WO2023010928A1 - 跟车方法、车辆及计算机可读存储介质 - Google Patents

跟车方法、车辆及计算机可读存储介质 Download PDF

Info

Publication number
WO2023010928A1
WO2023010928A1 PCT/CN2022/091751 CN2022091751W WO2023010928A1 WO 2023010928 A1 WO2023010928 A1 WO 2023010928A1 CN 2022091751 W CN2022091751 W CN 2022091751W WO 2023010928 A1 WO2023010928 A1 WO 2023010928A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
signal point
position signal
obtaining
Prior art date
Application number
PCT/CN2022/091751
Other languages
English (en)
French (fr)
Inventor
覃高峰
薛海涛
林智桂
罗覃月
甘鑫
Original Assignee
上汽通用五菱汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上汽通用五菱汽车股份有限公司 filed Critical 上汽通用五菱汽车股份有限公司
Publication of WO2023010928A1 publication Critical patent/WO2023010928A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present application relates to the technical field of automatic driving, and in particular to a car-following method, a vehicle and a computer-readable storage medium.
  • the car-following method adopted by autonomous driving vehicles mainly uses perception devices, such as cameras and millimeter-wave radars, to perceive the target-following vehicle's driving trajectory, thereby fitting and generating the vehicle-following trajectory of the own vehicle.
  • perception devices such as cameras and millimeter-wave radars
  • the sensing device often cannot perceive the target vehicle. This leads to the failure of the own vehicle to follow the target vehicle.
  • the main purpose of the present application is to provide a car following method, a vehicle and a computer-readable storage medium, aiming at solving the technical problem that the car following is easy to fail when following a car at a long distance.
  • the steps of the car following method include:
  • the step of obtaining the ego vehicle location point of the ego vehicle according to the first location information includes:
  • the current position signal point is corrected, and the corrected current position signal point is used as the ego vehicle position point.
  • the step of obtaining the ego vehicle location point of the ego vehicle according to the first location information further includes:
  • the step of obtaining the position constraint value of the current position signal point relative to the previous position signal point includes:
  • the step of controlling the ego vehicle to follow the vehicle along the vehicle-following path includes:
  • the vehicle following path crosses the driving lane of the own vehicle, and the vehicle of the own vehicle is controlled to change lanes and follow the vehicle along the vehicle following path.
  • the step of controlling the ego vehicle to speed up and follow the vehicle along the following path includes:
  • the vehicle speed of the own vehicle is lower than the speed limit value, and the vehicle of the own vehicle is controlled to speed up and follow the vehicle along the vehicle following path.
  • the step of controlling the ego vehicle to follow the vehicle along the vehicle-following path includes:
  • the own vehicle is controlled to speed up and follow the vehicle along the vehicle following path.
  • step of determining that the speed of the target vehicle is greater than a preset speed threshold and obtaining the driving speed of the vehicle in front of the ego vehicle further includes:
  • the first position information is a step of obtaining the own vehicle position point of the own vehicle.
  • the present application also provides a vehicle, the vehicle includes a memory, a processor, and computer-readable instructions stored on the memory and executable by the processor, wherein the computer-readable When the instructions are executed by the processor, the steps of the vehicle following method described above are implemented.
  • the present application also provides a computer-readable storage medium, on which computer-readable instructions are stored, wherein when the computer-readable instructions are executed by a processor, the above-mentioned The steps of the car following method described above.
  • the present application obtains the target vehicle's driving trajectory through the position information of the target vehicle, plans a vehicle-following path through the location points of the own vehicle and the driving trajectory of the target vehicle, and controls the own vehicle to follow the vehicle along the vehicle-following path, and , when the distance between the own vehicle and the target vehicle is greater than the preset separation distance, intelligently control the own vehicle to speed up and follow the vehicle.
  • By collecting location information instead of only relying on sensing devices to follow the car it solves the problem of failure to follow the target vehicle when following the car at a long distance, and realizes the intelligent tracking of a specific vehicle over a long distance.
  • the car and the formation follow the car, thereby improving the effectiveness of the car following.
  • Fig. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of the first embodiment of the car following method of the present application
  • Fig. 3 is a schematic diagram of the position signal point deviation correction of the vehicle following method of the present application.
  • Fig. 4 is another schematic diagram of the correction of position point signal deviation of the vehicle following method of the present application.
  • the mainstream sensors of intelligent driving vehicles include cameras and millimeter-wave radars.
  • the way to follow the car is to use the forward-facing camera and forward-facing millimeter-wave radar to sense the driving trajectory of the vehicle in front to fit a following vehicle trajectory. Restricted by the sensor's ability to perceive the distance and perception angle, when the target vehicle is far away from the ego vehicle, the desired target vehicle is blocked by other vehicles, or the target vehicle cuts out of the lane, the sensor cannot perceive the target vehicle, and the As a result, the Traffic Jam Assist function cannot follow the target vehicle.
  • the current car-following system has the following defects:
  • the perception distance of the sensor is limited: the current mass-produced front-view camera and front-view radar are usually below 200 meters, and long-distance car following is difficult to achieve;
  • Perception angle of view of the sensor the view angle of the front-view camera and front-view radar in mass production at this stage is usually not too large, and it is difficult to follow the car in the adjacent lane;
  • the main solution of the embodiment of the present application is to obtain the first position information of the own vehicle, and obtain the own vehicle position point of the own vehicle according to the first position information;
  • the target vehicle's driving trajectory is obtained through the position information of the target vehicle
  • the vehicle-following path is planned through the location points of the own vehicle and the driving trajectory of the target vehicle
  • the own vehicle is controlled to follow the vehicle along the vehicle-following path
  • the own vehicle is intelligently controlled to speed up and follow the vehicle.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal in this embodiment of the application may be a vehicle.
  • the vehicle may include a processor 1001 such as a CPU, a communication bus 1002 , a user interface 1003 , a network interface 1004 and a memory 1005 .
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the vehicle may further include a camera, a sensor, a vehicle positioning module, a millimeter wave radar module, an audio circuit, an RF (Radio Frequency, radio frequency) circuit, a Wi-Fi module, and the like.
  • the camera includes a surround-view camera and a front-view camera, etc., and sensors such as a light sensor, a motion sensor, and other sensors.
  • the surround-view camera, or a panoramic image monitoring system can stitch together the bird’s-eye images from all directions on the top of the car and dynamically display them on the LCD screen in the car.
  • the surround-view camera can also identify parking aisle signs, lane lines, curbs, and nearby vehicles.
  • the front-view long-distance camera is a camera installed in front of the vehicle, with a viewing distance of about 100 meters.
  • the light sensor can include an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor can turn off the display screen and/or the backlight when the hardware device is moved to the ear.
  • the hardware device can also be equipped with other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc., which will not be repeated here.
  • FIG. 1 does not constitute a limitation to the vehicle, and may include more or less components than shown in the illustration, or combine certain components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and computer-readable instructions.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be used to call the computer-readable instructions stored in the memory 1005, and execute the car-following method provided by the embodiment of the present application.
  • the present application provides a kind of car-following method, in the first embodiment of the car-following method, the car-following method comprises the following steps:
  • Step S10 acquiring the first location information of the own vehicle, and obtaining the own vehicle location point of the own vehicle according to the first location information;
  • vehicle driving is a dynamic process
  • the acquisition of the position information of the ego vehicle or the target vehicle is also dynamic, and the first position information is recorded and updated according to the acquisition and calculation cycle.
  • the first position information is the position information of each calculation cycle of the own vehicle, wherein the position information can be obtained through the camera, sensor, vehicle positioning module, and millimeter wave radar module of the own vehicle, and the specific content of the position information can refer to In the prior art, the applications and functions of cameras, sensors, vehicle positioning modules, and millimeter wave radar modules are set.
  • the location information may include but not limited to the following information: the continuously collected surrounding environment information of the own vehicle, the information of the following target vehicle, and location point information.
  • the surrounding environment information may include the lane information of the own vehicle , the driving information of the vehicle in front of this lane, the distance information between the vehicle in front and the own vehicle, whether there is a vehicle in the adjacent lane, the driving information of the vehicle in the adjacent lane, the distance information between the vehicle in the adjacent lane and the own vehicle, etc.;
  • the information may include the surrounding environment information of the target vehicle, the driving information of the target vehicle, etc.;
  • the location point information may be the location information collected by GPS (Global Positioning System, Global Positioning System) or Beidou satellite navigation system, and the positioning system is not limited here.
  • the own vehicle position point of the own vehicle vehicle is the current positioning position point of the own vehicle vehicle.
  • the obtaining of the ego vehicle location point of the ego vehicle according to the first location information may be set according to actual conditions. It can be understood that, due to the inaccuracy of the location points collected by the positioning system, sometimes the location points drift, so the location points can also be screened. If it is not screened, the location point of the own vehicle can be directly extracted according to the first location information. If the location point is screened, the location point that deviates from the lane of the vehicle can be discarded, or the location point of the vehicle in the previous cycle and the location point of the own vehicle can be discarded.
  • the driving situation of the vehicle is calculated to obtain the range of the position points in the current cycle of the own vehicle, so as to discard the non-compliant position points.
  • Step S20 recording the second position information of the target vehicle, and generating the target vehicle trajectory of the target vehicle according to the second position information;
  • the second position information is the position information of each calculation cycle fed back continuously by the target vehicle.
  • Generating the target vehicle track driven by the target vehicle according to the second position information may specifically be: extracting the continuous position points of the target vehicle in the second position information and the road data of the target vehicle, so as to generate the target vehicle by fitting on the map driving track.
  • the step of extracting the continuous location points of the target vehicle in the second location information may include: directly extracting the location points of the target vehicle according to the second location information, or filtering and correcting the received location points of the target vehicle.
  • the specific steps of screening and correcting the target vehicle position point are: receiving the target vehicle position signal point fed back by the target vehicle; obtaining the target vehicle lane corresponding to the target vehicle; judging whether the target vehicle position signal point deviates from the target Vehicle lane; if the target vehicle position signal point deviates from the target vehicle lane, then obtain the target vehicle deviation distance between the target vehicle position signal point and the deviated lane; determine whether the target vehicle deviation distance is less than the preset target vehicle A position point discarding threshold; if it is greater than or equal to the target vehicle position point discarding threshold, the position signal point is discarded; if it is less than the preset target vehicle position point discarding threshold, the target vehicle position signal point is corrected, and The corrected current position signal point is used as the position information of the target vehicle.
  • Step S30 constructing a car-following path according to the target vehicle trajectory and the self-vehicle location point, and controlling the self-vehicle to follow the car along the car-following path;
  • the step of constructing a car-following path according to the target vehicle trajectory and the vehicle location point is specifically: taking the vehicle location point as a starting point, previewing a preset distance directly in front of the vehicle vehicle, and extracting a point on the target vehicle trajectory , use the single-point preview method for local path planning, generate a cubic curve, and use the cubic curve as the vehicle-following path.
  • the preview point is a point on the track of the target vehicle intercepted at a preset distance from the front of the vehicle.
  • the local path planning is carried out between the point and the GPS point of the self-vehicle (that is, the position point of the self-vehicle) to generate a local path, that is, a local following path.
  • Step S40 and, monitor the distance between the following vehicle and the target vehicle in real time, and determine that the distance between the following vehicle and the target vehicle is greater than a preset distance , controlling the own vehicle to speed up and follow the vehicle along the vehicle following path.
  • the position point of the target vehicle can be obtained through the second position information of the target vehicle, and combined with the position point of the own vehicle, the distance between the target vehicle and the own vehicle can be obtained; the preset distance is a preset Whether the ego vehicle needs to accelerate the threshold.
  • the track of the target vehicle is obtained through the position information of the target vehicle
  • the vehicle-following path is planned through the position points of the own vehicle and the track of the target vehicle
  • the own vehicle is controlled to follow the vehicle along the following path.
  • the own vehicle is intelligently controlled to speed up and follow the vehicle.
  • step S20 of the above-mentioned embodiment the ego vehicle is obtained according to the first position information
  • the steps of ego position point include:
  • Step a obtaining the current position signal point and the driving lane of the ego vehicle in the first position information
  • Step b determining that the current position signal point deviates from the driving lane of the own vehicle, and obtaining a first deviation distance between the current position signal point and the driving lane of the own vehicle;
  • step c it is determined that the first deviation distance is less than the preset own vehicle abandonment threshold, and the current position signal point is corrected, and the corrected current position signal point is used as the own vehicle position point.
  • the position signal point is selected according to the drift situation.
  • the drift deviation is large, there may be a lane deviation.
  • the deviation point is outside the lane, judge whether the first deviation distance is less than the preset self-vehicle abandonment threshold. If it is greater than the self-vehicle abandonment threshold, consider the position signal If the point fails, the signal point is discarded. If it is less than, the deviation signal point is corrected to be within the road range, and the corrected signal point is used as the own vehicle signal point.
  • the position signal point as the GPS signal point as an example, referring to Figure 4, when the position signal point GPS deviation point drifts outside the driving lane of the ego vehicle, if the distance between the position signal point GPS deviation point and the deviated lane is less than the preset ego vehicle If the threshold is discarded, the GPS deviation point is corrected to be within the road range, the corrected signal point is the GPS correction point, and the GPS correction point is used as the own vehicle signal point.
  • step S20 of the above-mentioned embodiment the ego vehicle is obtained according to the first position information
  • the steps of the self-vehicle location point also include:
  • Step d obtaining the previous position signal point and the current position signal point in the first position information
  • Step e obtaining the position constraint value of the current position signal point relative to the previous position signal point
  • Step f obtaining a constrained circle with the previous position signal point as the center and the position constraint value as the radius;
  • Step g determining that the current position signal point is within the constrained circular range, and using the current position signal point as the own vehicle position point of the own vehicle.
  • the previous position signal point is the position signal point of the previous cycle
  • the driving condition of the own vehicle can be obtained by acquiring the driving parameters of the own vehicle, and then the position change of the own vehicle from the previous cycle to this cycle can be obtained
  • Theoretical value that is, the position constraint value of the current position signal point relative to the previous position signal point, so that the theoretical movement range of the own vehicle can be obtained through theoretical calculation
  • the position constraint value is the limit of the movement of the own vehicle value, assuming that the ego vehicle runs at a speed of 5 meters per second for one second (the calculation cycle is assumed to be one second), then the position constraint value is 5 meters, because the farthest straight-line distance of the ego vehicle offset from the previous position point is only 5 meters, the radius of the constraint circle is 5 meters.
  • the position signal point is outside the constrained circle, it is known that the position signal has drifted, and the amplitude is too large, and the signal point needs to be discarded; if the current position signal point is within the constrained circle range, the signal point There may be no drift, or even if the drift is within an acceptable error range, then the position signal point is acceptable.
  • the selection of the drifting position points of the own vehicle is constrained, thereby improving the accuracy of position signal point selection, and further improving the accuracy of vehicle-following path planning. Accuracy, improve the effectiveness of car following.
  • the step of obtaining the ego vehicle location point of the ego vehicle according to the first location information may include: in the first embodiment Steps a ⁇ c and/or steps d ⁇ g in the second embodiment, specifically, the specific sequence of steps a ⁇ c and steps d ⁇ g is not limited.
  • the drift of the ego location point can be constrained by the ego lane, so as to improve the position signal point
  • the problem of drift can greatly improve the accuracy of position signal point selection, thereby improving the accuracy of car-following path planning and improving the effectiveness of car-following.
  • step e the refinement step of obtaining the position constraint value of the current position signal point relative to the previous position signal point, includes:
  • Step h obtaining the vehicle signal of the own vehicle, and extracting the speed information and steering wheel angle information in the vehicle signal;
  • Step i recording the interval time between obtaining the current position signal point and the previous position signal point
  • Step j calculating the speed information, steering wheel angle information and interval time to obtain the position constraint value of the current position signal point relative to the previous position signal point.
  • the interval between the current position signal point and the previous position signal point is a preset calculation period, so that The position change range of the vehicle’s movement can be calculated.
  • the position constraint value is 5 meters, because the vehicle’s offset
  • the farthest straight-line distance of the previous position point is only 5 meters, and the radius of the constrained circle is 5 meters, thus obtaining the theoretical value of the position change of the ego vehicle in this period, which in turn improves the parameter extraction efficiency during following-vehicle path planning. accuracy.
  • step of controlling the own vehicle to follow the vehicle along the following path includes:
  • Step k obtaining the driving lane of the own vehicle corresponding to the own vehicle
  • Step m determining that the vehicle-following path crosses the driving lane of the own vehicle, and controlling the vehicle-following path to change lanes and follow the vehicle along the vehicle-following path.
  • the implementation of controlling the ego vehicle to change lanes along the following vehicle path can be divided into different situations, such as reminding the driver to change lanes, or the vehicle can automatically change lanes if it has authority. It can be understood that before changing lanes, it also includes judging whether the surrounding environment information of the vehicle meets the conditions for changing lanes, such as whether there is a car in the adjacent lane, whether the distance between the front and rear vehicles, the adjacent lane and the own vehicle, and the speed are appropriate. No longer.
  • the realization of the automatic lane change function or the lane change reminder function improves the accuracy of the following vehicle of the ego vehicle on the vehicle following path, thereby improving the effectiveness of following the target vehicle.
  • step of controlling the own vehicle to speed up and follow the vehicle along the following path includes:
  • Step n obtaining the speed limit value of the driving lane of the own vehicle where the own vehicle is located and the speed of the own vehicle traveling by the own vehicle;
  • Step p determining that the speed of the own vehicle is lower than the speed limit value, and controlling the own vehicle to speed up and follow the vehicle along the following path.
  • the camera system senses the surrounding environment in real time, including the signs on both sides of the driving lane of the vehicle.
  • the speed limit value of the current lane can be extracted by processing the road speed limit signs. If the speed of the ego vehicle is lower than the speed limit before speed up, the ego vehicle is controlled to speed up, and the speed after speed up can be set with reference to comprehensive parameters such as the speed of the target vehicle, current road conditions, and distance from the target vehicle.
  • step of controlling the own vehicle to follow the vehicle along the following path includes:
  • Step r obtaining the speed of the target vehicle traveling by the target vehicle through the second position information
  • Step s determining that the speed of the target vehicle is greater than a preset speed threshold, and obtaining the driving speed of the vehicle in front of the own vehicle;
  • Step u determining that the driving speed of the vehicle in front is greater than the speed of the target vehicle, and controlling the own vehicle to speed up and follow the vehicle along the following path.
  • the preset speed threshold is a preset speed value based on experience and calculation. When the speed of the target vehicle traveling by the target vehicle is greater than the preset speed threshold, it is considered that the target vehicle is accelerating and deviates from its own vehicle speed. In order to effectively follow the vehicle It is necessary to trigger the acceleration of the ego vehicle to follow up the target vehicle in time.
  • step r it is also possible to detect whether the target vehicle speeds up. If the target vehicle does not speed up, it can be considered that the own vehicle is still in the effective following state. If the target vehicle speeds up, and the speed after speeding up is greater than the preset speed The threshold needs to speed up and follow the own vehicle.
  • the step of detecting whether the target vehicle speeds up may include: obtaining the initial vehicle speed of the target vehicle through the second position information; detecting whether the initial vehicle speed is changed to the target vehicle speed; if the initial vehicle speed is changed to the target vehicle speed, it is considered The target vehicle is changing speed.
  • the initial vehicle speed and the target vehicle speed are the speed values before and after the detected target vehicle speed changes, and the target vehicle speed can be greater than the initial vehicle speed, that is, the target vehicle speeds up and travels. At this time, it is necessary to judge whether to speed up and follow the vehicle;
  • the target vehicle speed can also be lower than the initial vehicle speed, that is, when the target vehicle decelerates, the current speed of the ego vehicle is sufficient to follow the target vehicle, so there is no need to specially adjust the vehicle speed.
  • step of determining that the speed of the target vehicle is greater than a preset speed threshold, and obtaining the driving speed of the vehicle in front of the own vehicle further includes:
  • Step w determining that the driving speed of the vehicle in front is lower than the speed of the target vehicle, controlling the own vehicle to change lanes, and controlling the own vehicle after the lane change to perform the acquisition of the first position information of the own vehicle, A step of obtaining the own vehicle position point of the own vehicle according to the first position information.
  • the ego vehicle can automatically change lanes or issue a lane change reminder after judging the surrounding environment, so as to create conditions for the ego vehicle to speed up.
  • the lane change plan is automatically triggered, which will prevent the own vehicle from driving on the following path. At this time, it only needs to follow the target The driving direction of the vehicle is enough, and the following cycle will be re-planned based on the own vehicle after the lane change.
  • the lane change planning when it is perceived that the target vehicle is accelerating and the vehicle in front of the ego vehicle is moving slowly, the lane change planning is triggered. If the ego vehicle has the automatic lane change function, it can automatically Changing lanes can avoid the slow-moving vehicles ahead and create conditions for the own vehicle to speed up and follow the vehicle, thereby improving the effectiveness of following the vehicle.
  • the present application also provides a vehicle, the vehicle includes a memory, a processor, and computer-readable instructions stored on the memory and executable by the processor, wherein the computer-readable instructions are executed by the processor , realize the steps of the car following method as described above.
  • the present application also provides a computer-readable storage medium, and the computer-readable storage medium may be a non-volatile readable storage medium.
  • the computer-readable storage medium of the present application stores computer-readable instructions, wherein when the computer-readable instructions are executed by a processor, the steps of the above-mentioned car following method are realized.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium as described above (such as ROM/RAM , magnetic disk, optical disk), including several instructions to make a terminal device (which may be a mobile phone, computer, server, air conditioner, or network device, etc.) execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种跟车方法,包括:获取自车车辆的第一位置信息,根据第一位置信息得到自车车辆的自车位置点;记录目标车辆的第二位置信息,根据第二位置信息生成目标车辆行驶的目标车轨迹;根据目标车轨迹和自车位置点构建跟车路径,并控制自车车辆沿跟车路径进行跟车行驶;以及,实时监测跟车行驶的自车车辆和目标车辆之间的距离,确定跟车行驶的自车车辆和目标车辆之间的距离大于预设间隔距,控制自车车辆沿跟车路径进行提速跟车行驶。还公开了一种车辆及一种计算机可读存储介质。

Description

跟车方法、车辆及计算机可读存储介质
本申请要求于2021年8月6日提交中国专利局、申请号为202110905626.7、发明名称为“跟车方法、车辆及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种跟车方法、车辆及计算机可读存储介质。
背景技术
随着驾驶技术的发展,自动驾驶能够解决处理的场景逐渐增多完善,越来越多的智能汽车中都配置了跟车功能。
当前,自动驾驶车辆所采用的跟车方法主要是通过感知设备,如摄像头和毫米波雷达感知目标跟随车辆的行车轨迹,从而拟合生成自车车辆的跟车轨迹。但是,在目标车辆与自车车辆的距离较远时,容易出现目标车辆被其他车辆遮挡等情况,受限于感知设备的感知距离和感知视角的限制,感知设备常常感知不到目标车辆,而导致自车车辆对目标车辆的跟车行驶失效。
技术问题
本申请的主要目的在于提供一种跟车方法、车辆及计算机可读存储介质,旨在解决远距离跟车时,容易跟车行驶失效的技术问题。
技术解决方案
为实现上述目的,本申请提供一种跟车方法,所述跟车方法的步骤包括:
获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点;
记录目标车辆的第二位置信息,根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹;
根据所述目标车轨迹和所述自车位置点构建跟车路径,并控制所述自车车辆沿所述跟车路径进行跟车行驶;
以及,实时监测所述跟车行驶的自车车辆和所述目标车辆之间的距离,确定所述跟车行驶的自车车辆和所述目标车辆之间的距离大于预设间隔距,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
可选地,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,包括:
获取所述第一位置信息中的当前位置信号点和自车行驶车道;
确定所述当前位置信号点偏离所述自车行驶车道,获取所述当前位置信号点与所述自车行驶车道之间的第一偏离距离;
确定所述第一偏离距离小于预设自车舍弃阈值,修正所述当前位置信号点,并将修正后的当前位置信号点作为所述自车位置点。
可选地,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,还包括:
获取所述第一位置信息中的前一个位置信号点和当前位置信号点;
获取所述当前位置信号点相对所述前一个位置信号点的位置约束值;
得到以所述前一个位置信号点为圆心、以所述位置约束值为半径的约束圆形;
确定所述当前位置信号点在所述约束圆形范围内,将所述当前位置信号点作为所述自车车辆的自车位置点。
可选地,所述获取所述当前位置信号点相对所述前一个位置信号点的位置约束值的步骤,包括:
获取所述自车车辆的整车信号,提取整车信号中的速度信息和方向盘角度信息;
记录获取所述当前位置信号点和前一个位置信号点的间隔时间;
以及,对所述速度信息、方向盘角度信息和间隔时间进行计算,得到所述当前位置信号点相对所述前一个位置信号点的位置约束值。
可选地,所述控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
获取所述自车车辆所对应的自车行驶车道;
确定所述跟车路径跨越所述自车行驶车道,控制所述自车车辆沿所述跟车路径进行变道跟车行驶。
可选地,所述控制所述自车车辆沿所述跟车路径进行提速跟车行驶的步骤,包括:
获取所述自车车辆所在的自车行驶车道的限速值和自车车辆行驶的自车车速;
确定所述自车车速小于所述限速值,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
可选地,所述控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
通过所述第二位置信息获取所述目标车辆行驶的目标车车速;
确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度;
以及,确定所述前方车辆的行驶速度大于所述目标车车速,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
可选地,所述确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度的步骤之后,还包括:
确定所述前方车辆的行驶速度小于所述目标车车速,控制所述自车车辆进行变道,并控制变道后的自车车辆执行所述获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤。
此外,为实现上述目的,本申请还提供一种车辆,所述车辆包括存储器、处理器及存储在所述存储器上并可被所述处理器执行的计算机可读指令,其中所述计算机可读指令被所述处理器执行时实现如上所述的跟车方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机可读指令,其中所述计算机可读指令被处理器执行时,实现如上所述的跟车方法的步骤。
有益效果
本申请通过目标车辆的位置信息得到目标车辆行驶轨迹,通过自车车辆的位置点与目标车辆的行驶轨迹规划出跟车路径,并控制自车车辆沿所述跟车路径进行跟车行驶,并且,当自车车辆与目标车辆的距离大于预设间隔距离时,智能地控制自车车辆进行提速跟车行驶。通过对位置信息采集,而不再只依赖感知设备进行跟车,从而解决了远距离跟车时,容易出现对目标车辆的跟车行驶失效的问题,实现了较长距离对特定车辆的智能跟车与编队跟车,进而提高了跟车行驶的有效性。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2为本申请跟车方法第一实施例的流程示意图;
图3为本申请跟车方法位置信号点偏离修正一示意图;
图4为本申请跟车方法位置点信号偏离修正另一示意图;
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
目前,智能驾驶车辆主流的传感器包含摄像头和毫米波雷达,其跟车的方式主要是通过前向摄像头与前向毫米波雷达感知前车的行车轨迹去拟合一条跟车的轨迹。受限于传感器的感知距离和感知视角的能力,在目标车辆距离自车车辆较远、期望的目标车辆被其他车辆遮挡、目标车辆切出车道等情况下,由于传感器感知不到目标车辆,而导致交通拥堵辅助功能无法跟随目标车辆。具体的,现阶段的跟车系统存在以下缺陷:
1) 传感器感知距离受限:现阶段量产的前视摄像头和前视雷达通常在200米以下,远距离的跟车难以实现;
2) 传感器的感知视角:现阶段量产的前视摄像头和前视雷达可视角通常不会太大,相邻车道的跟车难以实现;
3)抗遮挡能力差:传感器到目标跟踪车辆之间不能有遮挡的物体,否则将不会感知到目标车辆的存在,容易出现车辆跟丢的情况。跟车系统需要对目标车辆实时地跟随,中途不能有间断的时间。
本申请实施例的主要解决方案是:获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点;
连续记录目标车辆的第二位置信息,根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹;
根据所述目标车轨迹和所述自车位置点构建跟车路径,并控制所述自车车辆沿所述跟车路径进行跟车行驶;
以及,实时监测所述跟车行驶的自车车辆和所述目标车辆之间的距离,确定所述跟车行驶的自车车辆和所述目标车辆之间的距离大于预设间隔距,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
本申请实施例通过目标车辆的位置信息得到目标车辆行驶轨迹,通过自车车辆的位置点与目标车辆的行驶轨迹规划出跟车路径,并控制自车车辆沿所述跟车路径进行跟车行驶,并且,当自车车辆与目标车辆的距离大于预设间隔距离时,智能地控制自车车辆进行提速跟车行驶。通过对位置信息采集和应用,而不再只依赖感知设备,从而解决了远距离跟车时,容易出现对目标车辆的跟车行驶失效的问题。避免中途因交通拥堵问题,车辆编队中出现其他车辆导致编队行驶失败,实现了较长距离对特定车辆的智能跟车与编队跟车,进而提高了跟车行驶的有效性。
为了使本申请的目的、技术方案及优点更加清楚明白,下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图。
本申请实施例终端可以为车辆。如图1所示,该为车辆可以包括处理器1001,例如CPU,通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选的用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,车辆还可以包括摄像头、传感器、车载定位模块、毫米波雷达模块、音频电路、RF(Radio Frequency,射频)电路,Wi-Fi模块等等。其中,摄像头包括环视摄像头和前视摄像头等,传感器比如光传感器、运动传感器以及其他传感器。具体地,环视摄像头,或称为全景式影像监控系统,能将汽车顶部各个方向鸟视画面拼接起来,并动态显示在车内的液晶屏上,此外,环视摄像头还能识别停车通道标识、车道线、路缘和附近车辆。前视长距离摄像头为安装在车辆前方的摄像头,可视距离在百米左右。光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在硬件设备移动到耳边时,关闭显示屏和/或背光。当然,硬件设备还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的车辆的结构并不构成对车辆的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及计算机可读指令。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的计算机可读指令,并执行本申请实施例提供的跟车方法。
参照图2,本申请提供一种跟车方法,在跟车方法的第一实施例中,跟车方法包括以下步骤:
步骤S10,获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点;
需要说明的是,由于车辆行驶是动态的过程,因此对自车车辆或者目标车辆的位置信息获取也是动态的,所述第一位置信息根据采集和计算周期进行记录和更新。
所述第一位置信息为自车车辆各计算周期的位置信息,其中,位置信息中可以通过自车车辆的摄像头、传感器、车载定位模块、毫米波雷达模块进行获取,位置信息的具体内容可以参照现有技术中摄像头、传感器、车载定位模块、毫米波雷达模块的应用和功能进行设定。位置信息可以包括但不限于下述信息:连续采集到的自车车辆的周围环境信息、跟车的目标车辆的信息、位置点信息,具体的,周围环境信息可以包括自车车辆行驶的车道信息、本车道前车的行驶信息、前车与自车车辆的距离信息、相邻车道是否有车辆以及相邻车道车辆的行驶信息、相邻车道车辆与自车车辆的距离信息等;目标车辆的信息可以包括目标车辆的周围环境信息、目标车辆的行驶信息等;位置点信息可以为GPS(Global Positioning System,全球定位系统)或者北斗卫星导航系统采集到的位置信息,定位系统在此不作限定。
所述自车车辆的自车位置点为自车车辆当前的定位位置点。所述根据所述第一位置信息得到所述自车车辆的自车位置点,可以根据实际情况进行设定。可以理解的,由于定位系统采集到的定位位置点存在不精确的情况,有时会发生位置点漂移,因此也可以对位置点进行筛选。若不筛选,则可以根据第一位置信息直接提取自车位置点,若对位置点进行筛选,可以将偏离自车车道的位置点进行舍弃,或者通过上一周期中自车的位置点以及自车车辆的行驶情况进行计算,得到自车车辆的当前周期中位置点的范围,从而对不符合的位置点进行舍弃。
步骤S20,记录目标车辆的第二位置信息,根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹;
所述第二位置信息为目标车辆连续反馈回来的各计算周期的位置信息。根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹具体可以为:提取第二位置信息中目标车辆的连续的位置点以及目标车辆的道路数据,从而在地图上拟合生成目标车辆的行驶轨迹。
其中,提取第二位置信息中目标车辆的连续的位置点的步骤可以包括:根据第二位置信息直接提取目标车位置点,也可以对接收到的目标车位置点进行筛选修正。对目标车位置点进行筛选修正的具体步骤为:接收所述目标车辆反馈的目标车位置信号点;获取所述目标车辆对应的目标车车道;判断所述目标车位置信号点是否偏离所述目标车车道;若所述目标车位置信号点偏离所述目标车车道,则获取所述目标车位置信号点与所偏离车道的目标车偏离距离;判断所述目标车偏离距离是否小于预设目标车位置点舍弃阈值;若大于或等于所述目标车位置点舍弃阈值,则舍弃该位置信号点,若小于所述预设目标车位置点舍弃阈值,则修正所述目标车位置信号点,并将修正后的当前位置信号点作为所述目标车辆的位置信息。
步骤S30,根据所述目标车轨迹和所述自车位置点构建跟车路径,并控制所述自车车辆沿所述跟车路径进行跟车行驶;
根据所述目标车轨迹和所述自车位置点构建跟车路径的步骤具体为,以自身位置点为起点,预瞄自车车辆正前方某一预设距离,提取目标车轨迹上的一个点,使用单点预瞄法进行局部路径规划,生成一条三次曲线,将该三次曲线作为跟车路径。参照图3,以位置信号点为GPS信号点为例,预瞄点为目标车轨迹上,与自车车辆正前方某一预设距离处截取的一个点,使用单点预瞄法在预瞄点与自车GPS点(即自车位置点)之间进行局部路径规划,生成局部路径,即局部跟车路径。
步骤S40,以及,实时监测所述跟车行驶的自车车辆和所述目标车辆之间的距离,确定所述跟车行驶的自车车辆和所述目标车辆之间的距离大于预设间隔距,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
通过目标车辆的第二位置信息可以获取到目标车辆位置点,再结合自车车辆的位置点可以得到所述目标车辆与所述自车车辆的间隔距离;所述预设间隔距离为预设的自车是否需要加速的阈值。
通过对自车车辆与目标车辆之间的距离进行判断,当超过一定的阈值时,控制自车车辆提速追赶,从而减少因跟车距离过大,出现跟车有效性降低的问题发生,同时可以使跟车组车队的效果更加显著。
在本实施例中,通过目标车辆的位置信息得到目标车辆行驶轨迹,通过自车车辆的位置点与目标车辆的行驶轨迹规划出跟车路径,并控制自车车辆沿所述跟车路径进行跟车行驶,并且,当自车车辆与目标车辆的距离大于预设间隔距离时,智能地控制自车车辆进行提速跟车行驶。通过对位置信息采集,而不再只依赖感知设备进行跟车,从而解决了远距离跟车时,容易出现对目标车辆的跟车行驶失效的问题,实现了较长距离对特定车辆的智能跟车与编队跟车,进而提高了跟车行驶的有效性。
进一步地,基于上述本申请的第一实施例,提出本申请跟车方法的第二实施例,在本实施例中,上述实施例步骤S20,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,包括:
步骤a,获取所述第一位置信息中的当前位置信号点和自车行驶车道;
步骤b,确定所述当前位置信号点偏离所述自车行驶车道,获取所述当前位置信号点与所述自车行驶车道之间的第一偏离距离;
步骤c,确定所述第一偏离距离小于预设自车舍弃阈值,修正所述当前位置信号点,并将修正后的当前位置信号点作为所述自车位置点。
当所述当前位置信号点出现漂移时,视漂移情况对位置信号点进行取舍。当漂移偏差较大时,可能会出现偏离车道的情况,当偏离点在车道外时,判断第一偏离距离是否小于预设自车舍弃阈值,若大于该自车舍弃阈值,则认为该位置信号点失效,舍弃该信号点,若小于,则将该偏离信号点修正到道路范围之内,并将修正后的信号点作为所述自车信号点。以位置信号点为GPS信号点为例,参照图4,当位置信号点GPS偏离点漂移到自车行驶车道外时,如果位置信号点GPS偏离点与所偏离车道的距离是小于预设自车舍弃阈值,则将该GPS偏离点修正到道路范围内,修正后的信号点为GPS修正点,将该GPS修正点作为自车信号点。
本实施例中,通过对位置信号点的漂移进行检测,当偏离距离超出预设的舍弃阈值时进行舍弃,当偏离距离小于预设舍弃阈值时进行修正,从而改善位置信号点漂移的问题,提升位置信号点选取的精确性,进而提高跟车路径规划的准确性,提高跟车有效性。
进一步地,基于上述本申请的第一实施例,提出本申请跟车方法的第三实施例,在本实施例中,上述实施例步骤S20,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,还包括:
步骤d,获取所述第一位置信息中的前一个位置信号点和当前位置信号点;
步骤e,获取所述当前位置信号点相对所述前一个位置信号点的位置约束值;
步骤f,得到以所述前一个位置信号点为圆心、以所述位置约束值为半径的约束圆形;
步骤g,确定所述当前位置信号点在所述约束圆形范围内,将所述当前位置信号点作为所述自车车辆的自车位置点。
所述前一个位置信号点为上一周期的位置信号点,通过对自车车辆的行驶参数的获取可以得到自车车辆的行驶状况,继而得出自车车辆上一周期到本周期的位置变化的理论值,即当前位置信号点相对所述前一个位置信号点的位置约束值,从而通过理论计算可以得出自车车辆的理论运动范围,也可以理解为,位置约束值是自车车辆运动的极限值,假设自车车辆以5米每秒的速度运行了一秒(计算周期假设为一秒),那么位置约束值就是5米,因为自车车辆偏移前一个位置点的最远直线距离只有5米,约束圆形的半径为5米。若当前获取的位置信号点在约束圆形外,则可知该位置信号发生漂移,且幅度过大,需舍弃该信号点;若当前位置信号点在所述约束圆形范围内,则该信号点可能没有漂移,或者即使漂移也在可接收的误差范围内,则该位置信号点可取。
本实施例中,通过对自车车辆运动范围的理论值进行计算,进而对发生漂移的自车位置点的选取进行了约束,从而提升位置信号点选取的精确性,进而提高跟车路径规划的准确性,提高跟车有效性。
本领域技术人员可以理解的,再次参照图3,在另一实施例中,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,可以包括:第一实施例中的步骤a~c和/或第二实施例中步骤d~g,具体的,步骤a~c和步骤d~g的具体顺序不作限定。
本实施例中,既通过自车车辆运动范围的理论值对发生漂移的自车位置点的选取进行了约束,又可以通过自车车道对自车位置点的漂移进行约束,从而改善位置信号点漂移的问题,大大提升位置信号点选取的精确性,进而提高跟车路径规划的准确性,提高跟车有效性。
进一步地,步骤e,获取所述当前位置信号点相对所述前一个位置信号点的位置约束值的细化步骤,包括:
步骤h,获取所述自车车辆的整车信号,提取整车信号中的速度信息和方向盘角度信息;
步骤i,记录获取所述当前位置信号点和前一个位置信号点的间隔时间;
步骤j,对所述速度信息、方向盘角度信息和间隔时间进行计算,得到所述当前位置信号点相对所述前一个位置信号点的位置约束值。
本实施例中,通过对自车车辆的行驶信息进行提取,可以得到自车车辆的速度和行驶方向等信息,当前位置信号点与前一个位置信号点的间隔时间为预设的计算周期,从而可以计算得到自车车辆运动的位置变化范围,假设自车车辆以5米每秒的速度运行了一秒(计算周期假设为一秒),那么位置约束值就是5米,因为自车车辆偏移前一个位置点的最远直线距离只有5米,约束圆形的半径为5米,由此得到自车车辆在该周期内的位置变化的理论值,进而提升了跟车路径规划时参数提取的准确性。
进一步地,控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
步骤k,获取所述自车车辆所对应的自车行驶车道;
步骤m,确定所述跟车路径跨越所述自车行驶车道,控制所述自车车辆沿所述跟车路径进行变道跟车行驶。
其中,控制所述自车车辆沿所述跟车路径进行变道跟车行驶实现时可以分为不同的情况,如提醒驾驶员进行变道,或者车辆具有权限,则可以自动变道。可以理解的,变道前还包括对车辆周围环境信息是否具备变道条件进行判断,如相邻车道是否有车,前后车辆以及相邻车道与自车车辆的距离和车速是否合适等,在次不再赘述。
本实施例中,通过自动变道功能或变道提醒功能的实现提升了自车车辆对跟车路径的跟车行驶准确性,进而提高对目标车辆跟车的有效性。
进一步地,控制所述自车车辆沿所述跟车路径进行提速跟车行驶的步骤,包括:
步骤n,获取所述自车车辆所在的自车行驶车道的限速值和自车车辆行驶的自车车速;
步骤p,确定所述自车车速小于所述限速值,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
可以理解的,车辆在行驶过程中,摄像头系统实时对周围环境进行感知,包括自车行驶车道两侧的标识,当然,通过对道路限速标识进行处理可以提取出当前车道的限速值。如果自车提速前,车速小于限速值,则控制自车车辆进行提速,提速后的车速可以参照目标车辆的车速、当前路况、与目标车辆的距离等综合参数进行设定。
本实施例中,通过对当前车道的限速值进行确认,防止或减少道路交通事故发生,为人车行驶建立了安全保护屏障。
进一步地,控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
步骤r,通过所述第二位置信息获取所述目标车辆行驶的目标车车速;
步骤s,确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度;
步骤u,确定所述前方车辆的行驶速度大于所述目标车车速,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
所述预设速度阈值为根据经验和计算进行预设的速度值,当所述目标车辆行驶的目标车车速大于预设速度阈值时,认为目标车辆在加速偏离自车车速,为了跟车的有效性,需要触发自车车辆提速,以对目标车辆及时进行跟进。
为了安全提速需判断自车车道的前方车辆的距离和车速,如果前方车辆与自车车辆的距离较远,前方车辆车速大于目标车车速,则认为自车车辆可以安全提速到目标车车速。
可以理解的,在步骤r之前,也可以先检测目标车辆是否提速,如果目标车辆没有提速,可以认为自车车辆仍处于有效跟车状态,如果目标车辆提速,且提速后的速度大于预设速度阈值则需要对自车车辆进行提速跟车。检测目标车辆是否提速的步骤可以包括:通过所述第二位置信息获取所述目标车辆行驶的初始车速;检测所述初始车速是否变更为目标车速;若所述初始车速变更为目标车速,则认为目标车辆正在改变速度。其中初始车速和目标车速为检测到的目标车辆速度改变前、后的速度值,所述目标车速可以大于初始车速,即目标车辆提速行驶,此时需要判断是否对自车车辆进行提速跟车;所述目标车速也可以小于初始车速,即目标车辆减速行驶时,自车车辆的当前车速足够对目标车辆进行跟车行驶,则不需要特意对车速进行调整。
本实施例中,当目标车辆加速偏离自车车速时,在具备提速条件下自动提速跟车,提升了车辆跟车的智能性,进而提升用户的体验感。
进一步地,所述确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度的步骤之后,还包括:
步骤w,确定所述前方车辆的行驶速度小于所述目标车车速,控制所述自车车辆进行变道,并控制变道后的自车车辆执行所述获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤。
如果自车车辆所在车道的前方车辆车速小于目标车车速,则自车车辆在该车道提速后的车速仍小于目标车辆的目标车车速,那么就容易产生跟车距离增大甚至跟车难度大实现困难的情况,因此,此时自车车辆对周围环境情况判断后可以自动变道或者发出变道提醒,以为自车车辆提速行驶创造条件。
可以理解的,当跟车路径为在本车道行驶,而在本车道不满足提速条件时,自动触发了变道规划,会使自车车辆不在跟车路径上行驶,此时只需沿着目标车辆的行驶方向即可,下一个周期会基于变道后的自车车辆重新进行跟车路径规划。
本实施例中,当感知到目标车辆正在加速,而自车车辆前方的车辆行驶缓慢的时候,触发变道规划,若自身车辆具备自动变道功能,经驾驶员确认变道后,可以进行自动变道,可以避开前方缓慢行驶的车辆,为自车车辆提速跟车创造条件,从而提高跟车的有效性。
此外,本申请还提供一种车辆,所述车辆包括存储器、处理器及存储在所述存储器上并可被所述处理器执行的计算机可读指令,其中所述计算机可读指令被处理器执行时,实现如上述的跟车方法的步骤。
其中,该计算机可读指令被执行时所实现的方法可参照本申请跟车方法的各个实施例,此处不再赘述。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质可以为非易失性可读存储介质。
本申请计算机可读存储介质上存储有计算机可读指令,其中所述计算机可读指令被处理器执行时,实现如上述的跟车方法的步骤。
其中,该计算机可读指令被执行时所实现的方法可参照本申请跟车方法的各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种跟车方法,其中,所述跟车方法的步骤包括:
    获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点;
    记录目标车辆的第二位置信息,根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹;
    以及,根据所述目标车轨迹和所述自车位置点构建跟车路径,并控制所述自车车辆沿所述跟车路径进行跟车行驶;
    实时监测所述跟车行驶的自车车辆和所述目标车辆之间的距离,确定所述跟车行驶的自车车辆和所述目标车辆之间的距离大于预设间隔距,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  2. 根据权利要求1所述的跟车方法,其中,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,包括:
    获取所述第一位置信息中的当前位置信号点和自车行驶车道;
    确定所述当前位置信号点偏离所述自车行驶车道,获取所述当前位置信号点与所述自车行驶车道之间的第一偏离距离;
    确定所述第一偏离距离小于预设自车舍弃阈值,修正所述当前位置信号点,并将修正后的当前位置信号点作为所述自车位置点。
  3. 根据权利要求1所述的跟车方法,其中,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,还包括:
    获取所述第一位置信息中的前一个位置信号点和当前位置信号点;
    获取所述当前位置信号点相对所述前一个位置信号点的位置约束值;
    得到以所述前一个位置信号点为圆心、以所述位置约束值为半径的约束圆形;
    确定所述当前位置信号点在所述约束圆形范围内,将所述当前位置信号点作为所述自车车辆的自车位置点。
  4. 根据权利要求3所述的跟车方法,其中,所述获取所述当前位置信号点相对所述前一个位置信号点的位置约束值的步骤,包括:
    获取所述自车车辆的整车信号,提取整车信号中的速度信息和方向盘角度信息;
    记录获取所述当前位置信号点和前一个位置信号点的间隔时间;
    对所述速度信息、方向盘角度信息和间隔时间进行计算,得到所述当前位置信号点相对所述前一个位置信号点的位置约束值。
  5. 根据权利要求1所述的跟车方法,其中,所述控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
    获取所述自车车辆所对应的自车行驶车道;
    确定所述跟车路径跨越所述自车行驶车道,控制所述自车车辆沿所述跟车路径进行变道跟车行驶。
  6. 根据权利要求1所述的跟车方法,其中,所述控制所述自车车辆沿所述跟车路径进行提速跟车行驶的步骤,包括:
    获取所述自车车辆所在的自车行驶车道的限速值和自车车辆行驶的自车车速;
    确定所述自车车速小于所述限速值,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  7. 根据权利要求1所述的跟车方法,其中,所述控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
    通过所述第二位置信息获取所述目标车辆行驶的目标车车速;
    确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度;
    确定所述前方车辆的行驶速度大于所述目标车车速,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  8. 根据权利要求7所述的跟车方法,其中,所述确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度的步骤之后,还包括:
    确定所述前方车辆的行驶速度小于所述目标车车速,控制所述自车车辆进行变道,并控制变道后的自车车辆执行所述获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤。
  9. 一种车辆,其中,所述车辆包括存储器、处理器及存储在所述存储器上并可被所述处理器执行的计算机可读指令,其中所述计算机可读指令被所述处理器执行时,实现如下步骤:
    获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点;
    记录目标车辆的第二位置信息,根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹;
    根据所述目标车轨迹和所述自车位置点构建跟车路径,并控制所述自车车辆沿所述跟车路径进行跟车行驶;
    以及,实时监测所述跟车行驶的自车车辆和所述目标车辆之间的距离,确定所述跟车行驶的自车车辆和所述目标车辆之间的距离大于预设间隔距,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  10. 根据权利要求9所述的车辆,其中,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,包括:
    获取所述第一位置信息中的当前位置信号点和自车行驶车道;
    确定所述当前位置信号点偏离所述自车行驶车道,获取所述当前位置信号点与所述自车行驶车道之间的第一偏离距离;
    确定所述第一偏离距离小于预设自车舍弃阈值,修正所述当前位置信号点,并将修正后的当前位置信号点作为所述自车位置点。
  11. 根据权利要求9所述的车辆,其中,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,还包括:
    获取所述第一位置信息中的前一个位置信号点和当前位置信号点;
    获取所述当前位置信号点相对所述前一个位置信号点的位置约束值;
    得到以所述前一个位置信号点为圆心、以所述位置约束值为半径的约束圆形;
    确定所述当前位置信号点在所述约束圆形范围内,将所述当前位置信号点作为所述自车车辆的自车位置点。
  12. 根据权利要求11所述的车辆,其中,所述获取所述当前位置信号点相对所述前一个位置信号点的位置约束值的步骤,包括:
    获取所述自车车辆的整车信号,提取整车信号中的速度信息和方向盘角度信息;
    记录获取所述当前位置信号点和前一个位置信号点的间隔时间;
    以及,对所述速度信息、方向盘角度信息和间隔时间进行计算,得到所述当前位置信号点相对所述前一个位置信号点的位置约束值。
  13. 根据权利要求9所述的车辆,其中,所述控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
    通过所述第二位置信息获取所述目标车辆行驶的目标车车速;
    确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度;
    以及,确定所述前方车辆的行驶速度大于所述目标车车速,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  14. 根据权利要求13所述的车辆,其中,所述确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度的步骤之后,还包括:
    确定所述前方车辆的行驶速度小于所述目标车车速,控制所述自车车辆进行变道,并控制变道后的自车车辆执行所述获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机可读指令,其中所述计算机可读指令被处理器执行时,实现如下步骤:获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点;
    记录目标车辆的第二位置信息,根据所述第二位置信息生成所述目标车辆行驶的目标车轨迹;
    根据所述目标车轨迹和所述自车位置点构建跟车路径,并控制所述自车车辆沿所述跟车路径进行跟车行驶;
    以及,实时监测所述跟车行驶的自车车辆和所述目标车辆之间的距离,确定所述跟车行驶的自车车辆和所述目标车辆之间的距离大于预设间隔距,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  16. 根据权利要求15所述的计算机可读存储介质,其中,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,包括:
    获取所述第一位置信息中的当前位置信号点和自车行驶车道;
    确定所述当前位置信号点偏离所述自车行驶车道,获取所述当前位置信号点与所述自车行驶车道之间的第一偏离距离;
    确定所述第一偏离距离小于预设自车舍弃阈值,修正所述当前位置信号点,并将修正后的当前位置信号点作为所述自车位置点。
  17. 根据权利要求15所述的计算机可读存储介质,其中,所述根据所述第一位置信息得到所述自车车辆的自车位置点的步骤,还包括:
    获取所述第一位置信息中的前一个位置信号点和当前位置信号点;
    获取所述当前位置信号点相对所述前一个位置信号点的位置约束值;
    得到以所述前一个位置信号点为圆心、以所述位置约束值为半径的约束圆形;
    确定所述当前位置信号点在所述约束圆形范围内,将所述当前位置信号点作为所述自车车辆的自车位置点。
  18. 根据权利要求17所述的计算机可读存储介质,其中,所述获取所述当前位置信号点相对所述前一个位置信号点的位置约束值的步骤,包括:
    获取所述自车车辆的整车信号,提取整车信号中的速度信息和方向盘角度信息;
    记录获取所述当前位置信号点和前一个位置信号点的间隔时间;
    以及,对所述速度信息、方向盘角度信息和间隔时间进行计算,得到所述当前位置信号点相对所述前一个位置信号点的位置约束值。
  19. 根据权利要求15所述的计算机可读存储介质,其中,所述控制所述自车车辆沿所述跟车路径进行跟车行驶的步骤,包括:
    通过所述第二位置信息获取所述目标车辆行驶的目标车车速;
    确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度;
    以及,确定所述前方车辆的行驶速度大于所述目标车车速,控制所述自车车辆沿所述跟车路径进行提速跟车行驶。
  20. 根据权利要求19所述的计算机可读存储介质计算机可读存储介质,其中,所述确定所述目标车车速大于预设速度阈值,获取所述自车车辆的前方车辆的行驶速度的步骤之后,还包括:
    确定所述前方车辆的行驶速度小于所述目标车车速,控制所述自车车辆进行变道,并控制变道后的自车车辆执行所述获取自车车辆的第一位置信息,根据所述第一位置信息得到所述自车车辆的自车位置点的步骤。
PCT/CN2022/091751 2021-08-06 2022-05-09 跟车方法、车辆及计算机可读存储介质 WO2023010928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110905626.7 2021-08-06
CN202110905626.7A CN113696893B (zh) 2021-08-06 2021-08-06 跟车方法、车辆及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023010928A1 true WO2023010928A1 (zh) 2023-02-09

Family

ID=78651778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091751 WO2023010928A1 (zh) 2021-08-06 2022-05-09 跟车方法、车辆及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113696893B (zh)
WO (1) WO2023010928A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115973162A (zh) * 2023-02-14 2023-04-18 吉咖智能机器人有限公司 用于确定车辆行驶轨迹的方法、装置、电子设备和介质
CN115973162B (zh) * 2023-02-14 2024-05-31 吉咖智能机器人有限公司 用于确定车辆行驶轨迹的方法、装置、电子设备和介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696893B (zh) * 2021-08-06 2023-07-04 上汽通用五菱汽车股份有限公司 跟车方法、车辆及计算机可读存储介质
CN114162123B (zh) * 2021-12-31 2023-03-14 苏州立方元智能科技有限公司 一种自动成列行驶车辆系统及控制方法
CN115909797A (zh) * 2022-11-03 2023-04-04 中国第一汽车股份有限公司 一种多车智能协同方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118261A (ja) * 1998-10-16 2000-04-25 Toyota Motor Corp 渋滞追従装置および車両制御装置
CN106114511A (zh) * 2016-07-21 2016-11-16 辽宁工业大学 一种汽车巡航系统关键目标识别方法
CN109131312A (zh) * 2018-08-01 2019-01-04 厦门大学 一种智能电动汽车acc/esc集成控制系统及其方法
CN110435654A (zh) * 2019-07-11 2019-11-12 浙江吉利汽车研究院有限公司 一种用于智能领航系统的跟车方法、装置和设备
CN111319623A (zh) * 2020-03-18 2020-06-23 东软睿驰汽车技术(上海)有限公司 一种基于自适应巡航控制的车辆筛选方法及装置
US10762788B2 (en) * 2017-08-01 2020-09-01 Swoppz, LLC Method and system for requesting and granting priority between vehicles
JP2021028208A (ja) * 2019-08-09 2021-02-25 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN113696893A (zh) * 2021-08-06 2021-11-26 上汽通用五菱汽车股份有限公司 跟车方法、车辆及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215256B (zh) * 2013-06-05 2018-03-23 深圳市赛格导航科技股份有限公司 在地图上显示车辆行驶路线的方法
CN106114507B (zh) * 2016-06-21 2018-04-03 百度在线网络技术(北京)有限公司 用于智能车辆的局部轨迹规划方法和装置
CN110871797A (zh) * 2018-08-13 2020-03-10 富泰华工业(深圳)有限公司 自动跟车方法、电子装置和存储介质
CN111845742B (zh) * 2019-04-22 2021-11-23 上海汽车集团股份有限公司 智能驾驶车辆的跟车控制系统及方法
CN111273673A (zh) * 2020-03-09 2020-06-12 新石器慧通(北京)科技有限公司 一种无人车的自动驾驶跟随方法、系统及无人车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000118261A (ja) * 1998-10-16 2000-04-25 Toyota Motor Corp 渋滞追従装置および車両制御装置
CN106114511A (zh) * 2016-07-21 2016-11-16 辽宁工业大学 一种汽车巡航系统关键目标识别方法
US10762788B2 (en) * 2017-08-01 2020-09-01 Swoppz, LLC Method and system for requesting and granting priority between vehicles
CN109131312A (zh) * 2018-08-01 2019-01-04 厦门大学 一种智能电动汽车acc/esc集成控制系统及其方法
CN110435654A (zh) * 2019-07-11 2019-11-12 浙江吉利汽车研究院有限公司 一种用于智能领航系统的跟车方法、装置和设备
JP2021028208A (ja) * 2019-08-09 2021-02-25 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN111319623A (zh) * 2020-03-18 2020-06-23 东软睿驰汽车技术(上海)有限公司 一种基于自适应巡航控制的车辆筛选方法及装置
CN113696893A (zh) * 2021-08-06 2021-11-26 上汽通用五菱汽车股份有限公司 跟车方法、车辆及计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115973162A (zh) * 2023-02-14 2023-04-18 吉咖智能机器人有限公司 用于确定车辆行驶轨迹的方法、装置、电子设备和介质
CN115973162B (zh) * 2023-02-14 2024-05-31 吉咖智能机器人有限公司 用于确定车辆行驶轨迹的方法、装置、电子设备和介质

Also Published As

Publication number Publication date
CN113696893B (zh) 2023-07-04
CN113696893A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
EP3705846A1 (en) Object location indicator system and method
WO2023010928A1 (zh) 跟车方法、车辆及计算机可读存储介质
US20210146937A1 (en) Vehicle control device
US10964216B2 (en) Method for providing information about a vehicle's anticipated driving intention
US9187118B2 (en) Method and apparatus for automobile accident reduction using localized dynamic swarming
JP6269552B2 (ja) 車両走行制御装置
US20160347328A1 (en) Driving assistance device and driving assistance method
US10192438B2 (en) Electronic apparatus, guide method, and guide system
JP2021099793A (ja) インテリジェント交通管制システム及びその制御方法
JP2007017340A (ja) ナビゲーション装置及びナビゲーション方法
JP2008039501A (ja) 車載用ナビゲーション装置
US11551373B2 (en) System and method for determining distance to object on road
JP6493299B2 (ja) 自動運転システム及び自動運転状態報知プログラム
CN108058707B (zh) 信息显示装置、信息显示方法及信息显示程序的记录介质
WO2021009534A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP2012048645A (ja) 車載情報通信装置、路側情報通信装置並びに通信システム
JP2007274564A (ja) キャリブレーション装置及びキャリブレーション方法
JP2017033403A (ja) 運転支援装置
US11361687B2 (en) Advertisement display device, vehicle, and advertisement display method
KR102630991B1 (ko) 차량의 위치 결정 방법, 위치 결정 장치 및 주행 제어 시스템
JP6801384B2 (ja) 交通情報提供装置、交通情報提供プログラム、交通情報提供方法および交通情報提供システム
JP4954956B2 (ja) 車両運転支援装置
JP7067888B2 (ja) 合流支援装置、合流支援システム、車載器、合流支援方法、及びプログラム
JP2017004339A (ja) 車両用運転者支援装置
JPWO2020136893A1 (ja) 通信システム、通信端末、制御方法、プログラム、およびプログラムを記憶する記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE