部件113的端面是齐平的,即气流通道32和染料通道31在同一个平面中齐平地结束。如图4C所示的横截面图也可以适用于如图4B所示的针管部件113。
图5A至5F是按其他实施方式的针管部件113的横截面图。
在图5A所示的实施方式中,针管部件113可以具有圆形横截面。针管部件113可以具有一个中央的染料通道31(或者说是针管)和围绕染料通道31均匀地分布设置 的八个气孔,所述气孔分别构成气流通道32。
在图5B所示的实施方式中,针管部件113可以具有六边形横截面。针管部件113可以具有一个中央的染料通道31(或者说是针管)和围绕染料通道31均匀地分布设置的六个气孔,所述气孔分别构成气流通道32。
在图5C所示的实施方式中,针管部件113可以具有正方形横截面。针管部件113可以具有一个中央的染料通道31(或者说是针管)和围绕染料通道31均匀地分布设置的四个气孔,所述气孔分别构成气流通道32。
在图5D所示的实施方式中,针管部件113可以具有圆形横截面。针管部件113可以具有一个中央的染料通道31(或者说是针管)和围绕染料通道31均匀地分布设置的三条矩形狭缝32,所述狭缝32分别构成气流通道32。这三条矩形狭缝32可以在其延长部上相交构成一个正三角形。
在图5E所示的实施方式中,针管部件113可以具有圆形横截面。针管部件113可以具有一个中央的染料通道31(或者说是针管)和围绕染料通道31均匀地分布设置的四条弧形狭缝32,所述狭缝32分别构成气流通道32。这四条弧形狭缝32可以在其延长部上相交构成一个与中央染料通道31同心的圆。
在图5F所示的实施方式中,针管部件113可以具有正方形横截面。针管部件113可以具有一个中央的染料通道31(或者说是针管)和围绕染料通道31均匀地分布设置的四条矩形狭缝32,所述狭缝32分别构成气流通道32。这四条矩形狭缝32可以在其延长部上相交构成一个正方形。
图6和图7是用于染色组件的两个相邻染色机构110的往复移动装置的示意性的俯视图和侧视图。染色组件的全部的染色机构110或者一部分染色机构110可以是可往复移动的,它们可以配设有共同的或者各自的往复移动装置。如图6和图7所示,两个相邻染色机构110配设有共同的往复移动装置,使得这两个相邻染色机构110能彼此反向地在其纵向方向上往复移动。所述往复移动装置可以包括驱动电机23,例如变频电机。所述驱动电机23可以具有电机齿轮24,所述电机齿轮24可以与偏心齿轮25啮合,所述偏心齿轮25的偏心旋转运动可以通过连杆机构传递至两个相邻染色机构110,使得所述偏心齿轮25的偏心旋转运动可以转换成两个相邻染色机构110的各自的在其纵向方向上的往复移动。所述连杆机构可以包括与偏心齿轮25固定的连杆26,所述连杆26可以与摆臂27连接,所述摆臂27可以与染色机构连接臂28连接。两个相邻染色机构110的移动量例如可以选择成≤50mm,例如≤40mm。两个相邻染色 机构110的移动的往复频率例如可以选择成≤80次/分钟,例如≤60次/分钟。
下面以非限制性的应用实施例来进一步说明本公开,但应注意的是,这些应用实施例不应视为是对本公开的限制。
以下实施例中,本领域常用的术语中包括:gsm表示克每平方米,即gram per squar meter的缩写;OWF表示染料用量与织物重量之比,即on weight of fabric的缩写。
应用实施例1:涉及如图1或图9所示的场射流织物染色系统通过场射流来对全棉织物进行双面异色染色的应用,其中,
织物为:220gsm全棉贡缎;
织物正面所使用染料墨水为:黑色墨水,其配方包括:KN型活性黑10%,尿素7%,碳酸氢钠3%,脂肪醇聚氧乙烯醚1.5%,其中用水调节到100%;
织物反面所使用染料墨水为:红色墨水,其配方包括:K型活性红5%,尿素3%,碳酸氢钠1%,氯化钠3%,脂肪醇聚氧乙烯醚0.5%,其中用水调节到100%;
染色参数包括:电源的电压为20kV、压缩空气流的气压为0.4MPa、针管尖端与织物的距离为5cm、车速即织物进给速度为50m/min。
通过构成为计量泵的染料供应部件115来控制不同的喷涂量或者说喷液量,可以测试不同OWF条件下220gsm全棉贡缎的场射流织物染色情况。
以下表格和图8所示的以该表格对应的线条图示例性示出四组喷涂量及OWF以及它们所对应的织物正反面的相对色力度%:
Figure PCTCN2022109382-appb-000001
注:以喷液量8ml/面,OWF为4%,正面喷涂的色力度(得色深度)作100%相对比较,以Datacolor SF 600X测色仪测试。
从以上的表格和图8的线条图可以得出,对220gsm全棉贡缎进行场射流织物染色处理,最佳的OWF为4.33%。
在对220gsm全棉贡缎染色之后,在80℃温度下进行烘干,之后在102℃温度下汽蒸2min进行固色,然后经由水洗和定型,即为染色成品。
应用实施例2:涉及如图1或图9所示的场射流织物染色系统通过场射流来对涤纶织物进行单面染色的应用,其中,
织物为:155gsm生胚未电晕涤纶面料;
织物所使用染料墨水配方包括:分散蓝60 15%、木质素磺酸钠5%、聚乙烯吡咯烷酮1.5%,其中将使用的去离子水调节到100%。
染色参数包括:电源的电压为60kV、压缩空气流的气压为0.4MPa、针管尖端与织物的距离为5cm、车速即织物进给速度为50m/min。
通过构成为计量泵的染料供应部件115来控制不同的喷涂量或者说喷液量,可以测试不同OWF下155gsm生胚未电晕涤纶面料的场射流织物染色情况。以下表格示例性示出九组喷涂量及OWF以及它们所对应的织物单面的渗透性情况:
喷涂量mL/面 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3
OWF(%) 0.44 0.89 1.33 1.78 2.22 2.67 3.11 3.56 4
渗透性 露白
从以上的表格可以得出,对155gsm生胚未电晕涤纶面料进行场射流织物染色处理,除了OWF为0.44%时渗透性为露白之外,其它八组OWF所对应的OWF均为好。
需要注意的是,在此使用的术语是仅用于说明具体方面的目的,而不用于限制公开内容。如在此使用的单数形式“一个”和“所述一个”应包括复数形式,除非上下文明确地另有表述。可以理解到,术语“包括”和“包含”以及其他类似术语,在申请文件中使用时,具体说明所陈述的操作、元件和/或部件的存在,而不排除一个或多个其他操作、元件、部件和/或它们的组合的存在或添加。如在此使用的术语“和/或”包括一个或多个相关的列举的项目的所有的任意的组合。在对附图的说明中,类似的附图标记总是表示类似的元件。
在附图中的元件的厚度可以为了清楚性起见而被夸张。另外可以理解到,如果一个元件被称为在另一个元件上、与另一个元件耦合或者与另一个元件连接,那么所述一个元件可以直接地在所述另一个元件上形成、与之耦合或者与之连接,或者在它们之间可以有一个或多个介于中间的元件。相反,如果在此使用表述“直接在……上”、“直接与……耦合”和“直接与……连接”,那么表示没有介于中间的元件。用来说明元件之间的关系的其他词语应该被类似地解释,例如“在……之间”和“直接在……之间”、“附着”和“直接附着”、“相邻”和“直接相邻”等等。
在此术语例如“顶”、“底”、“上方”、“下方”、“上面”、“下面”等等 用来描述如在附图中所示的一个元件、层或区域相对于另一个元件、层或区域的关系。可以理解到,除了在附图中描述的取向之外,这些术语应该也包含装置的其他取向。
可以理解到,尽管术语“第一”、“第二”等等可以在此用来说明不同的元件,但是这些元件不应被这些术语限制。这些术语仅仅用来将一个元件与另一个元件区分开。因此,第一元件可以被称为第二元件,而不背离本公开构思的教导。
也可以考虑到,在此公开的所有示例性的实施方式可以任意地相互组合。
最后要指出的是,上述实施例仅仅用于理解本公开,而不对本公开的保护范围构成限制。对于本领域技术人员来说,在上述实施例的基础上可以做出修改,这些修改都不脱离本公开的保护范围。

Claims (29)

  1. 一种场射流织物染色方法,用于通过场射流对织物进行染色,其特征在于,所述场射流织物染色方法包括以下步骤:
    通过引导系统将织物引导经过包括染色机构和电压源的染色组件;并且
    通过染色机构和电压源对织物进行染色,
    其中,所述染色机构与织物隔开距离,所述染色机构包括用于储存染料的构造为长形的刀梁的染料储存机构和用于将所述染料以射流形式喷出并使其形成液滴的染料喷射机构,所述染料喷射机构包括针管部件、用于供应气流的气流供应部件以及用于将染料经刀梁供应至针管部件的染料供应部件,所述针管部件具有气流通道和由针管构成的染料通道,所述气流通道与气流供应部件流体连通,所述染料通道与染料储存机构流体连通,
    其中,所述电压源施加电压至染色机构,使得在染色机构与织物之间产生静电场并且在针管部件的尖端上产生电压,
    其中,染料在所述染料供应部件的染料供应压力和/或气流的负压的作用下从染料通道输出并且形成液滴,所述液滴通过针管部件的尖端上的电压而带有荷电,带有荷电的液滴在散裂之后在电场力的作用下形成带电雾滴群并朝向织物运动并吸附到织物上,使得织物被染色。
  2. 根据权利要求1所述的场射流织物染色方法,其特征在于,所述染料为水溶性活性染料墨水,其配方包括:5-15%的活性染料、3-8%的尿素、1-5%的固色剂、0-10%的无机盐、0.5-2%的表面张力调节剂,其中用水调节到100%;或者
    所述染料为水溶性酸性染料墨水,其配方包括:5-15%的酸性染料、2-5%的固色剂、0-0.8%的pH调节剂、0-10%的无机盐、0.5-2%的表面张力调节剂,其中用水调节到100%;或者
    所述染料为水分散性分散染料墨水,其配方包括:5-15%的分散染料、3%-5%的分散剂、0-10%的无机盐、0.5-2%的表面张力调节剂,其中所使用去离子水调节到100%。
  3. 根据权利要求2所述的场射流织物染色方法,其特征在于,所述表面张力调节剂为聚乙烯吡咯烷酮,或聚氧乙烯烷基胺,或脂肪醇聚氧乙烯醚,或聚硅醚。
  4. 根据权利要求2所述的场射流织物染色方法,其特征在于,所述水溶性活性 染料墨水中的固色剂为碳酸钠,或碳酸氢钠,或氢氧化钠,或碳酸钾,或碳酸氢钾,或氢氧化钾,或代用碱。
  5. 根据权利要求2所述的场射流织物染色方法,其特征在于,所述水溶性酸性染料墨水中的固色剂为尿素或双氰胺。
  6. 根据权利要求2所述的场射流织物染色方法,其特征在于,所述pH调节剂为柠檬酸,或醋酸,或硫酸铵;或三乙醇胺。
  7. 根据权利要求2所述的场射流织物染色方法,其特征在于,所述分散剂为磺酸盐类分散剂或萘磺酸甲醛缩合物分散剂。
  8. 根据权利要求2所述的场射流织物染色方法,其特征在于,所述无机盐为氯化钠或氯化钾。
  9. 根据权利要求1所述的场射流织物染色方法,其特征在于,所述织物为纤维素纤维织物,或尼龙织物,或真丝织物,或涤纶织物,或混纺织物。
  10. 根据权利要求1所述的场射流织物染色方法,其特征在于,所述针管为导电金属材质。
  11. 一种场射流织物染色系统,所述场射流织物染色系统用于借助场射流对织物进行染色,其特征在于,所述场射流织物染色系统包括染色组件,所述染色组件包括:
    至少一个染色机构,所述染色机构与织物隔开距离,所述染色机构包括用于储存染料的染料储存机构和用于将所述染料以射流形式喷出并使其形成液滴的染料喷射机构;以及
    电压源,所述电压源构造成在所述染色机构和所述织物之间形成电压场,所述电压场产生电场力,以使得所述液滴在所述电场力的作用下形成带电雾滴群并朝向织物运动,
    其中,所述染料储存机构构造为长形的刀梁,所述染料喷射机构包括针管部件、用于供应气流的气流供应部件以及用于将染料经刀梁供应至针管部件的染料供应部件,所述针管部件具有气流通道和由针管构成的染料通道,所述气流通道与气流供应部件流体连通,所述染料通道与刀梁流体连通,所述染料在所述染料供应部件的染料供应压力和/或气流的负压的作用下形成所述液滴。
  12. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述场射流织物染色系统还包括操纵机构,所述操纵机构设置用于使染色机构运动以调整染料喷射机构的喷出口与织物的相对位置或染料喷射机构的喷出口的指向或染料喷射机构的喷出口到织物的距离。
  13. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述场射流织物染色系统还包括电压调节部件,所述电压调节部件设置用于调节电压源的输出电压。
  14. 根据权利要求11所述的场射流织物染色系统,其特征在于,仅在织物一侧布置有至少一个染色机构;或者在织物两侧分别布置有至少一个染色机构,并且在织物两侧的染色机构彼此对置地或者错开地布置。
  15. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述针管部件彼此间隔开相同间距地布置在所述刀梁上。
  16. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述针管部件包括一个中央染料通道,并且所述针管部件包括一个环形地围绕所述中央染料通道设置的气流通道或多个围绕所述中央染料通道分布设置的气孔或狭缝,所述气孔或狭缝构成气流通道。
  17. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述气流供应部件构造为用于产生压缩空气的气泵。
  18. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述染料供应部件构造为用于定量供给染料的计量泵。
  19. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述电压源的一极与染色机构连接,并且电压源的另一极与织物连接或者织物接地。
  20. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述电压源的电压为10-60kV。
  21. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述场射流织物染色系统具有以下工作参数之中的至少一个:
    所述针管部件的针管尖端与织物的距离为0.4-20cm;
    所述气流的压力为0.1-1.0MPa;
    所述染料通道的直径为0.1-2.5mm;
    所述染料通道超出气流通道的超出量≤5mm。
  22. 根据权利要求11所述的场射流织物染色系统,其特征在于,在一个染色机构中构造有一个唯一的刀梁或多个刀梁。
  23. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述染色机构的纵向方向横向于织物的前进方向。
  24. 根据权利要求23所述的场射流织物染色系统,其特征在于,所述染色机构配设有用于实现染色机构在其纵向方向上的往复移动的往复移动装置。
  25. 根据权利要求24所述的场射流织物染色系统,其特征在于,所述往复移动装置包括驱动电机,所述驱动电机具有电机齿轮,所述电机齿轮与偏心齿轮啮合,所述偏心齿轮的偏心旋转运动通过连杆机构传递至染色机构,使得所述偏心齿轮的偏心旋转运动转换成染色机构的在其纵向方向上的往复移动。
  26. 根据权利要求24所述的场射流织物染色系统,其特征在于,所述往复移动装置设计成使得所述染色机构的移动量≤50mm和/或所述染色机构的移动的往复频率≤80次/分钟。
  27. 根据权利要求24所述的场射流织物染色系统,其特征在于,所述场射流织物染色系统包括多个或多对染色机构,所述多个或多对染色机构之中的至少两个或至少两对染色机构能通过共同的往复移动装置或者能通过各自的往复移动装置以预定的相位差在其纵向方向上往复移动。
  28. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述场射流织物染色系统包括引导组件,所述引导组件构造成用于将织物引导经过染色组件。
  29. 根据权利要求11所述的场射流织物染色系统,其特征在于,所述场射流织物染色系统构造用于执行根据权利要求1至10中任一项所述的场射流织物染色方法。
PCT/CN2022/109382 2021-08-06 2022-08-01 场射流织物染色方法和场射流织物染色系统 WO2023011398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110899120.XA CN113584752A (zh) 2021-08-06 2021-08-06 场射流织物染色方法和场射流织物染色系统
CN202110899120.X 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023011398A1 true WO2023011398A1 (zh) 2023-02-09

Family

ID=78255785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109382 WO2023011398A1 (zh) 2021-08-06 2022-08-01 场射流织物染色方法和场射流织物染色系统

Country Status (2)

Country Link
CN (1) CN113584752A (zh)
WO (1) WO2023011398A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584752A (zh) * 2021-08-06 2021-11-02 长胜纺织科技发展(上海)有限公司 场射流织物染色方法和场射流织物染色系统
CN114908489B (zh) * 2022-04-15 2024-02-27 长胜纺织科技发展(上海)有限公司 多分色场射流织物染色设备及其运行方法和染色系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974834A (zh) * 2010-09-19 2011-02-16 江苏大学 用于织物染整的喷淋加工方法及喷淋机
CN102002834A (zh) * 2010-12-01 2011-04-06 武汉纺织大学 一种纺织品染色方法
CN209989553U (zh) * 2019-03-27 2020-01-24 无锡市杨市星火机械设备厂 一种连续式蒸烫机
CN212357615U (zh) * 2020-03-04 2021-01-15 天津市六福针织有限公司 用于织物染整助剂喷射的喷淋机
CN113481671A (zh) * 2021-08-06 2021-10-08 长胜纺织科技发展(上海)有限公司 场射流织物染色装置和系统
CN113477429A (zh) * 2021-08-06 2021-10-08 长胜纺织科技发展(上海)有限公司 场射流涂布系统和场射流涂布方法
CN113584752A (zh) * 2021-08-06 2021-11-02 长胜纺织科技发展(上海)有限公司 场射流织物染色方法和场射流织物染色系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127333A (zh) * 2011-01-12 2011-07-20 郑州鸿盛数码科技股份有限公司 一种直接喷墨印花分散染料墨水及其使用方法
CN102443314A (zh) * 2011-10-26 2012-05-09 日冠(福建)针纺织机械有限公司 一种冷染数码直喷印花墨水及其应用工艺
CN102838898B (zh) * 2012-09-26 2014-10-15 长胜纺织科技发展(上海)有限公司 一种冷转移印花用酸性染料墨水及其应用方法
CN108342914B (zh) * 2017-01-23 2020-07-14 长胜纺织科技发展(上海)有限公司 转移染色方法
CN110042679B (zh) * 2019-04-18 2021-12-24 浙江海印数码科技有限公司 一种免皂洗数码印花活性染料墨水及其制备方法
CN112341838B (zh) * 2020-11-24 2022-05-10 浙江理工大学上虞工业技术研究院有限公司 活性染料、活性染料墨水及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101974834A (zh) * 2010-09-19 2011-02-16 江苏大学 用于织物染整的喷淋加工方法及喷淋机
CN102002834A (zh) * 2010-12-01 2011-04-06 武汉纺织大学 一种纺织品染色方法
CN209989553U (zh) * 2019-03-27 2020-01-24 无锡市杨市星火机械设备厂 一种连续式蒸烫机
CN212357615U (zh) * 2020-03-04 2021-01-15 天津市六福针织有限公司 用于织物染整助剂喷射的喷淋机
CN113481671A (zh) * 2021-08-06 2021-10-08 长胜纺织科技发展(上海)有限公司 场射流织物染色装置和系统
CN113477429A (zh) * 2021-08-06 2021-10-08 长胜纺织科技发展(上海)有限公司 场射流涂布系统和场射流涂布方法
CN113584752A (zh) * 2021-08-06 2021-11-02 长胜纺织科技发展(上海)有限公司 场射流织物染色方法和场射流织物染色系统

Also Published As

Publication number Publication date
CN113584752A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023011398A1 (zh) 场射流织物染色方法和场射流织物染色系统
CN102002834B (zh) 一种纺织品染色方法
CN101974834B (zh) 用于织物染整的喷淋加工方法及喷淋机
CN101736615B (zh) 棉织布喷雾给色堆置染色工艺
CN201162122Y (zh) 气流液流染色机
CN101591845A (zh) 一种新型气雾染色机
EP2406075B1 (en) Atomization apparatus and method for web moistening
CN101962884A (zh) 阵列式静电喷雾系统及其染整方法和设备
US5016308A (en) Method and apparatus for patterning substrates using gas streams
CN201793915U (zh) 用于织物染整的喷淋机
CN207958720U (zh) 一种柔性基质的结构色制备装置
CN113481671A (zh) 场射流织物染色装置和系统
US4698642A (en) Non-artifically perturbed (NAP) liquid jet printing
CN113477429A (zh) 场射流涂布系统和场射流涂布方法
CN201915239U (zh) 阵列式静电喷雾系统及其染整设备
CN111778650B (zh) 一种涤纶印花织物增厚手感的工艺
CN1493729A (zh) 气液式染液喷涂装置的改进
CN219972670U (zh) 一种微粒化喷染装置及设备
GB2059814A (en) Apparatus and method for the random effect foam dyeing of textile fabrics
CN206266854U (zh) 一种染布喷嘴
CN103088583B (zh) 气流染色机气压式展布组件
CN203049262U (zh) 气流染色机展布导管组件
CN105155176A (zh) 一种无污水排放的超大循环花型超声波圆网印花、染色机
CN110453404A (zh) 一纱多色印染工艺
CN114908489B (zh) 多分色场射流织物染色设备及其运行方法和染色系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE