WO2023011314A1 - 电连接件、光伏组件及其制备方法 - Google Patents

电连接件、光伏组件及其制备方法 Download PDF

Info

Publication number
WO2023011314A1
WO2023011314A1 PCT/CN2022/108629 CN2022108629W WO2023011314A1 WO 2023011314 A1 WO2023011314 A1 WO 2023011314A1 CN 2022108629 W CN2022108629 W CN 2022108629W WO 2023011314 A1 WO2023011314 A1 WO 2023011314A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical connector
substrate
amorphous silicon
silicon layer
transparent conductive
Prior art date
Application number
PCT/CN2022/108629
Other languages
English (en)
French (fr)
Inventor
陈海燕
蒋方丹
吴坚
Original Assignee
嘉兴阿特斯技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121822337.2U external-priority patent/CN216015395U/zh
Priority claimed from CN202110894789.XA external-priority patent/CN115706181A/zh
Application filed by 嘉兴阿特斯技术研究院有限公司 filed Critical 嘉兴阿特斯技术研究院有限公司
Publication of WO2023011314A1 publication Critical patent/WO2023011314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells

Definitions

  • the invention relates to the technical field of photovoltaic production, in particular to an electrical connector, a photovoltaic module and a method for preparing the photovoltaic module.
  • heterojunction (HJT) cells have the advantages of low light attenuation and low temperature coefficient, which can reduce energy consumption and reduce thermal damage to silicon substrates, and have become a research hotspot in the industry in recent years.
  • heterojunction battery structure with or without a busbar, and uses a technical solution for contacting and interconnecting the front and back sides of the battery sheet with a ribbon interconnect film; although the above solution saves the use of silver paste, it does not need to be screen printed and cured , but from the point of view of practical application, its contact resistance is high, the surface current collection is also poor, and the conversion efficiency of batteries and components is difficult to guarantee.
  • the purpose of the present invention is to provide an electrical connector, a photovoltaic module and a method for preparing a photovoltaic module, which can improve the current collection and transmission performance of the battery surface in the module product, reduce the consumption of silver paste and material costs, and reduce the shading loss and abnormality. risk of damage.
  • the present invention provides an electrical connector for electrical connection of solar cells
  • the electrical connector includes a substrate, at least two wires connected to one side of the substrate and parallel to each other A welding strip, one end of the welding strip extends beyond the substrate to form a free end or is connected to another surface of the substrate; the side of the substrate facing the welding strip is also provided with a nano-silver wire film.
  • the thickness of the nano-silver wire film is set to 50nm-500nm; the square resistance of the nano-silver wire film is set to 40 ⁇ /sq-100 ⁇ /sq.
  • the length of the silver nanowires in the silver nanowire film is set to 10 ⁇ m ⁇ 20 ⁇ m, and the diameter of the silver nanowires is set to 20 nm ⁇ 60 nm.
  • the thickness of the substrate is set to 20 ⁇ m ⁇ 200 ⁇ m.
  • the present invention also provides a photovoltaic module, which includes a battery string and a front sealing adhesive film and a back sealing adhesive film respectively arranged on both sides of the battery string.
  • the battery string includes a number of heterojunction cells connected in series along the first direction. Heterojunction cell surfaces and electrical connections as previously described.
  • the photovoltaic module further includes a bus bar arranged at the end of the battery string;
  • the electrical connector includes a first electrical connector and a second electrical connector, and the first electrical connector
  • the member includes a substrate, one end of the solder ribbon extends beyond the substrate and forms a free end, and the first electrical connector is used to connect the heterojunction battery at the end of the battery string to the bus bar;
  • the second electrical connector includes two substrates, and the soldering strip includes a first part respectively arranged on the front of one of the substrates, a second part arranged on the back of the other substrate, connecting the first One part and the third part of the second part, the second electrical connector is used to connect two adjacent heterojunction cells.
  • the front side of the heterojunction cell is sequentially provided with a first intrinsic amorphous silicon layer, a first doped amorphous silicon layer, a first transparent conductive layer and a front electrode
  • the The back side of the heterojunction battery is sequentially stacked with a second intrinsic amorphous silicon layer, a second doped amorphous silicon layer, a second transparent conductive layer, and a back electrode; the front electrode includes at least two electrodes extending along the first direction.
  • the front busbars, the back electrode includes at least two back busbars extending along the first direction, the positions of the front busbars and the back busbars correspond to each other, and the front busbars and the back busbars
  • the number of settings is consistent with the number of the welding strips.
  • the thickness of the first transparent conductive layer and the second transparent conductive layer is set to 50nm-100nm, and the square resistance of the first transparent conductive layer and the second transparent conductive layer is set to 30 ⁇ /sq ⁇ 120 ⁇ /sq.
  • the thickness of the first intrinsic amorphous silicon layer and the second intrinsic amorphous silicon layer is set to 1nm-10nm; the first doped amorphous silicon layer, the second doped amorphous silicon layer
  • the thickness of the hetero-amorphous silicon layer is set to be 3nm ⁇ 10nm.
  • the present invention also provides a method for preparing a photovoltaic module, which mainly includes:
  • the electrical connector includes a first electrical connector and a second electrical connector
  • the first electrical connector includes a substrate, a silver nanowire film arranged on one side of the substrate and at least two soldering strips parallel to each other, one end of the soldering strips extends beyond the substrate and forms a free end
  • the second electrical connector includes two substrates and at least two soldering strips parallel to each other, so
  • the soldering strip includes a first part respectively arranged on the front side of one of the substrates, a second part arranged on the back side of the other substrate, a third part connecting the first part and the second part, two pieces of the
  • the substrate is provided with a corresponding nano-silver wire film on the side surface facing the welding strip;
  • the battery string is placed between the front packaging adhesive film and the back packaging adhesive film for lamination.
  • the preparation process of the electrical connector includes coating the nano-silver wire dispersion on the surface of the substrate, and placing at least two welding ribbons on the surface of the substrate. The predetermined position is then dried; the thickness of the nano-silver wire film is controlled to be 50nm-500nm, and the square resistance is 40 ⁇ /sq-100 ⁇ /sq.
  • the length of the silver nanowires in the silver nanowire film is set to 10 ⁇ m ⁇ 20 ⁇ m, and the diameter of the silver nanowires is set to 20 nm ⁇ 60 nm.
  • the thickness of the substrate is set to 20 ⁇ m ⁇ 200 ⁇ m.
  • the preparation process of the heterojunction battery includes texturizing the surface of the silicon substrate
  • the first intrinsic amorphous silicon layer, the first doped amorphous silicon layer, and the first transparent conductive layer are sequentially prepared on the front of the silicon substrate, and the second intrinsic amorphous silicon layer, the second doped amorphous silicon layer, and the second doped amorphous silicon layer are sequentially prepared on the back of the silicon substrate.
  • the front electrode includes at least two edges along the first The front busbars extending in the first direction
  • the back electrode includes at least two back busbars extending in the first direction
  • the front busbars and the back busbars are used to connect the solder strips on the electrical connector.
  • the first intrinsic amorphous silicon layer, the second intrinsic amorphous silicon layer, the first doped amorphous silicon layer and the second doped amorphous silicon layer all adopt the PECVD method made by deposition;
  • the thicknesses of the first intrinsic amorphous silicon layer and the second intrinsic amorphous silicon layer are set to 1 nm to 10 nm, and the thicknesses of the first doped amorphous silicon layer and the second doped amorphous silicon layer are set to 3nm ⁇ 10nm.
  • the first transparent conductive layer and the second transparent conductive layer are both deposited by PVD method;
  • the thickness of the first transparent conductive layer and the second transparent conductive layer is set to 50nm-100nm, and the square resistance of the first transparent conductive layer and the second transparent conductive layer is set to 30 ⁇ /sq-120 ⁇ /sq.
  • the beneficial effect of the present invention is: adopting the preparation method of the electrical connector, photovoltaic module and photovoltaic module of the present invention, after the nano-silver wire thin film of the electrical connector is in contact with the surface of the heterojunction battery, the current collection and contact with the surface of the battery can be improved. Transmission performance, reducing silver paste consumption and material cost, reducing light shading loss of metal electrodes; the substrate of the electrical connector can also be used as a protective layer, reducing the risk of abnormal damage to the heterojunction cell during the component manufacturing process .
  • Fig. 1 is the sectional structure schematic diagram of electrical connector of the present invention
  • Fig. 2 is a schematic structural view of the first electrical connector in the photovoltaic module of the present invention
  • FIG. 3 is a schematic structural view of a second electrical connector in the photovoltaic module of the present invention.
  • Fig. 4 is a schematic structural view of the photovoltaic module of the present invention.
  • Fig. 5 is a schematic structural view of a heterojunction cell in a photovoltaic module of the present invention.
  • Fig. 6 is a schematic flow chart of the main steps of the method for preparing a photovoltaic module of the present invention.
  • the present invention provides an electrical connector 100 for electrical connection of solar cells
  • the electrical connector includes a substrate 11, silver nanowires arranged on one side surface of the substrate 11 A thin film 12 and at least two parallel solder strips 13 , one end of which extends in a first direction beyond the surface of the substrate 11 forming a free end or connected to another substrate 11 .
  • the base sheet 11 can be made of a flexible resin film, usually arranged in a rectangular or quasi-rectangular shape, and its overall size preferably does not exceed the size of a predetermined solar cell; the base sheet 11 can also be configured as a two-layer or multi-layer composite film structure, the thickness is set to 20 ⁇ m to 200 ⁇ m.
  • the thickness of the nano-silver wire film 12 is set to 50nm-500nm, and the square resistance of the nano-silver wire film 12 is set to 40 ⁇ /sq-100 ⁇ /sq.
  • the length of the silver nanowires in the silver nanowire film 12 is set to be 10 ⁇ m ⁇ 20 ⁇ m, and the diameter of the silver nanowires is set to be 20 nm ⁇ 60 nm.
  • the ribbon 13 can be a flat ribbon, a round ribbon or a metal ribbon with other cross-sectional shapes.
  • the ribbon 13 can be considered to be embedded on the surface of the substrate 11 for use on the surface of the solar cell. Welding of metal electrodes.
  • the electrical connector 100 includes a first electrical connector 101 (shown in FIG. 2 ) and a second electrical connector 102 (shown in FIG. 3 ).
  • the first electrical connector 101 includes a substrate 11, a silver nanowire film 12 disposed on one side surface of the substrate 11, and at least two soldering strips 13 parallel to each other and extending beyond the substrate 11, so The free ends of the soldering strips 13 can be connected with bus bars to realize the electrical output of the corresponding solar cells.
  • the second electrical connector 102 includes two substrates 11 and at least two soldering strips 13 parallel to each other.
  • the soldering strips 13 include a first part 131 respectively arranged on the front of one of the substrates 11, and a first part 131 arranged on the other.
  • a second part 132 on the back side of the substrate 11, a third part 133 connecting the first part 131 and the second part 132, the two substrates 11 facing the side surface of the welding strip 13 are provided with The corresponding nano-silver wire film 12; the second electrical connector 102 is used to realize the series connection of two adjacent solar cells.
  • the two ends of the soldering strip 13 are respectively connected to the two substrates 11; one end of the soldering strip 13 extending beyond the substrate 11 means that the soldering strip 13 13 extends beyond any one of said substrates 11 .
  • the present invention also provides a photovoltaic module 200 using the aforementioned electrical connector 100 , including a battery string 201 and a front packaging film 202 and a back packaging film 203 disposed on both sides of the battery string 201 .
  • the cell string 201 includes several heterojunction cells 21 serially connected in series along a first direction.
  • the electrical connector 100 is connected to the surface of the corresponding heterojunction battery 21; a bus bar (not shown) is also provided at the end of the battery string 201 .
  • the first electrical connector 101 is used to connect the heterojunction battery 21 at the end of the battery string 201 to the bus bar; the second electrical connector 102 is used to connect two adjacent heterojunction cells 201 Mass junction battery21.
  • the heterojunction cell 21 includes a silicon substrate 210, and the front side of the silicon substrate 210 is sequentially stacked with a first intrinsic amorphous silicon layer 211, a first doped amorphous silicon layer 213, a first transparent conductive layer 215 and the front side. Electrode 217 ; the backside of the silicon substrate 210 is sequentially stacked with a second intrinsic amorphous silicon layer 212 , a second doped amorphous silicon layer 214 , a second transparent conductive layer 216 and a backside electrode 218 .
  • the silicon substrate 210 is set as an N-type or P-type crystalline silicon wafer, the thickness of the silicon substrate 210 is set to 50-300 ⁇ m, and its resistivity is set to 0.5-3.5 ⁇ cm, preferably 2-3 ⁇ cm.
  • the doping type of the first doped amorphous silicon layer 213 is opposite to that of the second doped amorphous silicon layer 214 , here, the first doped amorphous silicon layer 213 is disposed on the front side of the silicon substrate 210 That is, the light-receiving surface, and the second doped amorphous silicon layer 214 is disposed on the back surface of the silicon substrate 210 , that is, the backlight surface.
  • the silicon substrate 210 adopts an N-type single crystal silicon wafer, and the first doped amorphous silicon layer 213 is a P-type doped layer, which can usually be set as a boron-doped layer;
  • the crystalline silicon layer 214 is an N-type doped layer, usually a phosphorus doped layer.
  • the aforementioned "front” and “back” of the substrate 11 are described relative to the connection arrangement of the heterojunction battery 21, and the front of the substrate 11 is connected to the heterojunction cell 21.
  • the back side of the junction cell 21, the back side of the substrate 11 is connected to the front side of the heterojunction cell.
  • the front electrode 217 includes at least two front busbars extending along the first direction
  • the back electrode 218 includes at least two back busbars extending along the first direction
  • both the front busbars and the back busbars The positions are corresponding, and the number of the front busbars and the back busbars is consistent with the number of the welding strips 13 .
  • the front electrodes 217 and the back electrodes 218 can be obtained by screen printing and curing corresponding low-temperature silver paste; moreover, the front busbars and the back busbars can be continuously extended along the first direction, or along the first direction.
  • the arrangement in the first direction is discontinuous, and is connected to the soldering strip 13 on the corresponding electrical connector 100 through a plurality of pads arranged at intervals.
  • the nano-silver wire film 12 of the electrical connector 100 can be used as a conductive material layer to connect with the first transparent conductive layer 215 and the second transparent conductive layer 215.
  • Layers 216 collectively enable the collection and transport of current across the cell surface.
  • the nano-silver wire film 12 can effectively reduce the transmission resistance and enhance the surface current collection capability, and the nano-silver wire film 12 also has excellent light transmittance, which does not affect the absorption and utilization of light. It is easy to understand that the current collection and lateral transmission performance on the surface of the heterojunction battery 21 is improved, and without affecting the current transmission performance, the auxiliary grid lines on the surface of the battery can be reduced or even eliminated, and the shading loss can be reduced.
  • the thickness of the first intrinsic amorphous silicon layer 211 and the second intrinsic amorphous silicon layer 212 is set to 1nm-10nm; the first doped amorphous silicon layer 213, the second doped amorphous silicon layer
  • the thickness of the amorphous silicon layer 214 is set to be 3nm ⁇ 10nm.
  • the first intrinsic amorphous silicon layer 211 and the second intrinsic amorphous silicon layer 212 can be adjusted to form a corresponding multi-layer composite structure; in addition, the first intrinsic amorphous silicon layer 211, the second intrinsic amorphous silicon layer
  • the overall thickness of the doped amorphous silicon layer 213 is preferably set to be smaller than the overall thickness of the second intrinsic amorphous silicon layer 212 and the second doped amorphous silicon layer 214, so as to reduce the light absorption loss of the light-receiving surface and improve the short-circuit current and conversion efficiency .
  • the thickness of the first transparent conductive layer 215 and the second transparent conductive layer 216 is set to 50nm-100nm, and the square resistance of the first transparent conductive layer 215 and the second transparent conductive layer 216 is set to 30 ⁇ /sq-120 ⁇ / sq.
  • the first transparent conductive layer 215 and the second transparent conductive layer 216 use a transparent oxide conductive film, which forms a good electrical connection with the first doped amorphous silicon layer 213 and the second doped amorphous silicon layer 214. sexual contact.
  • the thickness and specific composition of the first transparent conductive layer 215 and the second transparent conductive layer 216 can be adjusted accordingly according to product design requirements.
  • the method for preparing the photovoltaic module 200 includes:
  • the electrical connectors include a first electrical connector 101 and a second electrical connector 102;
  • the battery string 201 is placed between the front packaging adhesive film 202 and the back packaging adhesive film 203 for lamination.
  • the nano-silver wire dispersion liquid is mainly obtained by dispersing the nano-silver wires of a predetermined specification in a carrier composed of a solvent such as isopropanol.
  • a carrier composed of a solvent such as isopropanol.
  • the preparation process of the battery string 201 is specifically as follows:
  • the preparation process of the above-mentioned battery string 201 also includes heating so that the first electrical connector 101 and the second electrical connector 102 are combined with the corresponding heterojunction battery 21, so that the welding ribbon 13 is connected to the front main grid and the back The electrical connection of the main grid.
  • the preparation process of the heterojunction battery 21 includes:
  • Texturing forming a pyramid-shaped textured surface by etching on the surface of the silicon substrate 210;
  • the first intrinsic amorphous silicon layer 211, the first doped amorphous silicon layer 213, and the first transparent conductive layer 215 are sequentially prepared on the front side of the silicon substrate 210, and the second intrinsic amorphous silicon layer is sequentially prepared on the back side of the silicon substrate 210.
  • a front electrode 217 is prepared on the surface of the first transparent conductive layer 215, and a back electrode 218 is prepared on the surface of the second transparent conductive layer 216.
  • the "texturing” step specifically includes performing alkali texturing on both sides of the silicon substrate 210 with an aqueous solution of KOH, NaOH or TMAH, and controlling the texture height on the surface of the silicon substrate 210 to be 0.5-5 ⁇ m, preferably 1-3 ⁇ m.
  • the surface morphology of the silicon substrate 210 can be adjusted through the adjustment of solution concentration, temperature and reaction time, and predetermined texturing additives can be added according to product requirements to improve the quality of the textured surface.
  • the first intrinsic amorphous silicon layer 211 , the first doped amorphous silicon layer 213 , the second intrinsic amorphous silicon layer 212 , and the second doped amorphous silicon layer 214 are all deposited by PECVD.
  • the first intrinsic amorphous silicon layer 211, the first doped amorphous silicon layer 213, the second intrinsic amorphous silicon layer 212, and the second doped amorphous silicon layer 214 are respectively prepared in different reaction chambers. Chamber completes deposition preparation.
  • the reaction gas of the first intrinsic amorphous silicon layer 211 and the second intrinsic amorphous silicon layer 212 is usually SiH4 diluted with H2, and the film growth is completed under the action of a predetermined radio frequency power supply, and the proportion of H2/
  • the adjustment of SiH4 can correspondingly obtain the first intrinsic amorphous silicon layer 211 and the second intrinsic amorphous silicon layer 212 with different characteristics.
  • the reaction gas of the first doped amorphous silicon layer 213 includes B2H6, SiH4, H2; the reaction gas of the second doped amorphous silicon layer 214 includes PH3, SiH4, H2.
  • the temperature of the above-mentioned reaction chamber can be set at about 180°C, and the pressure can be controlled at 30-200 Pa. By adjusting the reaction gas composition, temperature and pressure, etc., film structures with different characteristics can be produced.
  • the first transparent conductive layer 215 and the second transparent conductive layer 216 are deposited by PVD method, which mainly include indium oxide or zinc oxide, and may also include tin oxide, aluminum oxide, calcium oxide, tungsten oxide, titanium oxide and oxide One or more of zirconium.
  • the pastes used for the front electrode 217 and the back electrode 218 can be the same or different, and the preparation method includes printing the front silver paste on the first transparent conductive layer 215 by screen printing, and then drying Then the silicon base 210 is turned over, and the back silver paste is printed on the second transparent conductive layer 216 by screen printing method, and dried; then the above-mentioned silicon base 210 is sent into a curing furnace for low-temperature curing to obtain the front side electrode 217, back electrode 218.
  • the curing temperature is usually set at 150-200° C.
  • the curing time is usually set at 15-30 minutes. It is easy to understand that the printing and drying processes on both sides of the silicon substrate 210 can be switched.
  • the manufacturing method of the photovoltaic module 200 also includes the steps of inspection, framing, junction box installation and power test after the lamination is completed, which will not be repeated here.
  • the silver nano wire film 12 of the electrical connector 100 of the present invention contacts the first transparent conductive layer 217 and the second transparent conductive layer 218 on the surface of the heterojunction battery 21, the current collection and transmission on the battery surface can be improved. performance, reduce the consumption of silver paste and material cost, reduce the shading loss of metal electrodes, and improve the current density and conversion efficiency; the substrate 11 of the electrical connector 100 can also be used as a protective layer to reduce the The risk of abnormal damage during the preparation of the battery string 201 and other components.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种电连接件、光伏组件及其制备方法,所述电连接件包括基片、连接在所述基片一侧表面且相互平行的至少两根焊带,所述焊带的一端延伸超出所述基片形成自由端或连接至另一所述基片的表面;所述基片朝向所述焊带的一侧还设置有纳米银线薄膜。其中,所述纳米银线薄膜与异质结电池表面接触,能够提高电池表面的电流收集与传输性能,降低银浆耗量与材料成本,减小金属电极的遮光损失。

Description

电连接件、光伏组件及其制备方法 技术领域
本发明涉及光伏生产技术领域,尤其涉及一种电连接件、光伏组件及光伏组件的制备方法。
背景技术
随着光伏产业的迅速发展,国内外市场对太阳能电池效率与性能的要求也越来越高,这也推动众多厂商积极进行新型电池结构及生产工艺的研究。其中,异质结(Heterojunction,HJT)电池具有低光衰、低温度系数等优势,能够降低能耗的同时减少硅基底的热损伤,近年已成为业内研究热点。
就光伏组件的制备过程而言,不同异质结电池先采用既定规格的焊带串联成电池串,再进行层压封装得到。业内也公开有无主栅的异质结电池结构,并使用焊带互联薄膜与电池片正反面进行接触互联的技术方案;上述方案虽然节省了银浆的使用,也无需进行丝网印刷与固化,但从实际应用来看,其接触电阻较高,表面电流收集也较差,电池及组件的转换效率难以保证。
鉴于此,有必要提供一种新的电连接件、光伏组件及光伏组件的制备方法。
发明内容
本发明的目的在于提供一种电连接件、光伏组件及光伏组件的制备方法,能够提高组件产品中电池表面的电流收集与传输性能,降低银浆 耗量与材料成本,减小遮光损失及异常受损的风险。
为实现上述发明目的,本发明提供了一种电连接件,用于太阳能电池的电性连接,所述电连接件包括基片、连接在所述基片一侧表面且相互平行的至少两根焊带,所述焊带的一端延伸超出所述基片形成自由端或连接至另一所述基片的表面;所述基片朝向所述焊带的一侧还设置有纳米银线薄膜。
作为本发明实施例的进一步改进,所述纳米银线薄膜的厚度设置为50nm~500nm;所述纳米银线薄膜的方阻设置为40Ω/sq~100Ω/sq。
作为本发明实施例的进一步改进,所述纳米银线薄膜中的纳米银线的长度设置为10μm~20μm,且该纳米银线的直径设置为20nm~60nm。
作为本发明实施例的进一步改进,所述基片的厚度设置为20μm~200μm。
本发明还提供一种光伏组件,包括电池串及分设在电池串两侧的正面封装胶膜与背面封装胶膜,所述电池串包括沿第一方向依次串联的若干异质结电池、连接在异质结电池表面且如前所述的电连接件。
作为本发明实施例的进一步改进,所述光伏组件还包括设置在所述电池串末端的汇流条;所述电连接件包括第一电连接件与第二电连接件,所述第一电连接件包括一块基片,所述焊带的一端延伸超出所述基片并形成自由端,所述第一电连接件用以将所述电池串末端的异质结电池连接至所述汇流条;所述第二电连接件包括两块基片,所述焊带包括分别设置在其一所述基片正面的第一部分、设置在另一所述基片背面的第二部分、连接所述第一部分与第二部分的第三部分,所述第二电连接件用以连接相邻两所述异质结电池。
作为本发明实施例的进一步改进,所述异质结电池的正面依次层叠设置有第一本征非晶硅层、第一掺杂非晶硅层、第一透明导电层与正面电极,所述异质结电池的背面依次层叠设置有第二本征非晶硅层、第二 掺杂非晶硅层、第二透明导电层与背面电极;所述正面电极包括至少两条沿第一方向延伸的正面主栅,所述背面电极包括至少两条沿第一方向延伸的背面主栅,所述正面主栅与背面主栅两者的位置相对应,且所述正面主栅、背面主栅的设置数目均与所述焊带的数目相一致。
作为本发明实施例的进一步改进,所述第一透明导电层、第二透明导电层的厚度设置为50nm~100nm,且所述第一透明导电层、第二透明导电层的方阻设置为30Ω/sq~120Ω/sq。
作为本发明实施例的进一步改进,所述第一本征非晶硅层、第二本征非晶硅层的厚度设置为1nm~10nm;所述第一掺杂非晶硅层、第二掺杂非晶硅层的厚度设置为3nm~10nm。
本发明还提供一种光伏组件的制备方法,主要包括:
制取电连接件,所述电连接件包括第一电连接件与第二电连接件,所述第一电连接件包括一块基片、设置在所述基片一侧表面的纳米银线薄膜及至少两根相互平行的焊带,所述焊带的一端延伸超出所述基片并形成自由端;所述第二电连接件包括两块基片及至少两根相互平行的焊带,所述焊带包括分别设置在其一所述基片正面的第一部分、设置在另一所述基片背面的第二部分、连接所述第一部分与第二部分的第三部分,两块所述基片对朝向所述焊带的一侧表面均设有相应的纳米银线薄膜;
制备电池串,将第一电连接件放置到承载平台,使得所述基片设有纳米银线薄膜的一侧表面朝上放置,将一片异质结电池对位放置到该第一电连接件的基片上;将第二电连接件的一块基片放置在前述异质结电池上,再将另一片异质结电池对位放置在所述第二电连接件的另一块基片上,重复该步骤;完成最后一片异质结电池的放置后,选取另一所述第一电连接件,对位放置在最后一片异质结电池上,加热使得所述第一电连接件、第二电连接件与对应的异质结电池相结合;
将所述电池串放置在正面封装胶膜与背面封装胶膜之间,进行层压。
作为本发明实施例的进一步改进,所述电连接件的制取过程包括将纳米银线分散液涂布在所述基片的表面,并将至少两根焊带放置在所述基片表面的既定位置,再进行烘干;控制所述纳米银线薄膜的厚度为50nm~500nm,方阻为40Ω/sq~100Ω/sq。
作为本发明实施例的进一步改进,所述纳米银线薄膜中的纳米银线的长度设置为10μm~20μm,且该纳米银线的直径设置为20nm~60nm。
作为本发明实施例的进一步改进,所述基片的厚度设置为20μm~200μm。
作为本发明实施例的进一步改进,所述异质结电池的制备过程包括对硅基底表面进行制绒;
在硅基底正面依次制备第一本征非晶硅层、第一掺杂非晶硅层与第一透明导电层,在硅基底背面依次制备第二本征非晶硅层、第二掺杂非晶硅层与第二透明导电层;
采用丝网印刷方法将既定的低温银浆印制在所述第一透明导电层、第二透明导电层表面,再经固化得到正面电极、背面电极,所述正面电极包括至少两条沿第一方向延伸的正面主栅,所述背面电极包括至少两条沿第一方向延伸的背面主栅,所述正面主栅、背面主栅用以连接所述电连接件上的焊带。
作为本发明实施例的进一步改进,所述第一本征非晶硅层、第二本征非晶硅层、第一掺杂非晶硅层及第二掺杂非晶硅层均采用PECVD方法沉积制得;
所述第一本征非晶硅层、第二本征非晶硅层的厚度设置为1nm~10nm,所述第一掺杂非晶硅层、第二掺杂非晶硅层的厚度设置为3nm~10nm。
作为本发明实施例的进一步改进,所述第一透明导电层、第二透明导电层均采用PVD方法沉积制得;
所述第一透明导电层、第二透明导电层的厚度设置为50nm~100nm,且所述第一透明导电层、第二透明导电层的方阻设置为30Ω/sq~120Ω/sq。
本发明的有益效果是:采用本发明电连接件、光伏组件及光伏组件的制备方法,所述电连接件的纳米银线薄膜与异质结电池表面接触后,能够提高电池表面的电流收集与传输性能,降低银浆耗量与材料成本,减小金属电极的遮光损失;所述电连接件的基片也能作为保护层,降低所述异质结电池在组件制程中异常受损的风险。
附图说明
图1是本发明电连接件的剖面结构示意图;
图2是本发明光伏组件中第一电连接件的结构示意图;
图3是本发明光伏组件中第二电连接件的结构示意图;
图4是本发明光伏组件的结构示意图;
图5是本发明光伏组件中异质结电池的结构示意图;
图6是本发明光伏组件的制备方法的主要步骤流程示意图。
具体实施方式
以下将结合附图所示的实施方式对本发明进行详细描述。但该实施方式并不限制本发明,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
参图1所示,本发明提供了一种电连接件100,用于太阳能电池的电性连接,所述电连接件包括基片11、设置在所述基片11一侧表面的纳米银线薄膜12及至少两根相互平行的焊带13,所述焊带13的一端沿第一方向延伸超出所述基片11形成自由端或连接至另一基片11的表面。
所述基片11可采用柔性树脂薄膜制得,通常设置呈矩形或类矩形,其整体尺寸优选不超出既定的太阳能电池的尺寸;所述基片11还可设置为两层或多层复合膜结构,厚度设置为20μm~200μm。所述纳米银线薄膜12的厚度设置为50nm~500nm,且所述纳米银线薄膜12的方阻设置为40Ω/sq~100Ω/sq。其中,所述纳米银线薄膜12中的纳米银线的长度设置为10μm~20μm,且所述纳米银线的直径设置为20nm~60nm。所述焊带13可采用扁平焊带、圆形焊带或具有其它截面形态的金属焊带,所述焊带13可视为嵌设在所述基片11的表面,以用于太阳能电池表面金属电极的焊连。
所述电连接件100包括第一电连接件101(图2所示)与第二电连接件102(图3所示)。所述第一电连接件101包括一块基片11、设置在所述基片11一侧表面的纳米银线薄膜12及至少两根相互平行并延伸超出所述基片11的焊带13,所述焊带13的自由端可与汇流条相连接,以实现相应的太阳能电池的电性输出。所述第二电连接件102包括两块基片11及至少两根相互平行的焊带13,所述焊带13包括分别设置在其一所述基片11正面的第一部分131、设置在另一所述基片11背面的第二部分132、连接所述第一部分131与第二部分132的第三部分133,两块所述基片11朝向所述焊带13的一侧表面均设有相应的纳米银线薄膜12;所述第二电连接件102用以实现相邻两太阳能电池的串联。对于第二电连接件102而言,所述焊带13的两端分别连接在两块所述基片11上;所述焊带13的一端延伸超出所述基片11是指所述焊带13延伸超出其中任一所述基片11。
结合图4与图5所示,本发明还提供一种采用前述电连接件100的光伏组件200,包括电池串201及分设在电池串201两侧的正面封装胶膜202与背面封装胶膜203,所述电池串201包括沿第一方向依次串联的若干异质结电池21。所述电连接件100连接在相应的异质结电池21 表面;所述电池串201的末端还设有汇流条(未图示)。
此处,所述第一电连接件101用以将所述电池串201末端的异质结电池21连接至所述汇流条;所述第二电连接件102用以连接相邻两所述异质结电池21。
所述异质结电池21包括硅基底210,所述硅基底210正面依次层叠设置有第一本征非晶硅层211、第一掺杂非晶硅层213、第一透明导电层215与正面电极217;所述硅基底210背面依次层叠设置有第二本征非晶硅层212、第二掺杂非晶硅层214、第二透明导电层216与背面电极218。
所述硅基底210设置为N型或P型晶体硅片,所述硅基底210的厚度设置为50~300μm,且其电阻率设置为0.5~3.5Ω·cm,优选为2~3Ω·cm。所述第一掺杂非晶硅层213与第二掺杂非晶硅层214的掺杂类型相反,此处,所述第一掺杂非晶硅层213设置在所述硅基底210的正面即受光面,所述第二掺杂非晶硅层214设置在所述硅基底210的背面即背光面。示例地,所述硅基底210采用N型单晶硅片,所述第一掺杂非晶硅层213为P型掺杂层,通常可设置为硼掺杂层;所述第二掺杂非晶硅层214为N型掺杂层,通常可设置为磷掺杂层。还需要说明的是,前述基片11的“正面”与“背面”是相对所述异质结电池21的连接排布方式所做的描述,所述基片11的正面连接在所述异质结电池21的背面,所述基片11的背面连接在所述异质结电池的正面。
所述正面电极217包括至少两条沿第一方向延伸的正面主栅,所述背面电极218包括至少两条沿第一方向延伸的背面主栅,所述正面主栅与背面主栅两者的位置相对应,且所述正面主栅、背面主栅的设置数目均与所述焊带13的数目相一致。所述正面电极217、背面电极218可采用相应的低温银浆经丝网印刷、固化得到;再有,所述正面主栅、背面主栅可沿所述第一方向呈连续延伸设置,或沿所述第一方向设置呈间断式设置,通过若干间隔排布的焊盘(pad)与相应的电连接件100上的焊 带13相连接。
就所述电池串201中某一具体的异质结电池21而言,所述电连接件100的纳米银线薄膜12作为导电材料层可与所述第一透明导电层215、第二透明导电层216共同实现电池表面电流的收集与传输。所述纳米银线薄膜12能够有效减小传输电阻,增强表面电流收集能力,且所述纳米银线薄膜12还具有优良的透光性,不影响光线的吸收利用。容易理解地,所述异质结电池21表面的电流收集与横向传输性能得以改善,在不影响电流传输性能的前提下,可以减少甚而取消电池表面的副栅线,降低遮光损失。
本实施例中,所述第一本征非晶硅层211、第二本征非晶硅层212的厚度设置为1nm~10nm;所述第一掺杂非晶硅层213、第二掺杂非晶硅层214的厚度设置为3nm~10nm。其中,所述第一本征非晶硅层211、第二本征非晶硅层212可以通过工艺调整形成相应的多层复合结构;另,所述第一本征非晶硅层211、第一掺杂非晶硅层213的整体厚度优选设置小于第二本征非晶硅层212、第二掺杂非晶硅层214的整体厚度,减少受光面的吸光损失,提高短路电流与转换效率。
所述第一透明导电层215、第二透明导电层216的厚度设置为50nm~100nm,且所述第一透明导电层215、第二透明导电层216的方阻设置为30Ω/sq~120Ω/sq。具体地,所述第一透明导电层215、第二透明导电层216采用透明氧化物导电薄膜,其与第一掺杂非晶硅层213、第二掺杂非晶硅层214形成良好的电性接触。所述第一透明导电层215、第二透明导电层216的厚度及具体构成可根据产品设计需求进行相应的调整。
再结合图6所示,所述光伏组件200的制备方法包括:
将既定的纳米银线分散液涂布在基片11的表面,并将至少两根焊带13放置在所述基片11表面的既定位置,再进行烘干,制得电连接件100, 所述电连接件包括第一电连接件101与第二电连接件102;
制备电池串201;
将所述电池串201放置在正面封装胶膜202与背面封装胶膜203之间,进行层压。
所述电连接件100的制备过程中,所述纳米银线分散液主要是将既定规格的纳米银线分散在异丙醇等溶剂组成的载体中得到,通过对上述载体配方的调整与改进,也能提高所述焊带13在基片11表面的结合强度。
所述电池串201的制备过程具体如下:
将第一电连接件101放置到承载平台,使得所述基片11设有纳米银线薄膜12的一侧表面朝上放置,将一片异质结电池21对位放置到该第一电连接件101的基片11上;
将第二电连接件102的一块基片11放置在前述异质结电池21上,再将另一片异质结电池21对位放置在所述第二电连接件102的另一块基片11上,重复该步骤;
完成最后一片异质结电池21的放置后,选取另一所述第一电连接件101,对位放置在最后一片异质结电池21上。
上述电池串201的制备过程还包括加热使得所述第一电连接件101、第二电连接件102与对应的异质结电池21结合在一起,实现所述焊带13与正面主栅、背面主栅的电性连接。
所述异质结电池21的制备过程则包括:
制绒,在硅基底210表面刻蚀形成金字塔状绒面;
在硅基底210的正面依次制备第一本征非晶硅层211、第一掺杂非晶硅层213、第一透明导电层215,并在所述硅基底210的背面依次制备第二本征非晶硅层212、第二掺杂非晶硅层214、第二透明导电层216;
在第一透明导电层215表面制备正面电极217,并在第二透明导电 层216表面制备背面电极218。
所述“制绒”步骤具体包括采用KOH或NaOH或TMAH的水溶液对硅基底210进行双面碱制绒,控制所述硅基底210表面的绒面高度为0.5~5μm,优选为1~3μm。所述制绒过程可通过溶液浓度、温度及反应时间的调节实现硅基底210表面形态的调整,还可以根据产品需求添加既定的制绒添加剂改进绒面质量。
所述第一本征非晶硅层211、第一掺杂非晶硅层213及第二本征非晶硅层212、第二掺杂非晶硅层214均采用PECVD方法沉积制得。实际生产中,所述第一本征非晶硅层211、第一掺杂非晶硅层213、第二本征非晶硅层212、第二掺杂非晶硅层214分别在不同反应腔室完成沉积制备。所述第一本征非晶硅层211、第二本征非晶硅层212的反应气体通常采用H2稀释的SiH4,在既定的射频电源作用下完成膜层生长,通过反应气体占比H2/SiH4的调节,可相应得到具有不同特性的第一本征非晶硅层211、第二本征非晶硅层212。
所述第一掺杂非晶硅层213的反应气体则包括B2H6、SiH4、H2;所述第二掺杂非晶硅层214的反应气体则包括PH3、SiH4、H2。通常地,上述反应腔室的温度可设置在180℃左右,压力控制在30~200pa,通过对反应气体组成、温度及压力等的调节能够制得不同特性的膜层结构。
所述第一透明导电层215、第二透明导电层216采用PVD方法沉积制得,其主要包括氧化铟或氧化锌,还可以包括氧化锡、氧化铝、氧化钙、氧化钨、氧化钛及氧化锆中的一种或几种。
所述正面电极217、背面电极218所采用的浆料可以相同也可以不同,所述制备方法包括采用丝网印刷方法将正面银浆印制在所述第一透明导电层215上,进行烘干;再将硅基底210进行翻转,采用丝网印刷方法将背面银浆印制在所述第二透明导电层216上,烘干;再将上述硅基底210送入固化炉进行低温固化,得到正面电极217、背面电极218。 其中,固化温度通常设置在150~200℃,固化时间通常设置在15~30min。容易理解地,所述硅基底210两侧的印刷与烘干制程可以调换。
所述光伏组件200的制备方法还包括在层压完成后,进行检测、装框、安装接线盒以及功率测试等步骤,此处不再一一赘述。
综上所述,本发明电连接件100的纳米银线薄膜12与异质结电池21表面的第一透明导电层217、第二透明导电层218接触后,能够提高电池表面的电流收集与传输性能,降低银浆耗量与材料成本,减小金属电极的遮光损失,提升电流密度与转换效率;所述电连接件100的基片11也能作为保护层,降低所述异质结电池21在电池串201制备及其它组件制程中异常受损的风险。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种电连接件,用于太阳能电池的电性连接,其特征在于:所述电连接件包括基片、连接在所述基片一侧表面且相互平行的至少两根焊带,所述焊带的一端延伸超出所述基片形成自由端或连接至另一所述基片的表面;所述基片朝向所述焊带的一侧还设置有纳米银线薄膜。
  2. 根据权利要求1所述的电连接件,其特征在于:所述纳米银线薄膜的厚度设置为50nm~500nm;所述纳米银线薄膜的方阻设置为40Ω/sq~100Ω/sq。
  3. 根据权利要求1所述的电连接件,其特征在于:所述纳米银线薄膜中的纳米银线的长度设置为10μm~20μm,且该纳米银线的直径设置为20nm~60nm。
  4. 根据权利要求1所述的电连接件,其特征在于:所述基片的厚度设置为20μm~200μm。
  5. 一种光伏组件,包括电池串及分设在电池串两侧的正面封装胶膜与背面封装胶膜,所述电池串包括沿第一方向依次串联的若干异质结电池,其特征在于:所述电池串还包括连接在异质结电池表面且如权利要求1所述的电连接件。
  6. 根据权利要求5所述的光伏组件,其特征在于:所述光伏组件还包括设置在所述电池串末端的汇流条;所述电连接件包括第一电连接件与第二电连接件,所述第一电连接件包括一块基片,所述焊带的一端延伸超出所述基片并形成自由端,所述第一电连接件用以将所述电池串末端的异质结电池连接至所述汇流条;所述第二电连接件包括两块基片, 所述焊带包括分别设置在其一所述基片正面的第一部分、设置在另一所述基片背面的第二部分、连接所述第一部分与第二部分的第三部分,所述第二电连接件用以连接相邻两所述异质结电池。
  7. 根据权利要求5所述的光伏组件,其特征在于:所述异质结电池的正面依次层叠设置有第一本征非晶硅层、第一掺杂非晶硅层、第一透明导电层与正面电极,所述异质结电池的背面依次层叠设置有第二本征非晶硅层、第二掺杂非晶硅层、第二透明导电层与背面电极;所述正面电极包括至少两条沿第一方向延伸的正面主栅,所述背面电极包括至少两条沿第一方向延伸的背面主栅,所述正面主栅与背面主栅两者的位置相对应,且所述正面主栅、背面主栅的设置数目均与所述焊带的数目相一致。
  8. 根据权利要求7所述的光伏组件,其特征在于:所述第一透明导电层、第二透明导电层的厚度设置为50nm~100nm,且所述第一透明导电层、第二透明导电层的方阻设置为30Ω/sq~120Ω/sq。
  9. 根据权利要求7所述的光伏组件,其特征在于:所述第一本征非晶硅层、第二本征非晶硅层的厚度设置为1nm~10nm;所述第一掺杂非晶硅层、第二掺杂非晶硅层的厚度设置为3nm~10nm。
  10. 一种光伏组件的制备方法,其特征在于:
    制取电连接件,所述电连接件包括第一电连接件与第二电连接件,所述第一电连接件包括一块基片、设置在所述基片一侧表面的纳米银线薄膜及至少两根相互平行的焊带,所述焊带的一端延伸超出所述基片并形成自由端;所述第二电连接件包括两块基片及至少两根相互平行的焊 带,所述焊带包括分别设置在其一所述基片正面的第一部分、设置在另一所述基片背面的第二部分、连接所述第一部分与第二部分的第三部分,两块所述基片对朝向所述焊带的一侧表面均设有相应的纳米银线薄膜;
    制备电池串,将第一电连接件放置到承载平台,使得所述基片设有纳米银线薄膜的一侧表面朝上放置,将一片异质结电池对位放置到该第一电连接件的基片上;将第二电连接件的一块基片放置在前述异质结电池上,再将另一片异质结电池对位放置在所述第二电连接件的另一块基片上,重复该步骤;完成最后一片异质结电池的放置后,选取另一所述第一电连接件,对位放置在最后一片异质结电池上,加热使得所述第一电连接件、第二电连接件与对应的异质结电池相结合;
    将所述电池串放置在正面封装胶膜与背面封装胶膜之间,进行层压。
  11. 根据权利要求10所述的光伏组件的制备方法,其特征在于:所述电连接件的制取过程包括将纳米银线分散液涂布在所述基片的表面,并将至少两根焊带放置在所述基片表面的既定位置,再进行烘干;控制所述纳米银线薄膜的厚度为50nm~500nm,方阻为40Ω/sq~100Ω/sq。
  12. 根据权利要求10所述的光伏组件的制备方法,其特征在于:所述纳米银线薄膜中的纳米银线的长度设置为10μm~20μm,且该纳米银线的直径设置为20nm~60nm。
  13. 根据权利要求10所述的光伏组件的制备方法,其特征在于:所述基片的厚度设置为20μm~200μm。
  14. 根据权利要求10所述的光伏组件的制备方法,其特征在于:所述异质结电池的制备过程包括对硅基底表面进行制绒;
    在硅基底正面依次制备第一本征非晶硅层、第一掺杂非晶硅层与第一透明导电层,在硅基底背面依次制备第二本征非晶硅层、第二掺杂非晶硅层与第二透明导电层;
    采用丝网印刷方法将既定的低温银浆印制在所述第一透明导电层、第二透明导电层表面,再经固化得到正面电极、背面电极,所述正面电极包括至少两条沿第一方向延伸的正面主栅,所述背面电极包括至少两条沿第一方向延伸的背面主栅,所述正面主栅、背面主栅用以连接所述电连接件上的焊带。
  15. 根据权利要求14所述的光伏组件的制备方法,其特征在于:所述第一本征非晶硅层、第二本征非晶硅层、第一掺杂非晶硅层及第二掺杂非晶硅层均采用PECVD方法沉积制得;所述第一本征非晶硅层、第二本征非晶硅层的厚度设置为1nm~10nm,所述第一掺杂非晶硅层、第二掺杂非晶硅层的厚度设置为3nm~10nm;
    或,所述第一透明导电层、第二透明导电层均采用PVD方法沉积制得;所述第一透明导电层、第二透明导电层的厚度设置为50nm~100nm,且所述第一透明导电层、第二透明导电层的方阻设置为30Ω/sq~120Ω/sq。
PCT/CN2022/108629 2021-08-05 2022-07-28 电连接件、光伏组件及其制备方法 WO2023011314A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202121822337.2U CN216015395U (zh) 2021-08-05 2021-08-05 电连接件及采用该电连接件的光伏组件
CN202110894789.XA CN115706181A (zh) 2021-08-05 2021-08-05 电连接件、光伏组件及光伏组件的制备方法
CN202110894789.X 2021-08-05
CN202121822337.2 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023011314A1 true WO2023011314A1 (zh) 2023-02-09

Family

ID=85154263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108629 WO2023011314A1 (zh) 2021-08-05 2022-07-28 电连接件、光伏组件及其制备方法

Country Status (1)

Country Link
WO (1) WO2023011314A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037265A (zh) * 2014-06-18 2014-09-10 陕西众森电能科技有限公司 一种hit太阳电池及其电极制备及串联的方法
JP2016146373A (ja) * 2015-02-06 2016-08-12 長州産業株式会社 太陽電池モジュール及びその製造方法
EP3493277A1 (fr) * 2017-11-30 2019-06-05 Commissariat à l'énergie atomique et aux énergies alternatives Procédé d'interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
CN110739361A (zh) * 2018-07-20 2020-01-31 北京铂阳顶荣光伏科技有限公司 光伏器件互连件、含其的光伏器件及形成互连件的方法
CN113013297A (zh) * 2021-03-08 2021-06-22 无锡市联鹏新能源装备有限公司 一种无栅线异质结电池组件的制备方法
CN216015395U (zh) * 2021-08-05 2022-03-11 嘉兴阿特斯技术研究院有限公司 电连接件及采用该电连接件的光伏组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037265A (zh) * 2014-06-18 2014-09-10 陕西众森电能科技有限公司 一种hit太阳电池及其电极制备及串联的方法
JP2016146373A (ja) * 2015-02-06 2016-08-12 長州産業株式会社 太陽電池モジュール及びその製造方法
EP3493277A1 (fr) * 2017-11-30 2019-06-05 Commissariat à l'énergie atomique et aux énergies alternatives Procédé d'interconnexion de cellules photovoltaïques avec une électrode pourvue de nanofils métalliques
CN110739361A (zh) * 2018-07-20 2020-01-31 北京铂阳顶荣光伏科技有限公司 光伏器件互连件、含其的光伏器件及形成互连件的方法
CN113013297A (zh) * 2021-03-08 2021-06-22 无锡市联鹏新能源装备有限公司 一种无栅线异质结电池组件的制备方法
CN216015395U (zh) * 2021-08-05 2022-03-11 嘉兴阿特斯技术研究院有限公司 电连接件及采用该电连接件的光伏组件

Similar Documents

Publication Publication Date Title
JP5367587B2 (ja) 太陽電池モジュール及び太陽電池
CN106057923B (zh) 一种背接触太阳能电池及太阳能电池组件
US20160079459A1 (en) Solar cell module
JP2008135655A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、及び太陽電池セル
KR102122368B1 (ko) 태양전지 및 태양전지 모듈
JPWO2011024534A1 (ja) 多接合光電変換装置、集積型多接合光電変換装置、並びにその製造方法
TWI727728B (zh) 薄膜光伏電池串聯結構及薄膜光伏電池串聯的製備工藝
CN111584669B (zh) 一种硅异质结shj太阳能电池及其制备方法
CN102148264A (zh) 一种具有金属丝电极的硅太阳电池及其制造方法
JP2011181966A (ja) 太陽電池セル及び太陽電池モジュール
CN213340395U (zh) 一种金属网栅互联结构
CN206098402U (zh) 一种异质结太阳能电池及其模组
TW201101509A (en) Solar battery module
JP2014103259A (ja) 太陽電池、太陽電池モジュールおよびその製造方法
US9184320B2 (en) Photoelectric conversion device
WO2023011209A1 (zh) 光伏组件的制备方法及光伏组件
CN110729377A (zh) 一种双面发电异质结太阳能电池的制备方法及其叠瓦模组
CN111403554A (zh) 一种太阳电池的制备方法以及由此得到的太阳电池
CN216015395U (zh) 电连接件及采用该电连接件的光伏组件
WO2023011314A1 (zh) 电连接件、光伏组件及其制备方法
WO2023159995A1 (zh) 异质结电池、光伏组件电池串及其制造方法
CN110350054A (zh) 一种太阳能晶硅电池片的印刷方法
CN212874518U (zh) 太阳能电池
CN115706181A (zh) 电连接件、光伏组件及光伏组件的制备方法
JP2011181965A (ja) 太陽電池セルの製造方法及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE