WO2023010848A1 - 中央空调控制系统 - Google Patents

中央空调控制系统 Download PDF

Info

Publication number
WO2023010848A1
WO2023010848A1 PCT/CN2022/080013 CN2022080013W WO2023010848A1 WO 2023010848 A1 WO2023010848 A1 WO 2023010848A1 CN 2022080013 W CN2022080013 W CN 2022080013W WO 2023010848 A1 WO2023010848 A1 WO 2023010848A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
address
control system
central air
communication bus
Prior art date
Application number
PCT/CN2022/080013
Other languages
English (en)
French (fr)
Inventor
徐磊
曹基宏
孙照鹏
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Priority to CN202280026628.1A priority Critical patent/CN117121443A/zh
Publication of WO2023010848A1 publication Critical patent/WO2023010848A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the present disclosure relates to the technical field of air conditioning control, in particular to a central air conditioning control system.
  • the central air-conditioning system includes multiple indoor units. In the case of multiple systems, the number of indoor units will be more. If you want to manage these air-conditioners conveniently, ordinary remote control is no longer sufficient. Requirements, so need to use multiple controllers for management.
  • a central air-conditioning control system which is characterized in that it includes at least one outdoor unit, at least one indoor unit, at least one controller and a configuration module.
  • At least one indoor unit is communicatively connected to each outdoor unit through a communication bus; each controller in the at least one controller can communicate with each other and is respectively connected to the communication bus; the configuration module is configured to access the communication at the new controller
  • the address acquisition instruction is sent to the communication bus, and the instruction fed back from the new controller is analyzed to determine the address list of the controller; according to the address list of the controller, the address of the new controller is configured.
  • FIG. 1 is a functional block diagram of the central air-conditioning control system proposed by the present disclosure
  • FIG. 2 is a flow chart of calculating the address of a new controller in the central air-conditioning control system proposed by the present disclosure
  • Fig. 3 is a flow chart of calculating the address of a new controller of the central air-conditioning control system and confirming at least one second controller proposed by the present disclosure.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the refrigeration cycle system of an air conditioner includes a compressor, a condenser, an expansion valve, and an evaporator.
  • the refrigeration cycle consists of a series of processes involving compression, condensation, expansion, and evaporation, and supplies refrigerant to air that has been conditioned and heat exchanged.
  • the compressor compresses refrigerant gas in a high-temperature and high-pressure state and discharges the compressed refrigerant gas.
  • the discharged refrigerant gas flows into the condenser.
  • the condenser condenses the compressed refrigerant into a liquid phase, and the heat is released to the surrounding environment through the condensation process.
  • the expansion valve expands the high-temperature and high-pressure liquid-phase refrigerant condensed in the condenser into a low-pressure liquid-phase refrigerant.
  • the evaporator evaporates the refrigerant expanded in the expansion valve, and returns the refrigerant gas in a low-temperature and low-pressure state to the compressor.
  • the evaporator can realize the cooling effect by using the latent heat of evaporation of the refrigerant to exchange heat with the material to be cooled.
  • the air conditioner regulates the temperature of the interior space.
  • the outdoor unit of the air conditioner includes a part of the compressor of the refrigeration cycle system and the outdoor heat exchanger
  • the indoor unit of the air conditioner includes the indoor heat exchanger
  • the expansion valve can be set in the indoor unit or the outdoor unit of the air conditioner.
  • the indoor and outdoor heat exchangers can be used as condensers or evaporators.
  • the air conditioner is used as a heater in heating mode
  • the indoor heat exchanger is used as an evaporator
  • the air conditioner is used as a cooler in cooling mode.
  • the central air-conditioning control system of the present disclosure includes at least one outdoor unit, at least one indoor unit, at least one controller and a configuration module.
  • Fig. 1 it only shows one outdoor unit, and the outdoor unit is communicatively connected with at least one indoor unit (indoor unit 1, indoor unit 2, ..., outdoor unit n (n ⁇ 1)) through a communication bus .
  • the outdoor unit and the indoor unit form an air conditioning system, and the controller is used to control the air conditioning system.
  • controller 1 At least one controller that has been connected is recorded as: controller 1, controller 2, ..., controller n (n ⁇ 1), and each controller is respectively connected to the communication bus.
  • the controllers can communicate with each other, that is, the controllers can receive communication messages from other controllers.
  • the configuration module is used to send the address acquisition instruction A to the communication bus when the new controller n+1 is connected to the communication bus, and receive and analyze the instruction fed back from the controller to determine the controller address list.
  • the configuration module is also used to configure the address of the new controller n+1 according to the controller address list.
  • the address acquisition instruction A includes a preset address.
  • the address information of the preset address is FF, and has a flag bit that identifies the sent instruction as an address acquisition instruction.
  • the controller i (1 ⁇ i ⁇ n) When the controller i (1 ⁇ i ⁇ n) receives the address obtaining instruction A, it can know that the address information sent by the instruction is FF, and the instruction is an instruction for obtaining an address.
  • the controller feedback instructions received by the new controller n+1 include two situations: 1. Every other controller i (1 ⁇ i ⁇ n) sends a new controller n+1 1 Feedback instructions; 2. One of the controllers i (1 ⁇ i ⁇ n) feeds back instructions to the new controller n+1.
  • FIG. 2 it shows a flow chart of communication between controller i (1 ⁇ i ⁇ n) and new controller n+1 for determining the address of new controller n+1.
  • Each controller i (1 ⁇ i ⁇ n) knows its own address, but does not know the controller address list formed by the controller addresses of all controllers i (1 ⁇ i ⁇ n).
  • each controller i needs to communicate with the new controller n+1 separately.
  • the address acquisition instruction A is an instruction with a preset address and a flag bit as described above.
  • S23 Determine whether there is at least one controller i (1 ⁇ i ⁇ n) on the communication bus, if yes, proceed to S24, if not, configure the address of a new controller n+1.
  • At least one existing controller should be connected to the communication bus in advance, which is called the second controller for convenience of description. That is to say, the newly connected new controller is not the first controller connected to the communication bus.
  • the new controller is the first controller to be connected to the communication bus, its address can be allocated freely if the requirements are met, and there is no need to consider the problem of address conflict with other existing controls.
  • At least one controller sequentially receives the address acquisition instruction A through the communication bus, and feeds back the instruction B to the communication bus.
  • At least one controller i (1 ⁇ i ⁇ n) each sends a command B to the communication bus, and the command B includes the controller address of the controller i.
  • the controller 1 receives the address acquisition instruction A, and feeds back the instruction B containing the controller address of the controller 1 to the communication bus.
  • the controller 2 receives the address acquisition instruction A, and feeds back an instruction B including the controller address of the controller 2 to the communication bus.
  • At least one controller i (1 ⁇ i ⁇ n) needs to be online, so that the address of the new controller n+1 can be reliably configured to avoid address conflicts.
  • the new controller n+1 parses the instruction B after receiving it, acquires the controller address of the controller 1, and stores it.
  • the new controller n+2 After the new controller n+2 receives the command B, it parses it, obtains the controller address of the controller 2 and stores it.
  • the controller address of each controller i is sequentially acquired and stored to form the controller address list table1.
  • controller addresses of the existing controllers are continuous, so that the addresses of the new controller n+1 can be continuously configured.
  • controller m (1 ⁇ m ⁇ n) and the address of controller m+1 are discontinuous, the address and control of controller m (1 ⁇ m ⁇ n) can be configured for the new controller n+1 address between the addresses of device m+1 to avoid address waste.
  • the new controller n+1 sets the timeout period for receiving feedback instructions from each controller as T, the upper limit number of controllers is M, and the maximum timeout period is T*M, that is, the connected controller n+1 waits for T *M time.
  • the central air-conditioning control system of the present disclosure can realize the automatic configuration of n+1 addresses of new controllers.
  • the above-mentioned address configuration method needs to wait for the timeout T*M to judge that the controller search is completed.
  • the automatic address configuration takes a long time, and there may be problems that the search has not been completed but has timed out, resulting in incomplete searches; and it is necessary to ensure that all Controllers 1 ⁇ n are all online.
  • controller i (1 ⁇ i ⁇ n) communicates with new controller n+1 for determining the address of new controller n+1, and confirming with controllers 1-n (see The flow chart of the dotted box).
  • the address acquisition instruction A is an instruction with a preset address and a flag bit as described above.
  • S33 Determine whether there is at least one controller i (1 ⁇ i ⁇ n) on the communication bus, if yes, proceed to S34, if not, configure the address of a new controller n+1.
  • One of the at least one controller receives the address acquisition instruction A through the communication bus, and feeds back the instruction B' to the communication bus.
  • the controller 1 receives the address acquisition instruction A, and feeds back the instruction B' containing the controller addresses of the controllers 1 ⁇ n to the communication bus.
  • the controller 2 receives the address acquisition instruction A, and feeds back the instruction B' containing the controller addresses of the controllers 1-n to the communication bus.
  • the instruction B' includes a controller address list table1 formed by controller addresses of each controller i (1 ⁇ i ⁇ n).
  • the determination module is used to determine which controller in the at least one controller feeds back the command B' to the communication bus, that is, to determine the priority of the controller that feeds back the command B' to the communication bus.
  • the determination module obtains the priority of at least one controller that feeds back the instruction B' by means of generating a random number.
  • the controller with the smallest random number is selected to feed back the instruction B' to the communication bus, that is, the controller with the smallest random number is considered to have the highest priority.
  • the minimum random number indicates that the system time is the earliest, and after the controller with the earliest time feeds back the command B', other subsequent controllers will no longer feed back the command B' to the communication bus.
  • controller feedback instruction B' in some embodiments of the present disclosure, the priority order of each controller in at least one controller is preset, in some embodiments of the present disclosure, the control The priority of the controllers in controllers 1 to n decreases in turn.
  • the feedback instruction B' will include the controller address list table1 of the controller addresses of the controllers 1 ⁇ n, that is, Controllers 1 to n each have the controller address list table1 as described above.
  • the controller address list table1 can be obtained only through the transmission of any command between the new controller n+1 and controller 1 ⁇ n, which saves the time for configuring the address of the new controller n+1; and will not be on the communication bus causing busy traffic.
  • At least one existing controller should have been connected to the communication bus in advance, that is, the newly connected new controller is not the first controller connected to the communication bus.
  • the new controller is the first controller to be connected to the communication bus, its address can be allocated freely if the requirements are met, and there is no need to consider the problem of address conflict with other existing controls.
  • the new controller n+1 parses after receiving the instruction B' fed back by the controller 1, and acquires the controller address list table1;
  • the new controller n+1 parses after receiving the instruction B' fed back by the controller 2, and obtains the controller address list table1.
  • controller addresses in the controller address list table1 of the existing controllers are continuous, so that addresses can be continuously configured for the new controller n+1.
  • the address of the controller m (1 ⁇ m ⁇ n) and the address of the controller m+1 are discontinuous, then it can be
  • the new controller n+1 is configured with an address between the address of the controller m (1 ⁇ m ⁇ n) and the address of the controller m+1, so as to avoid waste of addresses and realize reasonable allocation of addresses.
  • some controllers may be offline (power down in some embodiments of the present disclosure), and it is necessary to confirm the online status of the controllers 1 ⁇ n for reliable control.
  • the central air-conditioning control system also includes an updating module (not shown), which is used for updating the controller address list of the online controller and the new controller n+1 among the controllers 1-n.
  • Instruction C contains a controller address list with the controller address of the new controller.
  • the controller address list in command C is the controller address list table n+1 ⁇ 1, 2, 3, . . . , n+1 ⁇ including the controller addresses of controllers 1 ⁇ n+1.
  • the new controller n+1 performs online confirmation with controllers 1 ⁇ n one by one according to the information in the controller address list table n+1 ⁇ 1,2,3,...,n+1 ⁇ .
  • S39 indicates that the controller i is online, and updates the controller address of the new controller n+1 into the controller address list of the controller i.
  • controller i (1 ⁇ i ⁇ n) receives the command C online, and feedbacks the response command D, it means that the controller i is online, and the controller address of the new controller n+1 is updated to the controller address of the controller i List.
  • the controller 1 after the controller 1 receives the command C online, it updates the controller address of the new controller n+1 into the controller address list of the controller 1. At this time, the control of the controller 1
  • the controller address list is a controller address list table 1 ⁇ 1, 2, 3, . . . , n+1 ⁇ including controller addresses of controllers 1 to n+1.
  • the controller address list of each controller among the controllers 1-n is a controller address list including the controller addresses of the controllers 1-n+1.
  • the new controller n+1 If the new controller n+1 does not receive the response command D from one of the controllers 1 ⁇ n (1 ⁇ i ⁇ n), it will send the command C to the communication bus again.
  • the response command D of i (1 ⁇ i ⁇ n) indicates that the controller i (1 ⁇ i ⁇ n) is offline, at this time, the new controller n+1 will transfer the controller address of the controller i from the new controller n +1 is removed from the controller address list table n+1 ⁇ 1,2,3,.. .,i-1,i+1,...,n+1 ⁇ .
  • controllers 1 ⁇ n are confirmed one by one.
  • the updated controller address list of new controller n+1 includes all online controllers in controllers 1 ⁇ n The controller address of and the controller address of the new controller n+1.
  • controller address list of each controller is as follows.
  • the updated controller address list for new controller n+1 is table n+1 ⁇ 1,2,4,...,n+1 ⁇ .
  • the controller address list is table 1 ⁇ 1,2,3,...,n+1 ⁇ .
  • the updated controller address list of new controller n+1 is table n+1 ⁇ 1,2,4,...,n+1 ⁇ , then the controllers of all online controllers
  • the address list is also updated from table 1 ⁇ 1,2,3,...,n+1 ⁇ to table n+1 ⁇ 1,2,4,...,n+1 ⁇ .
  • the controller address of the offline controller that is, the controller 3 is eliminated, and this confirmation method can avoid control omission and facilitate reliable control.
  • the central air-conditioning control system obtains the address of the new controller by automatically obtaining the address of at least one existing controller on the communication bus, so as to realize the purpose of automatically setting the address of the new controller and avoid Conflict with the address of the connected controller to ensure reliable communication; at the same time, the address setting of the new controller can be realized by using the software program, saving hardware investment costs; and there is no need to manually set the address of the new controller, saving time Save effort.
  • the address of the new controller n+1 that is newly connected to the communication bus can be automatically set in the manner described above, which saves hardware investment costs, saves address configuration time, and improves address setting efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种中央空调控制系统,其包括至少一个室外机、至少一个室内机、至少一个控制器和配置模块;至少一个室内机通过通信总线与各室外机通信连接;至少一个控制器中的各控制器能够相互通信,且分别与通信总线连接;配置模块用于在新控制器接入通信总线时,通过向通信总线发送地址获取指令,并解析接收来自控制器反馈的指令,确定控制器地址列表;根据控制器地址列表,配置新控制器的地址。

Description

中央空调控制系统
相关申请的交叉引用
本公开要求在2021年08月05日提交中国专利局、申请号为202110897515.6的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及空调控制技术领域,尤其涉及一种中央空调控制系统。
背景技术
当前中央空调应用场景越来越广泛,中央空调系统包括多台室内机,如果在多个系统的场景下,室内机数量会更多,若想便捷地管理这些空调,普通的遥控器已经无法满足要求,所以需要使用多台控制器进行管理。
发明内容
本公开一些实施例提供了一种中央空调控制系统,其特征在于,包括至少一个室外机、至少一个室内机、至少一个控制器和配置模块。至少一个室内机通过通信总线与各室外机通信连接;至少一个控制器中的各控制器能够相互通信,且分别与所述通信总线连接;配置模块被配置为在新控制器接入所述通信总线时,通过向所述通信总线发送地址获取指令,并解析来自新控制器反馈的指令,确定控制器地址列表;根据控制器地址列表,配置新控制器的地址。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提出的中央空调控制系统的原理框图;
图2为本公开提出的计算中央空调控制系统中新控制器的地址的流程图;
图3为本公开提出的计算中央空调控制系统新控制器的地址以及确认至少一个第二控制器的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
[空调的基本运行原理]
空调的制冷循环系统包括压缩机、冷凝器、膨胀阀和蒸发器。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。
蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。
蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调可以调节室内空间的温度。
空调室外机包括制冷循环系统的压缩机的部分以及室外热交换器,空调室内机包括室内热交换器,膨胀阀可以设置在空调室内机或室外机中。
室内热交换器和室外热交换器可以用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调用作制热模式的加热器,当室内热交换器用作蒸发器时,空调用作制冷模式的冷却器。
[中央空调控制系统]
本公开的中央空调控制系统包括至少一个室外机、至少一个室内机、至少一个控制器和配置模块。
参见图1,其仅示出一个室外机,室外机与至少一个室内机(室内机1、室内机2、.......、室外机n(n≥1))通过通信总线通信连接。
室外机和室内机形成空调系统,控制器用于控制空调系统。
参见图1,已接入的至少一个控制器记为:控制器1、控制器2、.......、控制器n(n≥1),各控制器分别连接在通信总线上。
各控制器能够相互通信,即,控制器能够接收到其他控制器的通信电文。
配置模块用于在新控制器n+1接入通信总线上时,向通信总线发送地址获取指令A,并接收且解析来自控制器反馈的指令,确定控制器地址列表。
配置模块还用于根据控制器地址列表,配置新控制器n+1的地址。
在本公开的一些实施例中,地址获取指令A包括预设地址。
例如预设地址的地址信息为FF,且具有标识所发送的指令为地址获取指令的标志位。
在控制器i(1≤i≤n)接收到该地址获取指令A时,即可知道该指令发出的地址信息为FF、且该指令即是用于获取地址的指令。
在本公开的一些实施例中,新控制器n+1接收到的控制器反馈的指令包括两种情况:1、每个其他控制器i(1≤i≤n)均向新控制器n+1反馈指令;2、其中一个控制器i(1≤i≤n)向新控制器n+1反馈指令。
[配置新控制器的地址I]
参见图2,其示出控制器i(1≤i≤n)与新控制器n+1通信用于确定新控制器n+1的地址的流程图。
每个控制器i(1≤i≤n)知道自己的地址,但并不知道由所有控制器i(1≤i≤n)的控制器地址形成的控制器地址列表。
因此,需要每个控制器i与新控制器n+1分别进行通信。
S21:新控制器n+1接入通信总线。
S22:新控制器n+1发送地址获取指令A至通信总线。
该地址获取指令A为如上所述的具有预设地址及标志位的指令。
S23:判断通信总线上是否存在至少一个控制器i(1≤i≤n),若是,进行到S24,若否,配置新控制器n+1的地址。
需要说明的是,通信总线上应事先已接入现有的至少一个控制器,为描述方便称为第二控制器。也就是说,新接入的新控制器并非是第一个接入通信总线上的控制器。
若新控制器是第一个接入通信总线上的控制器,其地址可在满足需求下自由分配,此时不用考虑与其他现有控制的地址冲突的问题。
S24:至少一个控制器依次通过通信总线接收该地址获取指令A,并反馈指令B至通信总线。
至少一个控制器i(1≤i≤n)每个向通信总线发送指令B,指令B中包含控制器i的控制器地址。
在本公开的一些实施例中,控制器1接收到地址获取指令A,并向通信总线反馈包含有控制器1的控制器地址的指令B。
控制器2接收到地址获取指令A,并向通信总线反馈包含有控制器2的控制器地址的指令B。
需要说明的是,需要至少一个控制器i(1≤i≤n)均在线,这样才能可靠配置新控制器n+1的地址,避免引起地址冲突。
S25:新控制器n+1接收到指令B后解析,形成控制器地址列表table1。
在本公开的一些实施例中,新控制器n+1接收到指令B后解析,获取控制器1的控制器地址,并存储。
新控制器n+2接收到指令B后解析,获取控制器2的控制器地址并存储。
依次获取各控制器i的控制器地址并存储,以形成控制器地址列表table1。
S26:在判断新控制器n+1搜索所有控制器1~n完毕后,根据控制器地址列表table1,配置新控制器n+1的地址。
一般已有控制器的控制器地址是连续的,如此,即可连续地为新控制器n+1配置地址。
若控制器m(1≤m<n)的地址和控制器m+1的地址是不连续的,可以为新控制器n+1配置位于控制器m(1≤m<n)的地址和控制器m+1的地址之间的地址,避免地址浪费。
假设,新控制器n+1设定接收每个控制器反馈指令的超时时间为T,控制器的上限数量为M,最大超时时间为T*M,即接入的控制器n+1等待T*M时 间。
在大于等于T*M时间后,则认为通信总线上所有控制器都搜索完毕,此后可根据控制器地址列表table1,配置新控制器n+1的地址。
本公开中央空调控制系统能够实现新控制器n+1地址自动配置。
如上所述的地址配置方法需要通过等待超时T*M来判断控制器搜索完毕,自动配置地址时间长,且可能会存在还未完成搜索但已超时,以造成搜索不全的问题;且需要保证所有控制器1~n均在线。
[配置新控制器的地址II]
参见图3,其示出控制器i(1≤i≤n)与新控制器n+1通信用于确定新控制器n+1的地址、以及与控制器1~n确认(参见图3中虚线框)的流程图。
S31:接入新控制器n+1。
S32:新控制器n+1发送地址获取指令A至通信总线。
该地址获取指令A为如上所述的具有预设地址及标志位的指令。
S33:判断通信总线上是否存在至少一个控制器i(1≤i≤n),若是,进行到S34,若否,配置新控制器n+1的地址。
S34:至少一个控制器中一个控制器通过通信总线接收该地址获取指令A,并反馈指令B'至通信总线。
在本公开的一些实施例中,控制器1接收到地址获取指令A,并向通信总线反馈包含有控制器1~n的控制器地址的指令B'。
控制器2接收到地址获取指令A,并向通信总线反馈包含有控制器1~n的控制器地址的指令B'。
此处指令B'包含各控制器i(1≤i≤n)的控制器地址形成的控制器地址列表table1。
确定模块用于确定至少一个控制器中哪一个控制器向通信总线反馈指令B',即,确定向通信总线反馈指令B'的控制器的优先权。
在本公开中,确定模块采用生成随机数的方式获取反馈指令B'的至少一 个控制器的优先权。
首先,利用系统时间作种子,生成随机数。
其次,选择随机数最小的控制器反馈指令B'至通信总线,即,认为随机数最小的控制器具有最高优先权。
随机数最小表示系统时间最早,时间最早的控制器反馈指令B'后,其他后续控制器则不再向通信总线反馈指令B'了。
当然,确定哪一个控制器反馈指令B'的方式还有很多,在本公开的一些实施例中,预设至少一个控制器中各控制器的优先权顺序,在本公开的一些实施例中控制器1~n中的控制器的优先级依次降低。
控制器1~n中任一个接收到新控制器n+1发送的地址获取指令A时,所反馈的指令B'都会包含控制器1~n的控制器地址的控制器地址列表table1,即,控制器1~n每个都会有如上所述的控制器地址列表table1。
如下,仅通过新控制器n+1与控制器1~n中任一个指令传送就能获取控制器地址列表table1,节省配置新控制器n+1的地址的时间;且不会在通信总线上造成通信繁忙。
需要说明的是,通信总线上应事先已接入现有的至少一个控制器,即,新接入的新控制器并非是第一个接入通信总线上的控制器。
若新控制器是第一个接入通信总线上的控制器,其地址可在满足需求下自由分配,此时不用考虑与其他现有控制的地址冲突的问题。
S35:新控制器n+1接收到指令B'后解析,获取控制器地址列表table1。
在本公开的一些实施例中,新控制器n+1接收到控制器1反馈的指令B'后解析,获取控制器地址列表table1;或者
新控制器n+1接收到控制器2反馈的指令B'后解析,获取控制器地址列表table1。
S36:根据控制器地址列表table1,配置新控制器n+1的地址。
一般已有控制器的控制器地址列表table1中的控制器地址是连续的,如此, 即可连续地为新控制器n+1配置地址。
若控制器地址列表table1中地址是不连续的,在本公开的一些实施例中,控制器m(1≤m<n)的地址和控制器m+1的地址是不连续的,则可以为新控制器n+1配置位于控制器m(1≤m<n)的地址和控制器m+1的地址之间的地址,避免地址浪费,实现地址合理分配。
[更新地址列表]
完成配置新控制器n+1的地址之后,可能会存在有些控制器不在线(在本公开的一些实施例中掉电)的还需要对控制器1~n进行在线确认,以便可靠控制。
该中央空调控制系统还包括更新模块(未示出),其用于更新控制器1~n中在线控制器与新控制器n+1的控制器地址列表。
S37:新控制器n+1发送指令C至通信总线。
指令C包含具有新控制器的控制器地址的控制器地址列表。
即,指令C中的控制器地址列表为包含控制器1~n+1的控制器地址的控制器地址列表table n+1{1,2,3,...,n+1}。
S38:判断控制器i(1≤i≤n)是否反馈应答指令D,若是,进行到S39,若否,进行到S39'。
新控制器n+1按照控制器地址列表table n+1{1,2,3,...,n+1}的信息与控制器1~n逐一进行在线确认。
S39:表示控制器i在线,将新控制器n+1的控制器地址更新到控制器i的控制器地址列表中。
如果控制器i(1≤i≤~n)在线收到指令C,并反馈应答指令D,表示控制器i在线,将新控制器n+1的控制器地址更新到控制器i的控制器地址列表中。
在本公开的一些实施例中,控制器1在线接收到指令C后,将新控制器n+1的控制器地址更新到控制器1的控制器地址列表中,此时,控制器1的控 制器地址列表为包含控制器1~n+1的控制器地址的控制器地址列表table 1{1,2,3,...,n+1}。
如此,若所有控制器1~n均在线时,控制器1~n中每个控制器的控制器地址列表均为包含控制器1~n+1的控制器地址的控制器地址列表。
S39':表示控制器i在线,新控制器n+1会将该控制器i的控制器地址从新控制器n+1的控制器地址列表table n+1{1,2,3,...,n+1}中剔除。
若新控制器n+1未接收到控制器1~n中某一个控制器i(1≤i≤n)的应答指令D,则会再次发送指令C至通信总线,若还未收到控制器i(1≤i≤n)的应答指令D,表示控制器i(1≤i≤n)不在线,此时,新控制器n+1会将该控制器i的控制器地址从新控制器n+1的控制器地址列表table n+1{1,2,3,...,n+1}中剔除,以形成更新的控制器地址列表table n+1{1,2,3,...,i-1,i+1,...,n+1}。
S40:在控制器1~n进行一一确认后,新控制器n+1更新其控制器地址列表。
如此,对控制器1~n进行一一确认,在所有控制器1~n都确认完毕后,新控制器n+1更新后的控制器地址列表中包含控制器1~n中所有在线控制器的控制器地址和新控制器n+1的控制器地址。
在本公开的一些实施例中,在控制器1~n确认完毕后,只有控制器1~n中控制器3不在线,则各控制器的控制器地址列表为如下。
新控制器n+1更新的控制器地址列表为table n+1{1,2,4,...,n+1}。
对于在线控制器,控制器地址列表为table 1{1,2,3,...,n+1}。
S41:新控制器n+1将自身更新后的控制器地址列表通过指令E发送至通信总线,所有在线控制器同步更新自身的控制器地址列表。
在本公开的一些实施例中,新控制器n+1更新的控制器地址列表为table n+1{1,2,4,...,n+1},则所有在线控制器的控制器地址列表也从table 1{1,2,3,...,n+1}更新为table n+1{1,2,4,...,n+1}。
即,剔除了不在线控制器(即,控制器3)的控制器地址,此种确认方式 可以避免控制遗漏,方便可靠控制。
本公开提供的中央空调控制系统通过自动获取通信总线上的、现有已接入的至少一个控制器的地址,来获取新控制器的地址,实现自动设定新控制器的地址的目的,避免与已接入控制器的地址冲突,保证可靠通信;同时,使用软件程序即可实现对新控制器的地址设定,节省硬件投入成本;且不需人工设定新控制器的地址,省时省力。
如此通过如上所述的方式可自动设定新接入通信总线上的新控制器n+1的地址,节省硬件投入成本,且节省地址配置时间,提高地址设定效率。
以上实施例仅用以说明本公开的技术方案,而非对其进行限制;尽管参照前述实施例对本公开进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本公开所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种中央空调控制系统,包括:
    至少一个室外机;
    至少一个室内机,其通过通信总线与各室外机通信连接;
    至少一个控制器,各控制器能够相互通信,且分别与所述通信总线连接;
    配置模块,其用于在新控制器接入所述通信总线时,通过向所述通信总线发送地址获取指令,并解析接收来自所述控制器反馈的指令,确定控制器地址列表;
    根据所述控制器地址列表,配置所述新控制器的地址。
  2. 根据权利要求1所述的中央空调控制系统,
    所述配置模块用于在通过向所述通信总线发送地址获取指令时,所述至少一个控制器中的每个控制器向所述新控制器反馈指令;
    所述新控制器解析所接收到的指令,获取每个控制器的控制器地址;
    所述至少一个控制器的控制器地址形成所述控制器地址列表。
  3. 根据权利要求1所述的中央空调控制系统,
    所述指令包含所述控制器的控制器地址。
  4. 根据权利要求1所述的中央空调控制系统,其中,所述中央空调控制系统还包括:
    确定模块,其用于确定所述至少一个控制器中哪一个向所述新控制器反馈所述指令。
  5. 根据权利要求1所述的中央空调控制系统,所述指令包含所述至少一个控制器中每个的控制器地址形成的控制器地址列表。
  6. 根据权利要求5所述的中央空调控制系统,所述确定模块采用生成随机数的方式获取用于反馈所述指令的所述至少一个控制器的优先权。
  7. 根据权利要求6所述的中央空调控制系统,随机值最小的控制器获取 所述优先权。
  8. 根据权利要求7所述的中央空调控制系统,所述中央空调控制系统还包括:
    更新模块,其用于更新所述至少一个控制器中所有在线控制器和所述新控制器的控制器地址列表。
  9. 根据权利要求7所述的中央空调控制系统,
    利用系统时间作种子,生成随机数;
    选择随机数最小的控制器反馈指令至通信总线,即随机数最小的控制器具有最高优先权;
    随机数最小表示系统时间最早,时间最早的控制器反馈指令后,其他后续控制器则不再向通信总线反馈指令了。
  10. 根据权利要求1-9任一项所述的中央空调控制系统,新接入的新控制器并非是第一个接入通信总线上的控制器。
PCT/CN2022/080013 2021-08-05 2022-03-09 中央空调控制系统 WO2023010848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280026628.1A CN117121443A (zh) 2021-08-05 2022-03-09 中央空调控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110897515.6A CN113587393B (zh) 2021-08-05 2021-08-05 中央空调控制系统
CN202110897515.6 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023010848A1 true WO2023010848A1 (zh) 2023-02-09

Family

ID=78255564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080013 WO2023010848A1 (zh) 2021-08-05 2022-03-09 中央空调控制系统

Country Status (2)

Country Link
CN (2) CN113587393B (zh)
WO (1) WO2023010848A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587393B (zh) * 2021-08-05 2022-11-29 青岛海信日立空调系统有限公司 中央空调控制系统
CN114017899A (zh) * 2021-11-17 2022-02-08 四川长虹空调有限公司 集中控制目标地址自动匹配与手动设置兼容的控制方法
CN114484762B (zh) * 2022-01-25 2024-05-14 青岛海尔空调电子有限公司 多联机空调系统的控制方法、多联机空调系统及电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160796A (en) * 1998-01-06 2000-12-12 Sony Corporation Of Japan Method and system for updating device identification and status information after a local bus reset within a home audio/video network
US20070012052A1 (en) * 2005-02-23 2007-01-18 Emerson Electric Co. Interactive control system for an HVAC system
CN1906895A (zh) * 2004-01-06 2007-01-31 汤姆森特许公司 家用网络的发现方法和实现该方法的设备
CN103383128A (zh) * 2013-07-11 2013-11-06 青岛海信日立空调系统有限公司 多联式中央空调的集中控制系统和控制方法
CN107026919A (zh) * 2017-03-23 2017-08-08 珠海格力电器股份有限公司 一种确定节点设备网络地址的方法、节点设备和控制系统
CN107231455A (zh) * 2017-07-28 2017-10-03 北京硕人时代科技股份有限公司 一种分配通信地址的方法及装置
CN104896797B (zh) * 2015-06-15 2018-01-02 广东美的暖通设备有限公司 热泵机组和热泵机组的控制方法
CN108881505A (zh) * 2018-05-30 2018-11-23 武汉高仕达电气有限公司 一种can总线节点地址分配方法及系统
CN109698871A (zh) * 2018-12-20 2019-04-30 京信通信系统(中国)有限公司 一种光纤分布式接入系统及其管理方法
CN113587393A (zh) * 2021-08-05 2021-11-02 青岛海信日立空调系统有限公司 中央空调控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635637A (zh) * 2008-07-21 2010-01-27 江森自控楼宇设备科技(无锡)有限公司 基于串行总线的智能地址分配的方法和系统
CN104754762B (zh) * 2013-12-30 2019-12-03 中兴通讯股份有限公司 软件自定义网络中自动发现控制器的方法、控制器及系统
US20160134640A1 (en) * 2014-11-12 2016-05-12 Smartlabs, Inc. Systems and methods to securely install network controllers
US9531587B2 (en) * 2014-11-12 2016-12-27 Smartlabs, Inc. Systems and methods to link network controllers using installed network devices
CN105100296B (zh) * 2015-05-28 2019-05-07 新华三技术有限公司 控制器地址配置方法以及装置
US10928086B2 (en) * 2018-01-16 2021-02-23 Lennox Industries Inc. Auto-addressing for a multi-device refrigeration system
CN110160204B (zh) * 2019-06-11 2022-03-01 青岛海信日立空调系统有限公司 多联机空调系统控制方法和多联机空调系统
CN112100007A (zh) * 2020-10-12 2020-12-18 苏州浪潮智能科技有限公司 一种多控制器存储设备中主控制器的切换方法和系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160796A (en) * 1998-01-06 2000-12-12 Sony Corporation Of Japan Method and system for updating device identification and status information after a local bus reset within a home audio/video network
CN1906895A (zh) * 2004-01-06 2007-01-31 汤姆森特许公司 家用网络的发现方法和实现该方法的设备
US20070012052A1 (en) * 2005-02-23 2007-01-18 Emerson Electric Co. Interactive control system for an HVAC system
CN103383128A (zh) * 2013-07-11 2013-11-06 青岛海信日立空调系统有限公司 多联式中央空调的集中控制系统和控制方法
CN104896797B (zh) * 2015-06-15 2018-01-02 广东美的暖通设备有限公司 热泵机组和热泵机组的控制方法
CN107026919A (zh) * 2017-03-23 2017-08-08 珠海格力电器股份有限公司 一种确定节点设备网络地址的方法、节点设备和控制系统
CN107231455A (zh) * 2017-07-28 2017-10-03 北京硕人时代科技股份有限公司 一种分配通信地址的方法及装置
CN108881505A (zh) * 2018-05-30 2018-11-23 武汉高仕达电气有限公司 一种can总线节点地址分配方法及系统
CN109698871A (zh) * 2018-12-20 2019-04-30 京信通信系统(中国)有限公司 一种光纤分布式接入系统及其管理方法
CN113587393A (zh) * 2021-08-05 2021-11-02 青岛海信日立空调系统有限公司 中央空调控制系统

Also Published As

Publication number Publication date
CN117121443A (zh) 2023-11-24
CN113587393A (zh) 2021-11-02
CN113587393B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2023010848A1 (zh) 中央空调控制系统
US7721558B2 (en) Multi-air conditioner and group-unit control method thereof
CN100532982C (zh) 用于多种空调机的中央控制系统及其操作方法
KR20040048186A (ko) 멀티 에어컨의 중앙 제어 시스템 및 그 동작방법
CN112815406A (zh) 室外机
WO2023024216A1 (zh) 空调控制系统
EP2584277A1 (en) Network system equipped with air conditioner and control method thereof
KR101844860B1 (ko) 공기조화기 및 그 제어방법
JP2013185739A (ja) 空気調和機
CN117098953A (zh) 中央空调控制系统
CN113587391A (zh) 一种基于蓝牙通信的多联机系统
KR101266100B1 (ko) 멀티형 공기조화기 시스템 및 그 제어 방법
KR101964626B1 (ko) 공기 조화기 및 이의 주소 분배 방법
US11732918B2 (en) Air conditioner and piping communication method thereof
EP3961996B1 (en) Load balancing wireless mesh networks for heating, ventilation, and air conditioning systems
KR100529877B1 (ko) 멀티에어컨의 중앙제어 시스템의 동작방법
CN113587392B (zh) 中央空调控制系统
KR100455186B1 (ko) 멀티 공조기
JPWO2018179366A1 (ja) 冷凍サイクルシステムおよび通信トラフィック調整方法
CN115875808A (zh) 一种集控系统
CN216384376U (zh) 组合柜及制冷设备
EP3875863B1 (en) Air conditioning system and method for setting control subject of air conditioning system
KR20080060761A (ko) 냉난방 동시형 멀티 공기조화기 및 그 배관탐색방법
CN117109132A (zh) 中央空调系统
JP6844645B2 (ja) ネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE